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Abstract

87Rb atoms are known to have long-lived Rydberg excited states with controllable exci-
tation amplitude (detuning) and strong repulsive van der Waals interaction Vrr′ between
excited atoms at sites r and r′. Here we study such atoms in a two-leg ladder geometry
in the presence of both staggered and uniform detuning with amplitudes ∆ and λ re-
spectively. We show that when Vrr′ ≫ (≪)∆,λ for |r − r′| = 1(> 1), these ladders host
a plateau for a wide range of λ/∆ where the ground states are selected by a quantum
order-by-disorder mechanism from a macroscopically degenerate manifold of Fock states
with fixed Rydberg excitation density 1/4. Our study further unravels the presence of
an emergent Ising transition stabilized via the order-by-disorder mechanism inside the
plateau. We identify the competing terms responsible for the transition and estimate a
critical detuning λc/∆ = 1/3 which agrees well with exact-diagonalization based numer-
ical studies. We also study the fate of this transition for a realistic interaction potential
Vrr′ = V0/|r−r′|6, demonstrate that it survives for a wide range of V0, and provide analytic
estimate of λc as a function of V0. This allows for the possibility of a direct verification
of this transition in standard experiments which we discuss.
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1 Introduction

It is usually expected that fluctuations, thermal or quantum, in a generic many-body system
shall lead to suppression of order. However, a somewhat less intuitive counterexample, namely,
stabilization of order in a system with competing interactions due to quantum or thermal
fluctuations is now well-accepted [1–3]. This phenomenon occurs due to the presence of
macroscopically degenerate manifold of classical ground states in such systems; the presence
of fluctuations then may lift this degeneracy leading to a ground state with definite order. This
mechanism is dubbed as order-by-disorder [1]. Examples of this phenomenon is seen in a
variety of quantum many-body systems involving spins [4–6], bosons [7–9] and fermions [10].

In recent years, ultracold atoms in optical lattice have proved to be efficient emulators
of several well-known model Hamiltonians in condensed matter systems [11]. A primary ex-
ample of this is the emulation of the Bose-Hubbard model [12–15] using ultracold bosonic
atoms [16]. A study of such bosons in their Mott phases and in the presence of a tilted lattice
generating an artificial electric field have led to the realization of a translational symmetry
broken ground state and an associated quantum phase transition which belongs to the Ising
universality class [17–24]. More recently, another such ultracold atom system, namely, a chain
of 87Rb atoms supporting long-lived Rydberg excited states has also been studied in detail. The
amplitude of realizing a Rydberg excitation at any site of such a chain can be controlled by
changing the detuning, i.e, the difference between the energy (frequency) of the external laser
and the energy gap between the ground and excited states of a Rydberg atom [25–28]. These
atoms, in their Rydberg excited states, experience strong repulsive van der Waals(vdW) in-
teraction leading to a finite Rydberg blockade radius [29–33]. Such a system leads to the
realization of symmetry broken phases separated by both Ising and non-Ising quantum phase
transitions [25, 26, 34–37]. The out-of-equilibrium dynamics of such systems leading to re-
alization of the central role of quantum scars in such dynamics have also been studied both
theoretically [38–43] and experimentally [26]. These studies have also been extended to two-
dimensional (2D) arrays of Rydberg atoms leading to the possibility of realization of Kitaev
spin liquids in these systems [44–49].

In all of the above-mentioned studies [25–28,34–49], detuning of the Rydberg atoms have
been assumed to be uniform. However, recently, chains of such Rydberg atoms in the presence
of an additional staggered detuning have also been studied extensively [50–59]. The main
motivation behind such studies stemmed from the possibility of realization of quantum link
models using ultracold atom systems [50–53,55,56]; these models are well-known to exhibit
quantum confinement [60, 61] which is usually difficult to realize in a generic condensed
matter setup [57,58,62]. More recently, the out-of-equilibrium dynamics of such models have
also been studied; it was found that they host several interesting phenomena such as ultra-
slow dynamics following a quench [57], dynamical freezing in the presence of a periodic drive,
and Floquet scars [59]. However, to the best of our knowledge, the phases of coupled ladders
of Rydberg atoms with staggered detuning have not been studied in detail so far.

In this work, we study the phases of such coupled chains of Rydberg atoms in the presence
of both uniform and staggered detunings with amplitudes λ and ∆ respectively. In addition,
such a system allows for a coupling between the Rydberg excited and the ground states of the
atoms with an amplitude w [25,26]. Such coupled chains leads to a two-leg ladder geometry
as shown in Fig. 1(a). The corresponding blockade radius for the Rydberg excitations, which
prevents existence of two Rydberg excitation on nearest-neighbor sites in such ladders, is also
shown in Fig. 1(a). In our work, we first concentrate in the regime where the vdW interaction
between the Rydberg atoms satisfy Vrr′ ≪ λ,∆, w outside the blockade radius. In this regime,
we find that for a wide range of λ/∆ such a system shows a plateau where the Rydberg ex-
citation density, n, is fixed to n = 1/4. The plateau destabilizes at λ/∆ ≃ ±1 leading to a
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change in n; we analyze this behavior using a variational wavefunction method which agrees
well with exact diagonalization (ED) results.

(a)

(b)

(2j,1) (2j,1)

(c)

Figure 1: (a) Schematic representation of a two-leg Rydberg ladder. The circles rep-
resent sites on the Rydberg chain. The presence of a Rydberg excitation on a site
is denoted by the red circle; this precludes excitations of nearby sites (denoted by
blue circles). The corresponding Rydberg blockade radius is schematically shown by
the triangle. The other sites (grey circles) may have Rydberg excitations since they
would experience weaker repulsive vdW interaction falling off as 1/|r⃗|6 with distance
|r⃗| from the site with a Rydberg excited atom (red circle). (b) Schematic represen-
tation of one of the states with Rydberg excitation density n = 1/4 with excitations
occurring at even sites of one of the ladders. This state is one of the two possible
classical Fock states which represents the ground state for λ > λc . (c) A similar dia-
gram for a state in the low-energy manifold with n= 1/4 whose superposition forms
the ground state at λ < λc but not for λ > λc . See text for details.

The ground state of the system within the plateau involves macroscopic number of degen-
erate classical Fock states having a Rydberg excitation in one of the two sites in every even rung
of the ladder (Fig. 1(b) and 1(c)) and is chosen by a quantum order-by-disorder mechanism
from these classical Fock states. For λ > λc , the ground state breaks Z2 symmetry; it consists
of Fock states where all Rydberg excitations are localized in any one of the two rungs of the
ladder (Fig. 1(b)). In contrast, for λ < λc , we find a unique ground state which constitutes
a macroscopic superposition of Fock states with fixed n = 1/4. One such state is schemati-
cally shown in Fig. 1(c). This necessitates the presence of a quantum phase transition which
belongs to the 2D Ising universality class at λ = λc . We carry out a Schrieffer-Wolff transfor-
mation to obtain an effective low-energy Hamiltonian which provides analytical insight into
this transition and identifies the competing terms responsible for it. Our perturbative analysis,
based on the effective Hamiltonian, estimates the critical point to be λc ≃ ∆/3 which shows
an excellent match with exact numerical results based on ED. Thus our analysis indicates that
the order-by-disorder mechanism necessarily leads to a quantum phase transition separating
the above-mentioned ground states. As we detail in the appendix, our study naturally leads
to a class of spin models involving ladders with ℓ0 legs that realize ground states with bro-
ken Zℓ0

symmetry. For ℓ0 = 3, as we show both using ED and analytic perturbation theory
in the appendix, this provides a route to realization of a quantum critical point belonging to
the three-state Potts universality class in 2D. To the best our knowledge, such emergent tran-
sitions arising from an order-by-disorder mechanism have not been reported in the context of
Rydberg systems in the literature [25–28,34–37,44–49].

