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Abstract

The fluctuations of the atom number between a Bose-Einstein condensate and the sur-
rounding thermal gas have been the subject of a long standing theoretical debate. This
discussion is centered around the appropriate thermodynamic ensemble to be used for
theoretical predictions and the effect of interactions on the observed fluctuations. Here
we introduce the so-called Fock state sampling method to solve this classic problem of
current experimental interest for weakly interacting gases. A suppression of the pre-
dicted peak fluctuations is observed when using a microcanonical with respect to a
canonical ensemble. Moreover, interactions lead to a shift of the temperature of peak
fluctuations for harmonically trapped gases. The absolute size of the fluctuations fur-
thermore depends on the total number of atoms and the aspect ratio of the trapping
potential. Due to the interplay of these effect, there is no universal suppression or en-
hancement of fluctuations.
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1 Introduction

Bose-Einstein condensates are at the heart of current efforts to understand complex many body
quantum systems. Typically, investigations of these systems evaluate mean values of a given
observable such as the number of atoms in a given state. Further important insights are often
offered by higher moments of the relevant probability distribution and thus a full statistical
description of such systems would be highly desirable. However, the statistics of complex
systems is one of the fundamental problems in many areas of physics and a full description of
a gas of bosonic particles - called a Bose gas in this context -is not available.

In this paper, we present a new method to study statistical properties of the ideal and
weakly interacting Bose gas at equilibrium. This problem has been studied since the 1940s
when E. Schrödinger noticed that the commonly used grand canonical ensemble description
of the non-interacting Bose gas leads to absurdly large fluctuations if applied to an isolated
system [1]. The questions was further corroborated in the work of R. Ziff, G. Uhlenbeck,
M. Kac [2]. They concluded that the canonical fluctuations do not suffer the problem no-
ticed by E. Schrödinger and thus showed that the commonly used statistical ensembles are not
equivalent with respect to condensate fluctuations. The statistical problem gained renewed
interest [3–10] after 1995, when the first Bose-Einstein condensate in a dilute gas was pro-
duced [11, 12]. To reach the necessary temperatures for atomic Bose-Einstein condensation,
the gas is isolated as much as possible from its environment. Thus, its statistics should be
close to the microcanonical ensemble predictions and it was shown that the microcanonical
fluctuations of the three-dimensional (3D) non-interacting gas are expected to be significantly
lower than canonical fluctuations [8, 9]. Figure 1 is a sketch that outlines the expected atom
number fluctuations of a a non-interacting Bose gas calculated using the statistical ensembles
discussed above for the case of N = 1000 atoms trapped in a 3D harmonic trap. This clearly
shows that the expected fluctuations strongly depend on the chosen ensemble.

For a long time, the problem of condensate fluctuations was an academic one. First ob-
servations were performed in an exotic non-isolated condensate made of light [13] showing
the grand canonical fluctuations [14]. For atomic condensates, such measurements turned out
more difficult since the technical fluctuations of the total number of atoms, due to the noise
in the cooling process, were much larger than the equilibrium fluctuations of the condensed
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Figure 1: Illustration of the variance of the number of ground state atoms in three
statistical ensembles as a function of temperature T in units of the canonical critical
temperature Tc . When the temperature of an ultracold Bose gas is lowered towards
Tc a grand canonical ensemble calculation predicts unphysically large fluctuations
(green line). A canonical ensemble calculation does not suffer from this problem
and predicts a peak in fluctuations below Tc (orange line). These fluctuations de-
crease as the number of atoms in the thermal states declines for lower temperatures.
A microcanonical calculation (blue line) shows the same features but predicts quan-
titatively lower peak fluctuations which can be shifted in temperature with respect
to the canonical result. This sketch is based on a numerical calculation for N = 1000
non-interacting atoms in a three dimensional symmetric harmonic trap.

gas. The situation changed with recent experiments that allowed for unprecedented control
of the number of atoms [15,16]. This enabled the first measurements of the condensate fluc-
tuations [17] and confirmed that the observed fluctuations are closer to the microcanonical
predictions [18]. Despite using as many as 5× 105 atoms, the experiments are conducted far
from the known asymptotic (N → ∞) predictions for the fluctuations [7, 9]. Crucially, for
such a large number of atoms, no exact result for microcanonical fluctuations is available.

Moreover, the effect of interactions on condensate fluctuations remains a controversial
problem. The only solid results are offered by the Bogoliubov approximation. It has been
shown that the fluctuations of an interacting condensate, in the limit of large atom numbers,
are up to two times smaller than the ones of the non-interacting gas [19]. The Bogoliubov
approximation has been applied for the problem of fluctuations in the canonical [19–24] and
then in the microcanonical ensemble [25,26]. However, this approach only holds for low tem-
peratures and weak interactions. In particular, it does not apply in the vicinity of the critical
temperature where the maximal fluctuations of the number of condensed atoms are best de-
termined in the experiment. All other results are either limited to 1D [27] or are sensitive to
not very-well-controlled approximations [10,28]. Various methods give qualitatively different
results, as summarized in Fig. 4 of [17]. In the case of 3D interacting systems, methods capa-
ble to study statistics for all temperatures exist only to the canonical and the grand canonical
ensembles.

In this paper we introduce a new numerical method, called Fock state sampling, to ef-
ficiently study the statistical properties of non-interacting and weakly-interacting systems in
the canonical ensemble and, in the most restricted, microcanonical ensemble. The method
generates a set of representative configurations in a well-chosen configurational space. By
appropriate post-selection, we interpolate smoothly between micro- and canonical ensembles.
For the non-interacting gas microcanonical results are obtained for as many as 105 atoms in a
spherically symmetric trap.
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To benchmark our method we first study the Bose gas in a one dimensional box potential
with periodic boundary conditions and in a harmonic trap. In these systems, comparisons
with exact findings and with the other approximate methods (such as the Bogoliubov and
the classical field approximation) are possible. We then proceed to apply our method to the
experimentally more relevant three dimensional systems.

The paper is organized as follows. In Sec. 2 we recall the basics of statistical ensembles
and formulate our problem. The Fock state sampling method is described in Sec. 3. Section 4
presents our results in one dimensional systems. The results obtained in three dimensional
systems are discussed in Sec. 5. This includes the regime between the canonical and the
microcanonical ensemble and the interaction-induced shift of the condensate fluctuations in
both ensembles. We summarize our findings in Sec. 6.

