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Abstract

We study coherent forward scattering (CFS) in critical disordered systems, whose eigen-
states are multifractals. We give general and simple arguments that make it possible to
fully characterize the dynamics of the shape and height of the CFS peak. We show that
the dynamics is governed by multifractal dimensions D1 and D2, which suggests that CFS
could be used as an experimental probe for quantum multifractality. Our predictions are
universal and numerically verified in three paradigmatic models of quantum multifractal-
ity: Power-law Random Banded Matrices (PRBM), the Ruijsenaars-Schneider ensembles
(RS), and the three-dimensional kicked-rotor (3DKR). In the strong multifractal regime,
we show analytically that these universal predictions exactly coincide with results from
standard perturbation theory applied to the PRBM and RS models.
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1 Introduction

Wave transport in disordered systems is a long-standing topic of interest in mesoscopic physics.
In particular, wave interference can have dramatic consequences on quantum transport prop-
erties. The most celebrated example is probably Anderson localization (AL) [1], that is, the
suppression of quantum diffusion and the exponential localization of quantum states. AL is
ubiquitous in wave physics and has been observed in many experimental situations: with
acoustic waves [2,3], light [4–8], matter waves [9–15].

Appearance of AL depends on several characteristics, in particular dimensionality, disorder
strength and correlations. For instance, it is well established that 3d disordered lattices
undergo a genuine disorder-driven metal-insulator transition (MIT), associated with a mobility
edge in the spectrum, separating the insulating phase with localized eigenstates from the
conducting phase with extended eigenstates. Near the critical point of such disorder driven
transitions, eigenstates φα (with energy ωα) can display multifractal behavior, for instance at
the MIT in Anderson model [16–18] and graphs [19–21], but also for Weyl-semimetal–diffusive
transition [22]. They are extended but non-ergodic, and characterized by the anomalous scaling
of their moments Iq(E):

Iq(E) =
〈
∑

n,α |φα(n)|
2qδ(E −ωα)〉

〈
∑

αδ(E −ωα)〉
∼ N−Dq(q−1) , (1)

where Dq are the multifractal dimensions, forming a continuous set with q real (〈. . .〉 represents
an average over disorder configurations). Extreme cases Dq = 0 and Dq = d (the dimension of
the system) for all q, correspond respectively to localized and extended ergodic eigenstates.

While Anderson MIT has been observed directly in atomic matter waves [13], experimental
observation of multifractality remains challenging [23–26]. In particular, there exists to our
knowledge no direct experimental observation of dynamical multifractality, i.e. manifestation of
multifractality through transport properties (e.g. power-law decay of the return probability [27,
28]).

Another celebrated wave interference effect is the coherent backscattering (CBS). It de-
scribes the doubling of the scattering probability (with respect to incoherent classical contribu-
tion) of an incident plane wave with wave vector k0, in the backward direction −k0. Coherent
backscattering has been observed in many experimental situations: with light [29–33], acoustic
waves [34,35], seismic waves [36] and cold atoms [37,38]. Recently, it was demonstrated that
in the presence of AL a new robust scattering effect emerges [39–46], namely the doubling
of the scattering probability in the forward direction +k0. This phenomenon, which appears
at long times, was dubbed coherent forward scattering (CFS). CBS and CFS actually have a
distinct origin: CBS comes from pair interference of time-reversed paths (and thus requires
time-reversal symmetry), while CFS is present even in the absence of time-reversal symme-
try [39,40]. From an experimental point of view, CFS has recently been observed with cold
atoms [38].

In this work, we discuss the fate of CFS at the critical point of a disorder-driven transi-
tion with multifractal eigenstates. This problem was first addressed for a bulk 3d Anderson
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Figure 1: CFS contrast ΛN (k, t; E) defined by (40) in critical disordered systems. k0
is the wave vector of the incident plane wave and Dq are the multifractal dimensions
of the eigenstates. (a) In systems of infinite size N →∞, the emergence of the CFS
peak as a function of time is governed by the nonergodic properties of multifractal
eigenstates. The CFS wings decay asymptotically like (|k− k0|t1/d)−D2 , see Eqs. (62)
and (63), while the CFS peak height grows algebraically in time like t−D2/d and finally
reaches the compressibility value χ = 1 − D1

d in the long-time limit t → ∞, see
Eq. (58). (b) For systems of finite size N , the long-time dynamics of the CFS peak is
governed by the box boundaries. The CFS peak height reaches 1−αN−D2 for t →∞
with α some numerical factor, see Eq. (56). The wings of the CFS peak are then
described by Eq. (54).

lattice [44], for which it was shown that CFS survives at the transition, with however a scatter-
ing probability smaller than in the localized phase. More precisely, it was conjectured from
numerical evidence that, instead of a doubling of the classical incoherent contribution, the
forward scattering probability corresponds to a multiplication by a factor (2− D1/d), with d
the dimension of the system and D1 the information dimension. In our previous study [46],
we gave scaling arguments that corroborate this conjecture, backed by numerical simulations
on the Ruijsenaars-Schneider ensemble, a Floquet system with critical disorder and tunable
multifractal dimensions. We also studied CFS at the transition in finite-size systems, unveiling a
new regime, where CFS properties have finite-size scaling related to the multifractal dimension
D2 [46].

This article is based on the approach developed in our previous work [46] and, somehow, in
the spirit of the random matrix theory point of view discussed in [41]. In particular, we give a
complete description of the dynamics of CFS peak in critical disordered systems, including height
and shape of the scattering probability, in two distinct dynamical regimes. Our findings are
summarized in the sketch in Fig. 1. In particular, we present new links between CFS dynamics
and the multifractal dimension D2, that are relevant for most experimental situations. Our
analytical predictions are verified on three different critical disordered models with multifractal
eigenstates: Power-Law Random Banded Matrices (PRBM), Ruijsenaars-Schneider ensemble
(RS) and unitary three-dimensional random Kicked Rotor (3DKR). Our predictions are also
corroborated by perturbative expansions for RS and PRBM models in the strong multifractality
regime. These results pave the way to a direct observation of a dynamical manifestation of
multifractality in a critical disordered system.

2 Critical disordered models

As explained, in the following, our predictions will be compared to numerical simulations
on three different models. All of them can be mapped onto the generalized d-dimensional
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Table 1: Summary of some of the main properties of the three models considered in
this article (see text for more details).

Model PRBM RS 3DKR

Tunable multifractal dimensions Dq Yes with b ∈ [0,∞[ Yes with a ∈ [0,∞[ No
Type Hamiltonian Floquet Floquet

Energy dependent properties Yes No No
Hopping range tn Long-range ∼ 1/n Long-range ∼ 1/n Short-range (exponential decay)

Dimension d = 1 d = 1 d = 3
Direct (disorder) space Position Momentum Momentum

Anderson model, defined by the following tight-binding Hamiltonian

Ĥ =
∑

n

ϵn |n〉〈n|+
∑

n̸=m

tnm |n〉〈m| , (2)

where |n〉 are the lattice site states, ϵn the on-site energies and tnm the hopping between two
sites at distance |n−m|. Both ϵn and tnm can be considered arbitrary random variables, whose
exact properties will depend on the system considered (see Table 1). We will be interested in
finite-size effects, and will consider a system with linear size N , i.e. with a total number of sites
equal to N d .

MIT in the generalized Anderson model (2) has been intensively studied (see [18, 47]
and references therein). The three relevant parameters are the spatial dimension d of the
lattice, the range of the hopping tnm, and existence of correlations in the random entries of
the Hamiltonian. We recall here some well established facts: (i) in the absence of disorder
correlations and if 〈|tnm|〉 decay faster than 1/|n−m|d , Anderson transition only occurs for
d > 2; (ii) in the absence of disorder correlations, critical eigenstates can appear if 〈|tnm|〉
decay as fast as 1/|n−m|d ; (iii) correlations in diagonal disorder ϵn weaken localization while
correlations in off-diagonal disorder tnm can favour localization.

We now discuss the characteristics and properties of the different models we used, as well
as their link with the Anderson model (2). A summary is given in Table 1.

2.1 Power-Law Random Banded Matrices (PRBM)

Power-law random banded matrices were first introduced in [48]. They were inspired from
earlier random banded matrix ensembles with exponential decay describing the transition from
integrability to chaos [49]. The PRBM model is defined by symmetric or Hermitian matrices
whose elements are identical independently distributed (i.i.d.) Gaussian random variables with
zero mean and variance decreasing as a power law with the distance from the diagonal. The
critical PRBM model corresponds to an Anderson model (2) with random long-range hopping
whose variance decays as the inverse of the distance between sites.

More precisely, let N (µ,σ) be a Gaussian distribution of mean µ and standard deviation σ.
In the following we use the version of PRBM considered in [17,50], with periodic boundary con-
ditions, where for N×N matrices diagonal entries ϵn are i.i.d. with distribution N (0, 1), and real
and imaginary parts of the off-diagonal entries tmn are i.i.d. with distribution N

�

0,σnm/
p

2
�

,

σ2
nm =

�

1+
sin2(π|n−m|/N)
(bπ/N)2

�−1

. (3)

In particular we have
Æ

〈|tnm|2〉= σnm, which scales as ∼ 1/|n−m| for b≪ |n−m| ≪ N .
The density of states is defined as

ρ(E) = 〈
1

N d

∑

α

δ(E −ωα)〉 , (4)
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which for this model gives

ρPRBM(E) =

¨

1p
2π

exp
�

− E2

2

�

, b≪ 1 ,
1

2bπ2

p
4bπ− E2 , b≫ 1 .

