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Abstract

We demonstrate the emergence of a non-equilibrium superradiant phase in the dissi-
pative Rabi-Dicke model. This phase is characterized by a photonic steady state that
oscillates with a frequency close to the cavity frequency, in contrast to the constant pho-
tonic steady state of the equilibrium superradiant phase in the Dicke model. We relate
this superradiant phase to the population inversion of Floquet states by introducing a
Schwinger representation of the driven two-level systems in the cavity. This inversion
is depleted near Floquet energies that are resonant with the cavity frequency to sustain
a coherent light-field. In particular, our model applies to solids within a two-band ap-
proximation, in which the electrons act as Schwinger fermions. We propose to use this
Floquet-assisted superradiant phase to obtain controllable optical gain for a laser-like
operation.
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1 Introduction

Driven dissipative quantum systems display a plethora of intriguing phenomena, including un-
conventional coherent light sources and amplification mechanisms. Phenomena such as lasing
without inversion [1–4], lasing with driven quantum dots [5, 6] and population inversion in
strongly driven two-level systems [7, 8], have been proposed or implemented to extend the
conventional lasing mechanism. These examples are based on the non-equilibrium dynamics
of the dissipative Rabi model, which presents a minimal example of driven quantum systems.
Similarly, driven Dicke models [9] exhibit rich non-equilibrium dynamics of superradiant phase
transitions and unconventional lasing states [10–19]. Driving the coupling in cavity-BEC se-
tups, which can be mapped onto the dissipative Dicke model, hosts several non-equilibrium
phases [20–25]. Incoherently pumped Strontium transitions have been used to explore the
crossover regime of superradiant lasing [26, 27]. Nitrogen vacancy (NV) center spins in di-
amond present a similar platform that has been used to create superradiant lasers [28–30].
In many-body systems, Floquet engineering aims to tune collective properties, such as band
topology [31–35], with coherent driving [36–38]. It has been shown that population inver-
sion of Floquet states can occur in driven systems [39–41]. Floquet theory itself presents a
method to describe the effective dressed states in driven systems and their population, and is
applicable to driven dissipative cavity systems [42,43], in particular.

We present the emergence of a Floquet-assisted superradiant phase (FSP) in the dissipative
Dicke model under the influence of circularly polarized driving of the two-level systems, rem-
iniscent of the Rabi model. This superradiant phase is distinct from other recently explored
dynamical phases and lasing mechanisms in the Dicke model such as the dynamical phases that
emerge under parametric driving of the coupling [20–25], NV room temperature superradiant
lasers [28–30] and the Floquet maser realized using magnetic feedback circuits [44]. The FSP
presents a mechanism for light-amplification and coherent light sources in two-level systems
that is induced by the driven coherences between effective dressed states and is thus not cap-
tured by semi-classical rate equations in which population inversion is impossible. We find
that this mechanism originates from the effective population inversion of Floquet states that is
depleted and transferred into the cavity if the cavity frequency is close to resonance with the
Floquet energy difference. This photonic coherent state saturates quickly, leading to a steady
state of constant magnitude with respect to the coupling strength. We analytically determine
the regime of driving field strengths in which the system displays Floquet state population
inversion and is therefore susceptible to the FSP. We further present an analytical prediction
of the parameters at which the FSP first emerges in the limit of small coupling strengths.

This work demonstrates that despite the fact that Floquet states are effective descriptions
with energies that are only defined modulo multiples of a given driving frequency, their popu-
lation inversion can induce and sustain a coherent photonic state in a close-to-resonant cavity.
The connection between this light-amplification mechanism in two-level systems and effective
populations of Floquet states translates into solid-state systems that can be described with two
bands, e.g. monolayer graphene. This suggests the possibility of coherent Floquet engineered
light-amplification in solids, where the dispersion relation leads to a modification of our model
in which the two-level systems are no longer equal and their collective coupling to the cav-
ity becomes more intricate. Such a system would still be susceptible to the mechanisms that
underly the FSP which we describe here.

This work is structured as follows. In section 2, we describe the Rabi-Dicke model and
its dissipative mean-field description. In section 3, we present numerical results for the phase
diagram of the photonic steady state which shows the FSP. We also show the photonic steady
state of the FSP in frequency space as a function of the driving field strength. Further, we
present analytical calculations of the Dicke superradiant transition in this model. In section
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4, we extend our results to a Schwinger representation which we use to calculate two-point
correlation functions and Floquet state populations. In this representation we demonstrate
the population inversion of the Floquet states and its depletion in the FSP. We then present an
approximation of the Floquet energies of the two-level system in the FSP from an approximate
bichromatic Floquet description. In section 5, we present analytical bounds for the driving
field strengths at which population inversion occurs. Additionally, we demonstrate an accurate
description of the onset at which the FSP first occurs for weak coupling to the cavity. In section
6, we conclude and discuss our findings.

2 Dissipative Rabi-Dicke Model

We consider a system of N identical two-level systems with level-spacing ωz coupled to a
single lossy cavity mode with frequencyωc, as schematically depicted in Fig. 1. We emphasize
that the dynamical superradiant state can be realized on any set of well-defined two-level
systems, including solids in a two-band approximation, see e.g. [45]. The individual two-level
systems experience Rabi-like driving with frequency ωd and effective field strength Ed. The
Hamiltonian of this Rabi-Dicke model is

1
ħh

H =
N
∑

j=1

[
ωz

2
σ j

z +
Ed

ωd
(e−iωd tσ

j
+ + eiωd tσ

j
−)] +ωca†a+

λ
p

N

N
∑

j=1

(a+ a†)σ j
x , (1)

where λ is the coupling strength and σ j
x ,y,z are the Pauli-matrices of the jth two-level system.