2 Statistical description of a Bose gas

In statistical mechanics the systems of interest at finite temperature are described by statistical
ensembles following Gibbs [29]. Such an ensemble is just a collection of copies of the system
that fulfills the appropriate conditions. The statistical ensembles are defined by a set of control
parameters that correspond to physical constraints imposed on the system. Conceptually, the
simplest is the microcanonical ensemble for which the control parameters are: the total num-
ber of particles N , the total energy E, and the volume V . For the commonly used harmonic
trap this volume is replaced with the trap frequency. This ensemble describes the statistical
properties of a fully isolated system, both in terms of exchange of particles and energy. In its
quantum version, the properties of the system in a microcanonical ensemble are determined by
the partition function Γ (E, N), equal to the number of states of N atoms, with total energy E.
Next in complexity is the canonical ensemble, which also describes a fixed number of particles
N but assumes contact with a thermal reservoir imposing a temperature T . As a consequence,
the energy of the system fluctuates. The least constraining is the grand canonical ensemble
which assumes not only a contact with a heat bath but also with a reservoir of particles. The
corresponding control parameter µ is called the chemical potential and plays a role analogous
to temperature with respect to particle number. Paradoxically, from the point of view of the
computational complexity, the order of ensembles appears inverted, with the grand canonical
being the easiest and the microcanonical the most difficult to use.

In this paper, we consider statistical properties of N ultracold trapped bosonic atoms. The
Hamiltonian is

Ĥ =

∫

d3r Ψ̂†(r )ĥΨ̂(r ) +
g
2

∫

d3r Ψ̂†(r )Ψ̂†(r )Ψ̂(r )Ψ̂(r ) , (1)

where Ψ̂(r ) is a bosonic annihilation operator, ĥ= −ħh
2∆̂

2m +V (r ) is the energy density of atoms
with mas m placed in a trapping potential V (r ) and g is a coupling constant related to short
range interactions. Here ∆̂ is just the Laplace operator. Note that we consider only contact
repulsive interactions, that is g > 0.

We consider both, a box potential of length L with periodic boundary condition, i.e. V = 0,
and a more common harmonic potential V (x , y, z) = 1

2 m
�

ω2
⊥(x

2 + y2) +ω2
z z2
�

, where we
limit our considerations to at most two different frequencies,ω⊥ andωz responsible for radial
and longitudinal confinement, respectively. In the following we refer to λ = ω⊥/ωz as the
aspect ratio. In particular, the results for a non-interacting trapped Bose gas do not depend
on the explicit values of the trap frequencies, but solely on the parameter λ. In what follows,
whenever we discuss a gas in a harmonic trap we shift the spectrum such that the ground state
energy of the non-interacting gas equals zero.
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A convenient basis is spanned by the Fock states |N〉 := |N0, N1 . . .〉, where N j are occupa-
tions of the orbitals φ j(r ) and we choose φ j(r ) as the eigenstates of a single particle trapped
in a potential V (r ). In this basis, the field operator Ψ̂(r ) is

Ψ̂(r ) =
∞
∑

j=0

φ j(r ) â j , (2)

where â j (â†
j ) are the bosonic annihilation (creation) operators of atoms in the j-th orbital.

The lowest energy state, denoted with φ0(r ), is the ground state in the non-interacting
case. Its occupation N̂0 = â†

0â0 fluctuates in all ensembles. The fluctuations are given by

∆2N0 = Tr
�

N̂2
0 ρ̂
	

−
�

Tr
�

N̂0ρ̂
	�2

, (3)

where ρ̂ is the density matrix of the gas at equilibrium. The definition of the density matrix
depends on the chosen ensembles as given below.

• The microcanonical density matrix is

ρ̂micro =
1

Γ (N , E)
δ
�

Ĥ − E
�

, (4)

where δ is the Dirac delta function and Γ (N , E) is the microcanonical partition function,
namely the number of ways to distribute N atoms between energy levels such that the
total energy is E.

• In the canonical ensemble, the density matrix is defined as

ρ̂cano =
1

Z (N ,β)
e−β Ĥ , (5)

where Z is the canonical partition function Z(N ,β) := Tr
¦

e−β Ĥ
©

, β := 1/(kBT ) and kB
is the Boltzmann constant.

The partition function restricted to the excited states and excited atoms only, is very use-
ful for the computation of the statistics of a condensate. It is denoted with Γex (Nex, E) and
Zex (Nex,β) in the microcanonical and canonical ensembles, respectively. In particular,
Γex (Nex, E) is the number of ways to distribute Nex atoms between excited energy levels such
that the total energy still equals E.

In the microcanonical ensemble, the probability that there are N0 atoms in the condensate
is thus

pmicro (N0, N , E) := Γex (N − N0, E)/Γ (N , E) . (6)

Analogously, in the canonical ensemble we define

Zex (Nex ,β) :=
∑

N1+N2+...=Nex

〈N0, N1, . . . |e−β Ĥ |N0, N1, . . .〉 , (7)

where the sum is over all Fock states with exactly Nex atoms in all excited energy levels together.
The probability of having N0 atoms in the canonical ensemble is then

pcano(N0, N , β) := Zex (N − N0, β)/Z (N , β) . (8)
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In principle, given the probabilities pmicro and pcano one could compute the average number
of ground state atoms and their fluctuations using

〈N0〉ens =
N
∑

N0=0

pens (N0, N , E) N0 , (9)

�

∆2N0

�

ens =
N
∑

N0=0

pens (N0, N , E) N2
0 − 〈N0〉2ens , (10)

where the subscript ens indicates the ensemble, labeled micro and cano in the following.
Computations in the canonical and the microcanonical ensembles are thus conceptually

the same. However, while there are efficient methods for calculating the probabilities pcano
in the canonical ensemble [5, 6] the analogous calculations are much more demanding for
the microcanonical ensemble. Apart from a few exceptional cases, calculations in the micro-
canonical ensemble are hence restricted to small systems. Accurate modelling of experiments,
therefore, requires the development of computational methods. Below we describe a new nu-
merical method that allows us to perform reliable calculations in both statistical ensembles
with up to 105 atoms, without reconstructing the probability distributions pmicro and pcano.