(5)

Eigenvectors are multifractal, and their multifractal dimensions Dq, which depend on both
E and parameter b, can be analytically computed [18,50]. Parameter b makes it possible to
explore the whole range of multifractality regime: the weak multifractality regime Dq→ 1 is
reached for b→∞ and the strong multifractality regime Dq → 0 is reached for b→ 0. All
numerical data presented in this work are performed at the center of the band E = 0.

2.2 Ruijsenaars-Schneider model

Let us consider the following deterministic kicked rotor model [51,52]

Ĥ =
τp̂2

2
+ V ( x̂)
∑

n

δ(t − n) , (6)

with a 2π-periodic sawtooth potential V (x) = ax for −π < x < π, and where τ is a constant
parameter. As a direct consequence of spatial periodicity of V (x), momenta only take quantized
values pn = 0,±1,±2, . . . (here ħh= 1). Additionally, we consider a truncated basis in p space,
with periodic boundary conditions, so that the total number of momenta states |pn〉 accessible
is N . This implies that position basis is also discretized (xk are separated by intervals 2π/N ,
with k an integer).

It is well-known that kicked Hamiltonians such as (6) can be mapped onto the Anderson
model (2) [53,54]. The N quantized plane waves |pn〉 then play the role of lattice site states
|n〉. The mapping is given (for an eigenvector of the Floquet operator with eigenphase eiω) by

ϵn = tan
�

ω/2−τn2/4
�

, (7)

tnm = −
∫ π

−π

dx
2π

tan[V (x)/2]e−i x(m−n) , (8)

where the on-site energy ϵn takes evenly distributed pseudo-random values, provided τ is
sufficiently irrational. As a consequence of the Fourier transform relation in Eq. (8), discontinuity
of the sawtooth potential V (x) creates a long-range decay of the couplings tnm ∼ 1/|n−m|
and actually induces multifractal eigenstates.

The Ruijsenaars-Schneider (RS) model was introduced in the context of classical mechanics
[55–57]. Its quantum properties were studied in [58–60]. It is defined (for an arbitrary real
parameter a) by the Floquet operator of the Hamiltonian (6) (with truncated basis in p space)

Û = e−iϕp̂ e−ia x̂ , (9)

where the deterministic kinetic phase has been replaced by random phases ϕp̂ (consequently
the on-site energies ϵn in Eq. (7) are truly uncorrelated), and x is taken modulo 2π [61].

Importantly, unlike for PRBM, eigenstate properties of the RS matrix ensemble do not
depend on their quasi-energy. In particular it has a flat density of states

ρRS(E) =
1

2π
. (10)

Eigenvectors are multifractal; the multifractal dimensions can be derived in certain perturbation
regimes, and only depend on the parameter a [62–65]. This parameter a allows us to explore
the whole range of multifractality regimes : the weak multifractality regime Dq→ 1 is reached
for a→ 1 and the strong multifractality regime Dq→ 0 is reached for a→ 0.
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2.3 3d Random Kicked Rotor (3DKR)

Our three-dimensional (3d) model is the deterministic kicked rotor, defined by the following
Hamiltonian [66]

Ĥ =
τx p2

x

2
+
τy p2

y

2
+
τz p2

z

2
+ V (q)
∑

n

δ(t − n) , (11)

where τi are constant parameters and the spatial potential writes V (q) = KV(x)V(y)V(z),
K the kick strength, with

V(x) =
p

2
2

�

cos x +
1
2

sin2x
�

, (12)

so that the system breaks the time-reversal symmetry [45].
As previously stated, the Hamiltonian (11) can be mapped onto the 3d Anderson model (2).

For a given eigenstate of the system with eigenphase eiω, this mapping writes

ϵn = tan
�

ω/2−τx n2
x/4−τy n2

y/4−τzn2
z/4
�

, (13)

tnm = −
∫∫ π

−π

dq
(2π)3

tan[V (q)/2]e−iq·(m−n) , (14)

where energies ϵn take pseudo-random values (provided that (τx ,τy ,τz) are incommensurate
numbers), and where hopping terms tnm decay exponentially fast with distance between sites
|n−m| [66].

The 3d random Kicked Rotor (3DKR) that we consider in the following corresponds to the
Floquet operator of Hamiltonian (11)

Û = e−iφp̂e−iV (q̂) , (15)

where deterministic kinetic phases are replaced by uniformly distributed random phases φp
(this implies in particular that energies ϵn in Eq. (13) are uncorrelated).

The 3DKR can be seen as the Floquet counterpart of the usual 3d unitary Anderson Model.
In particular it undergoes an Anderson transition monitored by the parameter K (that is related
to the hopping intensity). Using techniques inspired by [66, 67], we found that the critical
value is Kc ≈ 1.58 (see Appendix A). However, unlike the 3d Anderson model, this unitary
counterpart has a flat density of states

ρ3DKR(E) =
1

2π
, (16)

and no mobility edge.
Furthermore, we assumed that 3DKR has the same multifractal dimensions as the cor-

responding unitary 3d Anderson model, because it belongs to the same universality class.
The values that were determined in [68] (using the same techniques as in [69, 70]) are
D1 = 1.912± 0.007 and D2 = 1.165± 0.015.

3 General framework for the study of CFS in critically disordered
systems

3.1 Eigenstates and time propagator

In the following, we will analytically and numerically address CFS in critical disordered systems
within a very general framework, including both Floquet and Hamiltonian cases. The numerical
methods are presented in Appendix B.
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For the sake of clarity, we use a common notation: |φα〉 refer to eigenstates (or Floquet
modes) with energy (or quasienergy) ωα. The time propagator of the system then writes

Û(t) =
∑

α

e−iωα t |φα〉 〈φα| , (17)

where time will be considered a continuous variable. In particular, we use the following
convention and notation for the temporal Fourier transform:

f (ω) =

∫ ∞

−∞
dt f (t)eiωt , f (t) =

∫ ∞

−∞

dω
2π

f (ω)e−iωt . (18)

3.2 Direct and reciprocal spaces

As illustrated by the models introduced above, in generic critical disordered systems disorder
can be present either in position space (e.g. PRBM, Anderson model) or momentum space
(e.g. 3DKR, RS). From now on, we refer to the basis where disorder is present (labeled with
kets |n〉) as the direct space and to its Fourier-conjugated basis (labeled with kets |k〉) as the
reciprocal space. This distinction is particularly important because multifractality of eigenstates
is a basis-dependent property that only appears in direct space, where disorder is present, while
CFS is an interference effect taking place in reciprocal space.

Importantly, we choose to use standard notations of spatially disordered lattice systems, as
in Eq. (2). For a d-dimensional system, direct space is spanned by discrete lattice sites states
|n〉 = |n1, . . . , nd〉 (ni = −N/2+ 1, . . . N/2) (N will be considered even). The dimension of
the associated Hilbert space is N d . Consequently, the reciprocal space is spanned by a basis
|k〉 = |k1, . . . , kd〉 (where ki = ±

π
N ,±3π

N · · · ±
(N−1)π

N ). We also choose the following convention
for the change of basis (see Appendix C for details)

φα(k) =
∑

n∈]−N/2,N/2]d
φα(n)e

−ik·n , (19)

φα(n) =
1

N d

∑

k∈]−π,π]d
φα(k)e

ik·n , (20)

so that in the limit N →∞ the system tends to a infinite-size discrete lattice, that is,

φα(k) −→N→∞

∞
∑

n1=−∞
· · ·

∞
∑

nd=−∞
φα(n)e

−ik·n , (21)

φα(n) −→N→∞

∫∫ π

−π

ddk
(2π)d

φα(k)e
ik·n . (22)

We insist that for 3DKR and RS models, direct space is the momentum space. For instance
for the RS model the basis |n〉 corresponds to plane waves with discrete momenta p = nħh
(with ħh = 1) because of spatial 2π-periodicity of kicked Hamiltonians. Consequently, the
reciprocal space corresponds to position space, so that |k〉 corresponds to discrete positions
xk = ±

π
N ,±3π

N · · · ±
(N−1)π

N . Spatial discretization comes from the imposed periodic boundary
conditions in the truncated momentum basis, so that the linear system size in direct space is N .

3.3 Form factor and level compressibility

Previous studies [39–46] found that CFS dynamics could be related to the form factor. We will
show that it is the same in critical disordered systems. We recall some definitions that will be
useful in forthcoming calculations.
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3.3.1 Form factor

The form factor is the Fourier transform of the two-point energy correlator; it is usually defined
as

KN (t) =
1

N d
〈
∑

α,β

e−iωαβ t〉 , (23)

with ωα,β =ωβ −ωα. It can be rewritten as

KN (t) =

∫

dEρ(E)KN (t; E) , (24)

with

KN (t; E) =
1

N dρ(E)

*

∑

αβ

e−iωαβ tδ

�

E −
ωα +ωβ

2

�

+

. (25)

The component KN (t; E) of the form factor can be interpreted as coming from contributions
of all interfering pairs of states whose average energy is E. In order to lighten forthcoming
calculations, we introduce the following implicit notation

〈
∑

α,β

. . .〉E ≡

*

1
ρ(E)

∑

α,β

δ

�

E −
ωα +ωβ

2

�

. . .