Next, in an attempt to make contact with realistic experimental systems, we discuss the
fate of this transition for the two-leg ladder in the presence of a realistic vdW interaction
characterized by Vrr′ = V0/|r − r′|6. We discuss an experimentally relevant regime where
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V0 ≫ λ,∆, w so that states with one or more nearest-neighbor Rydberg excitations do not
feature in the ground state manifold. However, Rydberg excitations on second and higher
neighboring sites now experience a finite repulsive interaction. We show that the main effect
of having such a second and higher neighbor interaction is to shift λc/∆ to a higher value;
the Ising transition still persists for a wide range of V0 and w. We analyze the transition using
a Van Vleck perturbation theory, discuss the significance of the order-by-disorder mechanism
for its stability, and provide an estimate of λc as a function of V0 and w. Finally, we discuss
experiments which can test our theory.

The plan of the rest of the paper is as follows. In Sec. 2, we define the model Hamiltonian
for Rydberg atoms on a two-leg ladder. Next, in Sec. 3, we analyze the phases of the model by
ignoring the second and higher neighboring repulsive interaction between the Rydberg atoms.
This is followed by Sec. 4 where we discuss the effect of finite V0. Finally, we discuss our
main results, point out possible experiments which can test our theory, and conclude in Sec.
5. We discuss our variational wavefunction results around λ ≃∆ in App. A and chart out the
phases of ladders with ℓ0 > 2 rungs, which could be more challenging to realize within current
experimental setups, in App. B.

2 Model Hamiltonian

In this section, we outline the model Hamiltonian for the Rydberg atoms. We consider an
arrangement of two Rydberg chains each having 2L sites shown schematically in Fig. 1(a).
The sites of these chains host N = 4L Rydberg atoms whose low-energy effective Hamiltonian
is written as [25–28]

H =
2L
∑

j=1

2
∑

ℓ=1

�

wσx
j,ℓ −

1
2
[∆(−1) j +λ]σz

j,ℓ

�

+
∑

r̸=r′
Vrr′ n̂rn̂r′ , (1)

where σαj,ℓ for α= x , y, z denotes the usual Pauli matrices on the site j of the ℓth chain and the
lattice spacing a between the sites is set to unity so that the coordinate r of any site is denoted
by integers j and ℓ: r = ( j,ℓ). In Eq. 1, λ and ∆ denote the amplitudes of uniform and
staggered detuning such that λ+∆ and λ−∆ represent the energy differences between the
energy of the applied external laser and the energy gap between ground and excited Rydberg
atomic levels on even and odd sites respectively. Here w > 0 denotes the coupling strength
between the Rydberg ground and excited states. In an experimental setup, this coupling is
controlled by two-photon processes having Rabi frequency w/ħh [25–28]. Thus for any site
with coordinate r,

σx
r ≡ σx

j,ℓ = (|G〉r r〈R|+ h.c.), n̂r ≡ n̂ j,ℓ = (1+σ
z
j,ℓ)/2 , (2)

where |R〉r ≡ | ↑r〉 and |G〉r ≡ | ↓r〉 denotes excited and ground states of a Rydberg atom on
the site r respectively and n̂r is the number operator corresponding to the Rydberg excitations.
In the Rydberg excited state, the atoms experience strong vdW repulsion which is modeled by
Vrr′ given by

Vrr′ = V0/|r− r′|6 , (3)

where V0 is the interaction strength. It is well-known that in a typical experiment, V0 can be
tuned to induce Rydberg blockade between neighboring sites. For the rest of this paper, we
shall assume that V0 ≫ ∆0,λ, w so that the neighboring sites of the two-rung ladder have at
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most one Rydberg excited atom (Fig. 1(a)). In this limit, one can split the Hamiltonian in two
parts Ha and Hb given by

Ha =
∑

r,r′
V0n̂rn̂r′δ|r−r′|−1 ,

Hb =
2L
∑

j=1

2
∑

ℓ=1

�

wσx
j,ℓ −

1
2
[∆(−1) j −λ]σz

j,ℓ

�

+
V0

2

∑

rr′

nrn̂r′

|r− r′|6
(1−δ|r−r′|−1) . (4)

In the limit, where V0 is the largest energy scale in the problem, it is possible to define a hier-
archy of energies for the eigenstates based on the number of nearest-neighbor Rydberg excita-
tions [27]. This can be encoded via a projection operator Tm which satisfies [Ha, Tm] = mV0Tm.
The role of Tm is to project the Hamiltonian into a sector of m-nearest neighbor Rydberg exci-
tation. In what follows, we shall be concerned with the effective Hamiltonian in the sector of
m = 0 nearest-neighbor dipoles. A straightforward calculation similar to the one carried out
in Ref. [27] for a Rydberg chain yields [17,63]

HV
eff =

2L
∑

j=1

2
∑

ℓ=1

wσ̃x
j,ℓ −

2L
∑

j=1

2
∑

ℓ=1

1
2
[∆(−1) j +λ]σz

j,ℓ +
V0

2

∑

rr′

nrn̂r′

|r− r′|6
(1−δ|r−r′|−1) ,

σ̃x
j,ℓ = Pj−1,ℓ

 

∏

ℓ′ ̸=ℓ

Pjℓ′σ
x
j,ℓ

!

Pj+1,ℓ , (5)

where we have used the fact that H0 does not contribute in this sector and Pj,ℓ = (1−σz
j,ℓ)/2

is the local projection operator which ensures the absence of nearest-neighbor Rydberg ex-
citations. The higher-order terms can be systematically computed involving m ̸= 0 nearest-
neighbor Rydberg excitations but are unimportant for the regime that we are interested. Fur-
thermore, in the regime where V0 ≫ λ,∆≫ w≫ V0/(

p
2)6, it is possible to neglect the last

term in Heff. In this regime one obtains the following generalized PXP Hamiltonian [17, 63]
on the 2-leg ladder

Heff =
2L
∑

j=1

2
∑

ℓ=1

wσ̃x
j,ℓ −

1
2

2L
∑

j=1

2
∑

ℓ=1

[∆(−1) j +λ]σz
j,ℓ . (6)

In the next section, we shall obtain the ground state phase diagram of Heff given in Eq. 6. The
effect of finite second and higher-neighboring interaction shall be discussed, using HV

eff (Eq. 5)
in Sec. 4.