3 Fock state sampling method

In practice, the Fock state sampling (FSS) method is a realization of the Metropolis algo-
rithm, widely used in Monte-Carlo simulations [30]. The algorithm generates a Boltzmann-
distributed random walk in the space of possible configurations of the system. The set of visited
points is interpreted as a collection of microstates of the system representing the canonical en-
semble. Importantly, we can also generate points representing the microcanonical ensemble
by post-selection from the collection of states. The final collection can be used to compute
average values of physical quantities as it is done in the statistical ensembles. Moreover, the
method is applicable to weakly interacting Bose gases in the canonical and microcanoncial
ensembles as described below.

Our earlier application of the Metropolis algorithm was performed in the framework of the
classical field approximation (CFA) [31]. However, in the CFA a fraction of an atom can flow
from orbital to orbital due to the lack of discretization. This leads to an unavoidable depen-
dence of the results on the energy cut-off, which is analogous to the ultraviolet catastrophe of
the black body radiation prior to M. Planck’s introduction of photons.

In our novel FSS method, the algorithm walks among all the Fock states satisfying
∑

N j = N . In practice, we also truncate the orbitals at some high value, but now the results
are cut-off independent, provided that the cut-off is sufficiently high.

The novelty, apart from the choice of the underlying set of states, rests in the definition of
the steps of the random walk. In this respect, the Metropolis algorithm is very flexible - one
obtains the correct results provided that the whole space of states is accessible and that the
steps satisfy the condition of detailed balance [30]. The FSS method is described in detail
below, starting with the non-interacting gas case.

Our walk prescription is physically motivated and quickly provides representative collec-
tions of the ensemble copies. In this algorithm every atom has equal chances of jumping away
from their occupied mode, that is the probability of a jump from a given orbital is proportional
to its occupation. The orbital which the atom jumps to is drawn in proportion to its occu-
pation – a well-known Bose-enhancement factor – plus one, which represents spontaneous
transitions. This is analogous to A. Einstein’s discussion of A and B coefficients for the spon-
taneous and stimulated emission processes. The probability that an atom jumps from the j-th
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orbital to the k-th orbital is thus proportional1 to N j(Nk + 1). The new configuration is ac-
cepted and added to the set of copies representing the canonical ensemble if a drawn random
number r ∈ [0, 1] is smaller than exp (−β(Ef − Ei)), where Ei and Ef denote the energy of the
Fock state at the beginning of the step and the energy of the candidate Fock state, respectively.
A further acceleration of the algorithm is described in appendix A.

Since the initial state can be arbitrary, a number of steps must be made before the random
walk begins to represent the ensemble. This initial part of the walk, during which the system
“thermalizes” (also referred to as “burn-in” in the Markov Chain Monte Carlo literature), is
rejected from the analysis for practical reasons.

We extend this method beyond the non-interacting gas by considering weak contact in-
teractions. In this case, the energy in the Boltzmann factor includes not only the kinetic and
potential energy in the trap but also the contribution of the interaction energy. The mean value
of the interaction energy, given by the last term in Eq. (1), in the Fock state is given by

Eint =
g
2

∫

d3r 〈N0, N1 . . . |Ψ̂†(r )Ψ̂†(r )Ψ̂(r )Ψ̂(r )|N0, N1 . . .〉 , (11)

and resembles the lowest order perturbation term.
In the case of a harmonic trap, the condensate wave function of the interacting gas differs

from the simple Gaussian solution of the single particle ground state. Nonetheless, we only
consider the statistics of the population in the lowest orbital in the present version of the
method, even in the interacting case. Therefore, we restrict our consideration to very weak
interactions. Note however, that for a box with periodic boundary conditions this additional
complication does not arise, and φ0(r ) = 1/

p
V remains the condensate wave-function even

in the presence of interactions.
Once a set of states representing the canonical ensemble is generated we can perform a

post-selection routine by choosing a subset that satisfies additional constraints. In particular,
one can reduce the set all the way to the microcanonical ensemble by restricting the spread
of energies. This is done by introducing a shrinking energy window around the mean energy
and removing the states with energies outside this window. In the limiting case where the
width of the energy window approaches zero typically only a few states remain. To avoid
large statistical error in this case, we determine the microcanonical values by extrapolating
the results from wider windows. Further details of this procedure are given in Sec. 5 for an
experimentally relevant case.

We extract the important quantities for the discussion of the fluctuations in a Bose-Einstein
condensate as follows. The mean number of condensed atoms is given by

N̄0 :=
1
W

W
∑

i=1

N0, i , (12)

and its variance is

∆2N0 :=
1
W

W
∑

i=1

�

N0, i

�2 − N̄2
0 , (13)

where W is the number of configurations, represented in what follows, by Fock states gener-
ated by our algorithm. Here N0, i is the occupation of the ground state in the i-th copy.

To obtain results for the microcanonical ensemble we use the same formulas (12) and (13),
but we restrict the sum to the Fock states that remain after the post-selection, described above
and in Sec. 5.

1Notice that if j = k, then the probability is proportional N 2
j , i.e. we account for the fact that the atom was first

removed and then it returns.
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In relation to recent experiments it is furthermore of great interest to evaluate the ratio

S :=
maxE

�

∆2N0

�

micro

maxT (∆2N0)cano
, (14)

between peak fluctuations in the microcanonical and canonical ensembles. In particular, when
S differs significantly from unity, measurements can be used to identify the appropriate ensem-
ble, which recently demonstrated the microcanonical nature of the Bose-Einstein condensation
in ultracold gases [18]. Figure 1 illustrates these peak fluctuation in both ensembles.

Importantly, the post-selection process allows for an investigation of the transition from the
canonical to microcanonical ensembles. However, it does not give access to the transition from
grand canonical to canonical ensembles, which is of interest for photonic condensates [13] and
will be the topic of future research.

