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Abstract

Continuous media commonly support a discrete number of wave modes that are trapped
along interfaces defined by spatially varying parameters. In the case of multicomponent
wave problems, those trapped modes fill a frequency gap between different wave bands.
When they are robust against continuous deformations of parameters, such waves are
said to be of topological origin. It has been realized over the last decades that waves
of topological origin can be predicted by computing a single topological invariant, the
first Chern number, in a dual bulk wave problem that is much simpler to solve than the
original wave equation involving spatially varying coefficients. The correspondence be-
tween the simple bulk problem and the more complicated interface problem is usually
justified by invoking an abstract index theorem. Here, by applying ray tracing machinery
to the paradigmatic example of equatorial shallow water waves, we propose a physical
interpretation of this correspondence. We first compute ray trajectories in the phase
space given by position and wavenumber of the wave packet, using Wigner-Weyl trans-
forms. We then apply a quantization condition to describe the spectral properties of the
original wave operator. This bridges the gap between previous work by Littlejohn and
Flynn showing manifestation of Berry curvature in ray tracing equations, and more re-
cent studies that computed the Chern number of flow models by integrating the Berry
curvature over a closed surface in parameter space. We find that an integral of Berry
curvature over this closed surface emerges naturally from the quantization condition,
which allows us to recover the bulk-interface correspondence.
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Owing to rotation, density stratification, compressibility, or magnetic fields, astrophysical
and geophysical fluids support the propagation of waves at all scales. Those waves play a
key role in redistributing energy or momentum in oceans, atmospheres, and stellar interiors.
Such waves usually involve a coupling between several fields such as velocities in different
directions and fluid density. Thus, astrophysical and geophysical waves are multicomponent
wave problems. Textbook presentations of those waves usually start by linearizing a given
flow model around a base state, and by computing the spectrum of a linear operator. This
spectrum involves both a dispersion relation given by the eigenvalues of this linear operator
and polarization relations between the different fields. the polarization relations are given by
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eigenvectors of the linear operator. When the coefficients of the partial differential equations
(PDE) are homogeneous (constant in space), solutions are easily found in unbounded geome-
tries using a Fourier transform. Such bulk wave problems are simple to compute, and are useful
to understand many aspects of wave propagation. For instance the computation of this bulk
problem allows to classify waves in different wave bands such as sound waves, gravity waves,
among others. Yet, most practical situations involve spatially varying parameters, which are
in general intractable analytically.

There are, however, three powerful complementary theoretical approaches that can be
used to tackle wave problems in nonuniform media with smooth variations: the study of simple
but emblematic normal forms, the use of ray tracing equations, and the topological analysis:

• The first normal form approach is based on the idea that most salient features associated
with spatial variations in the medium can be understood qualitatively by assuming linear
variations of the parameters in one direction but constant in the other. A great success
of this approach was the discovery of two unidirectional equatorially trapped waves
by Matsuno in 1966 [1]. The drawback of this approach is its lack of generality, and
there is no guarantee that the problem will be solvable analytically, although numerical
computation of the spectrum remains always a possibility.

• The second ray tracing approach consists in computing the trajectories of wave packets,
by assuming a scale separation between their wavelength and the spatial variations of the
medium. This scale separation makes possible the use of standard asymptotic technique,
such as the Wentzel-Kramers-Brillouin (WKB) approximation. This approach has long
been used in fluids, and has even led to concrete applications in ocean dynamics [2,3],
and atmospheric dynamics [4].

• The third topological approach is more recent. The main idea is that global features
of the dispersion relation in inhomogeneous media can be classified and predicted. In
particular, when a spatially varying parameter defines an interface, the wave spectrum
may exhibit modes that are trapped along the interface, and that fill the frequency gap
between different wave bands. Those modes are often referred to as topological waves,
which is a shorthand term to mean waves of topological origin, when their presence is
robust to continuous changes in parameters. It turns out that the emergence of such
modes in interface wave problems can be predicted by computing a topological invariant
for a set of bulk wave problems that are much simpler to solve. The topological invariant
is an integer, the Chern number, that predicts the number of trapped modes in interface
wave problems. Born in condensed matter, those ideas have irrigated all fields of physics,
including now astrophysical and geophysical flows. For instance, a Chern number 2
was computed for rotating shallow water waves, consistently with the presence of two
unidirectional modes in the Matsuno spectrum [5].

