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Abstract

The rational Q-system is an efficient method to solve Bethe ansatz equations for quan-
tum integrable spin chains. We construct the rational Q-systems for generic Bethe ansatz
equations described by an Aℓ−1 quiver, which include models with multiple momentum
carrying nodes, generic inhomogeneities, generic diagonal twists and q -deformation.
The rational Q-system thus constructed is specified by two partitions. Under Bethe
/Gauge correspondence, the rational Q-system is in a one-to-one correspondence with
a 3d N = 4 quiver gauge theory of the type Tσρ [SU(n)], which is also specified by the
same partitions. This shows that the rational Q-system is a natural language for the
Bethe/Gauge correspondence, because known features of the Tσρ [SU(n)] theories read-
ily translate. For instance, we show that the Higgs and Coulomb branch Higgsing corre-
spond to modifying one of the partitions in the rational Q-system while keeping the other
untouched. Similarly, mirror symmetry is realized in terms of the rational Q-system by
simply swapping the two partitions - exactly as for Tσρ [SU(n)]. We exemplify the com-
putational efficiency of the rational Q-system by evaluating topologically twisted indices
for 3d N = 4 U(n) SQCD theories with n = 1, . . . , 5.
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1 Introduction

Solving Bethe ansatz equations (BAE) is a fundamental and important question in integrability.
The solutions of BAE encode the rich structure of the model and are related to the complete-
ness problem of the Bethe ansatz. Therefore, they are of great mathematical interest (see for
example [1–6]). Equally important, finding all physical solutions of the BAE is an essential
step in computing many physical quantities, either numerically by solving the BAE by numer-
ical approaches or analytically by exploiting the recently developed computational algebraic
geometry method [7–11]. Due to the wide applicability of the Bethe ansatz, ranging from
statistical mechanics to high energy physics, developing efficient methods for solving BAE is
obviously welcome and of great practical value.

However, working directly with BAE has a number of drawbacks such as the generation of
non-physical solutions and numerical instability. Therefore, alternative formulations of BAE
which are easier to handle have long been sought for. The two most important formulations
are the TQ and the QQ-relations. The TQ-relation stems from Baxter’s method of solving
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integrable ice-type lattice models including the famous six- and eight-vertex models [12]. The
idea is to construct an operator Q which commutes with the quantum transfer matrix T and
satisfies a specific finite difference equation, called the TQ-relation. Working with eigenvalues
of both operators, one gets a finite difference equation for Baxter’s Q-function, whose zeros are
the solutions of the BAE. Therefore, one can first solve the TQ-relation to find the Q-functions
and then determine the zeros of the Q-functions. This turns out to be more efficient then
directly solving BAE, and eliminates part of the non-physical solutions such as the ones with
repeated roots.

Baxter’s TQ-relation is a second order difference equation for the Q-function. Therefore it
allows two solutions. In addition, the two Q-functions satisfy the Wronskian condition, which
is called the QQ-relation. It turns out that one can solve the QQ-relation directly and find both
Q-functions simultaneously. One then takes the zeros of one of the Q-functions, which gives the
solution of BAE. In [13], Marboe and Volin proposed an ingenious rewriting of the QQ-relation
by defining a Q-system on a Young tableaux. This method leads to only physical solutions (i.e.
all non-physical solutions are automatically eliminated) and is much more efficient to solve
compared to the original BAE or TQ-relation. It is by far the most efficient approach to find all
the physical solutions of the BAE, at least for the rational spin chains with periodic boundary
conditions. In order to distinguish the Marboe-Volin Q-system, which are defined on a Young
tableaux, and the traditional QQ-system, which are Wronskian conditions for higher rank TQ-
relations, we call the former the rational Q-system. This method is reviewed in Section 2.

In the original work [13], the authors gave the rational Q-system formulation for a
GL(M |N) invariant XXX-type spin chain with periodic boundary conditions. Later it has been
extended to the non-compact GL(M , N |L) invariant XXX-type spin chains in [14]. General-
izations to XXZ-type spin chain with different boundary conditions (open, twisted) have been
investigated in [11, 15–17]. One of the aims of the current work is to take a further step
and generalize the formulation of rational Q-system for the BAE associated to a generic A-type
Dynkin diagram, for both XXX- and XXZ-type models with multiple momentum carrying nodes,
general inhomogeneities and twists.

In addition, we uncover a beautiful relationship between the rational Q-system and super-
symmetric 3dN = 4 quiver gauge theories of type Tσρ [SU(n)]. Via the Bethe/gauge correspon-

dence [18–20], the supersymmetric vacua of such theories compactified on S1 are precisely
the solutions of the Bethe Ansatz equations. This correspondence builds a one-to-one map
between quantities in gauge theory and in the spin chain, which has been studied extensively
in the literature [21–25]. We revisit this correspondence from the rational Q-system point of
view. It turns out that rational Q-system seems to be an even more natural formulation than
BAE for the Bethe/gauge correspondence. For example, the origin of the Young tableaux, on
which the rational Q-system is defined, might seem a bit mysterious from the spin chain point
of view. On the other hand, it is quite natural in the quiver gauge theory and its brane reali-
sation in Type-IIB superstring theory. The theories Tσρ [SU(n)] are specified by two partitions
ρ and σ [26]. It turns out that one of the partitions ρ corresponds precisely to the Young
tableaux of the rational Q-system. What about the other partition σ? It also plays an impor-
tant role in the rational Q-system. As we shall explain later, to specify a rational Q-system,
we need a Young tableaux and also fix boundary conditions. The boundary conditions are
encoded by another partition, given precisely by σT, the transposition of σ.

Important gauge theory phenomena such as Higgsing and mirror symmetry are also re-
flected nicely in the rational Q-system. There are two kinds of partial Higgs mechanisms, i.e.
Higgs branch Higgsing and Coulomb branch Higgsing. The former corresponds to an oper-
ation of the Q-system which maintains the shape of the Young tableaux while changing the
boundary condition while the latter corresponds to the Q-system which preserves the bound-
ary condition while re-arranging the boxes of Young tableaux. Mirror symmetry corresponds
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to exchanging ρ and σ. We can see that the solutions of the two Q-systems are indeed in
one-to-one correspondence.

The structure of this paper is as follows. In Section 2, we present the construction of the
rational Q-system for a generic A-type quiver. We describe how to solve the rational Q-systems
in Section 3. In Section 4, we review the 3d N = 4 supersymmetric gauge theories, with an
emphasis on brane realization and relations to BAE. In Section 5, we discuss Higgsings of the
supersymmetric gauge theories and their realizations in rational Q-system. In Section 6, we
discuss mirror symmetry in supersymmetric gauge theory and rational Q-system. We comment
on the Bethe/Gauge correspondence for orthosympletic quivers and the rational Q-system for
integrable open spin chains in Section 7. We conclude in Section 8. Some detailed technical
derivations are delegated to the appendices.

2 Rational Q-system

In this section, we present the rational Q-system for generic Bethe ansatz equation of Aℓ−1-type.

2.1 QQ-relations and BAE

2.1.1 Aℓ−1-type BAE

The Aℓ−1-type BAE can be encoded in an Aℓ−1-type Dynkin diagram as is shown in Figure 1.
We label the nodes from left to right as 1,2, . . . ,ℓ−1. Each node-s is associated with two sets of

Figure 1: An Aℓ−1-type Dynkin diagram.

variables. The one associated with each circle is called Bethe roots, the number of Bethe roots is
denoted by Ns; The other associated with the box on top of the circle is called inhomogeneities,
the number of which is denoted by Ms. The inhomogeneities θ j are parameters of the BAE
and can be set to any values freely. On the other hand, Bethe roots are the unknown variables
and should be found by solving BAE. At each node-s, the BAE is a set of Ns algebraic equations
P(s)a = 1 (a = 1,2, . . . , Ns), where P(s)a is given by

P(s)a =τ(s)
Ns
∏

d=1
d ̸=a

ϕ
�

u(s)a − u(s)d +η
�

ϕ
�

u(s)a − u(s)d −η
�

Ms
∏

j=1

ϕ
�

u(s)a − θ
(s)
j −

η
2

�

ϕ
�

u(s)a − θ
(s)
j +

η
2

�
(2.1)

×
Ns−1
∏

b=1

ϕ
�

u(s)a − u(s−1)
b − η2

�

ϕ
�

u(s)a − u(s−1)
b + η2

�

Ns+1
∏

c=1

ϕ
�

u(s)a − u(s+1)
c − η2

�

ϕ
�

u(s)a − u(s+1)
c + η2

�
,

where the function ϕ(x) is given by

ϕ(x) =

�

sinh(x) , XXZ-type ,
x , XXX-type .

(2.2)
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The parameter η is related to the anisotropy or the quantum deformation parameter of the
XXZ-type spin chain. For the XXX-type spin chain, we take ϕ(x) = x and η= i1. The parame-
ters τ(s) denote the twists.

For the XXZ-type BAE, it is sometimes more convenient to work with multiplicative vari-
ables which are defined as

x j ≡ e2u j , y j ≡ e2θ j , q ≡ eη . (2.3)

In terms of which (2.1) becomes

P(s)a = τ̃(s)
Ns
∏

d=1
d ̸=a

x (s)a q− x (s)d q−1

x (s)d q− x (s)a q−1

Ms
∏

j=1

x (s)a − y(s)j q

y(s)j − x (s)a q

Ns−1
∏

b=1

x (s)a − x (s−1)
b q

x (s−1)
b − x (s)a q

Ns+1
∏

c=1

x (s)a − x (s+1)
b q

x (s+1)
b − x (s)a q

, (2.4)

where

τ̃(s) = τ(s) × (−1)Ns−1+Ns+Ns+1+Ms−1 . (2.5)

2.1.2 Rational Q-system

The BAE given in the previous subsection can be reformulated in terms of a set of QQ-relations,
equipped with proper boundary conditions. Let us first describe the rational Q-system for XXX-
type model following [13]. A Q-system is defined on a Young tableaux as is shown in Figure 2.
At each point we associate a Q-function, which is a rational or hyperbolic function in one
variable called the spectral parameter2. The four Q-functions associated to the four corners
of each box are related by the QQ-relation given in (2.15). Therefore, not all Q-functions are
independent. By fixing a few Q-functions and imposing analytic properties for the Q-functions,
we can determine all the Q-functions on the Young tableaux. The Q-functions on the upper
boundary are fixed to be 1. We fix the Q-functions on the left boundary partially. We call the
precise form of the Q-functions on the left boundary the boundary condition of the rational
Q-system. As we see later, different choices of boundary conditions lead to different BAEs. We
give more detailed derivations in what follows.

Young tableaux For each Aℓ−1-type BAE, the Young tableaux has ℓ rows

λ⃗= (λ1,λ2, . . . ,λℓ) , (2.6)

where λk is the number of boxes of the k-th row. As a convention, we count the rows from the
bottom to the top, as is shown in Figure 2. We require that

λ1 ≥ λ2 ≥ . . .≥ λℓ . (2.7)

For a Aℓ−1 Dynkin diagram specified by

M⃗ = (M1, M2, . . . , Mℓ−1) , N⃗ = (N1, N2, . . . , Nℓ−1) . (2.8)

The number of boxes are given by

λℓ =Nℓ−1 , (2.9)

λa =Na−1 − Na + (Ma +Ma+1 + . . .+Mℓ−1) , a = 2, . . . ,ℓ− 1 ,

λ1 =M1 +M2 + . . .+Mℓ−1 − N1 .

1The value of η is irrelevant as long as it is non-vanishing, because we can always bring η= i by rescaling Bethe
roots.

2The Q-function can have more complicated analytic structures in other models.
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Figure 2: Young tableaux associated with an Aℓ−1-type Dynkin diagram.

The total number of boxes is thus

ℓ
∑

k=1

λa = M1 + 2M2 + . . .+ (ℓ− 1)Mℓ−1 , (2.10)

which is independent of Na. Two comments are in order. Firstly, for a given set of BAE with
multiple momentum carrying nodes, we propose the corresponding Young tableaux is given
by (2.9). In the special case M⃗ = (M , 0, . . . , 0), we recover the Young tableaux given in [13,
17] which correspond to BAE with one momentum carrying node. Secondly, for the Young
tableaux, we impose the requirement

λ1 ≥ λ2 . . .≥ λℓ . (2.11)

This requirement results in certain constraints on the choices of Mi and Ni . For some simple
cases, the physical meaning of such requirements is clear. Let us explain this with two exam-
ples. In the SU(2) invariant XXX spin chain, we have M1 = M which is the length of the spin
chain and N1 = N is the number of magnons. For BAE with length M and magnon number N ,
the corresponding Young tableaux is λ= (M − N , N). The requirement becomes

M − N ≥ N . (2.12)

In the Bethe state of XXX spin chain, N is the number of down spins and M −N is the number
of up spins. This requirement states that the number of up spins should be greater or equal
than the number of down spins. The reason that one can impose this restriction is that we can
obtain the Bethe states with N > M − N by flipping all the spins simultaneously. Physically,
there is nothing wrong to consider Bethe states with N > M − N , which corresponds to the
solutions of BAE ‘beyond the equator’ [27,28]. However, this is not necessary because we can
construct all the Bethe states first within the region M −N ≥ N and then obtain the rest of the
states by flipping all the spins.

As another example, we can consider the SU(3) invariant XXX spin chain. The Bethe equa-
tions are given by M⃗ = (M , 0) and N⃗ = (N1, N2) where M is the length of the spin chain. The
corresponding Young tableaux reads λ= (M − N1, N1 − N2, N2). We have the requirement

M − N1 ≥ N1 − N2 ≥ N2 . (2.13)

The local Hilbert space of SU(3) invariant spin chain is C3. We can denote the basis states by
|1〉, |2〉, |3〉. In the framework of nested Bethe ansatz, M − N1, N2 − N1, N3 are the number
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of polarizations |1〉, |2〉, |3〉 respectively of the Bethe state. The requirement (2.13) means
#1 ≥ #2 ≥ #3. Similar to the SU(2) case, we can first focus on the Bethe states within this
region. The rest of the states can be obtained by permuting the role of |1〉, |2〉 and |3〉 properly.

We expect similar interpretations applies to more general cases. However, since we do
not yet have a clear understanding of the nested Bethe ansatz for spin chains with generic
Aℓ−1-type quiver with multiple momentum carrying nodes, we are not able to complete such
physical interpretations for the generic case. Interestingly, the requirement (2.11) makes per-
fect physical sense in quiver gauge theories in Bethe/Gauge correspondence, as we discuss
later. This is a first hint that rational Q-system is a natural language for the Bethe/Gauge
correspondence.

Q-functions At each point (a, s) of the Young tableaux, we define a Q-function denoted by
Qa,s(u) where u is the spectral parameter. For the XXX-type BAE, the Q-functions are polyno-
mials of the spectral parameter u. For the XXZ-type BAE, the Q-functions are rational functions
of the multiplicative spectral parameter x . The number of boxes on each row is related to the
asymptotic behavior of the Q-functions at the Southwest corner of the box at the left boundary.
More precisely,

lim
u→∞
QXXX

a,0 (u) = uλa+1+λa+2+...+λℓ
�

1+O(u−1)
�

, (2.14)

lim
x→∞
QXXZ

a,0 (x) = xλa+1+λa+2+...+λℓ
�

1+O(x−1)
�

.

QQ-relation The Q-functions defined on the box whose Southwest corner is located at (a, s)
satisfy the following QQ-relation

Qa+1,sQa,s+1 =Q+a+1,s+1Q
−
a,s − εaQ−a+1,s+1Q

+
a,s , (2.15)

where εa are constants which are related to the diagonal twists in BAE. Q±a,s is as follows

¨

Q±a,s(u)≡Qa,s(u±
i
2) , XXX-type model ,

Q±a,s(x)≡Qa,s

�

xq±1
�

, XXZ-type model .
(2.16)

Among all the Q-functions, the ones at the left boundary (denoted by blue dots in Figure 2)
are the most important because their zeros are related to the Bethe roots and inhomogeneities.

Boundary condition Since QQ-relations relate the Q-functions at different points, the Q-
functions are not independent. As a result, we can fix certain Q-functions and determine the
rest by QQ-relations. We fix the Q-functions at the boundaries of the Young tableaux. The
Q-functions at the upper boundary are fixed to be 1. We fix the Q-function at the left boundary
partially. In what follows, we discuss the XXX-type and the XXZ-type Q-system separately.

For the XXX-type Q-system, the Q-functions at the left boundary take the form

Qa,0(u) = fa(u)Qa(u) , a = 0, 1, . . . ,ℓ− 1 , (2.17)

where fa(u) are some fixed functions whose zeros are related to inhomogeneities, we will
discuss these function in more detail shortly. The functions Qa(u) are Baxter’s Q-functions
whose zeros are the Bethe roots, namely

Qa(u) =
Na
∏

k=1

�

u− u(a)k

�

, (2.18)
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where {u(a)k } are the Bethe roots associated to node-a of the Dynkin diagram. For the XXZ-type
Q-system, we consider the Q-functions with multiplicative spectral parameter. The Q-functions
at the left boundary take the form

Qa,0(x) = fa(x)Qa(x) , (2.19)

where again fa(x) is a fix function whose zeros are related to inhomogeneities and Qa(x) is
Baxter’s Q-function defined by

Qa(x) =
Na
∏

j=1

�

�

x/x (a)j

�1/2 −
�

x (a)j /x
�1/2�

, (2.20)

where x (a)j are the Bethe roots in the multiplicative variable. The function fa(x) is a rational
function of x , which is discussed in more detail in the next subsection.