4 Fluctuations in 1D Bose gases

In a first step we apply the Fock state sampling method in a one dimensional setting. This has
the advantage that a number of available solutions allow for a more comprehensive bench-
marking of the numerical method than the three dimensional case. In particular, we analyze
two distinct trapping geometries in 1D. First a ring trap corresponding to a 1D box with peri-
odic boundary conditions is analysed and then a harmonic trap is discussed. In both cases we
compare the fluctuations with and without interactions. After benchmarking our method with
the canonical ensemble, we use it to discuss the microcanonical case.

4.1 1D box with periodic boundary conditions (ring trap)

Figure 2 shows the fluctuations of a Bose gas in a ring trap obtained from canonical ensemble
calculations using several different approaches. This includes results based on exact counting
statistics [5], the classical field approximation [31], the Bogoliubov approximation, and the
Fock state sampling method presented here.

For the non-interacting gas, our present FSS method, as well as the classical field approxi-
mation with a well chosen cut-off [32,33], perfectly reproduce the exact result which is known
analytically in this case [33]. Moreover, we also find good agreement with the result based
on the Bogoliubov approximation within its range of validity at low temperatures. This val-
idates our method for the case of the non-interacting Bose gas in 1D. Moreover, we employ
the post-selection process to the FSS method to evaluate the fluctuation in the microcanon-
ical ensemble. This shows a clear reduction of the fluctuation with respect to the canonical
expectation.

We now include weak interactions as shown in Fig. 3. No exact canonical results are avail-
able for this case, but at low temperature reliable results can be obtained within the Bogoliubov
approximation, valid for low temperatures and low interaction strengths. The results based
on the Bogoliubov approximation show the expected suppression of fluctuations at low tem-
perature in good agreement with our FSS method computation and earlier results based on
the classical field approximation [33]. However, the FSS results show that this suppression is
not general, but that the fluctuations surpass the non-interacting case at higher temperature.

Note that this result is a significant change of paradigm. The reduction of fluctuations
due to interactions for a Bose gas in a box was stressed in a number of papers that relied on
the Bogoliubov approximation [19]. On the basis of Fig. 3 it is now clear that this prediction
is limited to low temperatures only. In particular, Fig. 3 shows that the fluctuations of an
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Figure 2: Fluctuations of a non-interacting Bose gas containing N = 100 atoms in
a 1D ring trap. The variance of N0 as a function of temperature in 1D in canonical
ensemble is obtained from several different approaches: FSS method, classical field
approximation, Bogoliubov approach (BOA) and an exact method (see text). In ad-
dition a microcanonical calculation using the FSS method is presented, showing the
clear reduction of the expected fluctuations in this ensemble. The temperature T is
given in units 2π2ħh2/(mkB L2).
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Figure 3: Fluctuations of a weakly-interacting Bose gas containing N = 100 atoms
in a 1D ring trap. The variance of N0 as a function of temperature is obtained from
several different approaches: FSS method, classical field approximation, and Bogoli-
ubov approach. A microcanonical calculation shows a significant suppression of the
fluctuations. The exact canonical result from Fig. 2 is shown for comparison. (inset)
Variance at a low temperature T = 5 (orange, axis on the right) and at the temper-
ature of maximal fluctuations (blue, axis on the left) as a function of the interaction
strength g, obtained with the FSS method in the canonical ensemble. The arrows in-
dicate the appropriate axis. The interaction strength g and temperature T are given
in units 2ħh2π2/(mL) and 2π2ħh2/(mkB L2) respectively.
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interacting gas are larger near their maximal value as our canonical results exceed the non-
interacting exact prediction.

This is further corroborated in Fig. 3 (inset). It shows the fluctuations as a function of the
interaction strength g in two regimes. At a low temperature T = 5 (orange) the fluctuations
decrease as a function of interaction strength as predicted within the Bogoliubov approxi-
mation. However, at the temperature of the peak fluctuations they increase as a function of
interaction strength.

This effect is even more pronounced in a microcanonical calculation, which can be seen by
comparing the microcanonical results in Fig. 2 and Fig. 3. Both results are strongly reduced
with respect to their corresponding canonical results. In addition the weakly interacting mi-
crocanonical result lies considerably below the non-interacting one at low temperatures. At
higher temperatures the effect reverses and the weakly-interacting microcanonical variance is
larger than non-interacting one . This is evident from a comparison of the green symbols in
Fig. 2 and Fig. 3, where the non-interacting canonical result can serve as a guide to the eye.

4.2 1D harmonic trap

In a next step we extend our analysis to the experimentally more relevant case of a 1D harmonic
trap. For the non-interacting gas, the probability distribution of finding N0 atoms in the ground
state in the canonical ensemble is given by

pcano(N0, N , β) = e−β(N−N0)ħhω
N
∏

n=N−N0

�

1− e−β nħhω� . (15)

The exact result for the fluctuations based on this distribution is shown in Fig. 4. Moreover,
we show the result based on the Bogoliubov approximation which again agrees with the exact
result within its range of validity at low temperatures. Importantly, the FSS method perfectly
reproduces the exact result at all temperatures in the 1D harmonic trap.

Based on this agreement, we again include interactions in our analysis. Figure 4 includes
the fluctuations of the interacting gas based on the Bogoliubov approximation, which is valid
for low temperatures at weak interactions. In clear contrast with the previous case this analysis
shows that the fluctuations increase at low temperatures due to the interactions.

The results from our FSS method analysis provide an explanation for this behaviour. At
low temperature it agrees well with the results based on the Bogoliubov approximation. How-
ever, for higher temperatures the primary effect of interactions is a shift of the temperature
of peak fluctuations. This indeed qualitatively corresponds to an expected shift of the critical
temperature due to interactions in the system. The peak value of the fluctuations remains al-
most unchanged and it stays in the range of statistical errors of the FSS method results. Thus
the apparent increase of fluctuations at low temperature is primarily caused by the shift of the
critical temperature.

Now we turn our attention to the microcanonical ensemble. In this case, there are no
closed formulas for the condensate fluctuations, even for the non-interacting gas. Instead one
may find the ground state statistics using recurrence relations. Here, one can benefit from
the fact that the statistical problem for the 1D harmonic trap is directly related to the classic
combinatorial problem of the number of partitions of an integer.