The topological methods may be thought of as a way to justify the outcomes of normal
form approaches to understand more complicated situations. For instance, the computation
of a topological invariant related to the Matsuno wave problem guarantees that the presence
of two unidirectional modes trapped at the equator is a robust feature of equatorial waves,
independently from the details of the planet’s curvature, or from continuous changes of other
parameters of the problem. In most previous applications of topology to geophysical and as-
trophysical flows, and more generally in continuous media, the correspondence between the
topological invariant of the bulk problem and the number of topological waves (more precisely
defined as a spectral flow later on) in the interface wave problem was justified by invoking an
abstract index theorem [6–8]. The aim of these notes is to establish a connection between the
ray tracing approach and the topological approach, in order to provide some physical intuition
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on this bulk-interface correspondence, building upon previous works on equatorial waves.

More precisely, we intend to relate the seminal work of Littlejohn and Flynn [9] on ray
tracing equations for multicomponent wave systems, to more recent works on topological
waves in continuous media, spectral flows and Berry monopole as presented for instance in
the lecture notes of Faure [7] or Delplace [8]. In both cases, a fundamental role is played by
the Berry curvature, which can be computed from the knowledge of the bulk wave polarization
relations. It was shown that ray trajectories in position/wavenumber phase space are modified
by this term just as a charged particle is deviated by a magnetic field [9]. This has found
application from condensed matter [10–12] to geophysical fluid dynamics [13].

In the context of topological waves, the same Berry curvature (a geometrical quantity)
is used to compute the Chern number (a topological quantity). This Chern number counts
singularities in an abstract space of bulk wave polarization relations parameterized over a
closed surface. The Chern number is related to the Berry curvature through a generalization
of the Gauss-Bonnet formula that relates the genus of a surface to the integral of the Gaussian
curvature over this surface [7, 8]. It is thus tempting to establish a connection between ray
tracing, which describes the dynamics of a local wave packet influenced by the Berry curvature,
to the global spectrum of a wave operator with spatially varying coefficient, which is ruled by
a single Chern number.

The duality between ray tracing and spectral properties of an operator is reminiscent of
the duality between classical and quantum mechanics. Classical mechanics deals with ordi-
nary differential equations (ODE) that describe trajectories in phase space, while quantum
mechanics deals with PDE that describe wave functions. Originally, quantum mechanics was
derived by proposing quantization procedures that map functions of phase space variables
such as the classical Hamiltonian to operators of quantum mechanics such as the Schrödinger
operator [14]. Semi-classical analysis is the reverse procedure that derives classical mechanics
trajectories in phase space (and possible corrections) in the limit of vanishing Planck constant,
as done for instance by using the celebrated WKB ansatz [15]. Those techniques are not re-
stricted to quantum mechanics, and a branch of mathematics called microlocal analysis was
developed in the seventies to establish connections between ray tracing and spectral properties
of operators, see e.g. [16].

The connection between ray tracing and spectral properties of an operator makes use of the
Wigner-Weyl transform, that relates in a systematic way a wave operator to its symbol, which
is a function playing for instance the role of the Hamiltonian in classical mechanics. Such tools
have been used for instance recently by mathematicians to explain the emergence of singular
wave patterns in density-stratified flows [17], or the dynamics of equatorial waves [18–20],
including through the use of topological tools [7]. This Weyl-Wigner formalism has also been
used by theoretical physicists to describe wave transport phenomena in continuous media [9],
including geophysical flows [21, 22], see also the recent work by Onuki for a pedagogical in-
troduction to the formalism in the context of geophysical flows [23]. Our contribution will be
to connect those works with previous studies on topological waves in continuous media such
as geophysical flows [5,24], astrophysical flows [25,26], or plasmas [27,28].

We present in section 1 the equatorial shallow water model [1], and use this example to
introduce the notion of spectral flow index [7,8], which is an integer that counts the number
of topological modes that transit from one wave band to another in the spectrum of a wave
operator, when a parameter is varied from −∞ to +∞. Those two limiting cases allow us to
define the equivalent of a semi-classical limit.

We review in section 2 the standard procedure to diagonalize a multicomponent wave oper-
ator, taking advantage of a small parameter in the problem in the semi-classical limit, building
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upon [9,12,23]. This derivation makes use of the Wigner-Weyl transform and notions of sym-
bolic calculus that are presented in Appendix A. The diagonalization of the multicomponent
wave operator allows us to define a scalar operator describing the dynamics of a wave packet
in a given wave band.