It is σ± = (σx± iσy)/2. a(†) is the photon annihilation (creation) operator. This Hamiltonian,
that we use as the basis for our analysis, derives from an underlying model such as

1
ħh

H0 =
ωz

2
σz +

ωz

2ħhωd
E⃗ d⃗(e−iωd tσ+ + eiωd tσ−) . (2)

Here E⃗ is the driving field and d⃗ is the dipole moment of the transition. Our effective driving
field strength relates to this case as Ed =

1
2ωz E⃗ d⃗ħh−1, where 2Edω

−1
d is the Rabi frequency. As

a second model that motivates the Hamiltonian H, we present the model

1
ħh

Hg = vF (kx +
eE
ħhωd

cos(ωd t))σx + vF (ky +
eE
ħhωd

sin(ωd t))σy (3)

that we used in the context of light-driven graphene [41, 45]. Here vF = c/300 is the Fermi
velocity with the speed of light c. e is the elementary charge, E is the driving field strength
and kx ,y are the momentum components. Our effective driving field strength relates to this
case as Ed = evF Eħh−1. In the following we take ħh= 1.

We use a mean-field approximation of the photon dynamics via the coherent state ansatz
α = αr + iαi = 〈a〉, with the system separating into the two-level subsystem A and the cavity
subsystem C resulting in the approximate Hamiltonian H =

∑

j H j
A +HC, with

H j
A =

ωz

2
σ j

z +
Ed

ωd
(e−iωd tσ

j
+ + eiωd tσ

j
−) +

λ 〈a+ a†〉
p

N
σ j

x , (4)

HC =ωca†a+λ
p

N 〈σx〉 (a+ a†) , (5)

We include a cavity loss rate κ, such that the equation of motion of the photon mode is

α̇= −(iωc + κ)α− iλ
p

N 〈σx〉 . (6)
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The Lindblad-von Neumann master equation of the two-level system is

ρ̇ = i[ρ,
ωz

2
σz +

Ed

ωd
(e−iωd tσ++ eiωd tσ−)+

2λαrp
N
σx]+
∑

l∈{+,−,z}

γl[LlρL†
l −

1
2
{L†

l Ll ,ρ}] , (7)

where we omit the superscript j, since the two-level systems are all identical, in this approx-
imation. We describe the dissipation of the two-level system in its instantaneous eigenbasis,
which has been shown to accurately describe two-band solids [45]. In particular, the Lindblad
operators are L+ = Vσ+V †, L− = Vσ−V † and Lz = VσzV †, where V is the unitary transfor-
mation into the instantaneous eigenbasis of HA(t) = εA(t)VσzV †. εA(t) is the instantaneous
eigenenergy of the Hamiltonian HA(t). γ± and γz are the coefficients of spontaneous decay
and dephasing, respectively. The equation of motion of the two-level system then takes the
form (see App. A)

ρ̇ = i[ρ, HA(t)]− γ1(ρ −
1
2
)−
γ2

2
HA(t)ε

−1
A (t)−

γ3

2
Tr(ρHA(t))HA(t)ε

−2
A (t) , (8)

with

γ1 = (γ− + γ+)/2+ 2γz , γ2 = γ− − γ+ , γ3 = (γ− + γ+)/2− 2γz . (9)

Throughout this work we use γ−+γ+ =
ωd

100π , γ+ = γ−e−
2εA
kB T ≈ 0, γz =

ωd
50π and κ= ωc

100 . Due to
these small values of the decay and dephasing coefficients, the Floquet states are well-resolved
in frequency space. The cavity loss rate κ is very small compared to ωc which constitutes the
’good cavity’ regime. We find that the FSP depends on dissipation and is in particular sensitive
to the cavity loss rate. However, the scaling behavior with respect to dissipation is not the focus
of this work. Rather, we point out the existence of a novel superradiant phase, that emerges
in the presence of optical driving. For this purpose we choose a dissipative model. We note
that the Lindblad master equation applied to strongly driven two-level systems with weak
dissipation has been found to show some deviations from more accurate methods [46]. We
understand these deviations to be small enough to not affect the central results of this paper.
The specific choice of the dissipative model in the instantaneous eigenbasis is motivated by
the natural dissipative environment of electrons in solids [45]. The two-level systems that we
consider here can be realized as two electron states, with one electron occupying one or the
other. As we describe below, these two states can be embedded in a four-level system that
includes both states to be occupied or empty, within a Schwinger construction. While this is
the natural Hilbert space for an electronic realization, we emphasize that the results we obtain
here can be generated from the Rabi-Dicke model, i.e. Eq. 1.

3 Floquet-Assisted Superradiant Phase

We determine the steady state regimes of the system. For that purpose, we solve the equations
of motion Eqs. 6 and 7 and find the photonic state α(t), which serves as the order parameter
of superradiant phases. In Fig. 2 (a), we show the magnitude of α as a function of the driving
field strength Ed and the coupling strength λ, for ωz =ωd/2 and ωc =ωd/4, as an example.
We note that no specific ratio between these frequencies is required. We find two phases of
non-zero |α|. The phase for small driving field strengths Ed is related to the Dicke superradiant
phase and approaches it for Ed→ 0, which is an equilibrium phenomenon. In this limit, Eq. 1
recovers the dissipative Dicke-model. To capture this state, we write the equilibrium state of
the static two-level system as

ρ =
1
2
(1−

γ− − γ+
γ− + γ+

HA

εA
) , (10)
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Figure 1: An illustration of the dissipative Rabi-Dicke model (a) and a depiction of
its Hamiltonian as in Eq. 1 (b). A cavity (red) contains a set of identical two-level
systems (blue) which experience circularly polarized Rabi-like driving (purple). γ±
and γz denote the coefficients of dissipative processes in the two-level systems, i.e.
spontaneous decay and dephasing. κ is the loss rate of the cavity, which determines
the coherent output of the cavity.

which solves Eq. 8. We find the corresponding photonic steady state from Eq. 6 by inserting
α̇= 0 and 〈σx〉= ρx . It is