2.2 From QQ-relation to BAE

As a consistency check, we show that the Aℓ−1-type BAE (2.1) can be derived from the rational
Q-system with proper boundary conditions fa(u). The following discussions apply to both
XXX-type and XXZ-type spin chains. For the XXZ-type model, the spectral parameter of the Q-
function should be understood as the multiplicative one with the corresponding shifts defined
in (2.16). To obtain BAE at the a-th node, we consider the QQ-relation for node a − 1 and a
with s = 0

Qa,0Qa−1,1 =Q+a,1Q
−
a−1,0 − εa−1Q−a,1Q

+
a−1,0 , (2.21)

Qa+1,0Qa,1 =Q+a+1,1Q
−
a,0 − εaQ−a+1,0Q

+
a,0 . (2.22)

Taking u= u(a)k in (2.21), we obtain

Q+a,1

�

u(a)k

�

Q−a−1,0

�

u(a)k

�

− εa−1Q−a,1

�

u(a)k

�

Q+a−1,0

�

u(a)k

�

= 0 . (2.23)

Assuming none of the factors above vanish3, we can rewrite it as

Q−a−1,0

�

u(a)k

�

Q+a−1,0

�

u(a)k

�

Q+a,1

�

u(a)k

�

Q−a,1

�

u(a)k

�

1
εa−1

= 1 . (2.24)

Evaluating (2.22) at Bethe roots with proper shifts, we obtain

Q+a+1,0

�

u(a)k

�

Q+a,1

�

u(a)k

�

= −εaQa+1,1

�

u(a)k

�

Q++a,0

�

u(a)k

�

, (2.25)

Q−a+1,0

�

u(a)k

�

Q−a,1

�

u(a)k

�

=Qa+1,1

�

u(a)k

�

Q−−a,0

�

u(a)k

�

.

Assuming none of the factors vanish, we can take the ratio of these equations and obtain

Q+a,1

�

u(a)k

�

Q−a,1

�

u(a)k

�
= −εa

Q++a,0

�

u(a)k

�

Q−−a,0

�

u(a)k

�

Q−a+1,0

�

u(a)k

�

Q+a+1,0

�

u(a)k

�
. (2.26)

Inserting this into (2.24), we find

εa

εa−1

Q−a−1,0

�

u(a)k

�

Q+a−1,0

�

u(a)k

�

Q++a,0

�

u(a)k

�

Q−−a,0

�

u(a)k

�

Q−a+1,0

�

u(a)k

�

Q+a+1,0

�

u(a)k

�
= −1 . (2.27)

3This assumption is necessary for the Q-system with non-trivial fa(u) in (2.19) with a ̸= 0. Otherwise, we
cannot derive BAE from QQ-relations and there can be unwanted solutions generated by the Q-system.
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The BAE in (2.1) can be written in terms of Baxter’s Q-functions as

τ(a)
Q++a

�

u(a)k

�

Q−−a

�

u(a)k

�

B−a
�

u(a)k

�

B+a
�

u(a)k

�

Q−a−1

�

u(a)k

�

Q+a−1

�

u(a)k

�

Q−a+1

�

u(a)k

�

Q+a+1

�

u(a)k

�
= −1 , (2.28)

with Qa defined in (2.18) and (2.20) for the XXX-type and XXZ-type model respectively. We
have also introduced Baxter’s polynomials Ba(u) in (2.28) whose zeros are the inhomogeneities.
More explicitly,

(

Ba(u) =
∏Ma

j=1

�

u− θ (a)j

�

, XXX-type model ,

Ba(x) =
∏Ma

j=1

�

�

x/y(a)j

�1/2 −
�

y(a)j /x
�1/2�

, XXZ-type model .
(2.29)

The shifts in the spectral parameter are defined in the same way as before. Comparing (2.27)
and (2.28) and using (2.19), we find that if the functions fa satisfy

f −a−1

�

u(a)k

�

f +a−1

�

u(a)k

�

f ++a

�

u(a)k

�

f −−a

�

u(a)k

�

f −a+1

�

u(a)k

�

f +a+1

�

u(a)k

�
=

B−a
�

u(a)k

�

B+a
�

u(a)k

�
, (2.30)

and εa satisfy

τ(a) =
εa

εa−1
, (2.31)

then (2.27) can be identified with (2.28). The functions fa satisfying (2.30) can be constructed
as

fa(u) =
ℓ−a−1
∏

k=1

Fℓ−a−k(u|θ ℓ−k) = F1(u|θ a+1)F2(u|θ a+2) . . . Fℓ−a−1(u|θ ℓ−1) , (2.32)

where the functions Fn(x |θ a) satisfy

F−n−1(u|θ a)

F+n−1(u|θ a)

F++n (u|θ a)

F−−n (u|θ a)

F−n+1(u|θ a)

F+n+1(u|θ a)
= 1 , (2.33)

and

F1(u|θ a) = Ba(u) , F0(u|θ a) = 1 . (2.34)

The functions Fn(u|θ a) can be constructed by Ba defined in (2.29) as

Fn(u|θ a) =
n
∏

k=1

B[2k−n−1]
a (u|θ a) , (2.35)

where
¨

B[m]a (u|θ a)≡ Ba

�

u+ mi
2 |θ a

�

, XXX-type model ,

B[m]a (x |ya)≡ Ba

�

xqm/2|ya

�

, XXZ-type model .
(2.36)

For example, the first few Fn(u|θ a) are given by

F1(u|θ a) = Ba(u) , (2.37)

F2(u|θ a) = B−a (u)B
+
a (u) ,

F3(u|θ a) = B[−2]
a (u)Ba(u)B

[2]
a (u) ,

. . .

The condition (2.31) can be solved by taking

ε0 = 1 , εa = τ
(1)τ(2) . . .τ(a) , a = 1, . . . ,ℓ . (2.38)

To sum up, the general Aℓ−1-type BAE can be obtained from the QQ-relations with the boundary
condition (2.32) and the choice of the parameter εa given in (2.38).
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Physical meaning of parameters Let us explain the physical meanings of the inhomo-
geneities, twists and q-deformation in the spin chain language with the simplest A1 model.

The XXX-type model with θ j = 0 and τ = 1 is the famous Heisenberg XXX spin chain,
which was proposed by W. Heisenberg and solved by H. Bethe himself, whose Hamiltonian is
given by

HXXX =
M
∑

n=1

(σx
nσ

x
n+1 +σ

y
nσ

y
n+1 +σ

z
nσ

z
n+1) , (2.39)

with periodic boundary conditions. Introducing a twist τ means imposing a twisted boundary
condition σ±m+M = ε±σ

±
m where σ± = (σx ± iσ y)/2 such that τ= ε−/ε+.

The XXZ-type A1 model corresponds to the Heisenberg XXZ spin chain whose Hamiltonian
is given by

HXXZ =
M
∑

n=1

(σx
nσ

x
n+1 +σ

y
nσ

y
n+1 +∆σ

z
nσ

z
n+1) , (2.40)

where ∆ is the anisotropy. It is related to η and q in BAE as follows:

∆= coshη=
1
2
(q+ q−1) . (2.41)

Conventionally, the XXZ spin chain is considered as the q-deformation of the XXX spin chain.
We shall adopt the same terminology here and view the XXZ-type model as the q-deformation
of the XXX-type model where the deformation parameter is q = eη.

The inhomogeneities are slightly more difficult to explain at the level of Hamiltonian. It
is most easily introduced in the framework of Algebraic Bethe ansatz where we shift each Lax
operator by different amounts, given by the inhomogeneities, see for example [29, 30] and
references therein. The resulting model is still integrable, but the Hamiltonian is no longer a
nearest neighboring interacting spin chain and is rather complicated to write down.

Symmetry enhancement The twistless XXX-type models are special because they preserve
extra symmetries. As a result, there are extra degeneracies in the spectrum. For example,
the twistless Heisenberg XXX spin chain preserves the full SU(2) symmetry of the spin chain.
Therefore, the spectrum is organized according to this symmetry. States in the same multiplet
have the same energy. The descendant states are characterized by the same set of Bethe roots,
but with additional roots at infinity. This fact is also reflected in the rational Q-system. Recall
that for the XXX-type model, the Q-functions are polynomials of the spectral parameter u.
If we take εa = 1, from the QQ-relation we find that the order of Q-functions decreases as
we move towards the right boundary. In fact, all the Q-functions at the right boundary are
simply constants and can be set to 1. This is imposed as a boundary condition in the original
Marboe-Volin prescription [13]. However, we would like to point out that it is a consequence
of the rational Q-system for the twistless XXX-type model. Turning on either the twist, or the
q-deformation breaks the symmetry. As a result, the Q-functions at the right boundary are no
longer constants in these cases.

The extra degeneracies in the spectrum is also reflected by the number of solutions of
BAE/Q-system. For the SU(2) invariant XXX spin chain with length M and N magnons, the
number of solutions is given by

�M
N

�

−
� M

N−1

�

[31]. On the other hand, for the twisted or q-
deformed chain where the symmetry is broken to U(1), the number of solutions is

�M
N

�

. The
‘missing’ solutions are compensated by the descendant states.
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3 Solving rational Q-systems

In this section, we discuss how to solve rational Q-systems. As we have seen from the previ-
ous section, the Bethe roots, which we are after, are the zeros of Qa(u). The idea of rational
Q-system is first determining the functions Qa(u) and then finding their zeros. We first parame-
terize Qa(u) by Na parameters denoted by {c(a)k }, which are basically the elementary symmetric

polynomials of the Bethe roots {u(a)k }. As discussed before, after fixing the Q-functions on the
left boundary, we can use QQ-relation to determine the rest of the Q-functions. In general,
such a procedure does not guarantee that the resulting Q-functions are polynomials (or Lau-
rent polynomials in the XXZ case). Imposing this condition leads to a set of algebraic equations
for {c(a)k }, which are called zero remainder conditions. We then solve the zero remainder con-
ditions, which turns out to be more advantageous than directly working with original BAE.

3.1 The XXX-type QQ-relation

We first illustrate the basic strategy in detail for the XXX-type Q-system. For a given Young
tableaux, we parameterize the Q-functions on the left boundary Qa,0(u) = fa(u)Qa(u). The
polynomial f (u) is completely fixed by the inhomogeneities and is given in (2.32). We param-
eterize Qa(u) as

Qa(u) = uNa +
Na−1
∑

k=0

c(a)k uk . (3.1)

Using the fact that

Qa(u) =
Na
∏

k=1

�

u− u(a)k

�

, (3.2)

we find that c(a)k are essentially elementary symmetric polynomials of {u(a)k }, e.g.

c(a)0 = (−1)Na u(a)1 u(a)2 . . . u(a)Na
. After parameterizing Qa(u), we view them as ‘known’ functions

and solve for the rest of the Q-functions on the Young tableaux. We solve the Q-functions row
by row, from top to bottom.

1. The Q-functions on the upper boundary is fixed by the boundary condition, i.e.
Qℓ,s(u) = 1. Therefore we start solving the Q-system from a = ℓ− 1. The QQ-relation
(2.15) becomes

Qℓ−1,s+1 =Q−ℓ−1,s − εℓ−1Q+ℓ−1,s . (3.3)

This can be seen as a recursion relation and we can use it to compute all Qℓ−1,s from
Qℓ−1,0 as

Qℓ−1,s(u) = Ds
εℓ−1
Qℓ−1,0 , (3.4)

where the operator Dε is defined by

Dεg(u) = g(u− i
2)− ε g(u+ i

2) . (3.5)

2. We then consider the next row with a = ℓ− 2. The QQ-relation reads

Qℓ−2,s+1Qℓ−1,s =Q+ℓ−1,s+1Q
−
ℓ−2,s − εℓ−2Q−ℓ−1,s+1Q

+
ℓ−2,s , (3.6)
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where the blue colored Q-functions are already determined from the previous step. This
equation can be used to determine all Qℓ−2,s from Qℓ−2,0 by writing it as

Qℓ−2,s+1 =
Q+
ℓ−1,s+1Q

−
ℓ−2,s − εℓ−2Q−ℓ−1,s+1Q

+
ℓ−2,s

Qℓ−1,s
. (3.7)

If we do not impose any constraints, the right hand side of (3.7) is in general a rational
function of u instead of a polynomial. The key point of the rational Q-system is that we
require all the Q-functions to be polynomials in u. To impose this condition, we perform
the polynomial division on the right hand side of (3.7), which gives a quotient and a
remainder, both are polynomials in u. We then require the remainders to be zero, which
leads to a set of algebraic equations for {c(ℓ−1)

k }.

3. Repeat the above procedure for all a until we reach a = 0. Collect all the zero remainder
conditions4, which are the equivalence of BAE.

4. Solve the zero remainder conditions or manipulate it by other means such as computa-
tional algebraic geometry methods [7,8,11].

3.2 The XXZ-type QQ-relation

For the XXZ-type model, the Q-functions Qa,s(x) are Laurent polynomials in the multiplicative
variables x . However, it is rather inefficient to work with Laurent polynomials when solving
the QQ-relations. Therefore, we first rewrite the QQ-relation in an equivalent polynomial form.
The main idea of the rewriting is extracting proper global factors from the Laurent polynomials.
After doing so, the QQ-relation

Qa+1,s(x)Qa,s+1(x) =Q+a+1,s+1(x)Q
−
a,s(x)− εaQ−a+1,s+1(x)Q

+
a,s(x) , (3.8)

can be rewritten as

eQa+1,s(x)eQa,s+1(x) = eQ
+
a+1,s+1(x)eQ

−
a,s(x)−κa(q) eQ

−
a+1,s+1(x)eQ

+
a,s(x) , (3.9)

where eQa,s(x) are polynomials in x and the q-deformed twist κ(q) is given by

κa(q) = εaq−λa+1 . (3.10)

Recall that

λa+1 = (Na − Na+1)− (Ma+1 +Ma+2 + . . .+Mℓ−1) , (3.11)

is the number of boxes of the a+ 1-th row. The boundary conditions become

eQa,0(x) = f̃a(x)eQa(x) , (3.12)

where

f̃a(x) =
ℓ−a−1
∏

k=1

eFk(x |ya+k) , (3.13)

4We would like to point out that in practice, not all zero remainder conditions are needed. There exists a set of
minimal choices of such relations which allows us to find the solutions of BAE. See [32] for related discussions.
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and

eFn(x |ya) =
n
∏

k=1

eB[2k−n−1]
a (x |ya) , eB[m]a (x |ya) =

Ma
∏

j=1

�

xqm − y(a)j

�

, (3.14)

are polynomials in x . We parameterize eQa(x) by

eQa(x) =
Na
∏

j=1

�

x − x (a)j

�

= xNa +
Na−1
∑

j=0

c(a)j x j . (3.15)

As before, we obtain a system of algebraic equations for the variables {c(a)j } by requiring all

Q-functions eQa,s to be polynomials in x . The procedure for deriving the zero remainder con-
ditions are the same as in the XXX case and we shall not repeat it here.

3.3 Examples

In this section, we give three examples for rational Q-systems of A3-type. They corresponds
to the BAE of spin chains which are useful in various contexts. The Dynkin diagrams of the
three A3-type BAEs are given in Figure 3, we denote the three Dynkin diagrams by A(1)3 , A(2)3

and A(3)3 respectively. We consider the homogeneous XXX-type model with periodic boundary

Figure 3: Three different rank-3 Dynkin diagrams.

condition, namely we take θ (a)k = 0 and εa = 1. In all these models, we distinguish between
two kinds of nodes. The one which is connected to a box, meaning that it has non-zero number
of inhomogeneities, are called momentum carrying while the rest are called auxiliary. The
reason is that, it turns out the conserved charges such as momentum and energy of the state
only depends on the Bethe roots of the momentum carrying nodes explicitly, while Bethe roots
of auxiliary nodes only enter implicitly through solving BAE.

13

https://scipost.org
https://scipost.org/SciPostPhys.14.3.034


SciPost Phys. 14, 034 (2023)

SU(4) spin chain This is the simplest A3-type spin chain. Let us denote the Bethe roots by
{u(a)k }, a = 1,2, . . . , Na respectively. The corresponding BAE read

 

u(1)k +
i
2

u(1)k −
i
2

!M

=
N1
∏

j ̸=k

u(1)k − u(1)j + i

u(1)k − u(1)j − i

N2
∏

l=1

u(1)k − u(2)l −
i
2

u(1)k − u(2)l +
i
2

, (3.16)

1=
N1
∏

l=1

u(2)k − u(1)l −
i
2

u(2)k − u(1)l +
i
2

N2
∏

j ̸=k

u(2)k − u(2)j + i

u(1)k − u(2)j − i

N3
∏

l=1

u(2)k − u(3)l −
i
2

u(2)k − u(3)l +
i
2

,

1=
N3
∏

j ̸=k

u(3)k − u(3)j + i

u(3)k − u(3)j − i

N2
∏

l=1

u(3)k − u(2)l −
i
2

u(3)k − u(2)l +
i
2

.

Let us briefly explain the origin of Bethe equations. The SU(4) spin chain is a quantum inte-
grable model. At each site of the spin chain, the local Hilbert space has 4 polarizations. We
can denote the corresponding states by |1〉, . . . , |4〉. The Hamiltonian of the spin chain is given
by

HSU(4) =
M
∑

n=1

(In,n+1 − Pn,n+1) , (3.17)

where In,n+1 and Pn,n+1 are the identity and permutation operators that act on sites n and n+1,
i.e.

In,n+1|a〉n ⊗ |b〉n+1 = |a〉n ⊗ |b〉n+1 , Pn,n+1|a〉n ⊗ |b〉n+1 = |b〉n ⊗ |a〉n+1 . (3.18)

We impose periodic boundary condition. The Hamiltonian (3.17) can be diagonalized by
nested Bethe ansatz (see for example [33]). In the coordinate Bethe ansatz, the Bethe equa-
tions arise as the quantization conditions for the rapidities at different nesting levels because
we have imposed periodic boundary condition.

The rational Q-system corresponding to the BAE (3.16) has 4 rows λ⃗ = (λ1,λ2,λ3,λ4)
with the number of boxes given by

λ1 = M − N1 , (3.19)

λ2 = N1 − N2 ,

λ3 = N2 − N3 ,

λ4 = N3 .