3 Phases of Heff

To understand the phase-diagram of Heff, we first set w = 0. It is then easy to see that for
λ < 0 and |λ| ≫ ∆, we have 〈σz

j,ℓ〉 = −1 on all sites leading to n = 〈
∑

r⃗ n̂r⃗〉/N = 0. Simi-
larly for λ > 0 and λ ≫ ∆, the ground state hosts maximal number of possible up-spins or
Rydberg excitations. However, due to the constraint of having at most one Rydberg excita-
tion on neighboring sites, it can have such excitations only on N/2 sites. This results in a
net Rydberg excitation density of n = 1/2 and leads to a two-fold degenerate ground state.
In between for −∆ ≤ λ ≤ ∆, the ground state hosts one Rydberg excitation on every even
rung of the ladder and thus has n= 1/4. This is due to the fact that such excitations requires
δEeven = −(λ+∆) < 0 in this regime. In contrast, a Rydberg excitation on an odd site costs
δEodd = ∆ − λ > 0. The ground state manifold therefore has macroscopic 2L fold classical
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Figure 2: (a): Plot of the Rydberg excitation density n as a function of λ with w= 0
(black dotted line) and w = 0.05 (blue dots) for the two leg-ladder indicating the
plateau at with n = 1/4 between −1 ≤ λ ≤ 1 as obtained using ED. The red solid
line indicates n as computed using variational wavefunction analysis around λ= ±1.
The black circle at λ∼ 0.33 shows the position of the Ising transition. (b): Plot of sx
as a function of λ across the crossover at λ ≃ −1. The solid red line indicate results
from the variational wavefunction approach while the blue dots indicates ED results
corresponding to N = 20. All energies are scaled in units of ∆. See text for details.

degeneracy for w = 0. At λ = ±∆, n exhibits jumps for w = 0 which constitute first order
transitions.

These discontinuous transitions become smooth crossovers due to quantum fluctuations
introduced by a finite w (Fig. 2 (a)). This can be understood using a variational wavefunction
based analysis. Here we illustrate this for λ/∆≃ −1; a similar analysis can be carried out for
λ ≃ ∆ and is shown in App. A. We start by noting that for |λ| ≫ ∆, w and λ < 0, the ground
state of Heff is given by

|ψ1〉=
L
∏

j=1

| ↓2 j−1,1↓2 j−1,2;↓2 j,1↓2 j,2〉 . (7)

In contrast, for ∆ > |λ|, it is clearly energetically favorable to have a Rydberg excitation on
even sites. A variational wavefunction representing such a state is given by

|ψ2〉 =
L
∏

j=1

�

cosφ| ↓2 j−1,1↓2 j−1,2;↑2 j,1↓2 j,2〉+ sinφ| ↓2 j−1,1↓2 j−1,2;↓2 j,1↑2 j,2〉
�

. (8)

Note that we have chosen the variational parameter φ to be independent of position since we
intend to carry out a mean-field analysis of the problem here. Near λ/∆ = −1, we construct
a variational wavefunction |ψv〉 = cosθ |ψ1〉+ sinθ |ψ2(φ)〉 which leads to Ev = 〈ψv|H|ψv〉
given by

Ev = (λ cos2 θ −∆ sin2 θ )−
p

2w sin2θ cos(φ − 5π/4) , (9)

where we have ignored an irrelevant constant term. The minimization of Ev fixes

φ = φ0 = 5π/4 , θ = θ0 =
1
2

arctan

�

−2
p

2w
λ+∆

�

. (10)

To show the efficacy of this approach, we compare results obtained via variational wave-
function method with exact numerics. To this end, we analyze Heff numerically using ED for
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N ≤ 40 and using periodic boundary condition along the chains. We compute the expectation
values n̂ and

ŝx =
L
∑

j=1

2
∑

ℓ=1

σx
2 j,ℓ/N , (11)

from both the variational wavefunction and using exact numerics. The former yields analytical
expressions for n and sx = 〈ŝx〉 given by

n =
1
8

sin2 θ0 , sx =
p

2 sin2θ0

4
. (12)

The plots of these as a function of λ/∆ with w/∆ = 0.05 are compared with their exact
numerical counterparts in Fig. 2(a) and 2(b). The plots show an excellent match; this shows
that the crossover between phases with n = 0 to n = 1/4 is well captured by our variational
analysis. A similar match is obtained for the crossover at λ/∆ ≃ 1 as can be seen from Fig.
2(a); this has been presented in detail in App. A. We also note here that the extent of the
plateau reduces with increasing w; we therefore work in the regime w≪ λ,∆ in this work.
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Figure 3: (a): Plot of (∆E)N z for a two-leg ladder as a function of λ for w= 0.05 for
several N showing a crossing at λ = λc ≃ 0.333 for z = 1. (b) Plot of (∆E)N z as a
function of N1/ν(λ−λc) showing perfect scaling collapse for z = ν = 1. (c): Plot of
SN2−z−η as a function of λ showing a crossing at λc ≃ 0.331 for η = 0.25. (d) Plot
of SN2−z−η as a function of (λ−λc)N1/ν showing perfect scaling collapse for ν = 1
and η= 0.25. All energies are scaled in units of ∆. See text for details.

Next, we concentrate on the nature of the ground state of the system for −1 ≤ λ/∆ ≤ 1.
Here the ground state is chosen by a quantum order-by-disorder mechanism from the manifold
of 2L classical Fock states with n = 1/4. Our numerical analysis reveals the presence of a
quantum phase transition inside the plateau with n= 1/4 at λ= λc . We find numerically that
the ground state of the system at λ > λc hosts Rydberg excitations on even sites of any one of
the two chains; it thus breaks a Z2 symmetry as shown schematically in Fig. 1(b). In contrast
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for λ < λc , the ground state is unique and constitute a superposition of all Fock states with
n = 1/4 (Fig. 1(c)); it does not break any symmetry. This necessitates a transition at λ = λc
characterized by an order parameter

Ô =
L
∑

j=1

2
∑

ℓ=1

(−1)ℓσz
2 j,ℓ . (13)

We note that the quantum phase transition is a result of the fact that the order-by disorder
mechanism chooses two different ordered states, one of which breaks a discrete Z2 symmetry
while the other does not.

w

(a)

(2j,1)

(2j,1)

(2j,1)

(2j,1)

(2j,1)

w w

(b)

Figure 4: Schematic representation of the virtual processes leading to the effective
Hamiltonian H ′. The red (blue) circles represent atoms in Rydberg excited (ground)
states. (a): The process which favors all Rydberg excitations to be on the even sites
of one of the chains (chosen to be the top chain (ℓ = 1) here) and leads to the first
term in H ′. The excited state constitutes one additional Rydberg excitation on an odd
site of the bottom chain as shown schematically. (b) The competing virtual process
which leads to the second term of H ′. The excited state, which belongs to the high
energy manifold, constitutes one additional Rydberg atom in its ground state at an
even site of the top chain as shown. See text for details.