0= −(iωc +κ)(αr + iαi)− iλ
p

Nρx , (11)

with

ρx = −
γ− − γ+
γ− + γ+

4λαr N−
1
2

Æ

ω2
z + 16λ2α2

r N−1
, (12)

which we solve to find

α
p

N
= (1+ i

κ

ωc
)

√

√

√

�γ− − γ+
γ− + γ+

λωc

ω2
c +κ2

�2
−
�ωz

4λ

�2
. (13)

If α is purely imaginary, then ρx is zero, because of Eq. 12. This implies that the α= 0 solution
is the state of the system, based on Eq. 11. If α has a non-vanishing real part, i.e. αr ̸= 0, the
system is in the Dicke superradiant state. We determine the critical coupling strength λc of
this transition by setting the expression under the root in Eq. 13 equal to zero. It is

λc =
1
2

√

√γ− + γ+
γ− − γ+

ωz

ωc

�

κ2 +ω2
c

�

. (14)

In the case of κ = 0 and γ+ = γ−e−
ωz
kB T this reproduces the well-known result for the critical

coupling

λc =
1
2

√

√

ωzωc coth(
ωz

2kB T
)

T→0
→

1
2

p

ωzωc . (15)

We show this transition in Fig. 2 (b) compared to the numerical solution, which show excellent
agreement. Increasing Ed initially maintains this transition, but increases the critical coupling
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strength λc|Ed>0 − λc ∝ E2
d . For the parameters in our example it is λc =

ωd

4
p

2
for Ed = 0.

Further, the phase is separated into two regimes by a boundary E b
d ≈ 0.02ω2

d for λ >
p

2λc .
For Ed < E b

d the phase shows similar scaling to the Dicke superradiant phase, i.e. the value of
α matches the case of Ed = 0. For Ed > E b

d the system experiences heating in this part of the
phase, due to the weak dissipation in the two-level systems.
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Figure 2: In panel (a) we show the magnitude of the photonic field α as a func-
tion of the driving field strength Ed and the coupling strength λ. For large Ed, the
Floquet-assisted superradiant phase (FSP) emerges and exhibits an oscillating pho-
tonic steady state. In panel (b) we show the Ed→ 0 limit, i.e. the Dicke superradiant
transition, which is predicted very well analytically. In panel (c) we show the mag-
nitude of the Fourier transform |α̂|/

p
N as a function of the driving field strength Ed

for the coupling strength λ= λc . In the FSP, the steady state frequency of the cavity
is close to the cavity frequency. We also show a zoomed-in version of the regime
in which the FSP occurs. In panel (d) we show the power spectrum |α̂|2∆ωN−1 of
the FSP integrated over the frequencies shown in (c) in order to compensate for the
frequency shift of the FSP as a function of Ed. The dashed lines in (a), (c) and (d)
indicate the analytically determined lower bound for the FSP, see Eqs. 25 and 26.
The dotted lines in (a), (c) and (d) indicate the driving field strength at which the
Floquet energy spacing is equal to the cavity frequency.

For larger field strengths Ed, there is a second superradiant phase, the FSP, with a non-zero
photon amplitude |α|. The existence and properties of this non-equlibrium state is the central
point of this paper. For weak coupling, i.e. λ ≪ λc , this phase emerges at the driving field
strength at which the difference of Floquet quasi-energies is resonant with the cavity mode,
as we discuss later. For increasing λ, this domain broadens and gives the tongue structure in
Fig. 2 (a). Within this phase, |α| quickly approaches a constant value for increasing coupling
strength λ. The dashed line in Fig. 2 (a) indicates the asymptotic lower bound of the FSP
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for increasing λ. We calculate and present the driving field strengths that bound the FSP in
section 5. A natural regime of realizing the FSP is given by two requirements. On the one
hand, the instantaneous eigenenergy εA, which is of the order of the driving frequency ωd,
needs to exceed the temperature. This derives from the ratio γ2/(γ1 + γ3) = tanh( εA

kB T ). On
the other hand the driving field strengths Ed has to be sufficiently high to drive the system
into the FSP, specifically Ed/ω

2
d ≈ 0.3. For the case of graphene, see Eq. 3, for electric fields

of the order of 18MV m−1, and for temperatures of the order of 100K, this results in driving
frequencies around ωd ≈ 2π× 48THz. Note that for very large Ed beyond the point at which
the Floquet bands cross, there is a further very faint phase, to be discussed elsewhere.

In Fig. 2 (c) we show the magnitude of the Fourier transform α̂(ω) of the photonic steady
state as a function of the driving field strength Ed at λ = λc , indicated by the solid line in
Fig. 2 (a). We see that the steady state of the cavity in the FSP oscillates with a frequency
close to the cavity frequency ωc. This differs from the Dicke superradiant phase in which
the steady state is not oscillatory. The frequency in the FSP is the effective Floquet energy
difference of the two-level system, which is interacting non-linearly with the cavity mode, as
we elaborate in the following section. This energy is equal to the cavity frequency ωc at the
driving field strength indicated by the vertical dotted lines, which is the same as the onset
driving field strength at which the FSP emerges for small λ in Fig. 2 (a). In Fig. 2 (d) we show
the power spectrum of the photon mode |α̂|2∆ω =

∫

|α̂(ω)|2dω, integrated over the range of
frequencies shown in Fig. 2 (c) in order to compensate for the shifting frequency of the FSP as
a function of the driving field strength Ed. In the following section, we show that this profile
of the magnitude of the order parameter is related to the depleted population inversion of the
Floquet states of the two-level system.