We derive in section 3 the dynamics of those wave packets, which allows us to describe ray
trajectories in the phase space defined by position and momentum of the wave packets. Those
results were first derived by [9], who highlighted the central role of the Berry curvature, and a
duality between two different possible definitions of position/wavenumber of the wave pack-
ets, one of them being independent from any gauge choice done during the diagonalization
of the original wave operator. Our contribution is to propose a new physical interpretation
of the transformation between two different phase space coordinates for the wave packets,
and to explain that the Berry curvature appearing in the ray tracing equations is related to the
presence of a topological invariant in the bulk wave problem: the first Chern number.

We recover in section 4 the spectral properties of the wave operator by applying a quanti-
zation condition (imposing that the phase picked up by a wave packet along a trajectory is a
multiple of 2π), as proposed in [9]. Our contribution is to show how this quantization can be
used to recover the spectral flow result noticed in section 1. The derivation of the quantization
condition will highlight terms than can be interpreted as integral of the Berry curvature over a
closed surface, which is nothing but the Chern number, a topological invariant. Thus, we show
how spectral properties are related to topological properties through ray tracing. We finally
propose an alternative interpretation of the spectral flow result based on the modification of
the phase space density of states by the Berry curvature, a standard result in non-canonical
Hamiltonian systems.

Notations Any operator will involve a hat, as Ω̂. Operators or functions that are underlined
once means that they involve multiple components. Operators underlined twice are matrices
of operators. A character underlined twice but without a hat is a matrix of functions. Bold
symbols such as z are vectors in phase space. A tilde is placed on a dimensional variable and
it will be removed to define a scaled dimensionless one.

1 Motivation from equatorial shallow water waves

1.1 Wave equation and definition of the spectral flow

The shallow water model describes the dynamics of a thin layer of fluid with homogeneous
density under gravity (constant g), with a solid boundary at the bottom and a free surface at
the top [29]. For the sake of simplicity, we assume that the dynamics takes place in a plane
tangent to Earth near the equator, over a flat bottom, and the fluid layer thickness is denoted
by H (see Fig. 1).

In this geometry, the dynamics is conveniently expressed in Cartesian coordinates (x , y),
where x points eastward (zonal direction) and y points northward (meridional direction).
Metric terms are neglected, but planet’s sphericity is taken into account by considering linear
variations of the Coriolis parameter in the meridional direction y . This Coriolis parameter
denoted by βy is twice the projection of the planet’s rotation vector on the local vertical axis,
as in the Foucault pendulum experiment. The linearized shallow water dynamics around a
state of rest reads

∂

∂ t̃





ũ
ṽ
η̃



=





0 β ỹ −g ∂
∂ x̃

−β ỹ 0 −g ∂
∂ ỹ

−H ∂
∂ x̃ −H ∂

∂ ỹ 0









ũ
ṽ
η̃



 , (1)
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Figure 1: a) The Coriolis parameter f as a function of latitude on a rotating planet,
and the shallow water model with H the fluid layer thickness, much smaller than
the typical horizontal scales of motion. b) Beta-plane approximation: the flow takes
place in a plane (x , y) tangent to the equator, with f = βy .

where (u, v) is a depth-independent two-dimensional velocity field and η is the variation of
surface elevation with respect to the rest state.1

Figure 2: Eigenvalues of the beta plane shallow water wave operator defined in
(3), as a function of the zonal wavenumber k, for β = 1, c = 1, often referred to as
the Matsuno spectrum [1]. Two modes (in red) are gained by the positive-frequency
Poincaré wave band as k increases. The aim of this paper is to interpret this spectral
flow using semi-classical analysis.