The relevant combinatorial figure in this problem is the number of partitions of an integer
E into a sum of Nex ≤ N strictly positive numbers. For the 1D harmonic trap this number is
nothing else but Γex(Nex, E) introduced above, where the integer E is the energy expressed
in harmonic oscillator units. For example Γex(Nex, Nex + 1) equals 1, as there is only one way
to write the number Nex + 1 as a sum of Nex positive integers: a single integer equal to 2
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Figure 4: Fluctuations of Bose gas containing N = 100 atoms as a function of tem-
perature in a 1D harmonic trap. The fluctuations with and without interactions are
computed with several methods: FSS method (symbols), Bogoliubov approach (or-
ange dotted and dot-dashed lines), and exact methods for the non-interacting gas
(black solid and dashed lines). Interactions lead to a shift of the temperature of peak
fluctuations, resulting in increased fluctuations at low temperature. In addition cal-
culations using a microcanonical (black dashed line, green symbols) ensemble show
the significantly lower fluctuations expected in this case. The interaction strength g
and temperature T are given in units of

Æ

ħh3ω/m and ħhω/kB, respectively.

and Nex − 1 integers equal to 1. In general, the value Γex(Nex, E) may be obtained using the
recurrence relation

Γex(Nex, E) = Γex(Nex, E − Nex) + Γex(Nex − 1, E − 1) . (16)

The first term in this relation, Γex(Nex, E−Nex), is the number of partitions in which the number
1 does not appear. In fact, if we subtract 1 from each element of such a partition, there still
remain Nex non-zero integers, only that their sum will be E − Nex. In turn, for every partition
of E in which the number 1 appears, one can take this 1 away. Such a new set will contain
Nex−1 non-zero elements, summing up to E−1. There are Γex(Nex−1, E−1) such partitions.

The full partition function in the microcanonical ensemble is

Γ (N , E) =
N
∑

Nex=0

Γex(Nex, E) , (17)

and one can easily find the probability distribution of finding N0 atoms in the single particle
ground state pmicro (N0, N , E) = Γex(N − N0, E)/Γ (N , E). Having pmicro (N0, N , E) we invoke
formulas (9) and (10) to find the average value and fluctuations of N0.

This exact microcanonical result provides a benchmark for the post-selection process based
on the FSS method analysis. As outlined above, the fluctuations in a microcanonical ensemble
are calculated by post-selection from a set of states obtained using the FSS method approach
in the canonical ensemble, which amounts to a reduction of the energy spread. Figure 4
includes a comparison of our numerical result with the exact calculation. The two are in
excellent agreement for the entire temperature range and show that the fluctuations in the
microcanonical ensemble are always smaller than in the canonical one.

The post-selection works equally well for interacting systems and Fig. 4 also shows micro-
canonical the ground state atom number fluctuations in a weakly interacting Bose gas. Similar
to the canonical interacting result the maximal fluctuations are shifted to lower temperature
(energy) in qualitative agreement with the expected shift of the critical temperature due to
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Figure 5: Ratio S between the peak fluctuations in a microcanonical and a canonical
ensemble calculation as a function of atom number for a 1D harmonic trap and a
1D box with periodic boundary conditions. The results for the 1D harmonic trap are
obtained from an exact calculation (see text). In the case of the 1D box potential,
the FSS method was employed.

interactions. Once again, the microcanonical fluctuations are also reduced with respect to the
canonical result. Note, that there is no exact calculation which could serve as a benchmark for
this case, since to our knowledge, there exists no other method for the weakly interacting gas
in the microcanonical ensemble.

4.3 Comparison of canonical and microcanonical fluctuations in 1D

Equipped with the analysis above, it is possible to address the natural question, whether the
fluctuations in a 1D non-interacting gas depend on the choice of the statistical ensemble in the
limit of large atom number N →∞. To this end we first compare the results for the canon-
ical and the microcanonical ensemble using the exact results for the 1D harmonic oscillator.
They allow us to evaluate the ratio S of the peak variance in both ensembles as introduced in
Eq. (14). Figure 5 (blue points) shows the result, where S tends to 1, indicating that the mi-
crocanonical and canonical fluctuations in the 1D harmonic oscillator asymptotically become
equal, in agreement with previous discussions [28].

We also study the same problem for non-interacting atoms in a 1D box potential with peri-
odic boundary conditions as discussed in Sec. 4.1. In this case, no method of finding the exact
values of the fluctuations in the microcanonical ensemble is available. Instead, we use our nu-
merical FSS method analysis to obtain the ratio S as shown in Fig. 5 (orange points). Again,
we observe that S tends to 1, indicating that the microcanonical and canonical fluctuations in
the 1D box potential become equal in the limit of large atom number.

This finding supports the typical notion that results in the thermodynamic limit should be
independent of the thermodynamic ensemble. Note however, that this equivalence between
the ensembles is not universal, as pointed out previously [9, 28]. In particular we show in
the following section, devoted to the experimentally relevant 3D case, that the microcanonical
and canonical fluctuations differ even in the limit of large atom numbers.

5 Fluctuations in 3D systems

Despite its fundamental importance, the question of atom number fluctuations in Bose-Einstein
condensates [28] remained largely an academic problem until a few years ago. Recently how-
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Figure 6: Histograms of the distribution of energies of sets of states generated
with the FSS method. The sets represent N = 104 atoms in a 3D harmonic
trap with aspect ratio λ = 4 at temperatures, from left (blue) to right (green),
kBT/(ħhωz) = 47.5, 47.75,48, 48.25,48.5.

ever, the situation has changed, since improved control of the total number of atoms in ultra-
cold gases has allowed for first measurements of the fluctuations [17,18].

In the limit of very large atom numbers in a 3D system the asymptotic atom number fluc-
tuations in a microcanonical ensemble calculation [9] are given by

lim
N→∞

�

∆2N0

�

micro

N
=
�

ζ(2)
ζ(3)
−

3
4
ζ(3)
ζ(4)

�

≈ 0.53 , (18)

where ζ denotes the Riemann zeta function. However, in the following we show that despite
the large number of up to 105 atoms, the asymptotic value in Eq. (18) is still not applicable.
On the other hand, these experimentally relevant atom numbers are so large that one cannot
compute the expected microcanonical fluctuations using previously existing methods, even
in the non-interacting case. Here we show how this problem can be solved for large atom
numbers by computing the relevant microcanonical fluctuations with the FSS method after
appropriate post-selection.