4 Floquet State Population Inversion

To understand the underlying mechanism from which the FSP originates, we calculate the
Floquet state population of the driven two-level system. We introduce a Schwinger represen-
tation of the two-level Hamiltonian in Eq. 4, and calculate the population in frequency space.
In this representation the system is embedded into a larger system consisting of two modes b1
and b2. The resulting Hilbert-space is spanned by the creation operators b†

1 and b†
2 of these

two modes. Note that these modes can be understood as hard-core bosons in the atomic case
of the Dicke model, i.e. b2

1 = b2
2 = 0, but also as fermions in two-band models of solid-state

systems, where these are the electrons, cp. [41, 45]. Our mean-field results are not affected
by the specific exchange relations, bosonic or fermionic. The Pauli-matrices are written as

σx = b†
1 b2 + b†

2 b1 , σy = i(b†
1 b2 − b†

2 b1) , σz = b†
1 b1 − b†

2 b2 . (16)

We calculate the two-point correlation functions 〈b†
j (t2)b j(t1)〉 and determine the fre-

quency resolved population of the two-level steady state as

n(ω) =
1

(τ2 −τ1)2

∫ τ2

τ1

∫ τ2

τ1

2
∑

j=1

〈b†
j (t2)b j(t1)〉 e−iω(t2−t1)dt2dt1 , (17)

where the time τ1 is large enough for the system to have reached a steady state and (τ2−τ1) is
large enough to contain hundreds of driving periods. Note that in this calculation the operators
b j(t1) and b†

j (t2) act only on one of the N atoms. For large N , we assume that the remaining
N − 1 atoms maintain their steady state unaltered, such that the steady state α(t) is also not
affected by either action of b j(t1) or b†

j (t2).
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Figure 3: In panel (a) we show the Floquet state population n(ω) as a function of
the driving field strength Ed calculated in the Schwinger formalism. The dotted line
indicates the Floquet energies ε0

F for λ = 0, the solid lines indicate the approximate
Floquet energies εF for λ = λc which we obtain from Eq. 21. In panel (b) we show
the effective population difference ∆n between Floquet states for λ = 0 (blue) and
λ= λc (red). The regime in which population inversion occurs also contains the FSP,
which depletes the inversion. In panel (c) we show the difference ∆N between the
two populations in panel (b). The dashed lines in all panels indicate the values of
Ed that bound the regime in which population inversion occurs, see Eqs. 25 and 26.
The dotted gray lines in (b) and (c) indicate the driving field strength at which the
Floquet energy difference ∆ε0

F is resonant with the cavity frequency ωc .

We show n(ω) as a function of the driving field strength Ed in Fig. 3 (a) for λ= λc . We use
the same values of ωz = ωd/2 and ωc = ωd/4 as for the example in Fig. 2. We see that the
state of the probed two-level system is distributed across frequencies that are resonant with
the Floquet energies of the system and its replicas ±ε0

F +mωd, m ∈ Z. For λ = 0, and α = 0,
these Floquet energies are

ε0
F =

ωd

2
±

√

√

√

E2
d

ω2
d

+
(ωd −ωz)2

4
. (18)

In the regime of the FSP, the Floquet spectrum is modified due to the additional driving that the
two-level system experiences from the interaction with the oscillating photonic steady state.
We approximate that the FSP oscillates at ωc = ωd/4. The integer ratio of ωd and ωc is not
required, it merely enables a two-frequency Floquet analysis. For this choice of frequencies
the two-level Hamiltonian in Eq. 4 is

H(t) = e−i4ωc t H−4 + e−iωc t H−1 +H0 + eiωc t H1 + ei4ωc t H4 , (19)

with

H0 =
ωz

2
σz , H±1 =

λ|α|
p

N
σx , H±4 =

Ed

ωd
σ∓ . (20)
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The corresponding Floquet Hamiltonian is

HF =



















. . . H1 H4
H−1 H0 + 2ωc H1 H4

H−1 H0 +ωc H1 H4
H−1 H0 H1

H−4 H−1 H0 −ωc H1
H−4 H−1 H0 − 2ωc H1

H−4 H−1 . . .



















. (21)

It operates on the Floquet representation of the state

|ψ〉〉= (. . . ,ψ↑,(n−1)ωc
,ψ↓,(n−1)ωc

,ψ↑,nωc
,ψ↓,nωc

, . . . )T . (22)

Inserting the numerical steady state solutions of α that we find using Eq. 6, and show in
Fig. 2 (a), allows us to calculate the Floquet energies εF in the FSP using the Floquet Hamil-
tonian HF . We show these Floquet energies as a function of the driving field strength Ed in
Fig. 3 (a) as gray solid lines. We see that these energies match the dominantly populated
frequencies in n(ω) of the two-level system very well. Note that slight mismatches are a con-
sequence of the approximation that the photonic steady state oscillates with the frequencyωc ,
which we made to justify the expression of HF .

We sum up the population of all Floquet replicas to calculate the effective relative popula-
tion of the two-level system as

∆n=
∞
∑

m=−∞





∫ (m+ 1
2 )ωd

mωd

n(ω)dω−
∫ (m+1)ωd

(m+ 1
2 )ωd

n(ω)dω



 . (23)

In Fig. 3 (b), we show this effective relative population∆n of the two-level system as a function
of the driving field strength Ed for the cases of λ= 0 and λ= λc . We see that there is a regime
in which the system experiences an effective population inversion, bracketed by the vertical
dashed lines. In the case of non-zero coupling, i.e. λ= λc , part of the population inversion is
partially depleted to maintain the FSP, i.e. the non-zero steady state of the photon mode. In
Fig. 2 (a), we see that the range of the FSP increases for increasing values of λ, to approach
the entire regime in which population inversion occurs. In general, the FSP regime is smaller
than the inversion regime, because of the detuning of the cavity frequencyωc and the Floquet
quasi-energy difference ∆ε0

F .
In Fig. 3 (c), we show the depletion of the effective population inversion of the two-level

system
∆N =∆n|λ=0 −∆n|λ=λc

. (24)

The behavior of ∆N agrees very well with that of the photonic steady state that we show
in Fig. 2 (d) up to an overall factor. We conclude that the photonic steady state of the FSP
originates from the effective population inversion of the Floquet states which is depleted to
obtain a non-zero α. This explains the constant scaling of the FSP with respect to λ. In the limit
of λ→∞, the intensity of the photonic steady state is limited by the population inversion of
the Floquet states.