+

, (26)

〈 f (ωα)〉E ≡
�

1
ρ(E)

∑

α

δ(E −ωα) f (ωα)
�

, (27)

so that KN (t; E) writes

KN (t; E) =
1

N d
〈
∑

α,β

e−iωαβ t〉E . (28)

3.3.2 Compressibility and link to multifractal dimensions

The level compressibility χ is defined as

χ = lim
t/N d→0

KN (t; E) . (29)

It is a measure of long-range correlations in the spectrum. It estimates how much the variance
of the number of states in a given energy window scales with the size of the window. For usual
random matrices (GOE, GUE. . . ) χ = 0, while for Poisson statistics χ = 1.

For critical systems that have intermediate statistics, the level compressibility lies in between
0 < χ < 1 [27]. It was proposed that χ could actually be related to multifractal dimension
D2 via χ = 1− D2/2d [27, 71], but it was later observed that this relation fails in the weak
multifractal regime. Another relation was then conjectured [60], relating χ to the information
dimension D1

χ = 1−
D1

d
, (30)

and has since been verified in many different systems [63,72–74] (see also Appendix B).
The information dimension D1 appearing in Eq. (30) is defined trough the asymptotic

expansion of Eq. (1) in the limit q→ 1

〈
∑

n,αδ(E −ωα)|φα(n)|
2 ln |φα(n)|2〉

〈
∑

αδ(E −ωα)〉
∼ D1 ln N , (31)

and can be seen as the Shannon entropy of eigenstates |φα(n)|2.
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3.4 Energy decomposition and contrast definition

CFS is an interference effect that appears when the system is initially prepared in a state
localized in reciprocal space, |ψ(t = 0)〉= 1

N d/2 |k0〉 (our Fourier transform and normalization
conventions are listed in Appendix C). The observable of interest is the disorder averaged
scattering probability in direction k, defined as n(k, t) = 1

N d 〈| 〈k|Û(t)|k0〉 |2〉. Using (17), it
can be expanded over eigenstates as

n(k, t) =
1

N d
〈
∑

α,β

e−iωαβ tφα(k)φ
⋆
α(k0)φβ(k0)φ

⋆
β(k)〉 . (32)

3.4.1 Energy decomposition

As previously stated, multifractal properties of eigenstates may depend on their energy. Follow-
ing the lines of [44], we rewrite the contrast in the following way

n(k, t) =

∫

dEρ(E)n(k, t; E) , (33)

where n(k, t; E) is the contribution of all interfering pairs of states whose average energy is E
and is given by (see Eqs. (26)–(27))

n(k, t; E) =
1

N d
〈
∑

α,β

e−iωαβ tφα(k)φ
⋆
α(k0)φβ(k0)φ

⋆
β(k)〉E . (34)

3.4.2 Classical incoherent background

Coherent scattering effects (such as CFS and CBS) build on top of a classical incoherent
diffusive background. This classical incoherent contribution can be described by introducing
the disorder-averaged spectral function

A(k; E) =
1

N d
〈
∑

α

|φα(k)|2δ(E −ωα)〉 . (35)

Using the normalization condition Eq. (C.14), A(k0; E) can be interpreted as the probability
that the system has energy E when initialized in the plane wave state |k0〉. By the same token,
Eq. (C.13) shows that A(k, E)/ρ(E) can be interpreted as the distribution in reciprocal space
associated with the system residing on the energy-shell E (ergodicity). Taking the product of
these two probabilities and using Eq. (33), we find that the classical incoherent contribution
reads:

nclass(k; E) =
A(k, E)
ρ(E)

A(k0, E)
ρ(E)

. (36)

This result has been derived and numerically checked in [41,42] in the case of random potentials
in 1 or 2 dimensions (note that in these works one of the factors ρ(E) in the denominator was
absorbed in the definition of the spectral function at energy E).

For usual disordered systems such as the Anderson model, the spectral function A(k; E)
depends on k with a width related to the inverse scattering mean free path 1/ℓs [42]. However,
for kicked systems such as models (9) and (15), one can show that A(k; E) = ρ(E) [45]. The
essence of the argument is that the Fourier transform of (35) in direct space n and time A(n; t)
is given by the matrix elements of Û t averaged over disorder:




〈m|Û t |n〉
�

= δm,nδt,0 . (37)
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This result is a consequence of the uniform distribution of the random phases over [0, 2π]. The
equality A(k; E) = ρ(E) can be seen as the limit ℓs→ 0, that is, when ℓs becomes less than the
lattice spacing [41]. Notably, we found that the relation A(k; E) = ρ(E) also holds in the case
of PRBM, where the inverse scattering mean free path is less clearly defined; this is illustrated
in Fig. 8 of Appendix B. In fact, for PRBM the relation is a consequence of the independence of
the matrix elements, as we demonstrate analytically in Appendix D.

This property that the spectral function reduces to the density of states can be understood
as a consequence of a ”diagonal approximation” central to our work. Starting from (35) and
expanding A(k; E) in direct space, we have

A(k; E) =
1

N d

∑

n,m

〈
∑

α

φα(n)φ
⋆
α(m)δ(E −ωα)〉e

ik·(n−m) . (38)

The case where disorder average washes out the off-diagonal terms n ̸=m is usually referred
to as ”diagonal approximation”. Under that approximation we have

A(k; E)≈
1

N d

∑

n

〈
∑

α

|φα(n)|2δ(E −ωα)〉= ρ(E) . (39)

The identity A(k; E) = ρ(E) can thus be seen as resulting from the absence of correlations
between norm and phase of the eigenstates in direct space, so that only terms where phase
factors cancel (i.e. diagonal elements) do survive the disorder average. This is corroborated by
the direct numerical computation of these correlations for the RS model (see Appendix E), as
well as by the analytical derivation of Appendix D in the PRBM case. We thus think that the
diagonal approximation we use in this article should hold in many critical systems, as long as
there is no correlation in disorder that might induce correlations between norm and phase in
direct space.

The classical contribution Eq. (36) then simply reduces to a k-independent and
E-independent flat background nclass(k; E) = 1.

3.4.3 Contrast

The CFS and CBS peaks emerge from this classical background. Following the lines of [44]
we introduce the CFS contrast ΛN (k, t; E) as the interference pattern relative to the classical
background, at a given energy. In the diagonal approximation discussed above, it simply reads

ΛN (k, t; E) = n(k, t; E)− 1 . (40)

4 Universal predictions for CFS dynamics

In this Section we explain the main hypotheses of our approach, and we derive a simple
expression for the CFS contrast. We then discuss the existence of two distinct dynamical
regimes, one corresponding to large time limit of finite-size systems, the other one to infinite-
size systems. We describe the CFS contrast in these two regimes.

4.1 General predictions

4.1.1 Extended diagonal approximation

First, we take the temporal Fourier transform (18) of the CFS contrast given by (34) and (40),
and expand it in direct space. This gives

ΛN (k,ω; E) =
2π
N d

∑

n1,n2
n3,n4

C(ω; E)eik·(n1−n4)−ik0·(n2−n3) − 2πδ(ω) , (41)
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with
C(ω; E) = 〈
∑

α,β

δ(ω−ωαβ)φα(n1)φ
⋆
α(n2)φβ(n3)φ

⋆
β(n4)〉E . (42)

Following the idea of the "diagonal approximation" used to derive Eq. (39), we claim that
correlation functions C(ω; E) should generically vanish (or become negligible) upon disorder
average unless they are of the two following kinds: (i) tuples such as n1 = n2 and n3 = n4, that
give a real positive contribution, and (ii) tuples such as n1 = n4 ≡ n and n2 = n3 ≡m, whose
temporal Fourier transform is the average transfer probability (at a given energy E) between
|n〉 and |m〉 in direct space, namely

〈| 〈n|Û(t)|m〉 |2〉E = 〈
∑

α,β

e−iωαβ tφα(n)φ
⋆
α(m)φβ(m)φ

⋆
β(n)〉E . (43)

4.1.2 Compact approximate expression for the contrast

Keeping only these non-vanishing contributions (and taking care of double count of the tuple
n1 = n2 = n3 = n4), the CFS contrast can be approximated by

ΛN (k,ω; E) = Λ(1) +Λ(2) − 2πδ(ω) , (44)

where the first term corresponds to the contribution n1 = n2 and n3 = n4,

Λ(1) =
2π
N d

∑

n̸=m

〈
∑

α,β

δ(ω−ωαβ)|φα(n)|2|φβ(m)|2〉E ei(k−k0)·(n−m) , (45)

and the second term comes from the contribution n1 = n4 and n2 = n3,

Λ(2) =
2π
N d

*

∑

α,β

δ(ω−ωαβ)δαβ

+

E

= 2πδ(ω) . (46)

In (46), the Kronecker delta δαβ appears because of eigenstate orthonormalization, and sim-
plifications arises from Eq. (26), using the definition (4) of the density of states. The second
term Λ(2) thus exactly compensates the Dirac delta in (44). The CFS contrast reduces to Λ(1),
and is finally given by the following compact expression

ΛN (k,ω; E) = 2π
∑

n̸=0

〈
∑

α,β

δ(ω−ωαβ)|φα(n0)|2|φβ(n0 + n)|2〉E,n0
e−in·(k−k0) , (47)

or equivalently

ΛN (k, t; E) =
∑

n̸=0

〈
∑

α,β

e−iωαβ t |φα(n0)|2|φβ(n0 + n)|2〉E,n0
e−in·(k−k0) , (48)

where the disorder average 〈. . .〉n0
additionally runs over different sites n0.