To check for the universality class of this transition, we carry out finite-size scaling analysis
for N ≤ 40 on these ladders. We use the well-known scaling relations [17,64]

∆E = N−z f
�

N1/ν(λ−λc)
�

, (14)

S =
1
N
〈Ô2〉= N2−z−ηg

�

N1/ν(λ−λc)
�

,

where z and ν are the dynamical critical and the correlation length exponents respectively, η
indicates the anomalous dimension of Ô, S is the order-parameter correlation, f and g are
scaling functions, and ∆E denotes the energy gap between the ground and the first excited
states. Such a scaling analysis, shown in Fig. 3 indicates the presence of a quantum phase
transition at λc ≃ 0.33∆ with z = ν = 1 and η = 1/4; these exponents confirm that the
universality class is the same as the critical point of the classical 2D Ising model.

To obtain analytic insight into this transition, we construct a perturbative effective Hamil-
tonian using a Schrieffer-Wolff transformation as follows. First, we note that w ≪ |λ|,∆
in the regime of interest. Using Eq. 6, we therefore write Heff = H0 + H1 where
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H1 = w
∑2L

j,=1

∑2
ℓ=1 σ̃

x
j,ℓ. We then use a canonical transformation operator S′ to write

H ′ = exp[iS′]Heff exp[−iS′] = H0 +H1 + [iS
′, H0 +H1] +

1
2
[iS′, [iS′, H0]] + . . . , (15)

where the ellipsis indicates higher order terms. Next, following standard procedure, we elimi-
nate all O(w) terms in H ′ which takes one out of the low-energy manifold of states. This allows
to determine S′ using the resultant condition [iS′, H0] = −H1 yielding

S′ = −w
2L
∑

j=1

2
∑

ℓ=1

(∆(−1) j +λ)−1σ̃
y
j,ℓ . (16)

Using the expression of S′, a straightforward calculation yields the effective Hamiltonian
H ′ = H0 +[iS′, [iS′, H0]]/2. A subsequent projection to the manifold of states with n = 1/4
leads to [57,65]

H ′ =
−w2

∆−λ

L
∑

j=1

�

2
∑

ℓ=1

P2 j,ℓP2 j+2,ℓ +
α0

2

∑

ℓ,ℓ′=1,2;ℓ̸=ℓ′
P2 j,ℓ′(σ

x
2 j,ℓσ

x
2 j,ℓ′ +σ

y
2 j,ℓσ

y
2 j,ℓ′)

�

, (17)

where α0 = (∆− λ)/(∆+ λ). The virtual processes induced by w which play a key role for
realization of these two terms are schematically shown in Fig. 4.

The emergence of the phase transition at a critical value of λ/∆ can be understood by
noting the competition between the two terms of H ′ in Eq. 17. The first term, whose amplitude
dominates for ∆− λ ≃ w, prefers maximum possible Rydberg excitation on even sites of any
one of the two chains; such a state is schematically shown in Fig. 1(b). The resultant ground
state thus breaksZ2 symmetry. In contrast, the second term, which dominates when∆+λ≃ w,
prefers a linear superposition of all states with one Rydberg excitation on any chain of even
sites of the ladders. The resultant ground state does not break any discrete symmetry. This
necessitates an intermediate quantum critical point belonging to the 2D Ising universality class.

To estimate the position of this critical point, we start from the Z2 symmetry broken ground
state with all Rydberg excitations on even sites of the first chain (Fig. 1(b)). The simplest
excited state over these ground states constitutes equal superposition of Fock states with one
Rydberg excitation on any one of two chains for a single even site 2 j; for j′ ̸= 2 j, the Rydberg
excitations occur on the first chain. This excited state can be represented as

|ψex〉 =
1
p

2

�

| ↓1,1↓1,2;↑2,1↓2,2 .... ↑2 j,1↓2 j,2 ...;↑2L,1↓2L,2〉

+| ↓1,1↓1,2;↑2,1↓2,2 .... ↓2 j,1↑2 j,2 ...;↑2L,1↓2L,2〉
�

, (18)

where |ψG〉 = | ↓1,1↓1,2;↑2,1↓2,2 .... ↑2 j,1↓2 j,2 ...;↑2L,1↓2L,2〉 is the symmetry broken ground
state.

The energy cost of creating such an excited state can be easily computed as
δEex = 〈ψex|H ′|ψex〉 − 〈ψG|H ′|ψG〉. A straightforward calculation yields δEex = δE1 + δE2
where

δE1 =
w2

2(∆−λ)
, δE2 = −

w2

∆+λ
. (19)

We note that δE1 originates from the first term of H ′ which prefers all the Rydberg excitations
to be on the same chain. In contrast, δE2 comes from the second term which maximizes
superposition of up-spins on different sites of the even rungs. An approximate estimate of
the critical point can be obtained by equating these two energies; this yields the value of λ at
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Figure 5: (a): Plot of n0 as a function of V0 for w = 0.1 and λ = 1 showing Vc ≃ 1.6
for N = 12 (blue squares) and N = 16 (red circles). (b) Plot of Vc as a function of
w for λ = 1. (c) Plot of n as a function of λ for w = 0.1 and V0 = 2 showing the
plateau for n and the position of the transition (black circle).(d) The eigenenergies
Em of HV

eff, measured from the ground state energy, as a function of m (for m≤ 100)
for λ = 1, w = 0 and N = 24 showing the near-degenerate manifold. The two
degenerate ground states at w= 0 correspond to two Fock states where the Rydberg
excitations occur alternately on even sites of ladders 1 and 2. All energies are scaled
in units of ∆. See text for details.

which δEex = 0 so that the Z2 symmetry broken ground state becomes unstable to low-energy
excitations. Such an estimate yields

λc =∆/3 . (20)

We note that this simple estimate matches remarkably well with that obtained from ED using
finite-sized scaling analysis of the energy gap: λex

c /∆ = 0.332. This provides support for the
fact that the transition is indeed realized due to an order-by-disorder mechanism which can
be captured by the perturbative effective Hamiltonian H ′ (Eq. 17).

We also note that the position of the transition can also be obtained as follows. First,
we define pseudospin states on even sites of the ladder as |12 j〉 ≡ | ↑2 j,1;↓2 j,2〉 and
| − 12 j〉 ≡ | ↓2 j,1;↑2 j,2〉. In terms of Pauli matrices, s⃗ j , which acts on the space of these pseu-
dospins, one can then identify P2 j,1(2) = (1− (+)sz

2 j)/2. Using this identification, the first term
of Heff (Eq. B.2) can be written, ignoring an irrelevant constant term, as

L
∑

j=1

2
∑

ℓ=1

P2 j,ℓP2 j+2,ℓ →
1
2

L
∑

j=1

sz
2 js

z
2 j+2 . (21)

We then note that the second term of Heff (Eq. B.2), acting on these pseudospin state, yields
|12 j〉 ⇔ | − 12 j〉. This is due to the fact that the spins on the even sites of the ladder can not

10

https://scipost.org
https://scipost.org/SciPostPhys.14.1.004


SciPost Phys. 14, 004 (2023)

be both spin-up or both spin-down; the first condition follows from the constraint, while the
second is a consequence of the ground state belonging to n = 1/4 sector. Using this, one can
show

1
2

L
∑

j=1

∑

ℓ,ℓ′=1,2;ℓ̸=ℓ′
P2 j,ℓ′(σ

x
2 j,ℓσ

x
2 j,ℓ′ +σ

y
2 j,ℓσ

y
2 j,ℓ′) →

L
∑

j=1

sx
2 j . (22)

Using Eqs. 21 and 22, we find an effective Ising representation of Heff given by

H I
eff =

−w2

∆−λ

L
∑

j=1

�

1
2

sz
2 js

z
2 j+2 +α0sx

2 j

�

. (23)

From this, one can, using Kramers-Wannier duality, read off the position of the critical point
to be at α0 = 1/2 which also leads to λc =∆/3.