5 Cavity-Resonant Floquet Energies

While the magnitude of the photon amplitude α saturates quickly to a constant value with
increasing λ, here we determine the onset of the FSP for small λ. For small λ, the FSP emerges
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Figure 4: The magnitude of the photonic steady state α as a function of the driving
field strength Ed, the cavity frequencyωc (a) and the two-level energy spacingωz (b).
The coupling is small with λ = ωd/24, such that the Floquet-assisted superradiant
phase (FSP) appears only close to resonance between the cavity frequency ωc and
the Floquet energy difference ∆ε0

F , indicated by dot-dashed lines at Eonset
d . The gray

shaded areas are regimes in which no population inversion of Floquet states occurs.
They are bounded by Emin

d and Emax
d . The dotted lines indicate the values of ωc and

ωz of the other subfigure, respectively.

near resonance of the Floquet energy difference∆ε0
F and the cavity frequencyωc. We therefore

present the dependence of the magnitude of α on the cavity frequency ωc, as well as the two-
level energy spacing ωz . In Fig. 4 (a) we show the magnitude of α as a function of the driving
field strength Ed and the cavity frequency ωc at ωz = ωd/2 and λ = ωd/24. We see that the
FSP emerges near resonance of ∆ε0

F and ωc with the lower bound of Ed given by the regime
of the population inversion of Floquet states. For ωc → 0, the critical coupling λc decreases
to values smaller than that of λ used here, such that we see the Dicke superradiant phase
for small Ed. For ωc → ωd we see an expected finite population in the cavity as it becomes
resonant with the driving field.

We find the analytical solutions of the driven dissipative steady state for λ = 0 (See
App. A) and use them to calculate the driving field strength at which population inversion
occurs (Emin

d ). We also calculate the driving field strengths at which the Floquet state energies
cross (Emax

d ) and at which the Floquet energy difference is resonant with the cavity frequency
(Eonset

d ). They are

Emin
d =

ω2
d

2

√

√

√1
4
−
�

1
2
−
ωz

ωd

�2

, (25)

Emax
d =

ω2
d

2

√

√

√

1−
�

1−
ωz

ωd

�2

, (26)

Eonset
d =

ω2
d

2

√

√

√

�

1−
ωc

ωd

�2

−
�

1−
ωz

ωd

�2

. (27)

We use the regime bound by Emin
d and Emax

d to estimate where Floquet state population inver-
sion occurs and therefore the system is susceptible to the FSP. Eonset

d indicates where the FSP
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first emerges for small λ, i.e. the driving field strength at which the Floquet energy difference
is resonant with the cavity frequency. In Fig. 4 (b) we show these regimes and the magnitude
of α as a function of the driving field strength Ed and the two-level spacing ωz at ωc =ωd/4
and λ = ωd/24. We see that Eonset

d correctly predicts the initial onset of the FSP for small λ
inside the region of Floquet state population inversion.

6 Conclusion

We have demonstrated the emergence of a Floquet-assisted superradiant phase (FSP) in the
dissipative Rabi-Dicke model that is directly related to the effective Floquet state population
inversion of the two-level system. We propose to tune the Floquet energy difference close to
resonance with the cavity, which results in the emergence of the FSP. In the FSP, the popula-
tion inversion is depleted to populate a coherent photonic steady state that oscillates with a
frequency that is close to the cavity frequency. This frequency is the Floquet energy difference
of the effectively bichromatically driven two-level systems.

We have presented the frequency resolved state population of the two-level system, calcu-
lated in a Schwinger representation, and found that the depletion of the population inversion
qualitatively agrees with the magnitude of the photon state. We have characterized the onset
of the FSP with respect to the cavity frequency and the two-level energy spacing in the limit
of small coupling strengths analytically. This analytical result for the regime that experiences
population inversion agrees with the emergence of the FSP with an initial onset for resonant
cavity frequency and Floquet energy difference.

We emphasize that the FSP is conceptually distinct from other recently discussed dynamical
phases in comparable systems. For instance, the dynamical normal phase [21] emerges in
dissipative Dicke models with parametrically driven coupling strength and is characterized
by the periodic emission of pulses with opposite phase. The Floquet maser [44] presents
continuous superradiance by periodically inducing spin polarization inversion in a noble gas
inside a magnetic feedback circuit. This system can be expressed using an undriven Dicke-
adjacent model, albeit with different coupling terms. In NV center spins in room temperature
diamonds [28–30] and in cold Strontium setups [26, 27], incoherent effective driving can
lead to superradiant steady states for cavities that are resonant with the atomic or vacancy
center spin transitions. While all of these non-equilibrium phases are captured by models
related to the Dicke model, they are all substantially different from the FSP and its underlying
mechanism.

The FSP presents a laser-like mechanism using population inverted Floquet states of two-
level systems that are brought into resonance with a cavity mode. The model we have proposed
is in particular applicable to solid-state systems coupled to a cavity, where the identical two-
level systems are replaced by a momentum-dependent two-band model. The master equation
approach that we utilized is well-suited for describing such materials dissipatively. In such
materials, Floquet state population inversion has been observed which provides motivation to
implement this mechanism, with the prospect of creating Floquet-assisted laser systems.
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A Analytical Steady State Solutions

We take a two-level Hamiltonian H = H⃗σ⃗, such that Tr(H) = 0. Let V be the transformation
into the instantaneous eigenbasis of H, such that V HV † = εσz , where ε sets the energy scale
of the Hamiltonian. In general such a Hamiltonian can be written as

H = ε

�

cos(θ ) e−iφ sin(θ )
eiφ sin(θ ) − cos(θ )

�

, (A.1)

such that
V = eiσy

θ
2 eiσz

φ
2 . (A.2)