A one-dimensional wave problem can be derived from this model. We take advantage
of the invariance with x to write

(ũ, ṽ, η̃) = (cu, cv, Hη) eik x̃ , c =
p

gH . (2)

1Taking into account spatial variations of bottom elevation involves additional terms in the last row of the
wave operator (1). Those additional terms lead to interesting geometrical and topological properties [23,24].
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From now on we chose β = 1 and c = 1, which can always be done by adimensionalizing time
and length units with 1/

p

β c and
p

c/β , respectively. The wave problem is now

i
∂

∂ t̃





u
v
η



= Ĥ
k





u
v
η



 , Ĥ
k
=





0 i ỹ k
−i ỹ 0 −i ∂∂ ỹ

k −i ∂∂ ỹ 0



 . (3)

The operator Ĥ
k

depends on a single parameter k. This problem was fully solved by Matsuno,
and the corresponding dispersion relation is displayed in Fig. (2). One can look at how the
wave spectrum changes when this parameter is varied:

When varying the parameter k from −∞ to +∞, two modes are gained by the positive-
frequency wave band, called the Poincaré wave band.

Similarly, two modes are lost by the negative frequency Poincaré wave band. By contrast,
the central wave band called the Rossby wave band has a net gain of modes equal to 0: there
are as many branches that leave the Rossby wave band as branches that enter the Rossby wave
band when k is varied from −∞ to +∞.

The bottom line is that some of the branches in the dispersion relation transit from one
wave band to another when k is varied, which defines a spectral flow,2 and k is called the
spectral flow parameter. The spectral flow is quantified by an integer, the spectral flow index,
that counts how many modes (branches in the dispersion relation) are gained or lost as k
is varied from −∞ to +∞. More precise and rigorous definitions of this index are given for
instance in [7], and its relation with another integer named analytical index is explained in [8].

Matsuno’s computation leads to a spectral flow index+2 associated with positive-frequency
Poincaré wave band, 0 for the Rossby wave band, and −2 for the negative frequency Poincaré
wave band.

Note that in many cases, the spectral flow is directly related to the difference between
the number of right-moving (positive group velocity) and left-moving modes in a given range
of frequencies, most often taken within the gap between different bulk wavebands when it
exists. In Matsuno’s case, at any nonzero frequency, there are two more modes with eastward
group velocity than modes with westward group velocity, and this is related to the spectral
flow index ±2 of the upper and low wave bands [5]. Thus, since group velocity corresponds
to energy transport, spectral flow is related to unidirectional wave transport in that case.

1.2 The semi-classical limit for equatorial shallow water waves

Our aim is to understand this spectral flow from a semi-classical perspective, which is related
to the familiar WKB approximation commonly used in geophysical fluid dynamics. For that
purpose we take advantage of the existence of a small parameter in the limit k → ±∞, by
rescaling the wave equation as follows:

( t̃, ỹ) = |k| (t, y) , ε=
1
k2

, (4)

which leads to

iε
∂

∂ t
Ψ = Ĥ±Ψ , Ĥ± =





0 i y ±1
−i y 0 −iε ∂∂ y

±1 −iε ∂∂ y 0



 , Ψ =
1
p

2





u
v
η



 . (5)

2The term spectral flow is unrelated to any actual flow in physical space.
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The parameter ε appears only in front of the y-derivative, which is suggestive of the reduced
Planck constant ħh in quantum mechanics. This is why the limit ε → 0 will from now on be
referred to as a semi-classical limit, and ε will be called the semi-classical parameter.3 Given
that the length unit used to adimensionalize equations is

p

c/β , the semi-classical parameter
compares this intrinsic length scale, called the equatorial radius of deformation, to the zonal
wavelength 1/k. Since

p

c/β corresponds to a trapping length scale in the meridional direc-
tion, the semi-classical limit is a limit of large meridional to zonal aspect ratio for the waves.
The upper-script index ± is used to distinguish the limit k → +∞ from the limit k → −∞,
which both correspond to the semi-classical scaling ε→ 0. An important remark follows:

Understanding the spectral flow can be tackled by comparing the spectral properties of the
operators Ĥ+ and Ĥ− in the semi-classical limit ε → 0. More precisely, we will pair together
modes of the two operators that share common properties. By continuity of the eigenvalues, the
modes that can not be paired will be those belonging to a branch that transits from one wave band
to another as k varies.

1.3 Strategy to interpret the spectral flow

We will show in section 2 how to project the original multi-component wave operator Ĥ± into

scalar operators for each wave band, denoted by Ω̂( j)±, where j is the band index. Those scalar
operators are different for the three wave bands, just as their dispersion relation are differ-
ent. In fact, we will highlight a formal duality between such operators and the corresponding
dispersion relations.