At the peak k = k0, the expression for the CFS contrast further simplifies. Adding and
subtracting the contribution n = 0 to the sum in (48) and using normalization of wavefunctions,
we get the expression

ΛN (k0, t; E) = KN (t; E)− 〈| 〈n0|Û(t)|n0〉 |2〉E,n0
, (49)

where the first term is the form factor, given by Eq. (28), and second term is the return
probability in direct space at energy E, see Eq. (43).
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Figure 2: Rescaled CFS contrast for PRBM at E = 0 (a,c,e) and for RS averaged
over E, see Eq. (B.14) (b,d,f) in the limit t ≫ τH for different system sizes N (see
Appendix B for numerical procedure). Insets are a zoom around k = k0. The dashed
line correspond to analytical prediction Eq. (54), with a height fitted far from k = k0
(in panel b, the dashed line corresponds to the symmetrized prediction Eq. (101),
where the two parameters A and B have been independently adjusted, which accounts
for the anti-peak (see Sec. 5.4)). The value of D2 used in Eq. (54) and in the y axis is
obtained from scaling of the moments (1) in direct space.

4.1.3 Relevant time scale

It has been shown (see e.g. [42]) that the relevant time scale for the CFS dynamics is given by
the Heisenberg time τH = 2π/∆, where ∆ is the mean level spacing. More precisely, the mean
level spacing corresponds to the spacing in the confining volume, which is associated to the
localization volume in the presence of localization, or to the system volume if the system is
delocalized. In the context of critically disordered media, wavefunctions are delocalized (but
nonergodic); the mean level spacing is ∆= 1/(N dρ(E)), which depends on the system size,
and thus

τH = 2πN dρ(E) . (50)

This defines two distinct regimes for the CFS, with specific properties, that we shall explore
in turn in the next two subsections: (i) when t ≪ τH , CFS originates from the nonergodicity
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Figure 3: CFS contrast peak in the long-time limit (t ≫ τH) and its scaling (56) with
system size N . (a) PRBM model with different b and at E = 0. (b) RS model averaged
over E with different a. (c) 3DKR model with K = 1.58. Symbols are numerical data
for different system sizes. Dashed black lines are Eq. (56), i.e. a single parameter fit
y = αN−D2 with α the fit parameter and D2 independently determined from scaling
of the moments (1) in direct space (for PRBM and RS) or taken from [68] (for 3DKR).
See Appendix B for numerical procedure.

of the eigenstates ; (ii) when t ≫ τH , CFS is caused by boundaries of the system. Regime (i)
is relevant in the limit of infinite size, which corresponds to the regime numerically explored
in [44] in the 3d Anderson model. There it was found that at the AT the height of the CFS peak
reaches a stationary value, conjectured to be the compressibility χ = 1− D1/d. Regime (ii)
corresponds to the long-time limit of a finite-size system.

In the finite-size case, waves travel many times across the entire system until they resolve
the discreteness of energy levels. The shape and height of the CFS peak then explicitly depend
on system size N (see Section 4.2). When N goes to infinity, the CFS still manifests itself at
small times and is due to nonergodicity of eigenstates (see Section 4.3). This is to be contrasted
with the localized regime of the Anderson transition, where the behavior differs depending on
whether the localization length is smaller or larger than the system size.

4.2 Long-time limit

4.2.1 CFS peak shape

We now discuss the long-time limit in finite-size systems i.e. the regime t ≫ τH , t →∞ with
fixed system size N . The contrast defined by (34) and (40) is then only determined by diagonal
termsωαβ = 0 (which are the only ones that survive the long-time limit), so that the expression
of the contrast is given by

ΛN (k, t →∞; E) =
1

N d
〈|φα(k)|2|φα(k0)|2〉E − 1 . (51)
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On the other hand, using the same argument, the approximate expression (48) can be rewritten
as

ΛN (k, t →∞; E) =
∑

n̸=0

〈|φα(n0)|2|φα(n0 + n)|2〉E,n0
e−in·(k−k0) . (52)

This expression can be seen as the spatial Fourier transform of the two-point correlator in direct
space. For a function which is multifractal in direct space the correlator has the asymptotic
behavior [18]

N d 〈|φα(n0)|2|φα(n0 + n)|2〉E,n0
∼
�

�

�

�

N
n

�

�

�

�

d−D2

. (53)

It implies that the CFS contrast shape in the long-time limit can be approximated (up to a
prefactor) by

ΛN (k, t →∞; E)
N−D2

∼
∑

|n|≥1

cos[n · (k− k0)]
|n|d−D2

. (54)

The right-hand term only depends on k and D2, and becomes N -independent for N sufficiently
large. The behavior (54) is confirmed by the numerical simulations displayed in Fig. 2, which
show that all the curves N D2Λ(k, t) collapse onto the predicted expression.

We note however a strong discrepancy when k→ k0 in the insets of Fig. 2. This comes from
the existence of a high spatial cut-off for the scaling law (53), roughly given by the system
size N . As a consequence, (54) fails to describe the CFS distribution on a scale smaller than
|δk| ∼ 2π/N .

In the specific case of RS model when a→ 0, we also note the appearance of an anti-CBS
peak (see Figs. 2b and 5b) that comes from a nontrivial asymptotic symmetry of the system
and is not relevant in the general case (it is not present in PRBM and 3DKR). We give a more
detailed account of this specificity in Sec. 5.4.

4.2.2 CFS height

Although (54) fails to describe the CFS distribution at k = k0, it is actually possible to circumvent
this limitation starting back from (52) and rewriting it for k= k0 as

ΛN (k0, t →∞; E) =
∑

n

〈|φα(n0)|2|φα(n0 + n)|2〉E,n0
− 〈|φα(n0)|4〉E,n0

. (55)

The first term is actually equal to 1 from eigenstate normalization. The second term is nothing
but the inverse participation ratio (up to a factor N). It gives the following scaling law

1−ΛN (k0, t →∞; E)∼ N−D2 . (56)

Note that this result could alternatively by obtained from Eq. (49) in the limit t →∞. Indeed
at large t the form factor goes to 1, while the return probability behaves as N−D2 [27].

The scaling dependence (56) is illustrated in Fig. 3 for the three models investigated here.
This shows that the long-time behavior of the CFS peak allows us to extract the multifractal
dimension D2.

4.3 Limit of infinite system size

We now discuss the CFS contrast dynamics in the limit N →∞, at fixed time t ≪ τH . In this
regime, as we will see below, CFS arises from the nonergodicity of the eigenstates, and it no
longer depends on N .
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4.3.1 Dynamics of the CFS at k= k0

At the peak the contrast is given by Eq. (49). In the limit t ≪ τH , the spectral form factor
goes to the compressibility χ, while the return probability follows a temporal power law decay
related to the multifractal dimension D2 [27,75]

〈| 〈n0|Û(t)|n0〉 |2〉E,n0
∼ t−D2/d . (57)

The height of the CFS peak is then finally given by

ΛN→∞(k0, t; E) = χ −αt−D2/d , (58)

where α is a constant that may depend on E (but not on N and t). If we assume that the
relation (30) between compressibility and information dimension holds, then measuring the
time dependence of the peak height at small times allows us to access D1. This is illustrated
in Fig. 4 (left panels), where the contrast is plotted as a function of time for the three models
discussed here. A proper rescaling of the curves allows to extract D1 as the constant small-time
behavior of the CFS contrast.

4.3.2 Dynamics of the CFS contrast shape

We now discuss more generally the dynamics of the CFS contrast shape. To do so, we use the
fact that the two following correlation functions behave in the same way

〈
∑

α,β

δ(ω−ωαβ)φα(n)φ∗α(m)φβ(m)φ
∗
β(n)〉E ∼ γ 〈
∑

α,β

δ(ω−ωαβ)|φα(n)|2|φβ(m)|2〉E , (59)

with γ some constant (see e.g. Eq. 2.32 of [18]). As a consequence, the CFS contrast (48) can
be rewritten as

ΛN (k, t; E) = γ
∑

n

〈| 〈n0|Û(t)|n0 + n〉| 2〉E,n0
e−in·(k−k0) − 〈| 〈n0|Û(t)|n0〉|

2〉E,n0
. (60)

In the case where k= k0 it is easy to check that (60) reduces to

ΛN (k0, t; E) = γ− 〈| 〈n0|Û(t)|n0〉|
2〉E,n0

. (61)

This expression coincides with (49) at small t provided γ = χ, since the form factor goes to
χ for t → 0. Again, the second term in the above expression is the return probability. The
first term in (60) is the spatial Fourier transform of the propagator between two sites in direct
space. This quantity is well-known and has been studied in the past, as it plays an important
role in the study of the anomalous diffusion in direct space at the transition [16,28,76,77].
Provided k < 1/ls (with ls the mean free path, ls ∼ 1 in our models) it is a function f (q) of
q = |k− k0|t1/d only, that goes to a constant at small argument. In our case, in view of (61)
that constant is equal to χ, and thus

f (q) =

¨

χ , q≪ 1 ,

q−D2 , q≫ 1 .
(62)