We write the Lindblad-von Neumann master equation in the original basis of H, but include dis-
sipation in the instantaneous eigenbasis, such that Lz = V †σzV = Hε−1 = h and L± = V †σ±V .
It is

ρ̇ = i[ρ, H] +
∑

i∈{+,−,z}

γi(LiρL†
i −

1
2
{L†

i Li ,ρ}) (A.3)

= iε[ρ, h] + γz(Tr(hρ)h− 2(ρ −
1
2
)) (A.4)

+ γ−(−
1
2

h−
1
2
(ρ −

1
2
)−

1
4

Tr(h⃗ρ⃗)h) + γ+(+
1
2

h−
1
2
(ρ −

1
2
)−

1
4

Tr(h⃗ρ⃗)h) , (A.5)

with ρ = 1
2(1+ ρ⃗σ⃗). We simplify this to

∂t(ρ⃗σ⃗) = iε[ρ⃗σ⃗, h⃗σ⃗]− γ1ρ⃗σ⃗− γ2h⃗σ⃗− γ3(h⃗ρ⃗)h⃗σ⃗ , (A.6)

with

γ1 = (γ− + γ+)/2+ 2γz , γ2 = γ− − γ+ , γ3 = (γ− + γ+)/2− 2γz (A.7)

and further
˙⃗ρ = (2ε(h× ·)− γ1 − γ3h⃗ 〈h⃗, ·〉)ρ⃗ − γ2h⃗ . (A.8)

We find the steady state solution of the dissipative Rabi model by rewriting ρ⃗(t) with respect

to the basis {h⃗, ˙⃗h, h⃗× ˙⃗h}, such that

ρ⃗(t) = ρ1(t)h⃗+ρ2(t)
˙⃗h+ρ3(t)(h⃗×

˙⃗h) , (A.9)

ρ1(t) = ρ⃗(t)h⃗ , (A.10)

ρ2(t) = |
˙⃗h|−2ρ⃗(t)˙⃗h , (A.11)

ρ3(t) = |
˙⃗h|−2ρ⃗(t)(h⃗× ˙⃗h) . (A.12)

Assuming that |˙⃗h|2 does not depend on time, the equations of motion become

ρ̇1(t) = ∂t(h⃗ρ⃗) =
˙⃗hρ⃗ + h⃗ ˙⃗ρ = |˙⃗h|2ρ2 − (γ1 + γ3)ρ1 − γ2 , (A.13)

ρ̇2(t) = |
˙⃗h|−2∂t(

˙⃗hρ⃗) = |˙⃗h|−2(¨⃗hρ⃗ + ˙⃗h ˙⃗ρ) = −2ε(t)ρ3 − γ1ρ2 + |
˙⃗h|−2¨⃗hρ⃗ , (A.14)

ρ̇3(t) = |
˙⃗h|−2∂t((h⃗×

˙⃗h)ρ⃗) = 2ε(t)ρ2 − γ1ρ3 + |
˙⃗h|−2(h⃗× ¨⃗h)ρ⃗ . (A.15)
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We expand the second derivative of the Hamiltonian vector ¨⃗h in this basis as well and find

¨⃗h(t) = (¨⃗hh⃗)h⃗+ (¨⃗h˙⃗h)˙⃗h+ (¨⃗h(h⃗× ˙⃗h))(h⃗× ˙⃗h) , (A.16)
¨⃗h(t)ρ⃗(t) = ρ1(

¨⃗hh⃗) +ρ2(
¨⃗h˙⃗h)|˙⃗h|2 +ρ3(

¨⃗h(h⃗× ˙⃗h))|˙⃗h|2 = −ρ1|
˙⃗h|2 +ρ3(h⃗(

˙⃗h× ¨⃗h)) , (A.17)

(h⃗× ¨⃗h(t))ρ⃗(t) = ρ2((h⃗×
¨⃗h(t))˙⃗h)|˙⃗h|2 +ρ3((h⃗×

¨⃗h(t))(h⃗× ˙⃗h))|˙⃗h|2 = −ρ2(h⃗(
˙⃗h× ¨⃗h)) . (A.18)

We then arrive at the equations of motion

ρ̇1(t) = |
˙⃗h|2ρ2 − (γ1 + γ3)ρ1 − γ2 , (A.19)

ρ̇2(t) = −2ε(t)ρ3 − γ1ρ2 −ρ1 +ρ3|
˙⃗h|−2h⃗(˙⃗h× ¨⃗h) , (A.20)

ρ̇3(t) = 2ε(t)ρ2 − γ1ρ3 −ρ2|
˙⃗h|−2h⃗(˙⃗h× ¨⃗h) . (A.21)

In the Rabi-problem in particular it is H⃗ = ( Ed
ωd

cos(ωd t), Ed
ωd

sin(ωd t), ωz
2 )

T and therefore

|˙⃗h|−2h⃗(˙⃗h× ¨⃗h) =
ωdωz

2
s

E2
d

ω2
d
+
ω2

z
4

, |˙⃗h|2 =
E2

d
E2

d

ω2
d
+
ω2

z
4

, ε(t) =

√

√

√

E2
d

ω2
d

+
ω2

z

4
, (A.22)

which are all constant in time. We assume a periodic steady state ρ(t) = ρ(t+ 2π
ωd
) and express

the equations of motion in terms of Fourier coefficients

imωρm
1 = |

˙⃗h|2ρm
2 − (γ1 + γ3)ρ

m
1 − γ2δm,0 , (A.23)

imωρm
2 = −2ερm

3 − γ1ρ
m
2 −ρ

m
1 +ρ

m
3 |

˙⃗h|−2h⃗ f⃗ , (A.24)

imωρm
3 = 2ερm

2 − γ1ρ
m
3 −ρ

m
2 |

˙⃗h|−2h⃗ f⃗ . (A.25)