For that purpose, we will follow [9] and [23] and rely on the Wigner-Weyl transform that
is introduced in Appendix A.1. After this first step, the spectral flow index for each wave band
will be understood loosely as the difference between two infinite numbers

N ( j) = # of modes for Ω̂( j)+ −# of modes for Ω̂( j)− , (6)

where # means “number”.
We will derive in section 3 the ray tracing equation in wavenumber/physical space (phase

space), for wave packets described by operators Ω̂( j)±. We will highlight the central role played
by a quantity called the Berry curvature in ray tracing equations, as noted first in [9]. We will
explain how to compute this Berry curvature from the knowledge of the wave polarization
relations. Using an integration over a surface in parameter space, we will relate this curva-
ture, which is a local geometrical quantity, to a singularity described by a topological invariant
named the first Chern number, which describes global properties of continuous families of
eigenvectors.

We will show in section 4 how to recover the spectrum of Ω̂( j)± from the use of a quanti-
zation procedure of ray trajectories in phase space, following [9]. The quantization procedure
amounts to assuming that the phase picked-up by a wave packet along a trajectory is an integer
multiple of 2π. This is analogous to the Bohr-Sommerfeld quantization in quantum mechan-
ics. This procedure will make possible an explicit computation of the mode imbalance (6).
This will also highlight the topological origin of this mode imbalance, that is related to an
integral of the Berry curvature over a closed surface, and thus to the Chern number.

3The name WKB parameter can also be used, but this terminology is sometimes kept for a specific class of
scalar equations.
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The index ( j) for the wave bands will be dropped in the following when discussing general
properties of the operator Ω̂( j)±. In many steps of the derivations, the formula will be suffi-
ciently general to apply for a variety of flow models. However, for pedagogical reasons we
chose to focus on the particular case of shallow water waves.

2 Scalar wave operator and symbols

2.1 From multicomponent to scalar wave operator

The initial multicomponent wave problem is written formally as

iε∂tΨ = ĤΨ , (7)

where Ψ is a multicomponent wave field and Ĥ a linear operator involving spatially varying
coefficients and spatial derivatives, together with an external parameter k to be varied. In the
shallow water case, this spectral flow parameter k is the wavenumber in zonal (West-East) direc-
tion. Here we will focus only on 1D problems involving the spatial (meridional) coordinate y ,
with the corresponding derivative ∂y . The parameter to be varied will be the wavenumber k in
the x (zonal) direction. An example is given in the previous section, where Ĥ is to be replaced

by Ĥ±.
We recall here general results that are presented in a pedagogical way by Onuki [23] (for

fluid dynamicists) and Reijnders et al [12] (for condensed matter physicists). We would like
to express the multicomponent wave dynamics on the form of a scalar equation for a single
wavefield denoted by ψ, assumed to be written on the following form:

iε∂tψ= Ω̂ψ . (8)

We also assume that reconstruction of the multicomponent wavefield from the scalar field is
formally expressed with a multicomponent operator χ̂ (a vector whose each component is an
operator depending on the y coordinate):

Ψ = χ̂ψ, χ̂† · χ̂ = 1 , (9)

where 1 is the identity operator. The second equality guarantees that both Ψ and ψ are nor-
malized:

∫

dy Ψ† ·Ψ =
∫

dy ψ∗ψ= 1 . (10)

In the case of shallow water waves, this norm represents the total energy of the flow,4 which
is the sum of kinetic plus available potential energy.

At this stage the operators Ω̂ and χ̂ are not known. A useful equation relating those oper-
ators is obtained by combining (7), (8), and (9):

Ĥχ̂ = χ̂Ω̂ . (11)

We will see in the next section that the expression for Ω̂ and χ̂ can be obtained in the semi-
classical limit, and are different for each wave bands of the original multi-component wave
problem.

4The total energy is conserved, hence the normalization of the wave fields.
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2.2 Expression of the scalar operator in the semi-classical limit

Our aim here is to make an educated use of Wigner transform, symbolic calculus, and Weyl
transform to find the expression of the scalar operator Ω̂, by exploiting (11). Those tools
are introduced in Appendix A. If an operator such as Ω̂ is known, then the Wigner transform
defined by (A.2) yields its symbol Ω(y, p). This symbol is a function of y and p, the conjugate
momentum in the direction y , which is a scaled wavenumber. This procedure generalizes the
Fourier transform to problems with spatially varying coefficients. As such, the symbol Ω(y, p)
can be interpreted as a local dispersion relation for a plane wave oscillating much faster than
the spatial variations of the parameter in the medium. The inverse transform that builds
an operator Ω̂ from the knowledge of a function Ω(y, p) is called the Weyl transform, and
is defined in Appendix A.1, equation (A.3). The operator Ω̂ is called a pseudo-differential
operator as it cannot always be expressed as an explicit polynomial in ∂y [30].