The boundary conditions are given by

Q0,0(u) = uM , (3.20)

Q1,0(u) =Q1(u) = uN1 +
N1−1
∑

k=0

c(1)k uk ,

Q2,0(u) =Q2(u) = uN2 +
N2−1
∑

k=0

c(2)k uk ,

Q3,0(u) =Q3(u) = uN3 +
N3−1
∑

k=0

c(3)k uk .
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SO(6) spin chain The SO(6) spin chain plays an important role in integrability of planar
N = 4 SYM theory. In the seminal paper of Minahan and Zarembo [34], they calculated the
one-loop dilation operator of the scalar sector, which turns out to be identical to the Hamilto-
nian of the SO(6) spin chain. The BAE reads

1=
N1
∏

j ̸=k

u(1)k − u(1)j + i

u(1)k − u(1)j − i

N2
∏

l=1

u(1)k − u(2)l −
i
2

u(1)k − u(2)l −
i
2

, (3.21)

 

u(2)k +
i
2

u(2)k −
i
2

!M

=
N1
∏

l=1

u(2)k − u(1)l −
i
2

u(2)k − u(1)l −
i
2

N2
∏

j ̸=k

u(2)k − u(2)j + i

u(2)k − u(2)j − i

N3
∏

l=1

u(2)k − u(3)l −
i
2

u(2)k − u(3)l −
i
2

,

1=
N2
∏

l=1

u(3)k − u(2)l −
i
2

u(3)k − u(2)l −
i
2

N3
∏

j ̸=k

u(3)k − u(3)j + i

u(3)k − u(3)j − i
.

At each site of the spin chain, there are 6 possible polarizations, denoted by |1〉, . . . , |6〉. The
Hamiltonian of the SO(6) spin chain is given by

HSO(6) =
M
∑

n=1

(Kn,n+1 + 2In,n+1 − 2Pn,n+1) , (3.22)

where periodic boundary condition has been imposed and the operator Kn,n+1 acts on sites n
and n+ 1 as

Kn,n+1|a〉n ⊗ |b〉n+1 = δa,b

6
∑

c=1

|c〉n ⊗ |c〉n+1 . (3.23)

The Young tableaux has four rows λ⃗= (λ1, . . . ,λ4) with the number of boxes given by

λ1 = M − N1 , (3.24)

λ2 = M + N1 − N2 ,

λ3 = N2 − N3 ,

λ4 = N3 .

The boundary condition is given by

Q0,0(u) =
�

u− i
2

�M�
u+ i

2

�M
, (3.25)

Q1,0(u) = uM Q1(u) = uM
�

uN1 +
N1−1
∑

k=0

c(1)k uk
�

,

Q2,0(u) =Q2(u) = uN2 +
N2−1
∑

k=0

c(2)k uk ,

Q3,0(u) =Q3(u) = uN3 +
N3−1
∑

k=0

c(2)k uk .

Alternating SU(4) spin chain The last example has two momentum carrying nodes. It plays
an important role in the study of integrability of ABJM theory [35]where it was identified with
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the planar two-loop dilatation operator of ABJM theory in the scalar sector. The BAE reads

 

u(3)k +
i
2

u(3)k −
i
2

!M

=
N3
∏

j ̸=k

u(3)k − u(3)j + i

u(3)k − u(3)j + i

N2
∏

l=1

u(3)k − u(2)j −
i
2

u(3)k − u(2)j +
i
2

, (3.26)

1=
N3
∏

l=1

u(2)k − u(3)j −
i
2

u(2)k − u(3)j +
i
2

N2
∏

j ̸=k

u(2)k − u(2)j + i

u(2)k − u(2)j + i

N1
∏

l=1

u(2)k − u(1)j −
i
2

u(2)k − u(1)j +
i
2

,

 

u(1)k +
i
2

u(1)k −
i
2

!M

=
N2
∏

l=1

u(1)k − u(2)j −
i
2

u(1)k − u(2)j +
i
2

N1
∏

j ̸=k

u(1)k − u(1)j + i

u(1)k − u(1)j + i
.

The Hamiltonian of the alternating SU(4) spin chain is given by

HABJM =
2M
∑

n=1

�

2In,n+1 − 2Pn,n+2 + Pn,n+2Kn,n+1 + Kn,n+1Pn,n+2

�

, (3.27)

where we impose the periodic boundary condition as before. It is called alternating spin chain
because we distinguish even and odd sites of the spin chain. At each site, there are 4 possible
polarizations |1〉, . . . , |4〉.

The rational Q-system has 4 rows λ⃗= (λ1, . . . ,λ4) with

λ1 = 2M − N1 , (3.28)

λ2 = M + N1 − N2 ,

λ3 = M + N2 − N3 ,

λ4 = N3 .

The boundary condition is given by

Q0,0(u) = (u− i)M u2M (u+ i)M , (3.29)

Q1,0(u) =
�

u− i
2

�M�
u+ i

2

�M
Q1(u) ,

Q2,0(u) = uM Q2(u) ,

Q3,0(u) =Q3(u) ,

where

Qa(u) = uNa +
Na−1
∑

k=0

c(a)k uk , a = 1, 2,3 . (3.30)

3.4 Efficiency in solving Q-systems

It is far more efficient to use rational Q-systems instead of Bethe ansatz equations to solve for
the Bethe roots. First of all, although both are algebraic equations, Q-systems are simpler and
faster to solve. In Table 1, we compare the time required to solve numerically with working
precision 100 digits for the Bethe roots of an array of spin chains with generic inhomogeneities
and twists using Bethe ansatz equations and Q-systems, respectively. In each example, the Q-
systems take much less time to solve, and the discrepancy in time consumption becomes even
greater when the spin chain is longer. The comparison we make here is for the XXZ spin chain
with fixed value q. For XXX spin chain, the efficiency of the two methods have already been
compared and can be found in [13].
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Table 1: Time (in seconds) required to solve for the Bethe roots using either BAEs or
rational Q-systems, on a computer with Intel Xeon Gold 6248R CPU. We set inhomo-
geneities and twists to arbitrary natural numbers and set anisotropy q to 1/3. L, N
are respectively the length of spin chain and the number of magnons. “−” means not
solvable in reasonable time (more than four hours).

(L, N) BAE Q-system

(4,2) 0.238 0.105
(5,2) 0.512 0.155
(6,3) 199.7 0.385
(7,3) 1803 2.092
(8,4) − 6.322
(9,4) − 29.85
(10, 5) − 1145

Secondly, Bethe equations can be plagued with various problems, for instance, there are
non-physical solutions which need to be discarded. This problem is most pronounced in the
special cases where inhomogeneities and twists are trivial. On the other hand, rational Q-
systems solve both problems automatically: the unphysical solutions are automatically avoided
and the singular solutions are automatically included. In other words, Q-systems know how
to pick all the physical solutions. We illustrate these features in Section 4.4 for the evaluation
of the topologically indices for 3d N = 4 U(N) SQCD theories with L fundamental hypermul-
tiplets.

4 3d N = 4 theories

3-dimensional supersymmetric gauge theories with N = 4 supersymmetry which flow to an
interacting conformal theory in the IR have allowed to gain insights in dualities like 3d mirror
symmetry [36]. In this Section, the field theory properties and the brane realisation in Type IIB
superstring theory are recalled. Thereafter, the relation to Bethe Ansatz equations is reviewed
by considering the equations for the supersymmetric vacua of the theory compactified to 2d.
The connection between 3d N = 4 theories and spin chain BAE has been discussed in [20,21].

4.1 Brane realisations

The relevant class of 3d N = 4 theories can be constructed via a D5-D3-NS5 brane system in
Type IIB superstring theory [37]. Suppose the branes are arranged as in Figure 4 and occupy
space-time directions as in Table 2. The 3d low-energy world-volume theory on the D3s is an
A-type quiver gauge theory. Given ℓ NS5 branes which are separated along x6, there are Ni
D3 branes suspended between the i-th and (i+1)-th NS5 brane. In addition, there are Mi D5
branes with x6 position in between the i-th and (i+1)-th NS5 brane. The resulting 3d N = 4
gauge theory is conveniently encoded in the following quiver diagram

N1 N2

. . .

Nℓ−2 Nℓ−1

M1 M2 Mℓ−2 Mℓ−1
, (4.1)
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Table 2: Space-time occupation of branes. Each brane individually breaks half of the
original supercharges. However, the three different types of branes are arranged such
that any subset of two branes allows to include the third type of branes without re-
ducing supersymmetry further. Thus, the D5-D3-NS5 system has 8 supercharges. The
branes break the SO(1, 9) space-time symmetry to SO(1,2)×SO(3)3,4,5×SO(3)7,8,9.

0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
D3 × × × ×
D5 × × × × × ×

⋯
M1 D5

M2 D5
Mℓ−2 D5

Mℓ−1 D5

N1 D3
N2 D3

Nℓ−2 D3
Nℓ−1 D3

x6

x3,4,5

Figure 4: D5-D3-NS5 brane configuration. The vertical lines denote NS5 branes, the
horizontal lines denote D3 branes, and the crosses are D5 branes.

where round nodes denote dynamical U(Ni) vector multiplets and square nodes are back-
ground U(Mi) vector multiplets. A solid line between two nodes encodes a hypermultiplet
which transforms in the bifundamental representation of the two groups associated to the
nodes.

Next, some fundamental properties of the 3d N = 4 theory are recalled. The quiver gauge
theory (4.1) flows to an interacting 3d N = 4 SCFT in the IR if each U(Ni) gauge node satisfies

ei = Ni−1 + Ni+1 +Mi − 2Ni ≥ 0 , (4.2)

for all i = 1,2, . . . ,ℓ − 1. Then (4.1) is referred to as good in the sense of [26]. The
N = 4 R-symmetry SO(4)R ∼= SU(2)H × SU(2)C is geometrically realised as rotation groups
SO(3)7,8,9 ⊂ SU(2)H and SO(3)3,4,5 ⊂ SU(2)C in the brane system. The global (non-R) symme-
try is a product of the form GH×GC . The flavour symmetry GH is explicit in the UV Lagrangian
description of (4.1)

GH = S

 

ℓ−1
∏

j=1

U(M j)

!

=

 

ℓ−1
∏

j=1

U(M j)

!

/U(1)diag . (4.3)

In contrast, GC is less obvious. The UV description accounts for U(1)ℓ−1, because each U(Ni)
gauge group can be used to construct a conserved current. In the IR, the Coulomb branch
symmetry might be enhanced to a non-abelian group GC ⊃ U(1)ℓ−1. A criterion for symmetry
enhancement is given by the notion of balance, i.e. the node U(Ni) is balanced if ei = 0.
Then certain monopole operators act as ladder operators for the Coulomb branch symmetry,
which becomes non-abelian. The reader is referred to [26, 38–41] for details on monopole
operators and their role in symmetry enhancement. For linear quiver theories (4.1) the subset
of balanced gauge nodes yields the Dynkin diagram of the non-abelian part of GC in the IR.

The 3d N = 4 SCFT has two types of deformation parameters: (i) a triplet of masses m⃗
which correspond to Cartan elements of GH and transform as [0]⊗[2] under SU(2)H×SU(2)C ;
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and (ii) a triplet of FI parameters w⃗ which are Cartan elements of GC and transform as [2]⊗[0]
under SU(2)H × SU(2)C . In the brane setup, the masses m⃗ are realised by the D5 positions
in x3,4,5, which are acted on by SO(3)3,4,5. Similarly, the FI parameter for the gauge group
between two adjacent NS5 branes is realised by the relative position along x7,8,9, being acted
on by SO(3)7,8,9.

Repacking into partitions. The linear quiver (4.1) falls into the well-known class of
Tσρ [SU(n)] theories [26], which are labelled by two partitions ρ, σ of n:

ρ = (ρ1, . . . ,ρℓ) , with ρ1 ≥ . . .≥ ρℓ > 0 ,
ℓ′
∑

i=1

ρi = n , (4.4a)

σ = (σ1, . . . ,σℓ′) , with σ1 ≥ . . .≥ σℓ′ > 0 ,
ℓ
∑

i=1

σi = n . (4.4b)

The two sets of integers (N1, . . . , Nℓ−1), (M1, . . . , Mℓ−1) are defined in terms of the partitions
as follows:

M j = σ̂ j − σ̂ j+1 , with σ̂i = 0 , i ≥ l̂ ′ + 1 , (4.5a)

N j =
ℓ
∑

k= j+1

ρk −
ℓ̂′
∑

i= j+1

σ̂i , with ℓ̂′ = ℓ− 1 , (4.5b)

wherein the transposed partition σT = (σ̂1, . . . , σ̂ℓ̂′) appears. For convenience, one can obtain
partitions ρ,σ from the integers N j and M j as follows:

σ̂ j =
ℓ−1
∑

i= j

Mi , ρi =











σ̂1 − N1 , i = 1 ,

Ni−1 − Ni + σ̂i , 1< i ≤ ℓ− 1 ,

Nℓ−1 , i = ℓ .

(4.6)

In terms of the brane system of Figure 4, the partition data appears naturally after a sequence
of brane moves, including brane creation and annihilation [37], such that all D5 branes are
on one side of all of the NS5 branes. The brane realisation of Tσρ [SU(n)] is then given by n
D3 branes suspended between ℓ NS5 and ℓ′ D5 branes. The parts of ρ are the net number of
D3s ending in the NS5 branes going from the interior to exterior; likewise, the parts of σ are
the net number of D3s ending on D5 branes going from interior to exterior.

4.2 3d N = 2∗ theories on R2 × S1

Consider a 3d N = 4 linear quiver gauge theory T onR2×S1. To be more precise, consider the
3d N = 2∗ theory on R2 × S1 that results from the 3d N = 4 theory by turning on a mass for
the adjoint chiral multiplet in the N = 4 vector multiplet. To proceed, two steps are required:
(i) the SUSY breaking to N = 2∗ and (ii) the compactification to the 2d KK theory. The reader
is referred to [18,21] for references and details.

In terms of the supersymmetry algebra, one selects a N = 2 subalgebra of the N = 4
algebra. Denote the Cartan generators of the SU(2)H × SU(2)C R-symmetry by j3H and j3C ,
respectively. Without loss of generality, the R-symmetry generator of the N = 2 subalgebra
can be chosen to be proportional to j3H + j3C . However, the orthogonal combination j3H − j3C
generates a global (non-R) symmetry U(1)η from the N = 2 perspective. Therefore, the 3d
theory T has an GH × GC × U(1)η global symmetry, viewed as N = 2 theory. Turning on a
real mass term U(1)η, via coupling a N = 2 background U(1)η vector multiplet, leads to the
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desired SUSY breaking N = 4 → N = 2∗. The deformation parameters split naturally into
real and complex: denote the third components of the triplets m⃗ and w⃗ simply by m ≡ m3

and w ≡ w3, respectively. The remaining components, which could be arranged in a complex
linear combination like m1+im2 , are not relevant as they do not affect the low-energy effective
2d theory. Besides the real parameters m and w, there is also the real mass η̃2 for the U(1)η
symmetry.

Next, compactifying the 3d N = 2∗ theory T on a circle of radius R, allows to combine
the real deformation parameters (m, w, η̃2 ) with arising flavour Wilson lines aF

0 for GH , GC , and
U(1)η, respectively, into complex deformation parameters

θ j = iR
�

m j + iaH
0, j

�

, ts = iR
�

ws + iaC
0,s

�

, η= iR
�

η̃+ iaη0
�

. (4.7)

From the 2d N = (2,2) perspective, these correspond to twisted masses. As the flavour Wilson
lines aF

0 =
1

2πR

∫

S1 AF
µdzµ are periodic, it is more convenient to consider the exponentiated

variables

y j = e2πiθ j , εs = e2πts , q = eπη . (4.8)

Similarly, the 3d N = 2 vector multiplet contains a real scalar field σa ≡ φ3,a with
a = 1, . . . , rk(G), which combines with a flat connection a0,a for the gauge field along S1

into a complex scalar field ua and the single valued fugacity is obtained by exponentiation

xa = e2πiua , ua = iR(σa + ia0,a) . (4.9)

The 2d KK theory is best described by a low-energy effective description, wherein all massive
fields have been integrated out. Assuming that the twisted masses are sufficiently generic,
the 2d theory at low energies becomes effectively abelian. The field strength multiplet of the
N = (2, 2) vector multiplets are twisted chiral multiplets, whose dynamics is governed by the
twisted superpotential fW . The low-energy effective action is then determined by the low-
energy effective twisted superpotential fWeff, which receives corrections from integrating out
massive fields. Crucially, fWeff is independent of the superpotential and the gauge coupling of
the original 3d N = 2∗ theory. This is the reason why the complex deformation parameters of
the 3d theory can be neglected from the start, because they are superpotential deformations.

The contribution to fWeff of a 3d N = 2 chiral multiplet with twisted mass u is given
by [18,42]

fWchiral
eff =

1
(2πi)2

Li2
�

e2πiu
�

+
1
4

u2 ≡ ℓ(u) , (4.10)

and it follows that a 3d hypermultiplet contributes as

fWhyper
eff = ℓ

�

u+ 1
2η
�

+ ℓ
�

−u+ 1
2η
�

. (4.11)

From the 3d N = 4 vector multiplet, only the adjoint chiral contributes to the effective twisted
superpotential

fWvector
eff = ℓ(u−η) . (4.12)

Besides the contributions from the supermultiplets, the twisted superpotential may receive
contributions from Chern-Simons interactions. As the origin is a 3d N = 4 theory, pure gauge
Chern-Simons term are not relevant; however, mixed gauge-flavour Chern-Simons interactions
appear. For instance, the FI coupling is understood as such a mixed CS term between the gauge
symmetry and the topological symmetry. One finds

fWFI
eff = t

k
∑

a=1

ua , (4.13)
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for G = U(k) which has a single U(1) topological symmetry.
Finally, the supersymmetric vacua of the compactified theory T with generic twisted masses

are determined by the critical points

e2πi
∂ÝWeff
∂ ua = 1 , for a = 1, . . . , rk(G) . (4.14)

For theories T with sufficiently many flavours (and generic twisted masses) the set of super-
symmetric vacua are a finite number of discrete points.

Example. To exemplify, consider U(k) SQCD with N fundamental hypermultiplets. The low-
energy effective twisted superpotential is given by

fWeff =
k
∑

a=1

N
∑

j=1

�

ℓ(ua − θ j +
1
2η) + ℓ(−ua + θ j +

1
2η)

�

(4.15)

+
k
∑

a,b=1

ℓ(ua − ub −η) + (t2 − t1)
k
∑

a=1

ua ,

wherein the first line encodes the hypermultiplet in the bifundamental of U(k)× SU(N) with
gauge parameter ua and twisted flavour masses θ j . The second line entails the contribution of
the adjoint chiral and the FI coupling. The physical FI parameter is parametrised by t2 − t1,
as motivated by the brane realisation.