The CFS contrast (60) finally writes

ΛN→∞(k, t; E) = f (|k− k0|t1/d)−αt−D2 , (63)

where α is the same constant as in Eq. (58).
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Figure 4: Dynamics of the CFS contrast in the infinite system size limit (t ≪ τH).
(a,b) PRBM model with different b, system size N = 16384, number of disorder
realizations nd = 1125. (c,d) RS model with different a, system size N = 131072,
number of disorder realizations nd = 3600. (e,f) 3DKR model with K = 1.58. See
Appendix B for various numerical details. (a,c,e) Dynamics of the CFS peak height
at k = k0. Solid lines are numerical data, smoothed over a range ∆t for clarity
(∆t = 11 for RS, ∆t ∼ 10/b for PRBM and ∆t = 74 for 3DKR). Dashed black lines
are theoretical predictions Eq. (58), i.e. single parameter fit y = 1− D1/d −αt−D2/d ,
with α the fit parameter and D1 and D2 either independently determined from scaling
of the moments in direct space (PRBM and RS) or taken from [68] (3DKR). (b,d,f)
Dynamics of the CFS peak shape. Symbols are numerical data at different times
(t ∈ [91/b, 819/b] for PRBM, t ∈ [196/a, 1243/a] for RS, t ∈ [1,22500] for 3DKR
model). For PRBM and RS models, data are averaged in boxes of q with logarithmically
increasing size. For 3DKR, data are averaged over each spherical shell at radius |k−k0|.
Values of α used to plot the y-axis are extracted from the fits presented in (a,c,e).
Dashed black lines are a single parameter fit y = cq−D2 (see Eqs. (62) and (63)), with
D2 independently determined or taken from literature. Dotted black line is y = 1−D1,
with D1 independently determined or taken from literature.
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In Fig. 4, we test these theoretical predictions by comparing them to the numerical data
of the three models considered. The left panels represent the temporal dynamics of the CFS
contrast at k0. We clearly observe the convergence towards the compressibility χ = 1− D1/d
as time increases, the finite-time effects being controlled by D2, whatever the model and the
more or less strong multifractality considered. This confirms Eqs. (62) and (63) for k = k0.
In the right panels, we represent the spatial dependence of the CFS peak at different times.
It is clearly observed that the curves at different times collapse on each other when they are
represented as a function of q, which confirms the scaling law Eq. (63). Also, the shape of the
scaling function f is in perfect agreement with Eq. (62).

5 Perturbation theory in the long-time limit and in the strong
multifractal regime

5.1 Perturbation theory

In this Section we use perturbation theory to derive analytic expressions for the contrast at
infinite time in the strong multifractality regime (Dq→ 0) of PRBM and RS models (respectively
b→ 0 and a→ 0).

First, we recall that in the long-time limit t ≫ τH the CFS contrast Eq. (51) writes

ΛN (k, t →∞; E) =
I(E)
ρ(E)
− 1 , (64)

with

I(E) =
�

1
N

∑

α

|φα(k)|2|φα(k0)|2δ(E −ωα)
�

. (65)

In the following we will find a perturbative expansion of this quantity I(E) as

I(E) = I(0)(E) + I(1)(E) + . . . . (66)

To do so, we use a perturbative approach based on the Levitov renormalization-group technique
[78]. The idea is that in the strong multifractality regime, the Hamiltonian or Floquet operator
M̂ is almost diagonal in direct space and the off-diagonal entries Mnm = 〈n|M̂ |m〉 can be treated
as a perturbation.

At order zero, the operator is diagonal in direct space with eigenvectors given by the
canonical basis vectors |n〉 with energy En = Mnn. It gives

I(0)(E) =
�

∑

n

1
N
| 〈k|n〉| 2| 〈k0|n〉|

2δ(E − En)

�

, (67)

where the average runs over different disorder realisations of the diagonal entries Mnn. Using
| 〈k|n〉 |2 = 1 (see Appendix C), we directly get I(0)(E) = ρ(E): at order 0 the CFS contrast
vanishes.

At next order, the main contribution now originates from resonant interactions between
pairs of unperturbed states ( |m〉 , |n〉). They occur if |Hmm −Hnn| is of the order of |Hmn|. The
corresponding 2× 2 submatrices have two eigenvectors

�

�φ
µ
mn
�

labelled by µ = ±1, with energy
Eµmn. The corresponding contribution writes

I(1) =
®

1
N

∑

m<n

∑

µ=±

�

�




k
�

�φµmn

��

�

2�
�




k0

�

�φµmn

��

�

2
δ(E − Eµmn)

¸

, (68)
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where different realizations of random entries Mnm will lead to different pairs ( |m〉 , |n〉)
effectively contributing, so that one needs to sum over all of them.

The first-order contribution depends on the model we consider. We give a full account of
the PRBM case. We only give the main results for the RS model, since it essentially follows the
same lines and was already partially discussed in [46].

5.2 PRBM model

5.2.1 Order 1

For the PRBM model, the operator M̂ of interest is the tight-binding Hamiltonian Ĥ defined in
Sec. 2.1. The 2× 2 submatrices of Hnm contributing to first order Eq. (68) can be parametrized
as

�

Hmm Hmn
H∗mn Hnn

�

=

�

ϵ +∆ reiξ

re−iξ ϵ −∆

�

. (69)

The average in Eq. (68) now runs over disorder realisations of parameters ϵ, ∆, r and ξ.
As explained in Sec. 2.1, entries Hmm and Hnn of the PRBM model are independent ran-

dom real numbers with Gaussian distribution of variance 1. Off-diagonal entries Hmn are
complex random numbers, whose real and imaginary part are independent with Gaussian
distribution of variance σ2

nm/2, with σnm given by (3). This means that ϵ = 1
2(Hmm + Hnn)

and ∆= 1
2(Hmm −Hnn) in (69) both have Gaussian distribution with variance 1/2, while ξ is

uniformly distributed in [0, 2π] and r =
p

|Hnm|2 ∈ [0,∞) is distributed with PDF fT (r) given
by

fT (r) =
2r
σ2

mn
exp

�

−
r2

σ2
mn

�

. (70)

Eigenvectors
�

�φ
µ
mn
�

with energy Eµmn of submatrices (69) can be expressed as
�

�φ+mn

�

= cosθ |m〉+ e−iξ sinθ |n〉 , (71)
�

�φ−mn

�

= −eiξ sinθ |m〉+ cosθ |n〉 , (72)

where angle θ is defined by

tanθ = −
∆

r
+

√

√

1+
∆2

r2
. (73)

The corresponding energy is

Eµmn = ϵ +µ
p

r2 +∆2 . (74)

The quantity of interest
�

�




k
�

�φ
µ
mn
��

�

2
then writes

�

�




k
�

�φµmn

��

�

2
= 1+µ cosϕk sin2θ , (75)

with ϕk = (m− n)k − ξ. Performing the full calculation shows that the 1 in this expression
is the 0th order contribution (this can be intuited by comparing this expression with the 0th
order one). The order-1 contribution (68) then writes

I(1) =

*

∑

m<n

1
N

cosϕk cosϕk0
sin2 2θ
∑

µ=±1

δ(E − Eµmn)

+

. (76)
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Only ϕk and ϕk0
depend on ξ; averaging over it leads to

I(1)(E) =
∑

m<n

1
N

cos([m− n][k− k0])APRBM
mn (E) , (77)

with

APRBM
mn (E) =

*

1
2

sin2 2θ
∑

µ=±1

δ(E − Eµmn)

+

. (78)

The dependency of the above expression on m and n is via the parameter r, distributed according
to Eq. (70). In particular, (78) only depends on the difference |m−n|. Moreover, in the periodic
PRBM model we are considering, pair (m, N − n) gives the same contribution as pair (m, n) in
Eq. (77) (the average (78) is taken over the same random realizations of parameters r, ϵ and
∆ for both pairs). As a consequence, the contrast up to order 1 writes

ΛN (k, t →∞; E) =
N/2
∑

n=1

APRBM
n0,n0+n(E)

ρ(E)
cos(n[k− k0]) . (79)

We now find an explicit expression for APRBM
nm (E). To do so, we use the fact that

sin2 2θ = r2/(r2 +∆2) and perform the remaining averages over ϵ, ∆ and r in Eq. (78).
It gives

APRBM
nm (E) =

∫ ∞

−∞

d∆
p
π

e−∆
2

∫ ∞

−∞

dϵ
p
π

e−ϵ
2

(80)

×
∫ ∞

0

dr
2r
σ2

mn
e
− r2

σ2
mn

r2

2(r2 +∆2)

∑

µ=±
δ(E − ϵ −µ
p

r2 +∆2) . (81)

For E = 0, the integral (81) can be calculated explicitly, and for b → 0
(where σ2

mn ≈
b(π/N)

sinπ|n−m|/N ≪ 1 for m ̸= n) it gives at lowest order

APRBM
mn (E = 0)

ρ(E = 0)
=
π
p

2
σmn + . . . , (82)

(we used the fact that ρ(E) is given by Eq. (5) for b≪ 1). Finally, we find

ΛN (k, t →∞, E = 0) =
bπ
p

2

N/2
∑

n=1

(π/N) cos(n[k− k0])
sin(πn/N)

. (83)

This result is checked in Fig. 5 (top) against numerics; the agreement is remarkable.

5.2.2 Asymptotic behavior of the peak height

At k = k0, the contrast behaves following Eq. (56). In the regime of small parameter b, an
expansion of the multifractal dimension D2 was obtained in [50], using the same perturbative
approach as above. At first order it reads D2 = bπ/

p
2. From Eq. (56) we get for b≪ 1

ΛN (k0, t →∞, E = 0)≈ 1− N−bπ/
p

2 ∼
bπ
p

2
ln N . (84)

This expression coincides with the leading term of Eq. (83). Indeed, in the sum
N/2
∑

n=1

π

N sin(πn/N)
=
π

N

N/2
∑

n=1

�

1
sin(πn/N)

−
1

πn/N

�

+
N/2
∑

n=1

1
n

, (85)

the first term is a Riemann sum that converges to the finite value ln(4/π), while the second
term behaves asymptotically as ∼ ln N . Thus Eq. (83) at k = k0 entails the asymptotic behavior
Eq. (84) with the correct prefactor. This provides a check of Eq. (56) in the perturbation regime.
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Figure 5: CFS contrast in the long-time limit and strong multifractal regime. (a)
PRBM model for b = 0.001 (N = 16384, nd = 1125 disorder realizations). (b) RS
model for a = 0.001 (N = 16384, nd = 900 disorder realizations). In both plots, thick
solid lines are results from perturbation theory Eqs. (83) and (97), thin solid lines are
numerical data (see Appendix B for details). For PRBM model, dashed black line is
the universal prediction Eq. (54) (for |k− k0| ≫ 1) with D2 = 0 and height adjusted
to best fit the numerical data. For RS model, dashed black line is the symmetrized
universal prediction Eq. (101) (see text), numerical data are averaged over E.