Formally, all the operators in (11) can be expanded as

Ĥ = Ĥ
0
+ εĤ

1
+O(ε2) , (12)

χ̂ = χ̂
0
+ εχ̂

1
+O(ε2) , (13)

Ω̂= Ω̂0 + εΩ̂1 +O(ε2) . (14)

In the following, removing the hat (̂ ) from an operator will refer to its symbol. Symbols can
also be expanded in the semi-classical limit as

H =H
0
+ εH

1
+O(ε2) , (15)

χ = χ
0
+ εχ

1
+O(ε2) , (16)

Ω= Ω0 + εΩ1 +O(ε2) . (17)

Products of operators â b̂ are in general different from the operator cab obtained by a Weyl
transform of the standard product between symbols a(y, p) and b(y, p). As explained in Ap-
pendix A.3, equation (A.15), we can however define a particular symbol product denoted
by a ⋆ b such that the Weyl transform of this star product corresponds to the standard prod-
uct of operators (i.e. their composition). Let us apply this procedure to develop the operator
products in (11). The r.h.s. is expanded as

χ̂Ω̂=Öχ ⋆Ω . (18)

The star product is computed by using its definition (A.15) together with the symbol expan-
sions (16) and (17) in the semi-classical limit, which yields

χ ⋆Ω= χ
0
Ω0 + ε
�

χ
1
Ω0 +χ0

Ω1 +
i
2

¦

χ
0
,Ω0

©

�

+O(ε2) , (19)

where we have introduced the Poisson bracket for two symbols χ
0
(y, p) and Ω0(y, p):

¦

χ
0
,Ω0

©

= ∂yχ0
∂pΩ0 − ∂pχ0

∂yΩ0 . (20)

The corresponding operator is finally obtained by applying the Weyl transform (A.3) to the
star product.

2.3 Asymptotic expansion up to order one

Using symbolic calculus and the asymptotic expansion introduced in section 2.2, one can now
exploit the equality (11) to find expressions of χ

0
, Ω0 and Ω1. At the leading order, we obtain
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a matrix eigenvalue equation for H
0
:

H
0
χ

0
= Ω0χ0

, χ†
0
χ

0
= 1 . (21)

We see that the symbols Ω0 and χ
0

are just the eigenvalue and the eigenvector of H
0
, the

leading order component of the symbol associated with the multicomponent wave operator.
This zeroth order result may be understood as the outcome of a “local” plane wave solution:
in this framework, χ

0
is the local polarization vector associated with the local dispersion rela-

tion Ω0(y, p).

Collecting the first order terms in (11), multiplying on the left by χ†
0
, and using

χ†
0
H

0
= χ†

0
Ω0 (owing to the hermiticity of the wave operator5) leads to

Ω1 = Ω1A+Ω1B , (22)

Ω1A = χ
†
0
H

1
χ

0
+

i
2
χ†

0

¦

H
0
,χ

0

©

+
i
2
χ†

0

¦

χ
0
,Ω0

©

, (23)

Ω1B = −iχ†
0

¦

χ
0
,Ω0

©

. (24)

More detailed on this computation can be found for instance in [9,12].
Let us now explain why we have separated the first order expression into two compon-

tents Ω1A and Ω1B. The important point noticed by Littlejohn and Flynn is that the eigenvec-
tors χ

0
of the zeroth order equation are defined up to a phase factor [9]. In physical jargon,

choosing this phase amounts to a gauge choice. It appears that the first order expression of the
scalar symbol (and the corresponding operator Ω̂1) depends on this gauge choice. It is how-
ever possible to split the symbol into a partΩ1A that is gauge independent and a partΩ1B that is
not gauge independent. This can be checked by applying the transformation χ

0
→ χ

0
ei g(y,p),

where g(y, p) an arbitrary real-valued function. The term Ω1A is left unchanged, while the
term Ω1B is shifted as Ω1B → Ω1B + {g,Ω0}. As we shall see later, the term Ω1B is related to
the Berry curvature describing local variations of the eigenvectors χ

0
in parameter space (i.e.

local variations of the polarization relation in a given wave band). As such, the term Ω1B is
sometimes called the Berry term.