The massive supersymmetric vacua can be evaluated by using

−2πi∂uℓ(u) = log [2 sinh (−iπu)] ⇐⇒ ∂uℓ(u) =
i

2π
log

�

x−
1
2 − x

1
2

�

, (4.16)

for x = e2πiu, as in (4.9). One verifies straightforwardly

e2πi∂ua
fWeff = (−1)δ

ε2

ε1

k
∏

d=1
d ̸=a

xaq− xdq−1

xdq− xaq−1

N
∏

j=1

xa − y jq

y j − xaq
, (4.17)

using the complex fugacities (4.8). Here, the additional sign (−1)δ can introduced by shifting
the fugacities ε2

ε1
→ (−1)δ ε2

ε1
for the U(1) topological symmetry. This sign ambiguity was noted

in [21,42,43]. Here, δ = k+ N − 1 is used.

A-type quiver. For the general class of A-type quivers (4.1), the Bethe Ansatz equations for
the s-th node

. . .

Ns−1 Ns Ns+1
. . .

Ms−1 Ms Ms+1
(4.18)

are given by (a = 1, . . . , Ns)

P(s)a = (−1)δs
εs+1

εs

Ns
∏

d=1
d ̸=a

x (s)a q− x (s)d q−1

x (s)d q− x (s)a q−1
·

Ms
∏

i=1

x (s)a − y(s)i q

y(s)i − x (s)a q
(4.19a)

·
Ns−1
∏

b=1

x (s)a − x (s−1)
b q

x (s−1)
b − x (s)a q

·
Ns+1
∏

c=1

x (s)a − x (s+1)
c q

x (s+1)
c − x (s)a q

,

δs = Ns + Ns−1 + Ns+1 +Ms − 1 , (4.19b)
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where the blue parts originate from the U(Ns) vector multiplet, red parts denote the Ms fun-
damental hypermultiplets, and green parts are due to the bifundamental hypermultiplets be-
tween the U(Ns) gauge node and the adjacent gauge nodes. The black terms are the classical
contributions from the FI-parameter and the associated sign-shift.

4.3 3d N = 2∗ theories on Σg × S1

As a next step, one can place the resulting 2d N = (2,2)∗ KK theory on a curved background,
i.e. a Riemann surface Σg of genus g. The curved background does not preserve all super-
symmetries, but topological twisting [44] renders the situation manageable. There are two
well-known possibilities: the N = (2, 2) R-symmetry contains a vector and an axial U(1) sym-
metry. The SO(2)L Lorentz symmetry of Σg can be topologically twisted with either the axial
or the vector U(1) R-symmetry. The A-twist denotes the twist of SO(2)L with the axial U(1)
R-symmetry such that the vector part is preserved. Conversely, the B-twist locks SO(2)L and
vector U(1) R-symmetry rotations such that the axial U(1) is preserved. As a result from the
four original supercharges, only two become scalar supercharges after the twisting procedure.
These scalar supercharges can be preserved on the curved background and are subsequently
used for supersymmetric localisation of the partition functions, see for example [45–54].

From the 3d perspective, the Lorentz group of a Riemannian manifold is SO(3)L ∼= SU(2)L ,
while the N = 4 R-symmetry is SO(4)R ∼= SU(2)H × SU(2)C . Then there exist two distinct
choices for topological twisting [55–57]:

• A-twist: The novel A-twisted symmetry group is SU(2)A × SU(2)C with
SU(2)A = diag (SU(2)L , SU(2)H), which is the new Lorentz group after the twist. From
the original 8 supercharges, four become scalar supercharges with respect to SU(2)A.
The preserved R-symmetry is U(1)H × SU(2)C , while the U(1)R symmetry of the N = 2
subalgebra is generated by RA = 2 j3H [56], see also [42] for example.

• B-twist: The symmetry group SU(2)B × SU(2)H defined by the new Lorentz group after
twist SU(2)B = diag (SU(2)L , SU(2)C) leads to four scalar supercharges, with respect to
SU(2)B. The preserved R-symmetry is SU(2)H × U(1)C , while the U(1)R symmetry of
the N = 2 subalgebra is generated by RB = 2 j3C . This is also known as Rozansky-Witten
twist [55].

Both, A and B-twist, preserve 4 supercharges each, but not necessarily the same four. One can
show that 2 supercharges are same in each set of four, such that these supercharges, preserved
by both A and B-twist, are used for the localisation of the partition functions. Most impor-
tantly, these supercharges commute with the global symmetry U(1)η = 2 [U(1)H −U(1)C]
with charge Qη = RA−RB = 2 j3H−2 j3C . The A and B-twisted index is defined as [42,43,58,59]

Ig,A/B(q, zi) = Tr
Σ

A/B
g

�

(−1)F qQη
∏

i

zQ i
i

�

, with U(1)R charge R= RA/B , (4.20)

where zi are fugacities for all global symmetries. Via supersymmetric localisation, the twisted
indices reduce to a contour integral over the complexified Cartan subalgebra of the gauge
group. This formulation is summarised in Appendix B. Remarkably, the integral expression is
equivalent to evaluating a certain function on the set of Bethe roots, cf. (B.7)–(B.8).

4.4 Examples of twisted index computations

Having introduced the topologically twisted indices, written as sum over Bethe vacua, it is
time to demonstrate the efficiency of rational Q-systems. From the gauge theory point of
view [42], the A and B-twisted indices should agree with the Coulomb and Higgs branch
Hilbert series, respectively. We use this as a consistency check for the rational Q-system. To

22

https://scipost.org
https://scipost.org/SciPostPhys.14.3.034


SciPost Phys. 14, 034 (2023)

be specific, consider U(k) SQCD with N f fundamental hypermultiplets. The Coulomb branch
Hilbert series is known from [60], while the Higgs branch Hilbert series are, for example, given
in [61]. We have verified the index results derived from solving the rational Q-system in the
following cases: k = 2, N f = 4; k = 3, N f = 6,7, 8; k = 4, N f = 8, 9,10; k = 5, N f = 10.
Some of the results are illustrated in Tables 3-6. Here we have set twisted masses yi and
FI parameters εs to 1, corresponding to trivial inhomogeneities and twists in the language of
spin chains, to emphasise the usefulness of rational Q-systems in these special situations5. The
relation between A/B-twisted indices and Coulomb/Higgs branch Hilbert series is given by

Ig=0,A(q, zi) = q−dimH C ·HSC(q
−2, zi) ,

Ig=0,B(q, zi) = q−dimH H ·HSH(q
−2, zi) ,

(4.21)

assuming that HSC/H(t, zi) is Hilbert series graded with respect to the half-integer spins of
the third component of SU(2)C/H using the formal variable t. The zi are the fugacities of the
Coulomb/Higgs branch isometries, and dimH C, dimH H are the quaternionic Coulomb/Higgs
branch dimensions, respectively.

We comment that the Bethe roots here are solved numerically from the rational Q-systems,
and consequently the A/B-twisted indices of the gauge theories are also computed numerically.
Even at this numerical stage, it is clear that the rational Q-systems outperforms BAE, as evident
from Table 1. In a separate publication, we will use the algebraic geometrical methods to
compute the twisted indices analytically, and the comparison with Hilbert series can be made
exactly.

Table 3: A and B-twisted index of 3d N = 4 U(2) SQCD with N f = 4 hypermultiplet
computed by summing up Bethe roots solved from the Q-systems, compared with
Coulomb and Higgs branch Hilbert series HSC/H , respectively. Both twisted masses
y j and FI parameters εs are set to 1, and we choose the real mass q = 59. “precision”
is the working precision to solve numerically the Q-systems. Underlined are matching
digits with the Hilbert series.

precision A-twisted index

30 0.00028752156405593176836345220967823465172827015575421844275664857
40 0.00028752156405593176836345131844233744482144652553274873509198510
50 0.00028752156405593176836345131844233744482132967788438091343167921
60 0.00028752156405593176836345131844233744482132986556929710052909568

HSC 0.00028752156405593176836345131844233744482132986556929710052909428

(a)

precision B-twisted index (/10−8)

30 8.2882543532206551380929369696182636127698867347809477
40 8.2882543532199696376393769549620971697496512058973677
50 8.2882543532199696376393769548731493242132365317167792
60 8.2882543532199696376393769548732936836186920889942863

HSH (/10−8) 8.2882543532199696376393769548732936836186920889932196

(b)

5Even though the rational Q-system can produce all the correct and physical Bethe roots when all the inhomo-
geneities and twists are trivial, some of the summands in the commputation of twisted indices become the 0/0
indefinite type. We regularise these summands by giving a very small deformation to one of the twists.
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Table 4: A and B-twisted index of 3d N = 4 U(3) SQCD with N f = 6 hypermultiplet
computed by summing up Bethe roots solved from the Q-systems, compared with the
Coulomb and Higgs branch Hilbert series HSC/H , respectively. Twisted masses y j and
FI parameters εs are set to 1, and the real mass is chosen q = 59.

precision twisted A-index (/10−6)

30 4.8732468488677554916247345325593390724774052367581890
40 4.8732468488677554918004120386636296497335115841627159
50 4.8732468488677554918004120386112808487038322399706690
60 4.8732468488677554918004120386112808485997596123091081

HSC (/10−6) 4.8732468488677554918004120386112808485997596123108992

(a)

precision twisted B-index (/10−16)

50 1.165998205778084361309991293068787204114245898
60 1.165998205776650423208769416179277651494749179
70 1.165998205776650423208791534175664790279749969
80 1.165998205776650423208791534175653736637506939

HSH (/10−16) 1.165998205776650423208791534175653736637508233

(b)

5 Higgsing Q-systems

Under Bethe/Gauge correspondence, 3d N = 4 quiver gauge theories are in one-to-one corre-
spondence to BAE/Q-system labelled by the same quiver. Supersymmetric gauge theories have
rich structures and different theories can be related to each other by various mechanisms. Due
to the correspondence between quiver gauge theories and rational Q-systems, operations on
one side should be reflected on the other.

One important class of relations comes from the Higgs mechanism. Given a 3d N = 4
linear quiver gauge theory Tσρ [SU(n)] as in (4.1), the Higgs mechanism allows for a rich phase
structure. As it is well-known, the moduli space of vacua splits into roughly three distinct types
of branches: (i) the Higgs branch, where only hypermultiplet scalars acquire a non-trivial VEV,
(ii) the Coulomb branch, parametrised by VEVs of the vector multiplets scalars, and (iii) mixed
branches. Consequently, there exist the corresponding three types of Higgs transitions.

In the language of BAE, Higgsing is an operation which reduces the number of Bethe roots,
either by fixing some of the Bethe roots at values related to the inhomogeneities, or by taking
them to infinity. As we will see, in the Q-system, Higgsing corresponds to the operations
which reduces the number of Bethe roots while keeping the the number of boxes fixed. There
are two ways to achieve this, one is changing boundary conditions and the other is moving
boxes around. Intriguingly, they correspond to Higgs branch and Coulomb branch Higgsing
respectively.

5.1 Higgs branch Higgsing: gauge theory

A generic gauge-invariant Higgs branch operator can be constructed from any path that starts
and ends in some flavour node. For example, Figure 5a shows a typical case in the brane
system. Suppose one has chosen flavour nodes s and r, in order to open up a Higgs branch
direction between a D5 brane in the s-th interval and a D5 brane in the r-th interval, one needs
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Table 5: A and B-twisted index of 3d N = 4 U(4) SQCD with N f = 8 hypermultiplets
computed by summing up Bethe roots solved from the Q-systems, compared with the
Coulomb and Higgs branch Hilbert series HSC/H , respectively. Twisted masses y j and
FI parameters εs are set to 1, and the real mass is chosen q = 59.

precision twisted A-index (/10−8)

40 8.25974042180998008521519041680333816527586923302771508588658730740
50 8.25974042180998008524045048323036601313681874582066764115606148669
60 8.25974042180998008524045048323036602897411127211414195745562099877
70 8.25974042180998008524045048323036602897411127211414166716521788332

HSC (/10−8) 8.25974042180998008524045048323036602897411127211414166716521640553

(a)

precision twisted B-index (/10−29)

110 4.72309432369418082795980614642322534514725146259698584707378
120 4.72309432369418082795980614642345173009901180522579894966300
130 4.72309432369418082795980614642345170554658122805183521899109
140 4.72309432369418082795980614642345170554658122805183423510308

HSH (/10−29) 4.72309432369418082795980614642345170554658122805183423542825

(b)

to align the x3,4,5 positions of the following branes:
• The D5 labelled by θ (s)a ∼ m(s)a needs to align with a D3 brane, i.e. one tunes the vector

multiplet scalar u(s)Ns
∼ σ(s)Ns

.
• In the adjacent interval on the right-hand side, a single D3 brane needs to align with the

adjusted D3 brane in the s-th interval, i.e. u(s+1)
Ns+1

has to be tuned.
• This alignment of a single D3 brane continues for all intervals j ∈ {s+ 1, . . . , r}.
• Lastly, the position of the D5 brane, labelled by θ (r)b ∼ m(r)b , needs to align with the

position of the D3, which corresponds to the vector multiplet scalar σ(r)Nr
⊂ u(r)Nr

.
Once all these branes are aligned, the D3 ending on the NS5s can join to form a single D3
that spans from the left NS5 in the s-th interval to the right NS5 in the r-th interval. Since this
single D3 intersects the two D5 branes, the D3 can split on the D5 and the resulting D3 segment
is free to move along the D5 branes. This realises the Higgs branch Higgsing of the gauge
invariant displayed in the quiver in Figure 5b, because the motion of D3 branes suspended
between D5 precisely are the Higgs branch directions. The residual D3 brane segments, which
are suspended between an NS5 and a D5, have no dynamical degrees of freedom and can be
eliminated moving the D5 through the NS5, due to brane annihilation. The resulting theory
is shown in Figure 5c.

While the 3d N = 4 brane systems provides a natural intuition for which parameter need
to be adjusted, the precise choices need to take the N = 2∗ deformation η into account. One
finds [21]

θ (s)a = u(s)Ns
+
η

2
, u(s)Ns

= u(s+1)
Ns+1

+
η

2
, . . . , u(r−1)

Nr−1
= u(r)Nr

+
η

2
, u(r)Nr

= θ (r)b +
η

2
, (5.1)

and the Bethe Ansatz equation of the theory in Figure 5b reduce to the BAE of the Higgsed the-
ory in Figure 5c upon this tuning of variables, due to telescopic cancellation. See Appendix A.1
for details. As a remark, Higgsing reduces the BAE before Higgsing to the BAE of the theory
after Higgsing, but not all parameters of the latter theory are generic due to the tuning (5.1).
See (A.8) and (A.8) for an explicit identification of the parameters after Higgsing.
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Table 6: A and B-twisted index of 3dN = 4 U(5) SQCD with N f = 10 hypermultiplets
computed by summing up Bethe roots solved from the Q-systems, compared with the
Coulomb and Higgs branch Hilbert series HSC/H , respectively. Twisted masses y j and
FI parameters εs are set to 1, and the real mass is chosen q = 59.

precision twisted A-index (/10−9)

70 1.399956003696606805064627094774962093795222260217177154001376055190611684
80 1.399956003696606805064607405233564620737311230205966971820395423437900816
90 1.399956003696606805064607405233564620737308834239577625822368024377227217

100 1.399956003696606805064607405233564620737308834239577625822367817060847432

HSC (/10−9) 1.399956003696606805064607405233564620737308834239577625822367817060847231

(a)

precision twisted B-index (/10−45)

100 5.508702012796516014599502581222778244609494537771432902
110 5.508702012870832356223407551611793967094776375601633373
120 5.508702012870832356223407551608849319846744863214767287
130 5.508702012870832356223407551608849319846744736454359912

HSH (/10−45) 5.508702012870832356223407551608849319846744736454251468

(b)

Strictly speaking, it is not necessary to consider such a general Higgs branch Higgsing, as
it is sufficient to consider the two minimal Higgsing transitions [62,63]:

1. aM−1 transitions: for a gauge node with (Ni ≥ 1, Mi ≥ 2) one specialises the transition
in Figure 4 to r = s = i. After the transition, the gauge label Ni and the flavour labels
Mi−1, Mi , Mi+1 are changed respectively to Ni − 1, Mi−1 + 1, Mi − 2, Mi+1 + 1, while the
other gauge/flavour labels are not changed.

This is called AM−1 transition with M = Mi .

2. Ak transition: Suppose there exists a sequence of nodes such that (Ns ≥ 1, Ms = 1),
(Nr ≥ 1, Mr = 1) with s < r, and (Ni ≥ 1, Mi = 0) for all s < i < r. A VEV to the
gauge invariant stretched from Ms to Mr leads to a Higgs mechanism that is known as
Ak transition with k = r − s+ 1. After the transition, the gauge labels Ns, Ns+1, . . . , Nr as
well as the flavor labels Ms, Mr are reduced by one, and the flavour labels Ms−1, Mr+1
are increased by one. The remaining gauge/flavour labels are unchanged.

These minimal transitions, also known as Kraft-Procesi transitions [62], are sufficient to de-
scribe any Higgsing via a sequence of elementary steps. We note that the balancing conditions
ei as well as the partition ρ are not affected by the Higgs branching Higgsing.

5.2 Higgs branch Higgsing: Q-system

In the previous sections, we have seen Higgs branch Higgsing from gauge theory and at the
level of BAE. Now let us see the correspondence in the rational Q-system. We consider a Higgs
branch Higgsing along a path from flavor node Ms to Mr with r > s. Under this operation, the
Dynkin diagram labelled by M⃗ = (M1, . . . , Mℓ−1), N⃗ = (N1, . . . , Nℓ−1) becomes

M⃗ ′ = (M1, . . . , Ms−2, Ms−1 + 1, Ms − 1, Ms+1, . . . , Mr−1, Mr − 1, Mr+1 + 1, Mr+2, . . . , Mℓ−1) ,

N⃗ ′ = (N1, . . . , Ns−1, Ns − 1, Ns−1 − 1, . . . , Nr − 1, Nr+1, . . . , Nℓ−1) .