Before ending this section, we would like to point out that a similar model of ladders with
ℓ0 > 2 would lead to spin models which hosts Zℓ0

symmetry broken ground states leading
to realization of non-Ising quantum critical points. We show in the appendix, by an analysis
similar to that carried out above, that such transition belong to 2D three-state Potts universality
class for ℓ0 = 3. However, realization of ℓ0 > 2-leg ladders using Rydberg atoms chains with
vdW interactions whose low-energy behavior is governed by Heff may be difficult; we discuss
this further in the appendix.

4 Effect of vdW interaction

In this section, we shall discuss the fate of the Ising transition for a realistic vdW interaction
given by Eq. 3. To this end, we concentrate in the regime where V0 is large enough so that there
is at most one Rydberg excitation in any pair of neighboring sites. To estimate the minimal
V0 ≡ Vc required to satisfy this criteria, we diagonalize H (Eq. 1) for a two-leg ladder with
N ≤ 16 and Hilbert space dimension D ≤ 216 to obtain its ground state |ΨG〉. We then compute

n0 =
1
2

∑

rr′
〈ΨG|nrnr′δ|r−r′|−1|ΨG〉 , (24)

as a function of V0 for a fixed w, λ, and ∆. This allows us to estimate Vc(w/∆,λ/∆) as the
minimum value of V0 for which n0 ≤ ε0 ≃ 0.001. This is shown in Fig. 5(a) where n0 is
plotted as a function of V for λ/∆ = 1 and w/∆ = 0.1 for N = 12, 16. We note that Vc is
independent of N ; thus one can safely use V0 > Vc to access the constrained Hilbert space for
larger system sizes. A plot of Vc/∆ obtained from this procedure for N = 16 as a function of
w/∆ for λ/∆ = 1 is shown in Fig. 5(b). We find that Vc increases with increasing w; this can
be easily understood from the fact that increasing w makes the freezing of spin on any site
energetically more costly.

Next, we fix V0/∆= 2 and w/∆= 0.1 so that the ground state does not have more than one
Rydberg excitation on neighboring sites. We then diagonalize HV

eff (Eq. 5) for N = 40, obtain
the ground state, and compute n as a function of λ/∆ for w= 0 and 0.1∆. Our results, shown
in Fig. 5(c), indicate the presence of a wide range of λ/∆ with n = 1/4; for w/∆ = 0.1,
n starts deviating from 1/4 around λ/∆ ≃ 1.1 and reaches its maximal value 1/2 around
λu/∆ ∼ 2. Our numerical, finite-size scaling analysis, also finds a Ising critical point around
λ = λc such that λc/∆ ≃ 1.12 at the edge of the plateau. For λc < λ < λu, the system has a
doubly degenerate ground state; it chose a single configuration only via spontaneous symmetry
breaking. This shows that the presence a finite second and higher neighbor interaction does
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not necessarily obliterate the Ising transition; however the transition is shifted to a higher
value of λ/∆. We note that this is possible since the residual interaction term in HV

eff does
not lift the degeneracy between the two Z2 symmetry broken ground states. Importantly,
the presence of V leads to a near-degenerate low-energy manifold with O(L) states having
n∼ 1/4; this is to be contrasted with the exact degenerate ground state manifold of 2L states
when the next nearest-neighbor interactions are neglected. This is shown in Fig. 5(d) for
λ/∆ = 1.1 and w = 0. The ground states for w = 0 shown in Fig. 5(d) correspond to two
Fock states where Rydberg excitations occur alternatively on even sites of ladders 1 and 2. We
also note that the presence of a finite w, whose magnitude is comparable to the width of the
nearly-degenerate low-energy manifold, leads to a different ground state which constitutes a
significant admixture of states within this manifold. The plot also indicates that one needs
a finite but small w so that states with n ̸= 1/4 (higher excited states in Fig. 5(d)) are not
strongly mixed with near degenerate O(L) manifold of low-lying states.
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Figure 6: (a): Exact numerics confirming the presence of the Ising transition for
V0 = 2.0 and w= 0.1 (a): Plot of (∆E)N z for a two-leg ladder as a function of λ for
several N showing a crossing at λ = λc ≃ 1.121 for z = 1. (b) Plot of (∆E)N zas a
function of N1/ν(λ − λc) showing perfect scaling collapse for z = ν = 1. (c): Plot
of SN2−z−η as a function of λ showing a crossing at λc ≃ 1.118 for η = 0.25. (d)
Plot of SN2−z−η as a function of (λ − λc)N1/ν showing scaling collapse for ν = 1,
λc ≃ 1.118, and η= 0.25. All energies are scaled in units of ∆. See text for details.

Next, we carry out finite-size scaling analysis near the transition. The results are indicated
in Fig. 6. Our analysis reveals the presence of a quantum critical point at λc ≃ 1.12∆ for
V0 = 2∆ and w= 0.1∆. The Ising universality class of this transition is confirmed from finite-
size scaling as shown in Fig. 6; our results indicate z = ν= 1 and are consistent with η= 0.25
even though the scaling collapse of S suggests significant finite-size scaling corrections for the
system sizes accessed using ED. The variation of λc with V0 > Vc and w is shown in Fig. 7(a).
We note that the transition exists for a wide range of V0 and w; λc varies linearly with both
V0 and w within this range. Moreover, we find that in contrast to its counterpart in Heff, λc
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depends on w as shown in the inset of Fig. 7(a).
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Figure 7: (a): Plot of λc as a function of V0 for w0 = 0.1 showing the presence of
the transition for a wide range of V0 > Vc . The inset shows a plot of λc as a function
of w for V0 = 2. For both plots, the blue dots represent exact results obtained using
ED while the red lines shows the analytical result obtained using Eq. 29. (b) A plot
of (∆Ep)N z as a function of λ for different N showing a crossing at λc ≃ 1.104 for
z = 1. The inset shows a plot (∆Ep)N z as a function of (λ− λc)N1/ν showing data
collapse for z = ν = 1. These plots indicate that the Van-Vleck perturbation theory
captures the essence of the Ising transition. All energies are scaled in units of∆. See
text for details.