As outlined above, we first generate a set of states representing the non-interacting gas at
thermal equilibrium in the canonical ensemble. The atom number variance in such a set is
compared with the results obtained from the recurrence relations [5], which ensures that the
resulting set is indeed a good representation of the canonical ensemble.

The set of states representing the system at a given temperature has a distribution of en-
ergies dictated by statistics in the canonical ensemble. Figure 6 shows histograms of these
energies for N = 104 atoms in a 3D harmonic trap with aspect ratio λ = 4 at various temper-
atures.

To obtain a set of states representative to the microcanonical ensemble we perform a post-
selection analysis also outlined above. In practice, we post-select a set of states at a given
temperature to reduce the variance of energies by subsequential removal of states at the high-
est and lowest energies, symmetrically with respect to the mean energy. The final set thus has
an energy in the interval [Emean−∆E/2, Emean+∆E/2], where Emean is the mean energy and
the energy window is ∆E. By reducing the energy interval, the microcanonical ensemble, i.e.
the limit ∆E→ 0 is approached.

The resulting variance of the condensate atom number is shown in Fig. 7, for N = 104

atoms in a 3D harmonic trap with different aspect ratios at the temperatures Tmax for which the
canonical fluctuations are maximal. The variances are presented as a function of the fraction
f , which is defined as the fraction of the number of remaining states with respect to the
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Figure 7: Fluctuations of atom number obtained after post-selection. The atom num-
ber variance ∆2N0 for different aspect ratios λ is shown as a function of the fraction
f after post-selection. Thus the figure represents the transition from a canonical to a
microcanonical result from left to right with solid black lines showing the polynomial
fits. The initial sets represent N = 104 atoms at the temperature Tmax at which the
canonical variance is maximal.

initial states. We repeat our analysis several times, starting from different sets of states in
the canonical ensemble and the error bars in Fig. 7 correspond to our statistical uncertainty.
For significant post-selection and small resulting sets of states (small f ) the uncertainty of our
result can become significant. Therefore a polynomial fit is used to find the asymptotic value of
the variance for∆E→ 0, which corresponds to the size of the fluctuations in a microcanonical
ensemble.

Note that experiments typically suffer from atom loss and technical heating. Moreover, the
experimental results are extracted from multiple experimental realizations by using a correla-
tion technique [17,18]. Hence, even in the absence of interactions the experiment would not
correspond to this ideal ∆E → 0 limit and we therefore expect the measured atom number
variance in the Bose-Einstein condensate to lie somewhere between its extremal values, i.e.
between the microcanonical and canonical fluctuations.

Figure 7 shows that the atom number variance ∆2N0 is significantly reduced in the tran-
sition from the canonical ( f = 1) to the microcanonical ensemble (limit f → 0). While the
results are qualitatively similar, the quantitative reduction depends on the aspect ratio of the
trapping potential λ. Importantly, the fluctuations differ significantly in a canonical and a
microcanonical calculation even in a very elongated trap (λ= 10) for N = 104 atoms.

5.1 Comparison of canonical and microcanonical fluctuations in 3D

Based on the analysis in a 3D harmonic trap, once again the question arises whether the fluc-
tuations depend on the choice of the statistical ensemble in the limit of large atom number
N → ∞. We study this problem for the non-interacting 3D harmonically trapped gas by
evaluating the ratio S between microcanonical and canonical fluctuations for experimentally
relevant aspect ratios λ from 1 to 20 and up to 105 atoms.

Figure 8 shows the ratio between microcanonical and the canonical fluctuations evaluated
with an FSS method analysis and using exact recurrence relations for small atom numbers.
Note that the FSS method does not provide the ratio S directly and we therefore take the
following approach. In the analysis the set of states representing the canonical ensemble for
which∆2N0cano is maximal is reduced by post-selection and converges to a set consistent with
the microcanonical ensemble. However, this is not necessarily the set for which the fluctuations
∆2N0micro reach their maximum and we therefore denote the resulting ratio of the fluctuations
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Figure 8: Ratio between microcanonical and the canonical fluctuations in a non-
interacting harmonically trapped 3D gas. The coefficients S (the ratio of the peak
fluctuations in both ensembles, see eq. 14) and S̃ (see text) characterizing this ratio
are shown as a function of the number of atoms N for different aspect ratios. Data
points indicate solutions of the FSS method analysis. Solid lines represent exact
results obtained using the recurrence relations given in Appendix B.

by S̃. It may differ from S due to two reasons. Firstly, the microcanonical fluctuations should
be labelled by the proper control parameter, i.e. energy. However, in the FSS method we
assume that the temperature is inherited from the canonical ensemble. Secondly, for a small
number of atoms, the maximal fluctuations are reached at slightly different temperatures in
both ensembles. To evaluate the effect, we compute S̃ and S using an exact method (see
Appendix B) as shown in Fig. 8. This shows that the two ratios agree for atom numbers above
a few hundred atoms and validates the use of S̃ obtained from our FSS method analysis for
larger atom numbers.

Overall, Fig. 8 shows that the ratio between microcanonical and the canonical fluctuations
first grows and then starts to decrease. This growth for small number of atoms is easily under-
stood. In an elongated trap, the atoms easily populate the low lying energy levels associated
with the longitudinal direction and thus the system becomes effectively one-dimensional, dis-
cussed in the previous section. For N sufficiently large, however, the 3D character of the trap
becomes relevant, since the levels in the transverse directions also become populated. This is
in striking contradiction with the result in the strict 1D case where S approaches 1 (compare
with Fig. 5) and clearly breaks with the notion that results in the large atom limit should be
independent of the thermodynamic ensemble.