26

https://scipost.org
https://scipost.org/SciPostPhys.14.3.034


SciPost Phys. 14, 034 (2023)

⋯ ⋯ ⋯

Ms−1 Ms Ms+1 Mr−1 Mr Mr+1

Ns−1 Ns Ns+1 Nr−1 Nr Nr+1

θ
(s)
a θ

(r)
b

u
(s)
Ns

u
(s+1)
Ns+1 u

(r−1)
Nr−1 u

(r)
Nr

(a)

N1 N2

. . .
Ns−1 Ns Ns+1

. . .
Nr−1 Nr Nr+1

. . .
Nℓ−2 Nℓ−1

M1 M2 Ms−1 Ms Ms+1 Mr−1 Mr Mr+1 Mℓ−2 Mℓ−1

(b)

N1 N2

. . .
Ns−1 Ns−1 Ns+1−1

. . .
Nr−1−1 Nr−1 Nr+1

. . .
Nℓ−2 Nℓ−1

M1 M2 Ms−1+1 Ms−1 Ms+1 Mr−1 Mr−1 Mr+1+1 Mℓ−2 Mℓ−1

(c)

Figure 5: Higgs branch Higgsing. (a) displays which branes need to align with each
other to open up a Higgs branch direction. (b) shows the corresponding gauge in-
variant operator in the quiver as path from flavour node Ms to Mr . The resulting
theory after the Higgs transition is shown in (c).

From M⃗ , N⃗ and M⃗ ′, N⃗ ′, we can compute the corresponding Young tableaux by

λa = (Na−1 − Na) + (Ma +Ma+1 + . . .+Mℓ−1) , (5.2)

with N0 = 0 and Nℓ = 0. Let us denote the Young tableaux by λ and λ′. It is clear that λa = λ′a
for a = 1, 2, . . . , s− 2. For a = s− 1, we have

λ′s−1 =(N
′
s−2 − N ′s−1) + (M

′
s−1 +M ′s + . . .+M ′ℓ−1) (5.3)

=(Ns−2 − Ns−1) + (Ms−1 + 1+Ms − 1+ . . .+Mℓ−1) = λs−1 .

Similarly, we can check that λ′a = λa for all a = 1,2, . . . ,ℓ−1. Therefore, we see that although
M⃗ ′, N⃗ ′ and M⃗ , N⃗ are different, the corresponding Young tableaux is the same.

The case r = ℓ− 1 is special. In this case, naively we have

M⃗ ′ =(M1, . . . , Ms−2, Ms−1 + 1, Ms − 1, Ms+1, . . . , Mℓ−1 − 1) , (5.4)

N⃗ ′ =(N1, . . . , Ns−1, Ns − 1, Ns−1 − 1, . . . , Nℓ−1 − 1) ,

which leads to

λ′a = λa − 1 , a = 1, . . . ,ℓ . (5.5)

Notice that in (5.4), the total number of inhomogeneities is reduced by 1. Taking into account
this missing inhomogeneity, we consider

M⃗ ′′ =(M1, . . . , Ms−2, Ms−1 + 1, Ms − 1, Ms+1, . . . , Mℓ−1 − 1,1) , (5.6)

N⃗ ′′ =(N1, . . . , Ns−1, Ns − 1, Ns−1 − 1, . . . , Nℓ−1 − 1,0) .
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This corresponds to adding a floating flavor node attached to the ℓ-th empty gauge node. The
corresponding Young tableaux is

λ′′a = λa , a = 1, . . . ,ℓ , and λ′′ℓ+1 = 0 , (5.7)

which is the same Young tableaux before Higgsing. This again confirms that the Higgs branch
Higgsing does not change the Young tableaux of the rational Q-system.

Another way to see the Young tableaux does not change is to notice that the numbers of
boxes are related to the balancing conditions

λs = es + es+1 + . . . eℓ−1 + eℓ , (5.8)

where we have taken into account the ℓ-th empty gauge node, and the latter are not changed
under Higgs branch Higgsing.

5.2.1 Examples

In this subsection, we consider examples of Higgsing for A3-type rational Q-system, as is shown
in Figure 6 For simplicity, we consider the XXX-type model. All the Dynkin diagrams in Fig-

Figure 6: Higgs branch Higgsing for A3-type rational Q-system. All quivers corre-
spond to the Young tableaux λ= (1,1, 1,1).

ure 6 corresponds to the Young tableaux λ = (1,1, 1,1). We see that from left to right, the
numbers of Bethe roots are reducing. This is due to the different boundary conditions of the
rational Q-systems. The corresponding boundary conditions for the four Dynkin diagrams
Qa,0 = fa(u)Qa(u) are given by

1. For M⃗ = (4, 0,0) and N⃗ = (3,2, 1), we have

f0(u) =
4
∏

j=1

�

u− θ (1)j

�

, f1(u) = 1 , f2(u) = 1 , f3(u) = 1 , (5.9)

and

Q0(u) = 1 , (5.10)

Q1(u) = u3 + c(1)2 u2 + c(1)1 u+ c(1)0 ,

Q2(u) = u2 + c(2)1 u+ c(2)0 ,

Q3(u) = u+ c(3)0 .

The zero remainder conditions have 6 variables.

2. For M⃗ = (2, 1,0) and N⃗ = (2,2, 1), we have

f0(u) =
�

u− θ (1)1

��

u− θ (1)2

��

u− θ (2)1 − i
2

��

u− θ (2)1 + i
2

�

, (5.11)

f1(u) =
�

u− θ (2)1

�

, f2(u) = f3(u) = 1 ,
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and

Q0(u) = 1 , (5.12)

Q1(u) = u2 + c(1)1 u+ c(1)0 ,

Q2(u) = u2 + c(2)1 u+ c(2)0 ,

Q3(u) = u+ c(3)0 .

The zero remainder conditions now have 5 variables, and we have 1 less Bethe root.

3. For M⃗ = (0, 2,0) and N⃗ = (1,2, 1), we have

f0(u) =
�

u− θ (2)1 − i
2

��

u− θ (2)2 − i
2

��

u− θ (2)1 + i
2

��

u− θ (2)2 + i
2

�

, (5.13)

f1(u) =
�

u− θ (2)1

��

u− θ (2)2

�

, f2(u) = f3(u) = 1 ,

and

Q0(u) = 1 , (5.14)

Q1(u) = u+ c(1)0 ,

Q2(u) = u2 + c(2)1 u+ c(2)0 ,

Q3(u) = u+ c(3)0 .

The zero remainder conditions have 4 variables now.

4. For M⃗ = (1, 0,1) and N⃗ = (1,1, 1), we have

f0(u) =
�

u− θ (3)1 − i
��

u− θ (3)1

��

u− θ (3)1 + i
��

u− θ (1)1

�

, (5.15)

f1(u) =
�

u− θ (3)1 − i
2

��

u− θ (3)1 + i
2

�

,

f2(u) =
�

u− θ (3)1

�

, f3(u) = 1 .

and

Q0(u) = 1 , (5.16)

Q1(u) = u+ c(1)0 ,

Q2(u) = u+ c(2)0 ,

Q3(u) = u+ c(3)0 .

The zero remainder condition has 3 variables.

As a comment, the Q-system for a linear quiver is constructed from the partition data ρ,σ
and as such exhibits generic parameters associated to the spin chain (or the 3d theory). In
terms of BAE, the Higgs mechanism is realised by tuning of parameters (5.1) which leads to a
theory after Higgsing with non-generic parameters, see Appendix A.3. However, such a tuning
is not required for Higgsing in the rational Q-system, which explains the difference between
generic and tuned parameters. Nonetheless, the parameter of the Q-system have to be tuned
accordingly if one aims to recover the BAE again.
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5.2.2 A heuristic explanation

To have a better intuition about Higgs branch Higgsing in the spin chain language, let us give
a heuristic explanation using periodic rank-1 XXX spin chain. The Bethe roots enter the spin
chain via the Bethe ansatz. For a length-M spin chain with N magnons whose rapidities are
given by the N Bethe roots, we have inhomogeneities {θa} and Bethe roots {u j}. The BAE
reads

M
∏

a=1

u j − θa +
i
2

u j − θa −
i
2

=
N
∏

k ̸= j

u j − uk + i

u j − uk − i
, j = 1, 2, . . . , N . (5.17)

The Higgs branch Higgsing in the spin chain language corresponds to fixing one of the Bethe
root, say u1, to a value corresponding to one of the inhomogeneities, say θ1. We set

u1 = θ1 −
i
2 . (5.18)

At the same time, to avoid divergences, we need to set another inhomogeneity, say θ2 to be

θ2 = θ1 − i . (5.19)

Making this choice, the BAE for u1 trivializes because it is already fixed. For the rest of the
rapidities u j , j = 2, . . . , N , the BAE becomes

u j − θ1 +
i
2

u j − θ1 −
i
2

u j − θ1 +
3i
2

u j − θ1 +
i
2

M
∏

a=3

u j − θa +
i
2

u j − θa −
i
2

=
u j − θ1 +

3i
2

u j − θ1 +
i
2

N
∏

k ̸=1, j

u j − uk + i

u j − uk − i
. (5.20)

Cancelling common factors from both sides leads to

M
∏

a=3

u j − θa +
i
2

u j − θa −
i
2

=
N
∏

k ̸=1, j

u j − uk + i

u j − uk − i
, (5.21)

which is the BAE of a spin chain of length M − 2 with N − 1 magnons.
Heuristically, the physical picture is as follow. In coordinate Bethe ansatz, Bethe roots are

rapidities of a kind of particles called magnons. Each time a magnon with rapidity u j passes
site-a with inhomogeneity θa, it picks up a phase

ei∆pa(u j) =
u j − θa +

i
2

u j − θa −
i
2

. (5.22)

Making the choice (5.18), (5.19), we have

ei∆p1(u1) = 0 , ei∆p2(u1) =∞ . (5.23)

Effectively, the first and second sites become infinite high barrier and the magnon with rapidity
u1 is trapped between them and can no longer move freely. For magnons with other rapidities,
the combined effect of the choice (5.18), (5.19) is trivial

ei∆p1(u j)ei∆p2(u j)S(u j , u1) =
u j − θ1 +

i
2

u j − θ1 −
i
2

u j − θ1 +
3i
2

u j − θ1 +
i
2

u j − θ1 −
i
2

u j − θ1 +
3i
2

= 1 , (5.24)

where S(u j , u1) is the scattering phase between two magnons with rapidities u j and u1, which
for the XXX chain is given by

S(u j , u1) =
u j − u1 − i

u j − u1 + i
. (5.25)
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5.3 Coulomb branch Higgsing: gauge theory

Besides turning on VEVs for scalar in the hypermultiplet, also vector multiplet scalars can
acquire a non-trivial VEV. The simplest Coulomb branch Higgsing is realised by partial break
U(Ns)→ U(Ns − 1) realised by a VEV to, say, σ(s)Ns

, which is then taken to infinity. In the brane
system, a single D3 brane from the stack of Ns D3s in between the s-th and (s + 1)-th NS5 is
moved off to infinity.

For later purposes, it is necessary to consider a more fundamental Coulomb branch Higgs
transition, displayed in Figure 7. The significance of this transition stems from the fact that
there exist two fundamental Coulomb branch Higgsing transitions for the A-type quiver consid-
ered here. To approach the Coulomb branch deformations, one can follow the minimal Higgs
branch transitions and revert the logic. That means: The signal for minimal Higgs branch
transitions are the presence of flavour nodes (in general non-abelian factors in GH), while the
balance of the gauge nodes is preserved in any Higgs branch transitions. Thus, the “smok-
ing gun” for the possibility of Coulomb branch Higgsing is the presence of balanced gauge
nodes (as these lead to enhance non-abelian factors on GC). After such Higgsing, the bal-
ance is changed; this is in complete analogy to the change of the non-abelian flavour node in
Higgs branch Higgsing. In contrast, during Coulomb branch Higgsing the flavour symmetry is
preserved. Consequently, the minimal Coulomb branch transitions are given by:

1. Dual of aM−1 transition: Recall that in the aM−1 transition, a single gauge node
had a M flavour node attached. In the brane system, this translates to M D5
branes in the same NS5 brane interval, and these D5s have identical linking number
Li = #D3LHS − #D3RHS + #NS5LHS. Upon S-duality, the D5s become NS5s. The NS5
linking number are related to balance of gauge nodes in the mirror theory (see for in-
stance [21, 37]), i.e. Li − Li+1 = e∨i = M∨i + N∨i−1 + N∨i+1 − 2N∨i . Here (M∨i , N∨i ) are
the integers defining the mirror theory. It follows that M consecutive NS5 branes with
identical linking numbers imply M−1 consecutive gauge groups with vanishing balance
e∨i = 0. Hence, the mirror should have a connected set of M − 1 balanced nodes.

Suppose there exists a connected sequence of M − 1 balanced gauge nodes U(Ns) for
s = r, . . . , r +M − 2. Then, the Coulomb branch minimal transition leads to a breaking
U(Ns)→ U(Ns − 1) for all s = r, . . . , r +M − 2, while all other gauge and flavour nodes
are unaffected. As far as the balances are concerned, er and er+M−2 increase by one,
and er−1 and er+M−1 of the connected nodes reduce by one.

2. Dual of Ak transition: recall that the Ak transition appeared between two single flavours
at different gauge nodes. Hence, non-abelian flavour node are not required. Without
loss of generality, the flavours are at node s and r such that r > s and k = r − s + 1.
The two D5 branes differ in their linking numbers as follows: Ls = #NS5LHS(at s),
Lr = #NS5LHS(at r), but #NS5LHS(at r) = #NS5LHS(at s) + r − s + 1. This is because
the D5 in the r-th interval perceives r − s + 1 more NS5 branes to its left-hand side
compared to the D5 in the s-th interval. Upon S-duality, the D5s becomes N5s and their
difference in linking number translates to the balance of the gauge theory living on the
world-volume of the D3s stretched between them. One finds e∨ = Lr− Ls = r−s+1= k.
Therefore, in the mirror, this transition is not associated with balanced nodes, but with
a node of balance k.

Consider a gauge node U(Ns) that is good, but not balanced, i.e. es > 0 and the connected
adjacent nodes also have strictly positive balance ei > 0. Then, a minimal Coulomb
branch transitions is simply a breaking of a U(Ns)→ U(Ns−1), where any s that satisfies
the assumptions. This implies that the balance ei of the connected nodes is reduced by
1, while the balance es of node s is increased by 2.
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Note that neither of the two scenarios can change the partition σ, while the partition ρ related
to the balancing conditions ei is changed.

Returning to the scenario of Figure 7, this Higgsing can be realised in the BAE by the
following procedure: Firstly, for each partially broken gauge group U(N j), a single complex

gauge fugacity, say, x ( j)N j
is selected. These need to be aligned

x (s)Ns
= . . .= x ( j)N j

= . . .= x (r)Nr
≡ χ →∞ , (5.26a)

and send to infinity simultaneously. In addition, the transition is only meaningful if the ε j
parameter of the affected gauge nodes take specific values

εs+1 = −qεs , ε j+1 = ε j , for s < j < r , εr+1 = −qεr . (5.26b)

Upon this tuning of parameters, the BAE for the theory in Figure 7a reduce to the BAE of
the theory in Figure 7b. The detailed analysis is delegated to Appendix A.2. Again, not all
the parameters in the theory after Higgsing are generic due to the tuning (5.26); An explicit
identification is presented in (A.29).

5.4 Coulomb branch Higgsing: Q-system

Now we consider the Coulomb branch Higgsing. After the Coulomb branch Higgsing, the
Dynkin diagram M⃗ = (M1, . . . , Mℓ−1), N⃗ = (N1, . . . , Nℓ−1) becomes M⃗ = (M1, . . . , Mℓ−1),
N⃗ ′ = (N ′1, . . . , N ′

ℓ−1)where the numbers M⃗ do not change. If we choose the path of the Higgsing
along a path from flavor node s to r, the numbers N⃗ ′ become

N ′a =

�

Na − 1 , s ≤ a ≤ r ,
Na , others .

(5.27)

Recalling that

λa = (Na−1 − Na) + (Ma +Ma+1 + . . .+ML−1) , (5.28)

we find that the Young tableaux λ⃗′ = (λ′1, . . . ,λ′
ℓ
) becomes

λ′s = λs + 1 , λ′r+1 = λr+1 − 1 , (5.29)

where λ′a = λa for the rest a. This amounts to moving a box from the r + 1-th row to the s-th
row. The total number of boxes is the same. At the same time, the boundary condition fa(u)
is not changed.

. . .
Ns−1 Ns Ns+1

. . .
Nr Nr+1

. . .

Ms−1 Ms Ms+1 Mr Mr+1

(a) Before Higgsing.

. . .
Ns−1 Ns−1 Ns+1−1

. . .
Nr−1 Nr+1

. . .

Ms−1 Ms Ms+1 Mr Mr+1

(b) After Higgsing.

Figure 7: Coulomb branch Higgsing.
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5.4.1 Examples

Let us now consider examples of the Coulomb branch Higgsing. More concretely, we consider
the examples in Figure 8. We present the rational Q-systems from left to right.

Figure 8: Coulomb branch Higgsing for A3-type rational Q-system.

1. For M⃗ = (4, 0,0) and N⃗ = (3,2, 1), we have

f0(u) =
4
∏

j=1

(u− θ j) , f1(u) = f2(u) = f3(u) = 1 , (5.30)

and

Q0(u) = 1 , (5.31)

Q1(u) = u3 + c(1)2 u2 + c(1)1 u+ c(1)0 ,

Q2(u) = u2 + c(2)1 u+ c(2)0 ,

Q3(u) = u+ c(3)0 .

2. For M⃗ = (4, 0) and N⃗ = (2, 1), we have

f0(u) =
4
∏

j=1

(u− θ j) , f1(u) = f2(u) = 1 , (5.32)

and

Q0(u) = 1 , (5.33)

Q1(u) = u2 + c(1)1 u+ c(1)0 ,

Q2(u) = u+ c(2)0 .