5.2.3 Expansion of the two-point correlator in direct space

The comparison of Eq. (79) with the universal analytical expression Eq. (52) suggests that
APRBM

nm (E) is equal up to order 1 to the two-point correlation function in direct space, that is,

Bnm(E) = 〈
∑

α

|φα(n)|
2|φα(m)|

2δ(E − Eα)〉 . (86)

This can be shown directly as follows. As previously, we expand Bnm(E) as

Bnm(E) = B(0)nm(E) +B(1)nm(E) + . . . . (87)

Expression (86) at order 0 gives

B(0)nm(E) = 〈
∑

l

|〈n|l〉| 2|〈m|l〉| 2δ(E − El)〉 , (88)

which vanishes for n ̸= m. At order 1, using eigenstates (71)–(72) we find

B(1)nm(E) =

*

∑

l<p

2sin2 θ cos2 θδnlδmp

∑

µ=±
δ(E − Eµl p)

+

=

®

1
2

sin2 2θ
∑

µ=±
δ(E − Eµmn)

¸

. (89)
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This proves that APRBM
nm (E) = Bnm(E) up to order 1. In particular Eq. (79) becomes

ΛN (k, t →∞; E) =
N/2
∑

n=1

〈|φα(n0)|
2|φα(n0 + n)|2〉E cos(n[k− k0]) , (90)

which is exactly the universal analytical expression Eq. (52).

5.3 RS model

We now apply the same method to determine the first order contribution I(1)(E) for the RS
model, which is unitary. We give the key points and main results. The interested reader should
refer to the supplementary material of [46], in which more details are given.

The operator M̂ of interest for the RS model is defined as Mnm = Unme−iπa(1−1/N), where Û
is the Floquet operator (9). This transformation only shifts the eigenvalues of Û and has no
physical consequences (in particular the multifractal dimensions remain unchanged). In the
strong multifractal regime a≪ 1, the operator M̂ in direct space writes

Mnm ≃ eiϕnδnm −
2iπa

N
eiϕn

1−δnm

1− e2πi(n−m)/N
. (91)

The term of order 0 is diagonal. At order 1, the 2× 2 submatrices contributing to Eq. (68) read
�

Mmm Mmn
Mnm Mnn

�

=

�

eiϕm hei(ϕm+ξ)

hei(ϕn−ξ) eiϕn

�

, (92)

with

h=
aπ/N

sin (m−n)π
N

and ξ=
π(m− n)

N
. (93)

These submatrices only depend on two independent random parameters ϕm and ϕn, while the
off-diagonal amplitudes h are deterministic, unlike PRBM.

As previously, it is more convenient to introduce the random variables ∆ = 1
2(ϕm −ϕn)

and ϵ = 1
2(ϕm +ϕn). Following the same lines, we find that the first order contribution can be

written as

I(1)(E) =
N/2
∑

n=1

ARS
n0,n0+n(E) cos(n[k− k0])−

N/2
∑

n=1

ARS
n0,n0+n(E) cos
�

n[k+ k0 +
2π
N
]
�

, (94)

where

ARS
m,n(E)

ρ(E)
=

∫ π/2

−π/2

d∆
π

h2

h2 + sin2∆
, (95)

does not depend on E. In the limit a→ 0 it gives

ARS
m,n(E)

ρ(E)
≈ h−

h3

2
+ . . . , (96)

so that finally

Λ(k, t →∞, E) = a
N/2
∑

n=1

�

(π/N) cos(n[k− k0])
sin(πn/N)

−
(π/N) cos
�

n[k+ k0 +
2π
N ]
�

sin(πn/N)

�

, (97)

22

https://scipost.org
https://scipost.org/SciPostPhys.14.3.057


SciPost Phys. 14, 057 (2023)

which is independent of E. The first term describes the CFS peak, and is similar to the PRBM
result (83). The second term describes an anti-CBS peak, that we will discuss in Section 5.4.3
below.

As before, we can show that ARS
m,n(E) is nothing but the two-point correlation function in

direct space (for n ̸= m) up to order 1 of perturbation theory, that is,

ARS
m,n(E)≈ 〈
∑

α

|φα(n)|
2|φα(m)|

2δ(E − Eα)〉 . (98)

5.4 Comparison with numerics and universal predictions

5.4.1 Comparison with numerics

In Fig. 5 we display the results of our perturbation theory calculations for PRBM at E = 0 and
for RS. Both reproduce very accurately the numerics in the strong multifractality limit.

5.4.2 Comparison with universal predictions

Leaving out the anti-CBS peak contribution in RS model for now, we see from Fig. 5 that both in
PRBM and RS the CFS contrast in the long-time limit fully corroborates the universal analytical
expression Eq. (52) (after pairing contributions n and −n), that is

Λ(k, t →∞, E) =
N/2
∑

n=1

〈|φα(n0)|
2|φα(n0 + n)| 2〉E,n0

cos(n[k− k0]) . (99)

Actually, at first order of perturbation theory these two models even have the same expression
around the CFS peak

Λ(k, t →∞, E)∼
N/2
∑

n=1

(π/N) cos(n[k− k0])
sin(πn/N)

, (100)

and only the prefactor differs. This is to be expected, since off-diagonal terms of PRBM
(r in (69)) and RS (h in (92)) behave in the same way, namely ∼ π/N/ sin(π|n−m|/N).

5.4.3 Anti CBS-peak in RS model at small a

Let us now get back to the anti-CBS peak in the RS model. We see in Fig. 5 that this anti-peak
is well captured by the perturbative expansion (97) while it is not present in the universal
analytical prediction Eq. (54). However, we can adopt a phenomenological point of view and
adapt the universal prediction : in order to take into account the anti-CBS peak, we propose
that

Λ(k, t →∞, E) = A
N/2
∑

n=1

cos(n[k− k0])
n

+ B
N/2
∑

n=1

cos
�

n[k+ k0 +
2π
N ]
�

n
, (101)

where A and B are two fitting parameters. We then recover a very good agreement with
numerical data (see Fig. 5b). This suggests that our approach missed some non vanishing
contributions, probably due to a hidden symmetry inducing phase correlation of the eigenstates
in direct space. This idea is corroborated by the observation (both from numerical data - not
shown - and from perturbation theory) of an asymptotic symmetry verified by every single
eigenstate in the perturbative regime, |φα(k)|

2 + |φα(−k)|2 ≈ 2. We will not dwell further on
this peculiarity in the present work.
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6 Summary and conclusion

We have studied CFS in critical disordered systems with multifractal eigenstates. We demon-
strated that there exist two distinct dynamical regimes:

(i) When t ≪ τH , the CFS arises from the nonergodicity of the eigenstates. This regime
corresponds to infinite system size and is relevant for most experimental situations. We
recovered and demonstrated the numerical conjecture of [44] in the same limit: the CFS peak
height asymptotically goes to χ = 1− D1

d . We discovered that the CFS peak height actually
reaches χ with a temporal power law related to the multifractal dimension D2 (see Eq. (58)),
and we gave a full description of the shape of the CFS peak: it gets smaller and smaller and
the tail of the distribution decays with a power-law related to D2 (see Eq. (63)).

(ii) When t ≫ τH , the CFS is caused by the system boundaries. The height of CFS peak goes
to 1 with a finite-size correction related to multifractal dimension D2, and the CFS shape decays
as N−D2 elsewhere, the shape of the distribution being given by a system-size independent
function (see Eq. (54)).

All our universal analytical predictions are verified very accurately on three critical disor-
dered systems (PRBM, RS, 3DKR) in both strong and weak multifractal regimes. Moreover, for
PRBM and RS models in the strong multifractality regime, we find that our universal predictions
in the regime (ii) are exact at first order of perturbation theory.

These results, in particular (i), should be in reach of experiments, such as [38]. This opens
the way to the first direct observation of a dynamical manifestation of multifractality in a critical
disordered system.
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A Determination of the critical parameter Kc of the unitary 3DKR

To determine the critical parameter Kc , at which the Anderson transition occurs in the 3DKR,
we follow the lines of [66,79], that we briefly recall here.

The one-parameter scaling theory predicts that at the Anderson transition diffusion is
anomalous. Namely, starting from an initially fully localized wavefunction in direct space,
i.e. 〈p|ψ(t = 0)〉= δ(p), it predicts




p2
�

∝ t2/3.
From a numerical point of view, we simulate the dynamics of an initially localized

wavepacket using the split-step scheme discussed in (B.16)-(B.17) below. We compute the
standard deviation and plot




p2
�

× t−2/3 as a function of time. At the critical point there should
be no finite-size effect. The critical value of K correspond to the flat curve in Fig. 6, yielding an
estimate Kc ≈ 1.58.