To obtain an analytic estimate of the shift in the position of the transition, we use a Van-
Vleck perturbation theory to construct an effective low-energy Hamiltonian. To this end, we
write HV

eff = HV
0 +H1 where H1 = w

∑2L
j=1

∑2
ℓ=1 σ̃

x
j,ℓ and HV

0 can be read off from Eq. 5. We first

identify the low-energy manifold of states corresponding to HV
0 ; these states are represented

as |m〉. Next, we construct a canonical transformation S′ leading to an effective Hamiltonian

H ′V = eiS′HV
effe
−iS′ = HV

0 +H1 + [iS
′, H0 +H1] +

1
2
[iS′, [iS′, HV

0 ]] + . . . , (25)

where the ellipsis indicate higher order terms in w which we neglect. Note that the presence
of the interaction term in HV

0 makes it difficult to obtain a closed form operator expression
for S′; however, its matrix elements can still be analytically expressed. To determine S′, we
again demand that it is chosen such that all O(w) terms, which takes one out the low-energy
manifold of states |m〉, are eliminated; this leads to matrix elements of S′ as

〈n|iS′|m〉 =
〈n|H1|m〉
E0

n − E0
m

, 〈m|iS′|m′〉= 0 , (26)

where |n〉 denotes eigenstates of HV
0 which are not part of the low-energy manifold and E0

n are
the corresponding eigenvalues. We also note that the second relation in Eq. 26 is automati-
cally satisfied when w is large compared to energy width of the low-energy manifold (see Fig.
5(d)); this is the regime which we shall be interested in for the rest of this section. One can
then substitute Eq. 26 in Eq. 25 and obtain the matrix elements of H ′V within the low-energy
manifold

〈m|H ′V |m
′〉 = E0

mδmm′ −
w2

2

∑

n

〈m|
2L
∑

j=1

2
∑

ℓ=1

σ̃x
j,ℓ|n〉〈n|

2L
∑

j=1

2
∑

ℓ=1

σ̃x
j,ℓ|m

′〉

×
�

1
E0

n − E0
m
+

1

E0
n − E0

m′

�

, (27)
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where the sum over n indicates sum over states outside the low-energy manifold. Here E0
m

denotes the energy of the state |m〉 due to HV
0 while the terms ∼ w2 results from second-order

virtual processes due to H1. We identify the low-energy manifold of states numerically and
diagonalize 〈m|H ′V |m

′〉 for several N . The resultant energy gap between the ground and the
first excited state is denoted by∆Ep; a plot of (∆Ep)N z as a function of λ is shown in Fig. 7(b)
for z = 1. We find that it indicates the presence of a quantum phase transition belonging to
Ising universality at λc ≃ 1.104∆; the inset of Fig. 7(b) shows the plot of (∆Ep)N z as a function
of (λ − λc)N1/ν showing scaling collapse for λc ≃ 1.104 for z = ν = 1. These results agree
remarkably well with ED and shows that the essence of the Ising transition is well captured
by the perturbation theory. We note that when Vrr′ for |r− r′| > 1 are neglected, E0

m becomes
a m independent constant leading to an exactly degenerate manifold with all states having
n = 1/4. The presence of a finite Vrr′ for |r− r′| > 1 lifts this degeneracy and also allows the
ground state manifold near the transition to have a small admixture of states with n> 1/4 in
the presence of finite w near the transition.

The picture of the transition that emerges from the above analysis is as follows. We note
that Fig. 5(d) shows clear indication of near-degenerate low-energy manifold of states. The
presence of a finite w leads to a ground state which is an admixture of these low-energy nearly-
degenerate manifold of states arising out of a quantum order-by-disorder mechanism. This
leads to a unique ground state below a critical λ = λc; in contrast, for λ > λc , the ground
state breaks a Z2 symmetry which necessitates the presence of an Ising critical point at λc .

To obtain an analytical estimate of the position of the critical point, we now approximate
the ordered ground state for λ > λc to be given by |ψG〉. This is not strictly correct since
numerically we find that the ordered state has a small admixture of states with higher n.
However, since this admixture is small, the estimate we obtain using this approximation is
expected to be qualitatively correct. We then create an excited state given by |ψex〉 (Eq. 18).
Since both |ψG〉 and |ψex〉 are part of low-energy manifold of states, we use Eq. 27 to compute
〈H〉 for them. A straightforward computation, keeping terms up to fourth nearest-neighbors
in interaction (|r− r′| ≤

p
5), shows that

EV
ex = 〈ψex|H ′v|ψex〉= EV

G +
δEV

1

2
+δEV

2 , EV
G = 〈ψG|H ′v|ψG〉 ,

Ev
G = L

�

−(∆+λ) +
V0

26
−

w2

(∆−λ) + V0/4

�

+ E0 ,

δEV
1 ≃ 2V0n1 +

w2

V0
4 + (∆−λ)

, δEV
2 ≃ −

w2

∆+λ
, n1 =

�

1

(
p

5)6
−

1
26

�

, (28)

where E0 is the energy of the all-spin down state and we have neglected terms
O(w2V0/(26(∆ + λ)2)) and O(w2V0/((

p
5)6(∆ + λ)2)); these terms are always small in the

range of V0 and w we are interested in. The virtual processes responsible for the O(w2) term
turns out to be same that in Fig. 4; their amplitudes, however, change due to the presence
of V0. We note that for w = 0, δEex < 0 which means the ordered phase never occurs in ab-
sence of the order-by-disorder mechanism realized via O(w2) terms in H ′V . Second, for V0 = 0,
δEV

1(2) = δE1(2) and we get back Eq. 19 for the excitation energy. Equating δEV
ex = 0, we finally

find

λc =
V 2

0 n1 + 6w2 −
p

(V0n1(8∆+ V0)− 2w2)2 + 32w4

8V0n1
. (29)

We note that V0 = 2∆ and w = 0.1∆, Eq. 29 yields λc ≃ 1.25∆ which is close to the exact
result obtained from ED: λexact

c = 1.12∆. A plot of λc as a function of V and w shown in Fig.
7(a). Comparting the analytical result (red solid line) with the numerical ones (blue dots), we
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find that the former overestimates λc by a small amount but provides similar dependence of
λc on both V and w. The numerical difference between the two arises from the perturbative
nature of the Van-Vleck result and also from the approximate nature of the ordered ground
state since we have neglected the small admixture with states having n > 1/4. We note that
the presence of a critical lower value of w is clearly required for λc < λu; for w < wc , which
can be estimated by equating λc = λu in Eq. 29, the transition does not occur.

Thus our analysis shows that the presence of a finite V0 does not obliterate the Ising transi-
tion. This allows for the possibility of concrete realization of such a transition in experimentally
relevant Rydberg atom systems. Importantly, the perturbative analysis clearly indicates that
the transition is stabilized by a quantum order-by-disorder mechanism.

5 Discussion

In this work we have identified a quantum phase transition which is stabilized by a quantum
order-by-disorder mechanism in Rydberg ladders with staggered detuning. Such a transition
does not have any analogue in Rydberg chains studied earlier. We have shown that this tran-
sition persists for a wide range of vdW interaction strength between the Rydberg atoms. Our
numerical studies are supplemented by perturbative calculations which provides analytical
insight into the nature of the transition via identification of the competing terms in the low-
energy effective Hamiltonian of the system responsible for it; moreover, they provide remark-
ably accurate estimate of the critical detuning.