3. For M⃗ = (4) and N⃗ = (2), we have

f0(u) =
4
∏

j=1

(u− θ j) , f1(u) = 1 , (5.34)

33

https://scipost.org
https://scipost.org/SciPostPhys.14.3.034


SciPost Phys. 14, 034 (2023)

and

Q0(u) = 1 , (5.35)

Q1(u) = u2 + c(1)1 u+ c(1)0 .

4. For M⃗ = (4) and N⃗ = (1),

f0(u) =
4
∏

j=1

(u− θ j) , f1(u) = 1 , (5.36)

and

Q0(u) = 1 , (5.37)

Q1(u) = u+ c(1)0 .

We see that from left to right, the total numbers of Bethe roots are reducing, while the number
of boxes are fixed. At the same time, the boundary conditions are not modified.

In analogy to Higgs branch Higgsing of Section 5.2.1, Coulomb branch Higgsing is realised
purely in terms of partition data ρ, σ in the rational Q-system. Thus all appearing parameter
are generic. In contrast, the same Higgsing is realised by the tuning (5.26) in the BAE. This
then leads to non-generic parameters in the Higgsed theory, which are suitably identified as
shown in (A.29). If one aims to deduce the BAE from the rational Q-system, then one does
have to tune parameter suitably.

6 Mirror symmetry

As we have discussed before, there is deep connection between gauge theories and Bethe
ansatz. 3d N = 4 has been crucial in understanding dualities in supersymmetric gauge theo-
ries. Most notably, they provide the first examples of 3D mirror symmetry. The incarnation of
mirror symmetry at the level of Bethe ansatz equation has been discussed in the literature [21]
under the name of bispectral duality. In this section, we discuss the meaning of mirror sym-
metry for rational Q-system. In addition, we give explicit examples for the duality. We shall
see that mirror symmetry is more naturally described in the Q-system language.

Partitions To start with, the origin of the Young tableaux of Q-system might seem a bit mys-
terious from the spin chain point of view. However, it emerges very naturally from quiver
gauge theories. To see this, let us consider quiver gauge theories Tσρ [SU(n)]. These theories
are labelled by two partitions ρ and σ. Both ρ and σ are partitions of the integer n given in
(6.1). The partition ρ (represented by a Young tableaux) is identified with the Young tableaux
of the rational Q-system. The total number of boxes is

n=
ℓ
∑

a=1

ρa =
ℓ−1
∑

a=1

aMa , (6.1)

recall that ρa is given by

ρa = (Na−1 − Na) + (Ma +Ma+1 + . . .+Mℓ−1) . (6.2)
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We have seen in the previous sections that the Young tableaux alone is not sufficient to specify
the theory labelled by M⃗ , N⃗ . We still have the freedom to choose different boundary conditions,
which can be fixed by the other partition σ. Let us denote the transpose of σ by

σT = (σ̂1, σ̂2, . . . , σ̂ℓ) . (6.3)

The elements σ̂ j are related to M⃗ by

M j = σ̂ j − σ̂ j+1 . (6.4)

With the additional constraint

ℓ
∑

j=1

σ̂ j = n=
ℓ−1
∑

a=1

aMa , (6.5)

we find that

σ̂a = Ma +Ma+1 + . . .+Mℓ−1 , a = 1, . . . ,ℓ− 1 , (6.6)

σ̂ℓ = 0 .

The partition σT is related to the boundary conditions fa(u) by

σ̂a = deg( fa−1)− deg( fa) , deg( fℓ) = 0 . (6.7)

Together with ρ, we see that the correspondence between M⃗ , N⃗ and ρ,σ is one-to-one.

Brane construction Recall from Section 4.1, the brane realisation of Tσρ [SU(n)] is given by
n D3 branes suspended between ℓ NS5 and ℓ′ D5 branes. The parts of ρ are the net number of
D3s ending in the NS5 branes going from the interior to exterior; likewise, the parts of σ are
the net number of D3s ending on D5 branes going from interior to exterior. As demonstrated
in [37], mirror symmetry for 3d N = 4 quiver gauge theories is realised in the brane system
by a combination of S-duality transformation and space-time rotation. The S-transformation
exchanges D5s with NS5s, F1s with D1s, while D3 branes are invariant. Thus, S-duality acting
on the brane configuration for Tσρ [SU(n)] produces the brane configuration for Tρσ [SU(n)].
By a series of standard brane moves, one transitions the brane system into a phase resembling
that of Figure 4.

The brane system gives clear explanations for the mapping of parameters. Coulomb branch
moduli, captured by D3s suspended between NS5 branes, are mapped to Higgs branch degrees
of freedom, represented by D3s suspended between D5 branes, and vice versa. Likewise, D5
brane positions transverse to D3 and NS5 branes give rise to mass parameters, which are
mapped to NS5 brane positions transverse to D3 and D5 branes defining FI parameters.

Mirror symmetry Mirror symmetry states that the following two theories are the same

Tσρ [SU(n)] ←→ Tρσ [SU(n)] . (6.8)

At the level of Bethe ansatz, mirror symmetry can be seen in different ways

• There is a one-to-one correspondence of the solutions of the two sets of seemingly quite
different sets of BAE;

• The handle-gluing operator, evaluated at the dual solutions yield the same result.
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• The Higgs branch Higgsing in one theory corresponds to the Coulomb branch Higgsing
in the mirror symmetry.

To make such identifications, we also need to identify the corresponding parameters including
inhomogeneities and twists.

In the gauge theory setup, mirror symmetry relates parameters as follows: let yi be the
mass and εa the FI parameter of Tσρ [SU(n)], and denote by q the N = 2∗ deformation param-

eter. Likewise y∨a and ε∨i are the mass and FI parameter of Tρσ [SU(n)], and the SUSY breaking
parameter q∨. Then the mirror map is simply

yi ↔ ε∨i , εa↔ y∨a , q↔
1
q∨

, (6.9)

i.e. FI and mass parameters are exchange, while the N = 2∗ parameter is inverted.
The map (6.9) can be understood as follows: as in Section 4.1, the x3,4,5 position of the i-th

D5 brane is encoded in yi , while the x7,8,9 position of the a-th NS5 brane relates to εa. Upon
S-duality and a combined space-time rotation [37], the D5 and NS5 branes are exchanged.
Consequently, the positions y∨a (or ε∨i ) of the D5 (or NS5) branes in the mirror configuration
are the εa (or yi). Moreover, the choice of origin along x3,4,5 and x7,8,9 removes one overall
moduli for each direction. Recalling Section 4.1 once more, the triplet of FI parameters in
gauge theory are set by the relative x7,8,9 positions of the NS5 branes. The mirror map for q
follows from the definition of the N = 4→N = 2∗ breaking mass parameter. The associated
U(1)η global symmetry is generated by the Cartan generators j3H− j3C of the N = 4 R-symmetry
SU(2)H × SU(2)C . Since mirror-symmetry includes the mirror automorphism of the N = 4
algebra, SU(2)C ,H are exchanged. This leads to a sign flip of the real U(1)η mass term in the
mirror, which translates to q↔ 1

q∨ .

6.1 Explicit examples

Suppose two theories are mirror dual to each other, then partition functions and supersym-
metric indices of these two theories need to agree upon using the mirror map between the
parameters. Thus, starting from topologically twisted indices written as sum over Bethe vacua,
there is also a one-to-one correspondence between Bethe roots of two utterly different set of
Bethe ansatz equations.

Example 1 Consider SQED with N f = 3 and its mirror U(1)×U(1) quiver gauge theory.

1

x

η2
η1

3
y1, y2, y3

↔
1

x(1)
ϵ2
ϵ1

1

x(2)
ϵ3
ϵ2

1
z1

1
z2

. (6.10)

The N = 2∗ parameter is denoted by q for the SQED theory and by p for the mirror quiver.
Suppose one solves the BAE for the quiver theory with εi = 1, such that the mass parame-

ters relate to the physical mass via z1 =
p

z, z2 = 1/
p

z. One finds

Squiver
BE =

�

§

x (1)→ 6pz
x (2)→ 1

6pz

ª

,

�

x (1)→− 3p−1 6pz

x (2)→ (−1)2/3
6pz

�

,

�

x (1)→(−1)2/3 6pz

x (2)→−
3p−1
6pz

��

. (6.11)

36

https://scipost.org
https://scipost.org/SciPostPhys.14.3.034


SciPost Phys. 14, 034 (2023)

Likewise, solving the BAE for the SQED theory with yi = 1 yields

SSQED
BE =

§

¦

x→
3pϵq−1
3pϵ−q

©

,
n

x→
2ϵ2/3q+ 3pϵ((1−i

p
3)q2+i

p
3+1)+2q

2(ϵ2/3+ 3pϵq+t2)

o

, (6.12)
n

x→
2ϵ2/3q+ 3pϵ((1+i

p
3)q2−i

p
3+1)+2q

2(ϵ2/3+ 3pϵq+q2)

o

ª

,

where the FI parameter is denoted with ϵ, i.e. η2 =
p
ϵ, η1 =

1p
ϵ
.

Now, one can identify the mirror pairs of corresponding Bethe roots by evaluating the A or
B-twist handle-gluing operator HA/B. For the A-twist of the quiver theory, one computes

1

Hquiver
A (x 1)

=
p2
�

3pz − p
�2 �

p 3pz − 1
�2

3 (p2 − 1)4 z2/3
, (6.13a)

1

Hquiver
A (x 2)

=
1

3 (p2 − 1)4 z2/3
�

−p+ 3p−1pz2/3 + (−1)2/3 (p2 + 1) 3pz
� · (6.13b)

p2
�

− (−1)2/3p3 − 3
�

p5 + 3p3 + p
�

z2/3 + 3
3p−1p

�

p4 + 3p2 + 1
�

z4/3

+ 3
�

p4 + p2
�

z5/3 − (−1)2/3p3z2 − 3
3p−1p2

�

p2 + 1
�

3pz

+ (−1)2/3
�

p6 + 9p4 + 9p2 + 1
�

z
�

,

1

Hquiver
A (x 3)

= −
1

3 (p2 − 1)4 z2/3
�

− 3p−1p+ pz2/3 − (−1)2/3 (p2 + 1) 3pz
� · (6.13c)

p2
�

− (−1)2/3p3 − 3
3p−1p2

�

p2 + 1
�

z5/3 − 3
�

p5 + 3p3 + p
�

z4/3

+ 3
3p−1p

�

p4 + 3p2 + 1
�

z2/3 − (−1)2/3p3z2 + 3
�

p4 + p2
�

3pz

+ (−1)2/3
�

p6 + 9p4 + 9p2 + 1
�

z
�

,

while the B-twist in SQED yields

1

HSQED
B (x 1)

=
q2
�

3pϵ − q
�2 � 3pϵq− 1

�2

3ϵ2/3 (q2 − 1)4
, (6.14a)

1

HSQED
B (x 2)

=
−1

�

−12iϵ2/3q2 +
�p

3+ i
�

ϵ4/3 − 4
�p

3+ i
�

3pϵq3 + 4
�p

3− i
�

ϵq−
�p

3− i
�

q4
�

·
q2
�

ϵ2/3 + 3pϵq+ q2
�2

3ϵ2/3 (q2 − 1)4
·
�

2iϵ4/3q2 + ϵ2/3
��p

3− i
�

q4 + 8iq2 − i −
p

3
�

(6.14b)

+ 2 3p
ϵq
��p

3+ i
�

q2 + i −
p

3
�

+ 2ϵq
��p

3+ i
�

q2 + i −
p

3
�

+ 2iq2
�

,

1

HSQED
B (x 3)

=
1

�

12iϵ2/3q2 +
�p

3− i
�

ϵ4/3 − 4
�p

3− i
�

3pϵq3 + 4
�p

3+ i
�

ϵq−
�p

3+ i
�

q4
�

·
q2
�

ϵ2/3 + 3pϵq+ q2
�2

3ϵ2/3 (q2 − 1)4
·
�

2iϵ4/3q2 + ϵ2/3
�

−
�p

3+ i
�

q4 + 8iq2 − i +
p

3
�

(6.14c)

+ 2 3p
ϵq
�

−
�p

3− i
�

q2 + i +
p

3
�

+ 2ϵq
�

−
�p

3− i
�

q2 + i +
p

3
�

+ 2iq2
�

.
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Next, one compares the expression using the mirror map of the parameters. This results in

1

Hquiver
A (x a)

=
1

HSQED
B (x a)

�

�

�

�ϵ→z
q→ 1

p

, ∀a = 1, 2,3 , (6.15)

∑

a

1

Hquiver
A (x a)

= p2 1+ 4p2 + p4

(1− p2)4
=
∑

a

1

HSQED
B (x a)

�

�

�

�ϵ→z
q→ 1

p

= q2 1+ 4q2 + q4

(1− q2)4

�

�

�

�

q→ 1
p

, (6.16)

and therefore, the Bethe roots are in one-to-one correspondence. Also, the genus-0 index
(6.16) agrees precisely with the known Coulomb/Higgs branch Hilbert series [60,61].

For completeness, one evaluates the B-twist for the quiver theory

1

Hquiver
B (x 1)

= −
p 3pz

3
�

3pz − p
� �

p 3pz − 1
� , (6.17a)

1

Hquiver
B (x 2)

= −
p 3pz

3
�

− 3p−1p+ (−1)2/3pz2/3 − p2 3pz − 3pz
� , (6.17b)

1

Hquiver
B (x 3)

=
p 3pz

3
�

−(−1)2/3p+ 3p−1pz2/3 + p2 3pz + 3pz
� , (6.17c)

as well as the A-twist of the SQED theory

1

HSQED
A (x 1)

= −
3pϵq

3
�

3pϵ − q
� �

3pϵq− 1
� , (6.18a)

1

HSQED
A (x 2)

=
4ϵ2/3q2 +

�

1− i
p

3
�

3pϵq3 + ϵ
�

q+ i
p

3q
�

3
�

ϵ2/3 + 3pϵq+ q2
� �

2ϵ2/3q+ 3pϵ
��

1− i
p

3
�

q2 + i
p

3+ 1
�

+ 2q
� , (6.18b)

1

HSQED
A (x 3)

=
4ϵ2/3q2 +

�

1+ i
p

3
�

3pϵq3 + ϵ
�

q− i
p

3q
�

3
�

ϵ2/3 + 3pϵq+ q2
� �

2ϵ2/3q+ 3pϵ
��

1+ i
p

3
�

q2 − i
p

3+ 1
�

+ 2q
� . (6.18c)

Again, explicitly comparing the expressions using the mirror map yields

(Hquiver
B )−1(x a) = (H

SQED
A )−1(x a)

�

�

�

�ϵ→z
q→ 1

p

, ∀a = 1,2, 3 , (6.19)

∑

a

(Hquiver
B )−1(x a) =

p
�

1− p6
�

(1− p2)
�

1− p3

z

�

(1− p3z)
(6.20)

=
∑

a

(HSQED
A )−1(x a)

�

�

�

�ϵ→z
q→ 1

p

=
q
�

1− q6
�

(1− q2)
�

1− q3

ϵ

�

(1− ϵq3)

�

�

�

�

q→ 1
p

,

which confirms the one-to-one correspondence. Again, the computed genus-0 index (6.20)
agrees with known Hilbert series [60,61].

Example 2. Consider U(2) SQCD with 4 fundamentals and its mirror quiver.

2

x1,2

η2
η1

N
y1, . . . , y4

↔
1

x(1)
ϵ2
ϵ1

2

x
(2)
1,2

ϵ3
ϵ2

1

x(3)
ϵ4
ϵ3

2
z1, z2

, (6.21)
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and the N = 2∗ parameter for SQCD is denoted with q, while it is called p in the mirror quiver.
Due to the complexity of BAE, one needs to specify the fugacities. The parameter of the mirror
quiver are chosen as

§

ε1→ 2,ε2→ 3,ε3→ 5,ε4→ 7, p→
1
29

, z1→
1
11

, z2→ 13
ª

, (6.22)

and the corresponding mirror parameter in the SQCD theory are obtained via

yi ↔ εi , for i = 1, . . . , 4 , ηa↔ z3−a , for a = 1, 2 , q↔
1
p

. (6.23)

For the quiver theory one finds the Bethe roots as displayed in Table 7, while the Bethe roots
for SQCD are summarised in Table 8. By evaluating the valued of H−1

A/B one can establish a
one-to-one correspondence between the Bethe roots in the two theories.

Table 7: Bethe roots and value of A/B-twisted handle-glue operator for quiver gauge
theory (6.21) mirror to U(2) SQCD.

x (1) x (2)1 x (2)1 x (3)

x 1 0.29214 −13.264 −0.014713 0.31343
x 2 −0.30412 12.872 0.016048 −0.32564
x 3 −0.56070 0.27390+ 0.63429i 0.27390− 0.63429i −0.58099
x 4 0.58302 0.35993+ 0.61120i 0.35993− 0.61120i 0.60279
x 5 0.00158+ 0.57019i 0.84342+ 0.00011i −0.57878+ 0.00019i 0.00124− 0.59025i
x 6 0.00158− 0.57019i 0.84342− 0.00011i −0.57878− 0.00019i 0.00124+ 0.59025i

(a) Bethe roots.

H−1
A H−1

B

x 1 3.7916 · 10−7 2.9932 · 10−7

x 2 3.4321 · 10−7 4.0216 · 10−7

x 3 2.1491 · 10−10 1.7344 · 10−4

x 4 1.3796 · 10−10 1.8503 · 10−4

x 5 1.7649 · 10−10 1.7909 · 10−4 − 7.5453 · 10−9i
x 6 1.7649 · 10−10 1.7909 · 10−4 + 7.5453 · 10−9i

(b) HA/B evaluate on Bethe roots.