Note that the expected value of S in the limit N →∞ is given by

S3D =

�

1−
3ζ(3)2

4ζ(4)ζ(2)

�

≈ 0.39 , (19)

which is the ratio between the asymptotically known microcanonical fluctuations, Eq. (18),
and fluctuations in the canonical ensemble [7]

lim
N→∞

�

∆2N0

�

cano

N
=
ζ(2)
ζ(3)

. (20)

The FSS method analysis for 105 atoms in a spherical trap results in S ≈ 0.45 which approaches
the asymptotic value 0.39.
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Figure 9: Atom number fluctuations with and without interactions in a 3D harmon-
ically trapped gas containing N = 100 atoms, computed in the canonical (top) and
microcanonical (bottom) ensemble. The variance of the atom number is shown as
a function of temperature for a spherically symmetric λ = 1, (blue) and an elon-
gated λ = 7 (orange) trap with and without interactions. The horizontal dashed
lines correspond to the maximal condensate atom number fluctuations for the non-
interacting gas in each case. The reference temperature Tmax is the temperature of
maximal fluctuations of the non-interacting gas in the canonical ensemble. The units
of the interaction strength g are (mωz)

3
2ω⊥/
p
ħh.

5.2 Microcanonical fluctuations in an interacting 3D gas

Finally, the Fock state sampling method allows for the investigation of weak repulsive interac-
tions in a 3D harmonically trapped gas, which remains a controversial problem. In particular,
different theoretical approaches do not even agree whether interactions lead to an increase or
a decrease of fluctuations (as summarized in Fig. 4 of [17]). In the case of 1D confinement this
was discussed in Sec. 4. There it was shown that the direction of the shift due to interactions
is temperature dependent and thus theories valid at different temperatures come to different
conclusions. Moreover, the direction of the shift depends on the particular system e.g. at low
temperatures interactions lead to decrease of fluctuation in the 1D ring trap, while an increase
is observed for the 1D harmonic potential.

In this sense, it is of particular importance to evaluate the interactions in the experimentally
relevant 3D harmonic potential. The FSS method allows for such an analysis for very weak
interactions where the state of the Bose-Einstein condensate does not differ significantly from
the lowest harmonic oscillator state. Moreover, the post-selection process introduced above
allows for the calculation of the fluctuations in the microcanonical ensemble.

Figure 9 shows the atom number fluctuations for a non-interacting and interacting gas, in
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the canonical (upper panel) and the microcanonical (lower panel) ensembles. A comparison
between the upper and lower panel shows the clear overall suppression of fluctuations in the
microcanonical case as discussed in Sec. 5.1. Moreover, each panel shows that the fluctuations
in a spherical trap are generally lower than the ones observed in an elongated geometry in
accordance with the previous findings of Fig. 8.

To discuss the temperature dependence, it is normalized to the temperature of maximal
fluctuations of the non-interacting gas in the canonical ensemble Tmax. This avoids an ambi-
guity in the definition of the critical temperature for finite systems. In the canonical case the
interactions lead to a shift of the peak fluctuations to lower temperatures as expected for a
shift of the critical temperature due to interactions. This is reminiscent of the effect observed
in the 1D harmonic configuration of Fig. 4. The shift leads to increased fluctuations at low
temperature and a decrease at Tmax. Importantly, the value of the peak fluctuations depends
on the aspect ratio λ and can both increase or decrease as shown in Fig. 9 (upper panel).

Finally, the experimentally most relevant case are the fluctuations in the microcanonical
ensembles as shown in Fig. 9 (lower panel). Similar to the previous case interactions lead to a
shift of the peak fluctuations and a resulting increase at low temperature. The peak fluctuations
do not show a uniform behaviour as they increase in an elongated trap but remain constant in
a spherical geometry.

Our results clearly show that the effect of interactions on the atom number fluctuations
in a Bose-Einstein condensate depend both on the temperature and the trapping geometry of
the gas. In that sense one can not expect a single answer to the question whether interactions
increase or decrease the fluctuations in a Bose-Einstein condensate.

6 Conclusion

In this paper the fluctuations of a Bose-Einstein condensate were investigated in the non-
interacting gas and in the case of very weak interactions. Using the Fock state sampling method
we studied the fluctuations in different trap geometries, and in the canonical and microcanon-
ical ensembles as a function of temperature.

In a 1D system with periodic boundary conditions our results agree with the classic result of
S. Giorgini, L. Pitevskii and S. Stringari [19] based on the Bogoliubov approximation for low
temperatures. However, the fluctuations increase for higher temperatures and the maximal
fluctuations are indeed larger than to the non-interacting result. Thus, we resolved a long
standing controversy by showing that the Bogoliubov approximation only leads to reliable
results at low temperatures.

For the case of the 1D harmonically trapped gas we showed that interactions lead to a
clear shift of the peak fluctuations to lower temperatures. This is in general agreement with
the expected shift of the critical temperature and leads to increased fluctuations at low tem-
peratures. Moreover, we employed a post-selection process to the FSS method to evaluate the
fluctuation in the microcanonical ensemble. This showed a clear reduction of the fluctuations
with respect to the canonical expectation for a gas containing 100 atoms. Nonetheless, a gen-
eral analysis showed that the canonical and microcanonical results agree in the limit of large
atom numbers in 1D.

Finally, we investigated the experimentally most relevant case of a 3D harmonically trapped
gas. In this case the microcanonical calculation yields a reduction of the peak fluctuations
which depends on both aspect ratio and atom number. Importantly, our FSS method results
for large atom numbers slowly approach the expected asymptotic value and thus confirm that
the canonical and microcanonical fluctuations do not agree in the limit of large atom numbers
in 3D.
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The weakly interacting 3D harmonically trapped gas shows fluctuations which are both
shifted in temperature and altered in amplitude depending on temperature and trapping ge-
ometry. Thus it is clearly not possible to provide a universal rule for the effect of interactions
on the fluctuations of a Bose-Einstein condensate.