Our prediction can be tested using standard experiments on Rydberg atom systems [25,26].
The simplest geometry to consider would be the two-leg ladder with w≪ |λ|,∆ and a finite V0
within range shown in Fig. 7(a). We envisage a situation where the detunings at the odd(even)
sites of the Rydberg chains, given by λodd(λeven), are [66]

λeven = λ+∆ , λodd = λ−∆ . (30)

The Ising transition is then expected to occur, for example, for V0 = 3∆, at λc ≃ 1.5∆ which
translates to λeven/λodd ≃ 5. These values can of course be tuned by appropriate tuning of V0
and w within the specified range discussed in Sec. 4. In the ordered phase, with λ > λc , all the
Rydberg excitations will preferentially happen on one of the two ladder provided one breaks
the Z2 symmetry by changing the detuning slightly on any even site of the one of the chains.
In contrast, the Rydberg excitations in the same setting will be distributed on both chains
for λeven/λodd < 5. This change should be easily detected by standard fluorescent imaging
techniques used for detection of Rydberg excitations in these systems [25–28].

Finally, our analysis of the Rydberg ladder in the limit Vrr′ ≪ w,λ,∆ points towards an
interesting class of spin models where Zℓ0

symmetry broken ground states and associated
quantum phase transitions are stabilized by an order-by-disorder mechanisms. We note that
this is in contrast to other spin models where a critical point arises due to competition be-
tween a classical term and an order-by-disorder induced term in the Hamiltonian [67]. For
a ladder with ℓ0 chains, as shown in App. B, a Zℓ0

symmetry broken ground state is realized
for λ > λc =∆(ℓ0 − 1)/(ℓ0 + 1); in contrast, for λ < λc , the ground state does not break any
symmetry. This leads to the realization of a critical point at λ= λc which, for example, belongs
to three-state Potts university class for ℓ0 = 3. However, unlike ℓ0 = 2, ladders with ℓ0 > 2
chains also require periodic boundary conditions along the rung direction to stabilize non-Ising
transitions; this might be difficult to achieve in current experimental setups. In conclusion we
have studied the phase diagram of Rydberg ladders with ℓ0 legs in the presence of staggered
detuning. Our study indicates that the low-energy behavior of such systems is described by
class of constrained spin models which support Zℓ0

symmetry broken ground states and as-
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sociated emergent quantum criticality stabilized by an order-by-disorder mechanism. For the
two-leg ladder, we show, by considering realistic vdW interactions, that the presence of such
an interaction do not obliterate the emergent Ising transition; this leads to the possibility of
its detection in standard experimental setup.
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A Variational wavefunction approach for λ≃∆

In this section, we shall address the ground state of the system around λ=∆ and for λ,∆≫ w.
To this end, we first note, that for λ≫ ∆, w, the ground state of the system prefers maximal
number of Rydberg excitations and can therefore be written as

|ψ3〉 = cosφ1|ψ3a〉+ sinφ1|ψ3b〉 ,

|ψ3a〉 =
L/2
∏

j=1

| ↑2 j−1,1,↓2 j−1,2;↓2 j,1,↑2 j,2〉 , |ψ3b〉= | ↓2 j−1,1,↑2 j−1,2;↑2 j,1,↓2 j,2〉 , (A.1)

where once again we have chosenφ1 to be independent of j. In contrast, for λ≤∆, the ground
state prefers to have down-spins on the odd sublattices. Thus one may choose the variational
ground state wavefunction to be |ψ4(φ2)〉 ≡ |ψ4〉= |ψ2(φ = φ2)〉 where |ψ2〉 is given by Eq.
8. Using these wavefunctions, one can therefore construct a variational wavefunction given
by

|Φv〉 = cosβ |ψ3〉+ sinβ |ψ4〉 , (A.2)

where 0 ≤ β ≤ π/2. The corresponding variational energy can be computed in a straightfor-
ward manner and yields

E1v = 〈Φv|H2|Φv〉= E0 + (λ−∆) cos2 β −w sin(2β) cos(φ1 −φ2 +π) . (A.3)

The minimization of E1v leads to

φ1 = φ2 +π , β0 =
1
2

arctan
�

2w
∆−λ

�

. (A.4)

Next, we consider the change in expectation values of the operators n̂ and sx across the
transition. To this end, we note that using Eqs. A.2 and A.4, we find

〈n̂〉v =
1
2
−

1
4

cos2 β0 =
1
2
−

1
8

�

1−
λ−∆

p

(λ−∆)2 + 4w2

�

,

〈s′x〉v =
1
N
〈

L
∑

j=1

2
∑

ℓ=1

〈σx
2 j−1,ℓ〉=

sin2β0

4
=

w

2
p

(λ−∆)2 + 4w2
. (A.5)

These expectations values, can also be computed using the exact ground state obtained from
ED. The two results show excellent match similar to their counterparts near λ∼ −∆ discussed
in the main text. The plot for n near λ ∼ ∆, shown in Fig. 2(a), corroborates the above
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statement. We note here that the two states |ψ3〉 and |ψ4〉 belong to two different Z2 orders
corresponding to n = 1/4 and n = 1/2 respectively. Thus it is natural to expect a first order
transition between them around λ ≃ ∆. However, our numerics from ED seems to indicate
a crossover which can be inferred from N independence of the data. This is most likely a
consequence of the presence of other sector states with fixed n. These states do not feature in
this simple minded variational wavefunction computation and their presence may change this
transition to a crossover.

B ℓ0-leg ladder

In this section, we consider the model Heff for ℓ0-legged ladder. For ℓ0 > 2, such ladders are
difficult to realize in an experimentally relevant Rydberg atom arrays since periodic boundary
condition is required along the rung direction. However we study such model Hamiltonians
here since they support phase transitions with non-Ising universality that are stabilized by
order-by-disorder mechanism. In what follows, we shall provide a general expression for the
low-energy effective Hamiltonian H ′

ℓ0
for a ladder with ℓ0 legs. We shall also provide numerical

evidence of the transition for ℓ0 = 3 legged ladder.
To this end, we consider an arrangement of ℓ0 Rydberg chains each having 2L sites so that

N = 2Lℓ0 as shown in Fig. 8(a) for ℓ0 = 3. As shown in this figure, we consider a situation
where the presence of a Rydberg excited atom on any site precludes the presence of another
such excitation in all of the ℓ0−1 sites of the same rung of the ladder. The model Hamiltonian
that we shall consider for these chains is a generalization for Heff (Eq. 6) and is given by

H =
2L
∑

j=1

ℓ0
∑

ℓ=1

�

wσ̃x
j,ℓ −

1
2
[∆(−1) j +λ]σz

j,ℓ

�

, σ̃x
j,ℓ = Pj−1,ℓ

 

∏

ℓ′ ̸=ℓ

Pj,ℓ′

!