Table 8: Bethe roots and value of the A/B-twisted handle-glue operator for the U(2)
SQCD theory (6.21) with 4 fundamentals.

x1 x2 H−1
A H−1

B

0.31175− 1.08299i 0.31175+ 1.08299i 2.9932 · 10−7 3.7916 · 10−7

1.3780 −0.83561 4.0216 · 10−7 3.4321 · 10−7

9.2615 0.00969 1.7344 · 10−4 2.1491 · 10−10

−9.2651 −0.00854 1.8503 · 10−4 1.3796 · 10−10

0.2917+ 9.1954i −0.00029+ 0.00914i 1.7909 · 10−4 − 7.5453 · 10−9i 1.7649 · 10−10

0.2917− 9.1954i −0.00029− 0.00914i 1.7909 · 10−4 + 7.5453 · 10−9i 1.7649 · 10−10

6.2 Higgsing and mirror symmetry

One incarnation of mirror symmetry is the exchange of Higgs and Coulomb branch in two
mirror dual theories. As such, one needs to verify that the minimal Higgs branch transitions
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in T are properly mapped to the minimal Coulomb branch transitions in T ∨. As both type of
transitions have been detailed in terms of BAE, one verifies that the prescriptions are mapped
into each other, see also [21].

aM−1 transition. To begin with, consider a aM−1 Higgs branch transition of T on a gauge
node U(N) with M ≥ 2 fundamental flavours. Denote the two adjusted flavour masses as y1,M
such that (5.1) implies

y1 = yM q2 . (6.24)

In the mirror T ∨, there has to exist a connected sub-graph of M − 1 balanced gauge nodes.
Denote the ε-parameter by ε1, . . . ,εM such that (5.26) implies

ε1 = εM q2 . (6.25)

These transitions are mirror dual to each other, provided the parameters are mapped as fol-
lows:

q→ q−1 , y1↔ εM , yM ↔ ε1 . (6.26)

Ak transition. Thereafter, consider a Ak Higgs branch transition of T between a chain of
gauge node U(N j) with s ≤ j ≤ r such that all M j = 0 for s < j < r and Ms,r = 1. For

k = r − s + 1 > 1, the two adjusted flavour masses, say y1 ≡ y(s)1 and y2 ≡ y(r)1 satisfy (5.1),
i.e.

y1 = y2qk+2 . (6.27)

In the mirror T ∨, there has to exist an unbalanced gauge nodes U(N) with balance e = k.
Denote the ε-parameter by ε1,2 such that (A.35) implies

ε1 = ε2qe+2 . (6.28)

This is consistent, provided the mirror map is

q→ q−1 , y1↔ ε2 , y2↔ ε1 . (6.29)

6.3 Mirror symmetry and quiver subtraction

After discussing the minimal Higgs and Coulomb branch transitions, we have the following
observation: It is known that the minimal Higgs branch transitions aM−1 and Ak can be realised
on the level of the quiver by quiver subtraction [64]. Given that we understand also the mirror
dual configurations, it follows that we can propose the quiver subtraction for Coulomb branch
Higgsing building on the discussion in Section 5.3.

Consider the aM−1 transition in Figure 9a. The Higgs branch subtraction is realised by
subtracting SQED with M flavours. The Higgs branch thereof is the closure of the minimal
nilpotent orbit of su(M − 1); hence, the name aM−1. After subtracting the rank of the gauge
nodes, one needs to preserve the original balance by adjusting the flavour nodes. The result is
precisely the quiver theory we read off from the corresponding partial Higgsing in the brane
system. Consider the mirror configuration in Figure 9b. From the brane system we know that a
non-abelian U(M) flavour node leads in the S-dual to M consecutive NS5 brane with identical
linking numbers. In other words, there are M − 1 consecutive gauge nodes with vanishing
balance e∨i = 0. We propose that the Coulomb branch subtraction is then realised subtracting
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. . .
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M
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Nl N−1 Nr

. . .
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(a)

. . .
N∨s−1 N∨s N∨s+1

. . .
N∨r−1 N∨r N∨r+1

. . .

e∨
s−1 > 0 e∨s = 0 e∨

s+1 = 0 e∨
r−1 = 0 e∨r = 0 e∨

r+1 > 0

M∨
s−1 M∨

s
M∨

s+1 M∨
r−1 M∨

r
M∨

r+1

1 1

. . .
1 1

−
r − s + 1 =M − 1 nodes

. . .
N∨s−1 N∨s −1 N∨s+1−1
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Nr−1−1 N∨r −1 N∨r+1
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s−1 − 1 e∨s + 1 e∨

s+1 = 0 e∨
r−1 = 0 e∨r + 1 e∨

r+1 − 1

=

(b)

Figure 9: a: The aM−1 transition on the Higgs branch is realised by subtracting the
quiver of U(1) SQED with M flavours and adjusting the flavour nodes such that the
balance ei is preserved. b: In the mirror, the exists a sequence of M−1 balance nodes
and the Coulomb branch transition is realised by subtracting a finite AM−1 Dynkin
diagram.

a finite AM−1 Dynkin quiver. While the balance is not preserved in Coulomb branch Higgsing,
the flavour groups are. Thus, we do obtain the correct quiver after the transition.

Consider the Ak transition in Figure 10a. The Higgs branch quiver subtraction is realised
by the U(1)k quiver gauge theory whose Higgs branch is the Kleinian / du-Val singularity C2/

Zk; hence, the name Ak. After reducing the gauge ranks appropriately and “rebalancing” to
preserve the ei , one obtains the correct quiver. Giving that the two relevant D5 flavour branes
are separated by k NS5 branes, on the mirror side, there exists a gauge node with balance
e = k, see Figure 10b. This node is surrounded by node of positive balance. We propose that
the Coulomb branch subtraction is simply realised by subtracting a U(1) node. Since balance
does not need to be preserved, this subtraction immediately generates the correct quiver.

One notes that this subtraction is different from the know algorithm [63–65], wherein the
subtracted diagrams are of affine Dynkin type. The Coulomb branch quiver subtraction is sig-
nificant for the magnetic quiver programme, see [66–71] and later works. For example, given
a 3d N = 4 A-type quiver theory T and suppose one knows the mirror T ∨. One might ask:
what is the mirror after a minimal Higgs branch transition X : T → T ′? Using the correspond-
ing Coulomb branch quiver subtraction for X , one straightforwardly obtains X : T ∨ →

�

T ′
�∨

such that
�

T ′
�∨

is the 3d mirror of T ′. The significance of Coulomb branch quiver subtrac-
tion is that the same logic applies to magnetic quivers6: given a higher-dimensional theory (8
supercharges) with known magnetic quiver, one is interested in the magnetic quiver after a
partial Higgs mechanism. Applying Coulomb branch quiver subtraction (and suitable future
generalisations [72]) allows to answer this.

An immediate corollary of this discussion is the following: 3d N = 4 Sp(k) SQCD with

6M.S. thanks Antoine Bourget and Zhenghao Zhong for discussion and collaboration on related projects.
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Figure 10: a: The Ak transition on the Higgs branch is realised by subtracting the
quiver of [1] − (1) − . . . − (1) − [1] with k U(1) gauge factors and adjusting the
flavour nodes such that the balance ei is preserved. b: In the mirror, the exists a
node with balance e∨ = k surrounded by node with strictly positive balance. The
Coulomb branch transition is realised by subtracting a finite A1 Dynkin diagram.

N fundamentals admits a unitary D-type Dynkin quiver as mirror dual theory. The partial
Higgs branch Higgsing of Sp(k) SQCD with N fundamentals to Sp(k − 1) SQCD with N − 2
fundamentals is known as dN transition. By the same reasoning as above, we find that the
corresponding Coulomb branch Higgsing on the D-type mirror quiver is realised by subtracting
a finite DN Dynkin quiver, wherein the gauge ranks are precisely the Coxeter labels.

7 Comments on open spin chains and orthosymplectic quivers

The setup considered so far can be naturally generalised by inclusion of O3 orientifold planes
in the Type IIB brane systems. The O3 planes are parallel to the D3 branes and the low-
energy world-volume theory is modified into a linear quiver gauge theory with alternating
orthogonal and symplectic gauge nodes. In short, this is referred to as orthosymplectic quiver.
The Bethe/Gauge correspondence relates such 3d N = 4 theories to open spin chains [19]. In
this Section, the formulation in terms of the Q-system is briefly discussed.

7.1 Brane system and 3d theory

The inclusion of an O3 plane comes with different choices, as there are four types of orientifold
planes. Analogous to above, consider a stack of n D3 brane parallel to an O3 plane, ending on
a system of half D5 branes and half NS5 branes [26,73]. Two partitions σ, ρ determine how
the D3 branes end on the half D5 and half NS5 branes respectively. The brane setup gives rise
to the 3d N = 4 superconformal field theories Tσρ [G] that are the IR fixed points of the D3
world-volume theories. Table 9 summarises the choice of orientifold, which determines G and
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the two partitions. By construction, mirror symmetry is realised by

Tσρ [G] ←→ Tρσ [G
∨] , (7.1)

where G∨ is the GNO-dual group of G [74].
In contrast to the linear unitary quivers, the IR global symmetry GH × GC is only partially

visible in the UV description. The Cartan elements of GH are still realised by explicit mass
parameters in the orthosymplectic quiver. However, the Coulomb branch global symmetry
is not manifest in the UV, simply because SO(n) and Sp(k) gauge theories do not admit FI-
parameter.

To be more precise, for G other than SU(n), there exist many Tσρ [G] theories that are bad in
the sense of [26] and the notion of mirror symmetry is more subtle. To illustrate, the Coulomb
branch C(Tσρ [G])∼=OσdBV ∩Sρ. Here Sρ denotes the transverse slice to Oρ, a nilpotent orbit of

G∨. Then the map dBV needs to map the G-partition σ to a special partition σdBV of G∨. Such
a map is known for classical G as Barbasch-Vogan map [75], which reduces to the Lusztig-
Spaltenstein map for GNO self-dual G. This map is, however, only one-to-one on the set of
special partitions. For definiteness, (7.1) should be restricted onto the set of special partitions.
Of course, for G = SU(n), all partitions are special.

7.2 Q-system

The Bethe/Gauge correspondence for SO(n) and Sp(k) gauge theories have been investigated
in [25]. It has been shown that the vacuum equations of these theories correspond to BAEs
of integrable open spin chains with diagonal boundary conditions. Such BAEs can also been
recast in terms of the rational Q-system. This was first done for a special case for the XXZ spin
chain in [15], later it was generalized to the situation with more general diagonal boundary
conditions in [16].

The rational Q-systems for open chain have a number of new features. First, the QQ-
relation is modified; second, the boundary conditions are such that the Q-functions at the left
boundary are even functions of the spectral parameter, namely Qa,0(−u) = Qa,0(u). In addi-
tion, it was shown in [16] that the corresponding Q-system is not unique. These observations
were made by investigating rank 1 open spin chains, namely the integrable open XXX and XXZ
spin chains. We expect that these features hold for higher rank models in general.

8 Conclusions

In this paper, we constructed the rational Q-system for generic BAE described by an Aℓ−1 quiver
and revisit the Bethe/Gauge correspondence from the rational Q-system point of view. We
obtained a number of new results in this study.

For integrable models, the rational Q-systems for Aℓ−1 BAE have been constructed for mod-
els with one momentum carrying node first for the XXX model in [13] and then for the XXZ
model in [17]. Building on these works, we took one further step and generalized the frame-
work to cases with multiple momentum carrying nodes and generic twists. Such a generaliza-
tion is helpful for applications in integrability in AdS/CFT. For example, the scalar sector of
ABJM theory is described by a BAE with two momentum carrying nodes [35,76], the rational
Q-system is expected to be more efficient to solve than the BAE. The generalization to multiple
momentum carrying nodes is also necessary for applications in Bethe/Gauge correspondence
where these type of BAE emerge naturally from quiver gauge theories.

For 3d N = 4 quiver gauge theories, most of the content we discussed in the paper are
known in the literature. We clarified that generic Higgs/Coulomb branch Higgs transitions
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Table 9: The Tσρ [G] theories are defined by a G-partition σ and a G∨-partition ρ,
with G∨ the GNO-dual group of G.

O3 theory σ partition ρ partition

O3− Tσρ [SO(2n)] SO(2n) partition SO(2n) partition
ÝO3
−

Tσρ [SO(2n+ 1)] SO(2n+ 1) partition Sp(n) partition

O3+ Tσρ [Sp(n)] Sp(n) partition SO(2n+ 1) partition
ÝO3
+

Tσρ [Sp′(n)] Sp(n) partition Sp(n) partition

are composed of elementary Kraft-Procesi transitions, for which we demonstrate the suitable
reduction on the level of the BAE and verified mirror symmetry. As a corollary, we formalised
Coulomb branch Higgsing in terms of quiver subtraction using finite A-type Dynkin quivers.
These preliminaries enabled us to naturally transfer the minimal partial Higgs mechanisms
into the rational Q-system language. As a proof of concept, we evaluated topologically twisted
indices via BAE and rational Q-system for selected examples. The rational Q-system outper-
forms solving BAE. In this work, we demonstrated this feature for numerical calculations of
U(n) SQCD with n = 1, . . . , 5 and confirmed the validity of the results by comparing genus-0
twisted indices to known Hilbert series.

Probably the most important message of the current work is that rational Q-system, which
is not yet well appreciated beyond integrability community, provides a natural language for
the Bethe/Gauge correspondence. The first evidence is that the rational Q-system is naturally
specified by two partitions, which can be identified nicely with the two partitions of Tσρ [SU(n)].
Moreover, the correspondence of Higgsings on both branches are realized in a more transpar-
ent way in the rational Q-system than the original BAE. Finally, mirror symmetry is realized
in an extremely neat way by simply swapping the role of the two partitions of the Q-system,
which specify the Young tableaux and boundary conditions. It might be possible that the Q-
functions on the Young tableaux have more direct physical meanings in terms of quiver gauge
theories.

There are several directions to pursue based on the current work. The original motivation
for developing rational Q-system for the more general Aℓ−1 is to combine the efficiency of the
Q-system and computational algebraic geometrical methods to compute physical quantities
like the topologically twisted indices analytically. Such a strategy has already been applied
in the computation of various non-trivial quantities such as partition functions of 6-vertex
models [7, 9, 11] and Loschmidt echo of the integrable quantum spin chains [10]. However,
these applications only involve A1 model. Rational Q-systems of higher rank Aℓ−1 are more
complicated to handle. To further improve the efficiency, we need to exploit various techniques
and tricks. We will report these results in a separated publication.

It would be interesting to generalize the rational Q-systems even further. One immedi-
ate task is considering the cases of generic Aℓ−1 open chains, building on the comments and
observations given in Section 7. An even more general case is considering higher spin repre-
sentations.

Mirror symmetry is a highly non-trivial and intriguing statement from the spin chain point
of view. It states that two seemingly very different BAEs/Q-systems are dual to each other
and have the same number of solutions. It would be interesting to further understand the
bispectral dualities and find potential applications in statistical mechanics and/or condensed
matter physics.
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A Higgsing in BAE

A.1 Higgs branch

For completeness, the reduction of the BAE (4.19) under Higgs branch Higgsing is sketched.
Consider the transition detailed in Figure 5 and recall that the parameter choice (5.1) becomes

y(s)a = x (s)Ns
· q , x (s)Ns

= x (s+1)
Ns+1

· q , . . . , x (r−1)
Nr−1

= x (r)Nr
· q , x (r)Nr

= y(r)b · q , (A.1)

in terms of the complex fugacities (4.8), (4.9).

Node s. To begin with, consider the a ̸= Ns BAE (4.19). The terms affected by (5.1) are:

P(s)a ⊃
x (s)a q− x (s)Ns

q−1

x (s)Ns
q− x (s)a q−1

·
x (s)a − y(s)Ms

q

y(s)Ms
− x (s)a q

·
x (s)a − x (s+1)

Ns+1
q

x (s+1)
Ns+1

− x (s)a q

�

�

�

(A.1)
= (−1)3 , (A.2)

and the sign prefactor changes as

δs = δ
′
s + 3 ⇒ (−1)δs = (−1) · (−1)δ

′
s , (A.3)

such that the appearing sign factors cancel. As a consequence, the remainder of P(s)a reduces
to the BAE for U(Ns − 1) with the matter content as in Figure 5c.

Next, consider the a = Ns BAE, the terms affected by (5.1) are:

P(s)Ns
⊃

Ns−1
∏

d=1

x (s)Ns
q− x (s)d q−1

x (s)d q− x (s)Ns
q−1
·

Ms
∏

i=1

x (s)Ns
− y(s)i q

y(s)i − x (s)Ns
q
·

Ns+1
∏

c=1

x (s)Ns
− x (s+1)

c q

x (s+1)
c − x (s)Ns

q
, (A.4)

which implies that this BAE becomes trivial once it is written as polynomial equation. To see
this note that y(s)i − x (s)Ns

t = 0 for i = Ms and x (s)Ns
− x (s+1)

c t for c = Ns+1 = 0 due to (A.1); hence,
both sides of the polynomial BAE are trivial.

Node j, s < j < r. For a U(N j) node with s ≤ j ≤ r, the argument is exactly the same.

Node s−1. Next, consider the node U(Ns−1) and verify that the additional flavour is accom-
modated.

P(s−1)
a = (−1)δs−1

εs

εs−1

Ns−1
∏

d=1
d ̸=a

x (s−1)
a q− x (s−1)

d q−1

x (s−1)
d q− x (s−1)

a q−1
·

Ms−1
∏

i=1

x (s−1)
a − y(s−1)

i q

y(s−1)
i − x (s−1)

a q
(A.5)

·
Ns−2
∏

b=1

x (s−1)
a − x (s−2)

b q

x (s−2)
b − x (s−1)

a q
·

Ns−1
∏

c=1

x (s−1)
a − x (s)c q

x (s)c − x (s−1)
a q

·
x (s−1)

a − x (s)Ns
q

x (s)Ns
− x (s−1)

a q
,
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and the sign factor remains invariant

δs−1 = δ
′
s−1 . (A.6)

Therefore, the flavour contribution for the (s − 1)-th gauge node U(Ns−1) Figure 5c are iden-
tified with

P̃(s−1)
a ⊃

Ms−1
∏

i=1

x (s−1)
a − y(s−1)

i q

y(s−1)
i − x (s−1)

a q
·

x (s−1)
a − x (s)Ns

q

x (s)Ns
− x (s−1)

a q
≡

Ms−1+1
∏

i=1

x (s−1)
a − ỹ(s−1)

i q

ỹ(s−1)
i − x (s−1)

a q
. (A.7)

Using y(s)a = x (s)Ns
q, the additional flavour is given by

¦

ỹ(s−1)
i

©Ms−1+1

i=1
=
n
¦

y(s−1)
i

©Ms−1

i=1
, y(s)a q−1

o

. (A.8)

Node r +1. Similarly, the additional flavour in the (r +1)-th gauge node U(Nr+1) should be
identified as coming from x (r)Nr

. More precisely, the flavour parameter after Higgsing are given
by

¦

ỹ(r+1)
j

©Mr+1+1

j=1
=
n
¦

y(r+1)
j

©Mr+1

j=1
, y(r)b q

o

, (A.9)

using x (r)Nr
= y(r)b q, see (A.1).