We find that the Fourier modes do not couple in this representation. We solve the system of
equations for arbitrary m and find the complete expressions for ρm

1 , ρm
2 and ρm

3 , fully deter-
mining the dissipative steady state

ρ1 = Cγ2
1ω

4
d(4E2

dω
−2
d +ω

2
z ) + Cω4

d

�

(4E2
dω
−2
d +ω

2
z )−ωdωz

�2
, (A.26)

ρ2 = −Cγ1ω
4
d(4E2

dω
−2
d +ω

2
z ) , (A.27)

ρ3 = −Cω4
d

�

(4E2
dω
−2
d +ω

2
z )−ωdωz

�

Ç

4E2
dω
−2
d +ω

2
z , (A.28)

with the prefactor

C =
−γ2

16E4
dΓ + Γω

4
d(γ

2
1 + (ωd −ωz)2)ω2

z + 4E2
dω

2
d(γ

2
1Γ + γ1ω

2
d + 2Γωz(−ωd +ωz))

(A.29)

and Γ = γ1 + γ3. Expressed in the original basis, it is

ρx(t) = C22Edω
−1
d

��

γ2
1 +ω

2
z −ωdωz + 4E2

dω
−2
d

�

cos(ωd t) + γ1Ed sin(ωd t)
�

, (A.30)

ρy(t) = C22Edω
−1
d

��

γ2
1 +ω

2
z −ωdωz + 4E2

dω
−2
d

�

sin(ωd t)− γ1Ed cos(ωd t)
�

, (A.31)

ρz(t) = C2

�

(γ2
1 + (ωd −ωz)

2)ωz − 2E2
dω
−2
d (ωd −ωz)
�

, (A.32)

with the prefactor

C2 = C
Ç

4E2
d +ω

2
dω

2
z . (A.33)

In Fig. 5, we show the comparison between numerical results and the analytical solutions,
which match exactly.
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Figure 5: A comparison between the analytical (solid lines) and numerical (dots)
results of the dissipative two-level steady state components ρx and ρz at t = 2πω−1

d
for λ = 0. It is ωz = ωd/2. The zero-crossing of ρz matches the onset of Floquet
state population inversion in Fig. 3 (b).

References

[1] M. O. Scully, S.-Y. Zhu and A. Gavrielides, Degenerate quantum-beat laser: Lasing
without inversion and inversion without lasing, Phys. Rev. Lett. 62, 2813 (1989),
doi:10.1103/PhysRevLett.62.2813.

[2] J. Mompart and R. Corbalán, Lasing without inversion, J. Opt. B: Quantum Semiclassical
Opt. 2, R7 (2000), doi:10.1088/1464-4266/2/3/201.

[3] B. R. Mollow, Stimulated emission and absorption near resonance for driven systems, Phys.
Rev. A 5, 2217 (1972), doi:10.1103/PhysRevA.5.2217.

[4] J. Hauss, A. Fedorov, C. Hutter, A. Shnirman and G. Schön, Single-qubit las-
ing and cooling at the Rabi frequency, Phys. Rev. Lett. 100, 037003 (2008),
doi:10.1103/PhysRevLett.100.037003.

[5] I. Yu. Chestnov, V. A. Shahnazaryan, A. P. Alodjants and I. A. Shelykh, Terahertz
lasing in ensemble of asymmetric quantum dots, ACS Photonics 4, 2726 (2017),
doi:10.1021/acsphotonics.7b00575.

[6] J. V. Koski et al., Floquet spectroscopy of a strongly driven quantum dot charge
qubit with a microwave resonator, Phys. Rev. Lett. 121, 043603 (2018),
doi:10.1103/PhysRevLett.121.043603.

[7] Y. Zhang, E. Lötstedt and K. Yamanouchi, Population inversion in a strongly driven two-
level system at far-off resonance, J. Phys. B: At. Mol. Opt. Phys. 50, 185603 (2017),
doi:10.1088/1361-6455/aa8550.

[8] T. M. Stace, A. C. Doherty and S. D. Barrett, Population inversion of a driven
two-level system in a structureless bath, Phys. Rev. Lett. 95, 106801 (2005),
doi:10.1103/PhysRevLett.95.106801.

[9] R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99 (1954),
doi:10.1103/PhysRev.93.99.

14

https://scipost.org
https://scipost.org/SciPostPhys.14.2.018
https://doi.org/10.1103/PhysRevLett.62.2813
https://doi.org/10.1088/1464-4266/2/3/201
https://doi.org/10.1103/PhysRevA.5.2217
https://doi.org/10.1103/PhysRevLett.100.037003
https://doi.org/10.1021/acsphotonics.7b00575
https://doi.org/10.1103/PhysRevLett.121.043603
https://doi.org/10.1088/1361-6455/aa8550
https://doi.org/10.1103/PhysRevLett.95.106801
https://doi.org/10.1103/PhysRev.93.99


SciPost Phys. 14, 018 (2023)

[10] P. Kirton, M. M. Roses, J. Keeling and E. G. Dalla Torre, Introduction to the Dicke model:
From equilibrium to nonequilibrium, and vice versa, Adv. Quantum Technol. 2, 1800043
(2018), doi:10.1002/qute.201800043.

[11] D. Meiser, J. Ye, D. R. Carlson and M. J. Holland, Prospects for a Millihertz-Linewidth laser,
Phys. Rev. Lett. 102, 163601 (2009), doi:10.1103/PhysRevLett.102.163601.

[12] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland and J. K. Thompson, A steady-
state superradiant laser with less than one intracavity photon, Nature 484, 78 (2012),
doi:10.1038/nature10920.

[13] M. J. Bhaseen, J. Mayoh, B. D. Simons and J. Keeling, Dynamics of nonequilibrium Dicke
models, Phys. Rev. A 85, 013817 (2012), doi:10.1103/PhysRevA.85.013817.