B Numerical methods

We give a detailed discussion of the different numerical procedures used in the article.
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Figure 6: Determination of the critical kicking strength K in the 3DKR model. System
size is N = 128 and number of disorder realizations nd = 179.




p2
�

is the momentum
variance of an initially fully localized wavefunction. Symbols are numerical data. For
the value K = 1.58, the curve




p2
�

× t−2/3 is flat, indicating the critical point of the
Anderson transition (see text).

B.1 PRBM

B.1.1 Energy filtering procedure

In order to evaluate n(k, t; E) defined in Eq. (34), we use a filtering technique introduced
in [44]. Let E0 be the targeted energy; the idea is to replace the initial state |ψ0〉= |k0〉/

p
N

by a Gaussian-filtered plane wave around E0

|ψ0〉=
1

(σ2π)1/4
exp

�

−
(E0 − Ĥ)2

2σ2

�

|k0〉/
p

N , (B.1)

where σ is the width of the energy filter. The filtered scattering probability can be written as

nfil(k, t; E0) =
1
N

¬∑

α,β

e−iωαβ t 1
σ
p
π

exp

�

−
(E0 −ωα)2

2σ2

�

(B.2)

×exp

�

−
(E0 −ωβ)2

2σ2

�

φα(k)φ
⋆
α(k0)φβ(k0)φ

⋆
β(k)
¶

, (B.3)

or equivalently

nfil(k, t; E0) =
1
N

∫

dE

∫

dωe−iωt
¬ 1
σ
p
π

exp

�

−
(E0 − E)2

σ2

�

∑

α,β

δ(ω−ωαβ) (B.4)

×exp

�

−
ω2

4σ2

�

φα(k)φ
⋆
α(k0)φβ(k0)φ

⋆
β(k)
¶

. (B.5)

We see that nfil(k, t; E0)/ρ(E0) is not much different from n(k, t; E0) in Eq. (34), provided σ is
sufficiently small (compared with the DOS variation), because

lim
σ→0

1
σ
p
π

exp

�

−
(E0 − E)2

σ2

�

= δ(E − E0) . (B.6)
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One noticeable difference however is the term exp
�

−ω2/4σ2
�

, that acts as a high energy cut-off
in the filtered dynamics. Consequently, nfil(k, t; E0) is coarse-grained over a time scale ∼ 1/σ.
In particular, simulating times shorter than 1/σ is not relevant.

In practice, eigenstate properties can be considered roughly constant in an energy window
where the DOS (5) does not vary much. We choose

σ =
1
8

max(
p

πb, 1) . (B.7)

For the values presented in the article (b = 0.05, 0.1, 0.3) the corresponding time scale 1/σ is
of the order of 10. Note that data presented in Fig. 4 are additionally averaged on a timescale
∆t ≥ 1/bσ for the sake of clarity.

The classical contribution, with filtered initial state, should write

nclass,fil(k; E0) =

∫

dEρ(E)
1

σ
p
π

exp

�

−
(E0 − E)2

σ2

�

A(k, E)
ρ(E)

A(k0, E)
ρ(E)

. (B.8)

Again, we see that nclass,fil(k, t; E0)/ρ(E0) is not much different from n(k, t; E0) in Eq. (36),
provided that σ is sufficiently small (compared with the DOS variation). Under the diagonal
approximation (A(k, E) = ρ(E)), it becomes

nclass,fil(k; E0) =

∫

dEρ(E)
1

σ
p
π

exp

�

−
(E0 − E)2

σ2

�

=

�

1
N

∑

α

1
σ
p
π

exp

�

−
(E0 −ωα)2

σ2

��

, (B.9)

where we used the definition (4) of ρ(E).
The numerical contrast is thus finally defined as

Λ(k, t; E0) =
nfil(k, t; E0)

¬

1
N

∑

α
1

σ
p
π

exp
�

− (E0−ωα)2
σ2

�¶ − 1 , (B.10)

and is actually independent of the choice of normalization for the energy filter because both
nfil(k, t; E0) and nclass,fil(k; E0) are proportional to 1

σ
p
π

.

B.1.2 Infinite system size limit (t ≪ τH)

To evaluate the filtered contrast Eq. (B.10) in the regime t ≪ τH , we diagonalize PRBM matrices
of size N in an energy window [−σ,σ] (this roughly corresponds to 1/4 of the eigenstates
of the system) and expand the filtered time propagator over the eigenstates in the reciprocal
space.

Combining conditions to reach the regime t ≪ τH , and the one coming from the filter (see
below (B.6)), we get that the relevant time must verify (for small b)

1
σ
≤ t ≪ N . (B.11)

We checked that the upper bound of this inequality was met by verifying that the CFS contrast
was independent of the system size N , and that the filtered form factor Eq. (28), applying
the same substitution as for the filtered contrast, directly computed from the knowledge of
eigenvalues, for different times, was stationary. Note that this condition is a bit stronger than for
the RS model, because here we use exact diagonalization (of a non-sparse matrix) to compute
the dynamics, which limits us to system sizes about 10 times smaller than the ones simulated
with the RS model using the split-step scheme.

The numbers of disorder realizations are given in Table 2.
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Table 2: Number of numerical disorder realizations nd used to average statistical
properties of the PRBM model, for different system sizes N .

N 512 1024 2048 4096 8192 16384
nd 36000 18000 9000 4500 2160 1125

B.1.3 Long-time limit (t ≫ τH)

To compute long-time dynamics, we use the identity (51). We express eigenstates in reciprocal
space. We use the same number of disorder realizations as in Table 2.

Figure 7: Determination of D1 and D2 in the PRBM model (E = 0) by finite-size
scaling of moments Iq(E) Eq. (1). (a) Determination of D2. Symbols are numerical
data, with error bars smaller than symbol size. Dashed lines are two-parameter fits
y = AN−D2 (see Eq. (1)). (b) Determination of D1. Symbols are numerical data, with
error bar smaller than symbols. Dashed lines are two-parameter fits y = B + N ln D1
(see Eq. (31)). Numbers of disorder realizations are given in Table 2. Corresponding
values of D1 and D2 are given in Table 3.

B.1.4 Filtered multifractal properties

Multifractal dimensions are determined by filtering the finite-size scaling laws (1) and (31) of the
moments Iq(E). We express the eigenstates in the direct basis, then compute Eqs. (1) and (31)
for different system sizes N and average the results over nd different disorder realizations (see
Table 2). Finally, we fit the averaged moments vs system size N to obtain D1 and D2 (see Fig. 7).
The results are given in Table 3.
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Table 3: Numerically determined multifractal dimensions for the PRBM model (E = 0).
Errors are always smaller than 10−6. 1−χnum is given to test the validity of Eq. (30),
with χnum numerically determined by computing the form factor from eigenvalues,
see Eqs. (28) and (29), in the same temporal interval than the CFS contrast, where it
is constant and equal to the compressibility.

b 0.05 0.1 0.3

D1 0.207 0.375 0.729
1−χnum 0.201 0.372 0.727

D2 0.112 0.221 0.551

B.1.5 Spectral function

In the main text, we show that under the diagonal approximation the spectral function A(k, E)
does not depend on k and is equal to ρ(E), see Eq. (39). Here we verify explicitly numerically
the validity of this approximation in PRBM. The numerical spectral function is defined via the
above filtering technique, as

A(k, E) =

�

1
N

∑

α

1
σ
p
π

exp

�

−
(E −ωα)2

σ2

�

|φα(k)|2
�

. (B.12)

The density of states at energy E is directly computed by counting the number of states in an
interval of width 2σ around E. As shown in Fig. 8, we find a very good agreement of Eq. (39)
with numerics, for different values of E and different parameters b. This supports the validity
of the diagonal approximation for the calculation of the classical background for the CFS peak.

B.2 RS model

As discussed in the main text, in the RS model, the CFS contrast is independent of the mean
energy E. In practice, we therefore compute the integrated probability n(k, t) defined in
Eq. (34). The corresponding contrast is given by

ΛN (k, t) = n(k, t)− 1 . (B.13)

It can be seen as the average of the energy-dependent contrast ΛN (k, t; E) over all (equally
contributing) energies, since

ΛN (k, t) =

∫ 2π

0

ρ(E)n(k, t; E)dE − 1

=
1

2π

∫ 2π

0

ΛN (k, t; E)dE . (B.14)

B.2.1 Infinite system size limit (t ≪ τH)

We recall that the Floquet operator of the RS model is the product of two operators,

Û = e−iφp̂ e−ia x̂ , (B.15)

where phases φp̂ are randomly generated in the interval [0, 2π[. The first operator represents
kinetic energy during the free propagation and is diagonal in p space. The second one represents
the kick and is diagonal in x space.

28

https://scipost.org
https://scipost.org/SciPostPhys.14.3.057


SciPost Phys. 14, 057 (2023)

Figure 8: Spectral function A(k, E) in PRBM for various values of E. Parameters are
N = 1024, nd = 10 disorder realizations. Solid lines are numerical data for the
spectral function, dashed lines are numerical data for the density of state.

We use a grid of size N (even) with positions evenly spaced in the interval [0,2π[,
xk = 2πk/N , with k integer. The corresponding grid in momentum space is
p = −N/2+ 1, . . . , N/2.