A.2 Coulomb branch

Without loss of generality, one may consider an A-type quiver with a balanced Ar−s+1 subgraph
(and r ≥ s), as in Figure 7a. This means that the nodes N j for j ∈ {s, s+1, . . . , r} are balanced,
i.e.

e j = N j−1 + N j+1 +M j − 2N j = 0 , for all j ∈ {s, s+ 1, . . . , r} . (A.10)

After turning on a Coulomb branch VEV, all the balanced node are partially broken
U(N j) → U(N j − 1) for j ∈ {s, s + 1, . . . , r} and the resulting theory is shown in Figure 7b.
On the level of BAE, the Higgsing can be realised as follows: for each affected gauge node,
selected a single complex fugacity, say, x ( j)N j

. Firstly, these need to be aligned and, secondly, a
limit is required

x (s)Ns
= . . .= x ( j)N j

= . . .= x (r)Nr
≡ χ →∞ . (A.11)

It is instructive to examine the behaviour of different nodes.

Node s − 1. The first node that is indirectly affected is s − 1, and in the limit χ →∞, the
relevant terms in (4.19) are

lim
x (s)Ns
=χ→∞

x (s−1)
a − x (s)Ns

q

x (s)Ns
− x (s−1)

a q
= −q . (A.12)

In addition, the sign prefactor can be recast as

δs−1 = δ
′
s−1 + 1 ⇒ (−1)δs−1 = (−1) · (−1)δ

′
s−1 . (A.13)
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Consequently, the BAE for this node become

P(s−1)
a → q(−1)δ

′
s−1
εs

εs−1

Ns−1
∏

d=1
d ̸=a

x (s−1)
a q− x (s−1)

d q−1

x (s−1)
d q− x (s−1)

a q−1
·

Ms−1
∏

i=1

x (s−1)
a − y(s−1)

i q

y(s−1)
i − x (s−1)

a q
(A.14)

·
Ns−2
∏

b=1

x (s−1)
a − x (s−2)

b q

x (s−2)
b − x (s−1)

a q
·

Ns−1
∏

c=1

x (s−1)
a − x (s)c q

x (s)c − x (s−1)
a q

,

which is the BAE for the (s − 1)-st node of the theory after Higgsing (with δ′s−1), up to the
choice of FI (see below).

Node s. Next, consider the left-most node that experience partial breaking. In the limit
χ →∞, the relevant terms in the a ̸= Ns BAE (4.19) of node s are

lim
x (s+1)

Ns+1
=χ→∞

x (s)a − x (s+1)
Ns+1

q

x (s+1)
Ns+1

− x (s)a q
= −q , (A.15)

lim
x (s)Ns
=χ→∞

x (s)a q− x (s)Ns
q−1

x (s)Ns
q− x (s)a q−1

=
−1
q2

, (A.16)

and the sign prefactor behaves as

δs = δ
′
s + 2 ⇒ (−1)δs = (−1)δ

′
s . (A.17)

Hence, one arrives at

P(s)a ̸=Ns
→

1
q
(−1)δ

′
s
εs+1

εs

Ns−1
∏

d=1
d ̸=a

x (s)a q− x (s)d q−1

x (s)d q− x (s)a q−1
·

Ms
∏

i=1

x (s)a − y(s)i q

y(s)i − x (s)a q
(A.18)

·
Ns−1
∏

b=1

x (s)a − x (s−1)
b q

x (s−1)
b − x (s)a q

·
Ns+1−1
∏

c=1

x (s)a − x (s+1)
c q

x (s+1)
c − x (s)a q

,

which is the BAE of node s for the theory after Higgsing (with δ′s), up to the choice of FI.
Similarly, the BAE for a = Ns becomes

lim
x (s)Ns
=x (s+1)

Ns+1
=χ→∞

P(s)a=Ns
=
εs+1

εs
(−1)−es−1q−es−1 = (−1)

εs+1

εs
q−1 , (A.19)

using that the node is balanced, i.e. es = 0.

Node j, s < j < r Next, consider an intermediate node. Again, focus on the affected parts
in the x ( j−1)

N j−1
= x ( j)N j

= x ( j+1)
N j+1

= χ →∞ limit. In the BAE (4.19) for a ̸= N j , the relevant pieces
are

lim
x ( j−1)

Nj−1
=χ→∞

x ( j)a − x ( j−1)
N j−1

q

x ( j−1)
N j−1

− x ( j)a q
= −q , (A.20a)

lim
x ( j+1)

Nj+1
=χ→∞

x ( j)a − x ( j+1)
N j+1

q

x ( j+1)
N j+1

− x ( j)a q
= −q , (A.20b)

lim
x ( j)Nj
=χ→∞

x ( j)a t − x ( j)N j
q−1

x ( j)N j
q− x ( j)a q−1

=
−1
q2

, (A.20c)
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and the sign factor is changes as follows:

δ j = δ
′
j + 3 ⇒ (−1)δ j = (−1) · (−1)δ

′
j . (A.21)

Therefore, the limit of the BAE becomes

P( j)a ̸=N j
→ (−1)δ

′
j ·
ε j+1

ε j

N j−1
∏

d=1
d ̸=a

x ( j)a q− x ( j)d q−1

x ( j)d q− x ( j)a q−1
·

M j
∏

i=1

x ( j)a − y( j)i q

y( j)i − x ( j)a q
(A.22)

·
N j−1−1
∏

b=1

x ( j)a − x ( j−1)
b q

x ( j−1)
b − x ( j)a q

·
N j+1−1
∏

c=1

x ( j)a − x ( j+1)
c q

x ( j+1)
c − x ( j)a q

,

which are the BAE for the node j of the theory after Higgsing (with δ′j), up to the choice of FI
(see below). Analogous arguments for a = N j lead to

lim
x ( j−1)

Nj−1
=x ( j)Nj

=x ( j+1)
Nj+1

=χ→∞
P( j)a=N j

=
ε j+1

ε j
q−e j =

ε j+1

ε j
, (A.23)

using that the node is balanced, i.e. e j = 0

Node r. The behaviour at node r is analogous to that of node s. By the same reasoning as
above, the limit of the a ̸= Nr BAE becomes

P(r)a ̸=Nr
→

1
q
(−1)δ

′
r
εr+1

εr

Nr−1
∏

d=1
d ̸=a

x (r)a q− x (r)d q−1

x (r)d q− x (r)a q−1
·

Mr
∏

i=1

x (r)a − y(r)i q

y(r)i − x (r)a q
(A.24)

·
Nr−1−1
∏

b=1

x (r)a − x (r−1)
b q

x (r−1)
b − x (r)a q

·
Nr+1
∏

c=1

x (r)a − x (r+1)
c q

x (r+1)
c − x (r)a q

,

which are the BAE for the r-th node of the theory after Higgsing (with δ′r), up to the choice
of FI (see below). In contrast, the limit of the a = Nr BAE reads

P(r)a=Nr
→ (−1)

εr+1

εr
q−er−1 = (−1)

εr+1

εr
q−1 , (A.25)

using that the node is balanced, i.e. er = 0.

Node r+1. Similarly, the effects on node (r+1) resembles that of node (s−1). The by now
familiar analysis leads to

P(r+1)
a → q(−1)δ

′
r+1
εr+2

εr+1

Nr+1
∏

d=1
d ̸=a

x (r+1)
a q− x (r+1)

d q−1

x (r+1)
d q− x (r+1)

a q−1
·

Mr+1
∏

i=1

x (r+1)
a − y(r+1)

i q

y(r+1)
i − x (r+1)

a q
(A.26)

·
Nr−1
∏

b=1

x (r+1)
a − x (r)b q

x (r)b − x (r+1)
a q

·
Nr+2
∏

c=1

x (r+1)
a − x (r+2)

c q

x (r+2)
c − x (r+1)

a q
, (A.27)

which are the BAE of node (r + 1) of the theory after Higgsing (with δ′5), up to the choice of
FI (see below).
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Fixing the FI parameter. The above (A.14), (A.18), (A.22), (A.24), and (A.26) show that
one should identify the FI parameter after Higgsing as follows:

ε̃s

ε̃s−1
= q

εs

εs−1
,

ε̃s+1

ε̃s
=

1
q
εs+1

εs
, (A.28a)

ε̃ j+1

ε̃ j
=
ε j+1

ε j
, for s+ 1< j < r − 1 , (A.28b)

ε̃r+1

ε̃r
=

1
q
εr+1

εr
,

ε̃r+2

ε̃r+1
= q
εr+2

εr+1
, (A.28c)

such that the ε̃a parameters after Higgsing are identified as

ε̃a =



























εa , a < s ,

qεs , a = s ,

εa , s < a < r + 1 ,

q−1εr+1 , a = r + 1 ,

εa , r < a .

(A.29)

Moreover, (A.19), (A.23), and (A.25) imply a remaining type of constraints:

(−1)
εs+1

εs
q−1 = 1 ,

ε j+1

ε j
= 1 for s < j < r , (−1)

εr+1

εr
q−1 = 1 . (A.30)

Remark. With these general considerations, one can immediately understand the mirror of
the ak Higgs branch transition

. . .

Ns−1 Ns Ns+1
. . .

Ms−1 Ms Ms+1
−→

. . .

Ns−1 Ns−1 Ns+1
. . .

Ms−1 Ms Ms+1
. (A.31)

Focus on the BAE of the U(Ns) node. For a ̸= Ns, For a ̸= N2, the relevant pieces are

lim
x (s)Ns
→∞

x (s)a q− x (s)Ns
q−1

x (s)Ns
q− x (s)a q−1

=
−1
q2

, (A.32a)

δs = δ
′
s + 1 ⇒ (−1)δs = (−1) · (−1)δ

′
s , (A.32b)

and therefore

P(s)a ̸=Ns
→

1
q2
(−1)δ

′
s
εs+1

εs

Ns−1
∏

d=1
d ̸=a

x (s)a q− x (s)d q−1

x (s)d q− x (s)a q−1
·

Ms
∏

i=1

x (s)a − y(s)i q

y(s)i − x (s)a q
(A.33)

·
Ns−1
∏

b=1

x (s)a − x (s−1)
b q

x (s−1)
b − x (s)a q

·
Ns+1
∏

c=1

x (s)a − x (s+1)
c q

x (s+1)
c − x (s)a q

,

which is the BAE for the theory after Higgsing (with δ′s), up to the choice of new FI parameter

ε̃a =











qεs , a = s ,

q−1εs+1 , a = s+ 1 ,

εa , else .

(A.34)
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For a = Ns, analogous reasoning leads to

P(s)a=Ns
→
εs+1

εs
q−es−2 , such that εs+1 = εsq

es+2 . (A.35)

A.3 Example

Returning to the example in Figure 6, let us demonstrate how parameters are tuned and iden-
tified while Higgsing. The inhomogeneities are denoted as follows:

• ρ = (14), σ = (14): y(1)j , j = 1, . . . , 4

• ρ = (14), σ = (2,12): z(1)j , j = 1,2, z(2)1 , and z(0)1 denotes the parameter for the “floating
box”. (This accounts for D5 branes decoupled from the main configuration.)

• ρ = (14), σ = (22): w(2)j , j = 1,2, and w(0)j , j = 1,2 denotes the parameters for the
“floating box”.

• ρ = (14), σ = (3,1): v(1)1 , v(3)1 , and v(0)j , j = 1, 2 denotes the parameters for the “floating
box”.

Next, the Higgs branch aM−1 transitions are realised by the following parameter tunings:
• a3 transition: ρ = (14), σ = (14)→ ρ = (14), σ = (2,12)

tuning: y(1)3 = y(1)4 q2 , identification:











z(1)j = y(1)j , j = 1,2 ,

z(2)1 = y(1)4 q ,

z(0)1 = y(1)3 q−1 ,

(A.36)

and the free parameters are y1,2,4.
• a1 transition: ρ = (14), σ = (2, 12)→ ρ = (14), σ = (22)

tuning: z(1)1 = y(1)2 q2 , identification:



















w(2)1 = z(2)1 = y(1)4 q ,

w(2)2 = z(1)2 q = y(1)2 q ,

w(0)1 = z(0)1 = y(1)3 q−1 ,

w(0)2 = z(1)1 q−1 = y(1)1 q−1 ,

(A.37)

and the free parameters are y2,4.
• a1 transition:ρ = (14), σ = (22)→ ρ = (14), σ = (3,1)

tuning: w(2)1 = w(2)2 q2 , identification:



















v(1)1 = w(2)1 q−1 = y(1)4 ,

v(3)1 = w(2)2 q = y(1)2 q2 ,

v(0)1 = w(0)1 = y(1)3 q−1 ,

v(0)2 = w(0)2 = y(1)1 q−1 ,

(A.38)

and the free parameter is y2.
The example demonstrated two points: Firstly, one can keep track of all parameter during
Higgsing and identify them suitably with the parameters in the theory after the transition.
(Here, the “floating box” count allows to demonstrate the procedure for the generic situation,
as show in (A.8)-(A.9).) Secondly, the tuning leads to non-generic parameter in the theory
after Higgsing.

B Topologically twisted indices

A versatile tool for probing dualities of 3d supersymmetric theories with at least 4 supercharges
(i.e. N ≥ 2) are topologically twisted partition functions on Σg×S1 [20,42,43,58,59,77–80].
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Focusing on 3d N = 4, two distinct choices exist: Performing the topological twist with a
Cartan subgroup of SU(2)H leads to an A-twisted index, while the twist by a Cartan subgroup
of SU(2)C yields the so-called B-twisted index.

In this appendix, the relevant formulae for the twisted indices are summarised. The con-
ventions follow those of [42]. For instance, the real scalar in the N = 2 vector multiplet is
σ = diag(σa) for a = 1, . . . , rk(G). When compactified on S1 with radius R, the flat connec-
tions a0 for the gauge field along S1 along to define a natural complexification (4.9) and the
exponentiated variable xa define the complex fugacities used below. Similarly, for any global
U(1)F symmetry, one can turn on a background flat connection and a background real scalar
σF such that the combination (4.7) allows to define corresponding complex fugacity (4.8).

Supersymmetric localisation reduces the partition function on Σg × S1 to

Ig,A/B =
1
|WG|

∑

m∈Γ ∗
G∨

∮

JK

�

dx
2πi

�rk(G)
ZA/B

cl+1−loop(m, x) , (B.1)

where WG denotes the Weyl group of the gauge group G and Γ ∗G∨ is the weight lattice of the
GNO-dual group G∨ [74]. The integrand Zcl+1−loop is composed of a classical part

ZA/B
cl = τm ≡

∏

I

τ
mI
I , (B.2)

which is determined by FI parameters for the free subgroup
∏

I U(1)I of G, and 1-loop deter-
minants of the different supermultiplets.

• The 1-loop determinant for a hypermultiplet in the bifundamental representation of
G × G′, with variables x and y , respectively, reads

ZA
hyper =

∏

γ∈F
′

∏

ρ∈F

�

xρ yγ − q
1− xρ yγq

�ρ(m)+γ(n)

, (B.3)

ZB
hyper =

∏

γ∈F
′

∏

ρ∈F

�

xρ yγ − q
1− xρ yγq

�ρ(m)+γ(n) � xρ yγq
(1− xρ yγq)(xρ yγ − q)

�1−g

, (B.4)

if G′ is non-dynamical, then the background flux n is chosen trivial.
• A vector multiplet of a gauge group G contributes with the 1-loop determinant

ZA
vector =

�

q− q−1
�(g−1)rk(G)∏

α∈g

�

1− xα

q− xαq−1

�α(m)−g+1

, (B.5)

ZB
vector =

1

(q− q−1)(g−1)rk(G)

∏

α∈g

�

1− xα

q− xαq−1

�α(m) � 1
(1− xα)(q− xαq−1)

�g−1

. (B.6)

The contour integral can be rewritten as sum over residues at the roots of the Bethe Ansatz
equations. In detail, one finds [43,58]

Ig,A/B =
(−1)rk(G)

|WG|

∑

x̂∈SBE

ZA/B
cl+1−loop

�

�

�

�

m=0

�

det
ab

∂ Ba

∂ ub

�g−1

,

iBa =
∂ log ZA/B

cl+1−loop

∂ma
,

(B.7)
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and equivalently, the expression can be interpreted as [42,59,78]

Ig,A/B =
1
|WG|

∑

x̂∈SBE

HA/B(x̂ )
g−1 ,

HA/B(x ) = e2πiΩ(x ) det
a,b

∂ 2
fWeff

∂ ua∂ ub
.

(B.8)

Both formulae are insightful. The first allows a direct relation to the JK-residue expression,
while the second makes contact with the effective 2d KK theory. Here, fWeff denotes the effec-
tive twisted superpotential andΩ is known as effective dilaton, which accounts for the coupling
of the theory to the curved 3-manifold. HA/B is referred to as the 3d handle-gluing operator.
In both, the sum is over the Bethe roots

SBE =
�

x
�

� Pa(x ) = 1 , a = 1, . . . , rk(G) , w(u) ̸= u, w ∈WG

	

/WG ,

Pa(x ) = eiBa = e2πi ∂W∂ ua .
(B.9)

For the cases relevant here, the condition that no Weyl reflection is leaving a Bethe root in-
variant can be recast into the condition that the Vandermonde is non-vanishing

∏

α∈G

(1− xα) ̸= 0 . (B.10)
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