[14] J. Klinder, H. Keßler, M. Wolke, L. Mathey and A. Hemmerich, Dynamical phase
transition in the open Dicke model, Proc. Natl. Acad. Sci. U.S.A. 112, 3290 (2015),
doi:10.1073/pnas.1417132112.

[15] M. A. Norcia, M. N. Winchester, J. R. K. Cline and J. K. Thompson, Superradiance
on the millihertz linewidth strontium clock transition, Sci. Adv. 2, e1601231 (2016),
doi:10.1126/sciadv.1601231.

[16] P. Kirton and J. Keeling, Superradiant and lasing states in driven-dissipative Dicke models,
New J. Phys. 20, 015009 (2018), doi:10.1088/1367-2630/aaa11d.

[17] T. Laske, H. Winter and A. Hemmerich, Pulse delay time statistics in a su-
perradiant laser with calcium atoms, Phys. Rev. Lett. 123, 103601 (2019),
doi:10.1103/PhysRevLett.123.103601.

[18] S. B. Jäger, J. Cooper, M. J. Holland and G. Morigi, Dynamical phase tran-
sitions to optomechanical superradiance, Phys. Rev. Lett. 123, 053601 (2019),
doi:10.1103/PhysRevLett.123.053601.

[19] F. Damanet, A. J. Daley and J. Keeling, Atom-only descriptions of the driven-dissipative
Dicke model, Phys. Rev. A 99, 033845 (2019), doi:10.1103/PhysRevA.99.033845.

[20] V. M. Bastidas, C. Emary, B. Regler and T. Brandes, Nonequilibrium quantum
phase transitions in the Dicke model, Phys. Rev. Lett. 108, 043003 (2012),
doi:10.1103/PhysRevLett.108.043003.

[21] R. Chitra and O. Zilberberg, Dynamical many-body phases of the paramet-
rically driven, dissipative Dicke model, Phys. Rev. A 92, 023815 (2015),
doi:10.1103/PhysRevA.92.023815.

[22] J. G. Cosme, C. Georges, A. Hemmerich and L. Mathey, Dynamical con-
trol of order in a cavity-BEC system, Phys. Rev. Lett. 121, 153001 (2018),
doi:10.1103/PhysRevLett.121.153001.

[23] H. Keßler, P. Kongkhambut, C. Georges, L. Mathey, J. G. Cosme and A. Hem-
merich, Observation of a dissipative time crystal, Phys. Rev. Lett. 127, 043602 (2021),
doi:10.1103/PhysRevLett.127.043602.

[24] J. Skulte, P. Kongkhambut, H. Keßler, A. Hemmerich, L. Mathey and J. G. Cosme, Para-
metrically driven dissipative three-level Dicke model, Phys. Rev. A 104, 063705 (2021),
doi:10.1103/PhysRevA.104.063705.

15

https://scipost.org
https://scipost.org/SciPostPhys.14.2.018
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevLett.102.163601
https://doi.org/10.1038/nature10920
https://doi.org/10.1103/PhysRevA.85.013817
https://doi.org/10.1073/pnas.1417132112
https://doi.org/10.1126/sciadv.1601231
https://doi.org/10.1088/1367-2630/aaa11d
https://doi.org/10.1103/PhysRevLett.123.103601
https://doi.org/10.1103/PhysRevLett.123.053601
https://doi.org/10.1103/PhysRevA.99.033845
https://doi.org/10.1103/PhysRevLett.108.043003
https://doi.org/10.1103/PhysRevA.92.023815
https://doi.org/10.1103/PhysRevLett.121.153001
https://doi.org/10.1103/PhysRevLett.127.043602
https://doi.org/10.1103/PhysRevA.104.063705


SciPost Phys. 14, 018 (2023)

[25] P. Kongkhambut, H. Keßler, J. Skulte, L. Mathey, J. G. Cosme and A. Hemmerich, Real-
ization of a periodically driven open three-level Dicke model, Phys. Rev. Lett. 127, 253601
(2021), doi:10.1103/PhysRevLett.127.253601.

[26] M. A. Norcia and J. K. Thompson, Cold-strontium laser in the superradiant crossover
regime, Phys. Rev. X 6, 011025 (2016), doi:10.1103/PhysRevX.6.011025.

[27] K. Debnath, Y. Zhang and K. Mølmer, Lasing in the superradiant crossover regime, Phys.
Rev. A 98, 063837 (2018), doi:10.1103/PhysRevA.98.063837.

[28] C. Bradac, M. T. Johnsson, M. van Breugel, B. Q. Baragiola, R. Martin, M. L. Juan, G. K.
Brennen and T. Volz, Room-temperature spontaneous superradiance from single diamond
nanocrystals, Nat. Commun. 8, 1205 (2017), doi:10.1038/s41467-017-01397-4.

[29] J. D. Breeze, E. Salvadori, J. Sathian, N. McN. Alford and C. W. M. Kay, Continuous-wave
room-temperature diamond maser, Nature 555, 493 (2018), doi:10.1038/nature25970.

[30] Q. Wu, Y. Zhang, X. Yang, S.-L. Su, C. Shan and K. Mølmer, A superradiant maser
with nitrogen-vacancy center spins, Sci. China Phys. Mech. Astron. 65, 217311 (2021),
doi:10.1007/s11433-021-1780-6.

[31] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B 79, 081406 (2009),
doi:10.1103/PhysRevB.79.081406.

[32] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu, G. Meier and A. Cav-
alleri, Light-induced anomalous Hall effect in graphene, Nat. Phys. 16, 38 (2019),
doi:10.1038/s41567-019-0698-y.

[33] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S. Lühmann, K. Sengstock and C.
Weitenberg, Experimental reconstruction of the Berry curvature in a Floquet Bloch band,
Science 352, 1091 (2016), doi:10.1126/science.aad4568.

[34] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes and I. Bloch, Realization
of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111,
185301 (2013), doi:10.1103/PhysRevLett.111.185301.
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