A wavefunction ψ is initially prepared in a single position state around x0 = π/2. The
propagation scheme over one period is then achieved by applying twice a Fast Fourier Transform
(FFT) algorithm, in the spirit of the split-step method

ψ(p, t = 0+) = FFT[e−iaxnψ(xn, t = 0)] , (B.16)

ψ(xn, t = 1) = FFT−1[e−iφpψ(p, t = 0+)] . (B.17)

This method is particularly efficient and makes it possible to simulate very large system sizes,
up to N = 131072, as in Fig. 4. To ensure that the condition t ≪ τH = N is met, we checked
that the CFS contrast is size-independent.
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B.2.2 Long-time limit

To compute long-time dynamics, we use the identity (51). We compute and diagonalize the
Floquet operator and express the eigenstates in the reciprocal basis (here the x basis). The
number of disorder realizations for each system size is given in Table 4.

Table 4: Number of numerical disorder realizations nd used to average statistical
properties of the RS model, for different system sizes N .

N 512 1024 2048 4096 8192 16384
nd 28800 14400 7200 3600 1800 900

Diagonalizing the matrices is more computationally demanding than naive time propagation
at long time t ≫ τH (which scales as ∼ N for each time step). However, results are more
reliable because of the oscillatory nature of the large-time behavior in the RS model. Indeed,
the form factor of the RS model is given by [59]

K(t) =
(1− a)2(κt)2

a2(1− cosκt)2 + (a sinκt + (1− a)κt)2
, (B.18)

with κ= 2πa/N , and has the following asymptotic expansion

K(t) ≈
t≫N/a

1−
2a sin(κt)
(1− a)κt

. (B.19)

Because of Eq. (49), this slow algebraic and oscillatory convergence to its limiting value also
manifests itself in the CFS contrast, which significantly complicates the numerical determination
of the asymptotic contrast.

B.2.3 Multifractal dimensions

Multifractal dimensions are determined using finite-size scaling laws (1) and (31) of the
moments Iq(E). However, as Iq(E) (and Dq) do not depend on E for RS, we compute averaged
moments Iq over all quasi-energies E

Iq =
1

2π

∫ 2π

0

dE Iq(E) = 〈
1
N

∑

α,n

|φα(n)|
2q〉 . (B.20)

We compute and diagonalize the Floquet operator and express the eigenstates in the direct
basis (momentum basis). Then we compute Eqs. (1) and (31) for different system sizes N
and average the results over nd different disorder realizations (see Table 4). Finally, we fit the
averaged moments vs system size N to obtain D1 and D2 (see Fig. 9). The results are given in
Table 5.

B.3 3DKR

Similarly to the RS model, the 3DKR is a Floquet system, whose eigenstate properties do not
depend on quasienergy. We thus compute the integrated contrast (B.13).
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Figure 9: Determination of D1 and D2 in the RS model by finite-size scaling of moments
Iq given by Eq. (B.20). (a) Determination of D2. Symbols are numerical data, with
error bars smaller than symbol sizes. Dashed lines are two-parameter fits y = AN−D2 .
(b) Determination of D1. Symbols are numerical data, with error bars smaller than
symbol sizes. Dashed lines are two-parameter fits y = B + N ln D1. Numbers of
disorder realizations are given in Table 4. Corresponding values of D1 and D2 are
given in Table 5.

B.3.1 Infinite system size limit (t ≪ τH)

We use the exact same method as for the RS model, based on the propagation of wavefunctions
with the split-step scheme Eqs. (B.16)-(B.17), except that we now use a 3d grid. To ensure that
the condition t ≪ τH = N3 is met, we checked that the CFS contrast is size-independent.

B.3.2 long-time limit (t ≫ τH)

Unlike for RS model, to access the long-time dynamics we used temporal propagation of the
wavefunction up to time t ∼ τH . We observed that beyond t > 2.5N3, the contrast reaches a
stationary value; we thus averaged the CFS contrast in the temporal window 2.5< t/N3 < 3
for different system sizes.

Note that the computational time to reach this regime scales as ∼ N3 × N with system
size N , which is why we limited ourselves to N = 128 (N = 256 would for instance require to
reach 50× 106 kicks with a system of 2563 points).
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Table 5: Numerically determined multifractal dimensions for the RS model. Errors are
negligible (always smaller than 10−6). 1−χth is given to test the validity of Eq. (30)
(with χth = (1− a)2 (see [59] or Eq. (B.18) for t → 0).

a 0.1 0.5 0.7

D1 0.192 0.753 0.910
1−χth 0.190 0.750 0.910

D2 0.103 0.566 0.820

C Fourier transform and normalization conventions

Closure relations

I=
∑

n

|n〉〈n| , (C.1)

I=
1

N d

∑

k

|k〉〈k| −→
N→∞

∫

dk
(2π)d

|k〉〈k| . (C.2)

Orthonormalization



n
�

�n′
�

= δnn′ , (C.3)



k
�

�k′
�

= N dδkk′ −→N→∞
(2π)dδ(k− k′) . (C.4)

Fourier transform

|k〉=
∑

n

e−ik·n |n〉 , (C.5)

|n〉=
1

N d

∑

k

eik·n |k〉 −→
N→∞

∫

dk
(2π)d

eik·n |k〉 , (C.6)

〈n|k〉= e−ik·n . (C.7)

Eigenfunctions
∑

α

|φα〉〈φα|= I , (C.8)

∑

n

|φα(n)|
2 = 1 , (C.9)

1
N d

∑

k

|φα(k)|
2 = 1 , (C.10)

1
N d

∑

α

|φα(k)|
2 = 1 . (C.11)

Spectral function

A(k, E) =
1

N d
〈
∑

α

|φα(k)|
2δ(E −ωα)〉 , (C.12)
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1
N d

∑

k

A(k, E) =
1

N d
〈
∑

α

δ(E −ωα)〉= ρ(E) , (C.13)

∫

dE A(k, E) =
1

N d
〈
∑

α

|φα(k)|
2〉= 1 . (C.14)

Figure 10: Correlations ρ(X , Y ) = (〈X Y 〉 − 〈X 〉〈Y 〉)/(σXσY ) between norm |φα(m)|
and phase θα(n) of a same eigenvector φα = |φα|exp(iθα) of the RS model, evaluated
at different momenta (m, n): (a,d) norm-phase correlation, (b,e) norm-norm correla-
tion, (c,f) phase-phase correlation. Panels (a-c) correspond to the strong multifractal
regime a = 0.1, panels (d-f) to the weak multifractal regime a = 0.9 (d-f). Matrix size
is N = 128 and average is taken over disorder (100 realizations) and eigenvectors.
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D Incoherent background for PRBM

We have

A(k; E) =
1
N

�

∑

α

|φα(k)|2δ(E −ωα)
�

(D.1)

=
1
N

�

〈k|
∑

α

|φα〉〈φα|δ(E −ωα) |k〉
�

. (D.2)

Using our temporal Fourier transform convention (18), this gives

A(k; t) =
1

2πN

�

〈k|
∑

α

|φα〉〈φα| e−iωα t |k〉
�

(D.3)

=
1
N




〈k| Û t |k〉
�

, (D.4)

where we have used the eigenvalue-eigenvector decomposition

Û = exp(−iĤ) =
∑

α

|φα〉〈φα| e−iωα . (D.5)

Expanding the exponential exp(−iĤ t) into a series, Eq. (D.4) becomes

A(k; t) =
1
N

∞
∑

n=0

(−i t)n

n!




〈k| Ĥn |k〉
�

. (D.6)

Changing to the direct basis, one has, using the closure relation (C.1),

〈k| Ĥn |k〉=
∑

i, j

〈k|i〉 〈i| Ĥn | j〉 〈 j|k〉 . (D.7)

The N × N Hamiltonian matrix in direct space has independent (up to Hermiticity) Gaussian
entries Hi j = 〈i| Ĥ | j〉. Calculating (D.6) requires to determine the averages of quantities




〈i| Ĥn | j〉
�

=
∑

i1,...,in




Hii1 Hi1 i2 . . . Hin−1 in Hin j

�

. (D.8)

The vector (H11, Re(H12), Im(H12), . . . , HNN ) is a multivariate centered Gaussian. Each moment
in (D.8) can be calculated using Wick’s theorem: moments of odd order vanish, and moments
〈xa1

...xa2p
〉 are given by the sum over all possible pairings of the set {1, ..., 2p}. Because of

independence of matrix elements, only entries Hab and Hba are non-independent; thus the
only nonvanishing two-point correlators are either of the form 〈HabHba〉 or of the form 〈H2

ab〉
(possibly with a = b). That is, any given index in (D.8) must appear an even number of times.
But all indices i1, i2, ..., in do already appear in pairs. Therefore the two remaining indices i
and j must be equal, otherwise at least one index would appear an odd number of times.

As a consequence, all terms with i ̸= j vanish in Eq. (D.8). Therefore, upon average, (D.7)
yields for any fixed k




〈k| Ĥn |k〉
�

=
∑

i

| 〈k|i〉 |2 〈i| Ĥn |i〉=
∑

i

〈i| Ĥn |i〉 , (D.9)

using the normalization | 〈k|i〉 |2 = 1 (see Appendix C). Since each



〈k| Ĥn |k〉
�

is independent
of k, so is A(k; t) in Eq. (D.6). The identity A(k; E) = ρ(E) then ensues from the normalization
condition (C.13) of the spectral function.
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E Decorrelation between norms and phases

In the main text we perform our calculations under the approximation that norms and phases of
random wavefunctions are uncorrelated, an assumption which is quite usual in random matrix
theory. In order to assess this assumption, we illustrate it below in the case of the RS model
and for different values of Dq. As shown in Fig. 10, norms and phases are indeed uncorrelated
in the RS model.
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