In view of these results, recent experiments [18] should be compared to calculations in
the microcanonical ensemble. In future work we will extend the FSS method to include the
realistic condensate wave-function. This will allow us to make quantitative predictions for the
fluctuations in realistic experimental systems. Moreover, we will be able to map out the effect
of the ensemble choice and the interactions in a large parameter space.
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A Technical details of the algorithm

The FSS method is a realization of the Metropolis algorithm that samples multimode Fock
state configurations in the canonical ensemble. Let |θ 〉 = |N0, N1, . . .〉, |θ ′〉 = |N ′0, N ′1, . . .〉 be
the Fock states representing respectively the initial state and a slightly modified candidate. In
the FSS method, we restrict ourselves in generating θ ′ to only the ones that amount to moving
a single particle from one orbital φi to another φ j , compared to the original state θ , that is
N ′i = Ni − 1, N ′j = N j + 1 and N ′k = Nk for k ̸= i ∧ k ̸= j. Let qA(θ , i) and qB(θ , j) be the
probabilities of randomly selecting orbitals φi and φ j (note the explicit dependence on the
state θ). We define the proposal distribution

Q(θ ′|θ ) = qA(θ , i)qB(θ , j) , (21)

with
qA(i)∝ exp(−γEi)Ni , qB( j)∝ exp(−γE j)(N j + 1) , (22)

where γ > 0 is a parameter of the method and Ei , E j are the single particle energies of their
respective orbitals. The exponential factors are introduced to remedy the wasteful jumps in
high energy orbitals. The parameter γ allows for tuning of the acceptance rate of the algorithm
and thus optimizing its convergence rate. The proposal distribution is not symmetric for γ ̸= 0,
that is Q(θ ′|θ ) ̸=Q(θ |θ ′) and it is taken into account, however the ratio Q(θ ′|θ )/Q(θ |θ ′)≈ 1
when the number of particles is large (on the order of 100 and above). The tuning parameter
γ takes for example values of about 0.2 and 0.1 for 100 and 1000 particles, respectively, in a
spherical harmonic trap.
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In our implementation of the algorithm, the complexity of calculating the energy difference
between states θ and θ ′ is O(log2 N) in the non-interacting case and O(N2) in the interact-
ing case, where N is the total number of particles. The algorithm scales perfectly for large
computer clusters or CPUs with large number of cores as multiple independent instances can
be launched simultaneously and after thermalization, each instance produces independent
samples from the same ensemble.

B Recurrence relations used to compute the partition functions

B.1 Recurrences for microcanonical partition function in a harmonic trap

Following [34] we introduce, a new function of three arguments, Γ̃ex(N , E,ε). This function is
the number of ways to distribute N particles between excited energy levels such that the total
energy is E, but with the restriction that energy levels above ε are empty.

With this definition we have the relation

Γ̃ex(N , E,ε= 0) = δN ,0δE,0 , (23)

where, as before, we assume that the the energy levels are written in oscillator units and are
therefore given by integers.

The values of Γ̃ex(N , E,ε) for other energy thresholds ε follow the recurrence

Γ̃ex(N , E,ε j) =
N
∑

n j=0

Γ̃ex(N − n j , E − n j ε j ,ε j − 1)
�D(ε j) + n j − 1

D(ε j)− 1

�

, (24)

where D(ε j) is a degeneracy of the energy level ε j .
The label n j in the recurrence (24) has the meaning of the number of atoms occupying

the energy level ε j . There are
�D(ε j)+n j−1

D(ε j)−1

�

ways of distributing n j indistinguishable bosons

between D(ε j) levels. If exactly n j atoms seats in the energy level ε j , then the remaining
N − n j ones occupy energy levels up to ε j − 1, such that their total energy is E − n j ε j .

The microcanonical partition function for the excited atoms, i.e. Γex(Nex, E), can be ob-
tained from the auxiliary function Γ̃ex(N , E,ε) using the relation

Γex(N , E) = Γ̃ex(N , E, E) , (25)

which expresses the fact that there is no partition leading to the total energy E which would
involve energy levels higher than E.

As described in the main text, the microcanonical partition function is given by

Γ (N , E) =
N
∑

Nex=0

Γex(Nex, E) , (26)

linebreak and the probability of finding N0 atoms in the ground state is

pmicro (N0, N , E) = Γex(N − N0, E)/Γ (N , E) . (27)

Alternatively, one can directly use a recurrence for an auxiliary partition function
Γ̃ (N , E, k), defined similarly to the previous one, but including atoms in the ground state.
It still obeys the recurrence relation (24), but with a slightly different initial condition
Γ̃ (N , E, k = 0) = δE, 0. In this implementation the probability of finding exactly Nex excited
atoms is
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pmicro (N0, N , E) =
1

Γ̃ (N , E, E)

�

Γ̃ (N − Nex, E, E)− Γ̃ (N − Nex − 1, E, E)
�

. (28)

There are other recurrence relations, see for instance [5], but (24) turned out easy to
program and relatively efficient.

B.2 Recurrence for canonical partition function in a — harmonic trap

To compute the canonical partition function Z(N ,β) we invoke the recurrence relation

Z(N ,β) =
1
N

N
∑

n=1

Z(1, nβ)Z(N − n,β) . (29)

This relation appears in many contexts and is nicely described in [5].
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[33] M. Kruk, M. Łebek and K. Rzążewski, Statistical properties of cold bosons in a ring trap,
Phys. Rev. A 101, 023622 (2020), doi:10.1103/PhysRevA.101.023622.

[34] Z. Idziaszek, Kwantowe fluktuacje zimnych gazów atomowych, PhD. thesis, Centrum Fizyki
Teoretycznej, Polskiej Akademii Nauk, Warsaw, Poland, (2001).

22

https://scipost.org
https://scipost.org/SciPostPhys.14.3.036
https://doi.org/10.1103/PhysRevLett.90.030401
https://doi.org/10.1016/S1049-250X(06)53010-1
https://doi.org/10.1017/CBO9780511686948
https://doi.org/10.1063/1.1699114
https://doi.org/10.1088/0953-4075/40/2/R01
https://doi.org/10.1088/0953-4075/40/2/R01
https://doi.org/10.1103/PhysRevA.79.033631
https://doi.org/10.1103/PhysRevA.101.023622

	Introduction
	Statistical description of a Bose gas
	Fock state sampling method
	Fluctuations in 1D Bose gases
	1D box with periodic boundary conditions (ring trap)
	1D harmonic trap
	Comparison of canonical and microcanonical fluctuations in 1D

	Fluctuations in 3D systems 
	Comparison of canonical and microcanonical fluctuations in 3D
	Microcanonical fluctuations in an interacting 3D gas

	Conclusion 
	Technical details of the algorithm 
	Recurrence relations used to compute the partition functions
	Recurrences for microcanonical partition function in a harmonic trap
	Recurrence for canonical partition function in a — harmonic trap

	References