σx
j,ℓPj+1,ℓ . (B.1)

The phase diagram for such chains for w= 0 can be obtained in a straightforward manner.
For λ < 0, and |λ| ≫ ∆, n = 0. Around |λ| ≃ ∆, it becomes energetically favorable to create

(a)

-2 -1 0 1 2

0

0.1

0.2

0.3

Figure 8: (a) Schematic representation of the Rydberg ladder for ℓ0 = 3 showing
the Rydberg blockade radius (rectangular region) around a Rydberg excitation (red
circle). The blue circles denote sites with blocked Rydberg excitation. The black
circle at λ ∼ 0.5 shows the position of the quantum phase transition.(b) The plot of
Rydberg excitation density n for a ℓ0 = 3 leg ladder as a function of λ. The red dotted
line corresponds to w = 0 showing first order transition between the plateaus. The
blue solid lines correspond to w = 0.05. The black circle shows the position of the
quantum phase transition. All energies are scaled in units of ∆. See text for details.
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one Rydberg excitation on one of the ℓ0 sites of an even rung. This leads to a classical ground
state with n0 = 1/(2ℓ0); the ground state is macroscopically degenerate since there are ℓL

0
Fock states with n = 1/(2ℓ0). For λ > ∆, the ground state corresponds to maximum possible
Rydberg excitations leading to n = 1/ℓ0; it exhibits a ℓ0 fold degeneracy. For w = 0, there
are first-order transitions between these ground states at λ/∆ ≃ ±1; for finite w, these are
related by crossovers. The representative phase diagram, for ℓ0 = 3, is shown in Fig. 8(b). Our
numerical analysis also detects, for ℓ0 = 3, a quantum transition within the n= 1/6 plateau at
λc/∆≃ 0.52. A finite-sized scaling analysis near of the energy gap ∆E, as shown in Fig. 9(a)
and 9(b) indicates z = 1 and ν = 5/6 ≃ 0.83 for the transition. Furthermore we define an
order parameter Ôℓ0

=
∑L

j=1

∑ℓ0
ℓ=1 exp[2πiℓ/ℓ0]σz

2 j,ℓ and compute its correlation function for

the ℓ0 = 3 chain: S = 〈Ô∗3Ô3〉/N . We find that, using a finite sized scaling analysis, S ∼ N2−z−η

with η= 4/15≃ 0.267 and z = 1 as shown in Figs. 9(c) and 9(d). Thus we conclude that the
transition belongs to the 2D three-state Potts universality class.

An analytic insight into this transition is provided by a calculation similar to that outlined
in the main text leading to Eq. 17. For an ℓ0-leg the effective Hamiltonian receives contribution
from processes which are similar to those shown in Fig. 4 (generalized for ℓ0 legs) and is given
by [57,65]

Hℓ0
eff =

−w2

∆−λ

L
∑

j=1

�

ℓ0
∑

ℓ=1

P2 j,ℓP2 j+2,ℓ +
α0

2

∑

ℓ,ℓ′=1,ℓ0;ℓ̸=ℓ′
P2 j,ℓ′(σ

x
2 j,ℓσ

x
2 j,ℓ′ +σ

y
2 j,ℓσ

y
2 j,ℓ′)

�

, (B.2)

where α0 = (∆ − λ)/(∆ + λ). The emergence of the phase transition at a critical value of
λ/∆ can once again be understood by noting the competition between the two terms in Eq.
B.2. The first term prefers a Zℓ0

symmetry broken ground state with all Rydberg excitations
on any one of the ℓ0 chains; in contrast, the second term prefers a linear superposition of all
states with one Rydberg excitation on any site of even rungs of the ladder. This necessitates
an intermediate quantum critical point belonging to Zℓ0

universality class.
To estimate the position of this critical point, we once again consider an excited state over

the Zℓ0
symmetry broken ground state |ψ′G〉 given by

|ψ′G〉 = | ↓1,1↓1,2 .. ↓1,ℓ0
;↑2,1↓2,2 .. ↓2,ℓ0

; .... ↑2 j,1↓2 j,2 .. ↓2 j,ℓ0
...;↑2L,1↓2L,2 .. ↓2ℓ0

〉. (B.3)

Such an excited state can be created by constructing a linear superposition of states with a
Rydberg excitation on any one of the sites of one of the even rungs of the ladder for which
j′ = 2 j; for all j′ ̸= 2 j, the Rydberg excitation reside at ℓ0 = 1. Such an excited state can be
represented as

|ψ′ex〉 =
1
p

ℓ0

�

| ↓1,1↓1,2 .. ↓1,ℓ0
;↑2,1↓2,2 .. ↓2,ℓ0

; .... ↑2 j,1↓2 j,2 .. ↓2 j,ℓ0
...;↑2L,1↓2L,2 .. ↓2ℓ0

〉

+| ↓1,1↓1,2 .. ↓1,ℓ0
;↑2,1↓2,2 .. ↓2,ℓ0

; .... ↓2 j,1↑2 j,2 .. ↓2 j,ℓ0
...;↑2L,1↓2L,2 .. ↓2ℓ0

〉

+ . . . .| ↓1,1↓1,2 .. ↓1,ℓ0
;↑2,1↓2,2 .. ↓2,ℓ0

; .... ↓2 j,1↓2 j,2 .. ↑2 j,ℓ0
...;↑2L,1↓2L,2 .. ↓2ℓ0

〉
�

.

(B.4)

The energy cost of creating such an excited state can be easily computed following the
method outlined in the main text and leads to δEℓ0

ex = δEℓ0
1 +δEℓ0

2 where

δEℓ0
1 =

w2(1− 1/ℓ0)
∆−λ

, δEℓ0
2 = −

w2(ℓ0 − 1)
∆+λ

. (B.5)

The energy gap vanishes when δEℓ0
ex = 0 which leads to an estimate of the critical point given

by

λc =∆(ℓ0 − 1)/(ℓ0 + 1) . (B.6)
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Figure 9: Exact numerics confirming the presence of the three-state Potts transition
for ℓ0 = 3. (a): Plot of (∆E)N z for a three-leg ladder as a function of λ for several
N showing a crossing at λ = λc ≃ 0.501 for z = 1. (b) Plot of (∆E)N z as a function
of N1/ν(λ−λc) showing perfect scaling collapse for z = 1 and ν≃ 1/1.2= 0.83.(c):
Plot of SN2−z−η as a function of λ showing a crossing at λc ≃ 0.502 for η≃ 0.27. (d)
Plot of SN2−z−η as a function of λ−λc)N1/ν showing a scaling collapse for ν= 1/1.2
and η= 0.27. All energies are scaled in units of ∆. See text for details.

For ℓ0 = 2, this reproduces Eq. 20 of the main text; for ℓ0 = 3, it provides an estimate of the
three-state Potts critical point to be λc =∆/2 which matches quite well with exact numerical
results shown Fig. 9.

Before ending this section, we note that we expect that for ℓ0 > 4, the transition shall be
first order; however we have not been able to carry out ED studies on sufficiently large system
size to ascertain this due to increased dimension of the constrained Hilbert space.
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