2.4 Application to the shallow water wave problem

Let us come back to the shallow water wave problem introduced in (5). The symbol of the
wave operator Ĥ± is of order 0 in ε:

H±
0
=





0 i y ±1
−i y 0 p
±1 p 0



 , H±
1
= 0 . (25)

The three eigenvalues of the symbol are, at leading order:

Ω±0 = {−ω0, 0, ω0} , with ω0 =
Æ

y2 + p2 + 1 . (26)

Notice that the eigenvalues of H+
0

and H−
0

are the same. The difference between the spectra
of both operators manifests at next order (equations (23)-(24)), for which the expression of

5This is the only step involving the Hermicity assumption, which allows to cancel some of the terms. The
diagonalization prodecure does not rely on this assumption, and could be performed, albeit with additional terms.
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the eigenvectors at zeroth order is needed:

χ±
0
=











1
p

2
p

1+ p2







±1− i yp
ω0

p± i y
ω0

−1+p2

ω0






,

1
ω0





p
∓1
i y



 ,
1

p
2
p

1+ p2







±1+ i yp
ω0

p∓ i y
ω0

1+p2

ω0

















. (27)

Using those expressions in (23)-(24) yields to the first order corrections:

Ω±1A =
§

∓
1

2 (1+ y2 + p2)
, ∓

1
1+ y2 + p2

, ∓
1

2 (1+ y2 + p2)

ª

, (28)

Ω±1B =

�

∓
y2

(1+ y2 + p2) (1+ p2)
, 0, ∓

y2

(1+ y2 + p2) (1+ p2)

�

. (29)

The correction Ω1A for the middle wave band is known as the dispersion relation of Rossby
wave. The Berry correction Ω1B is zero in that case, which is consistent with (24), together
with Ω0 = 0 for this wave band. As explained previously, the correction Ω1B for the other
bands depends on the phase choice made in (27) for χ

0
.

Note on the literature. The term Ω1A will play a crucial role in ray tracing equations, in
the next section. In that context, it was computed by N. Perez and called gradient correction,
see (B15) in [13]. Using the same gauge choice, Y. Onuki obtained the expression of Ω1 as
a particular case of a more general computing including horizontal variations of the layer
thickness (equation (3.9) in [23]), without splitting the expression into a Berry part and a
gauge-independent part. Gallagher and coworkers also obtained similar expressions in a series
of paper on the mathematics of equatorial waves [18], including more general configurations
with a prescribed horizontal mean flow field [19,20].

3 Wave packet dynamics in the semi-classical regime

This section builds upon previous works on the manifestation of the Berry curvature in ray
tracing as reviewed by Niu’s group for electronic waves [10], Perez et al for geophysical waves
[13], see also the pioneering work of Littlejohn and Flynn [9]. The only novelty here is a
physical interpretation of the formal change of variable appearing in the paper by Littlejohn
and Flynn, which allows us to make connections with Onuki’s recent work on wave transport
in geophysics [23].

3.1 Wave packet center of mass and wave packet momentum

We define the wave packet’s location yv and wavenumber pv as the corresponding operators
averaged with the energy density Ψ† · Ψ as weight, since the multicomponent wave field Ψ is
the physical field to be observed:

yv =

∫

dy Ψ† · (yΨ) , pv =

∫

dy Ψ† · (−iε∂yΨ) , (30)

where the subscript v stands for vectorial, and where Ψ is normalized according to (10). In
the quantum mechanical context, yv and pv are just the expectation values of the position and
momentum operators. Recall that the normalization constraint (10) is equivalent to the energy
conservation for shallow water waves. This is why yv and pv are respectively interpreted in this
context as an averaged energy-weighted position and momentum (wavenumber) for a given
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wavepacket. The weight |Ψ|2 corresponds indeed to the sum of local kinetic and available
potential energy, which, in dimensional units, is 0.5(Hu2 +Hv2 + gη2).

It will be useful to introduce similar quantities defined formally from the scalar wave-
field ψ, although their physical interpretation is less straightforward:

ys =

∫

dy ψ∗(yψ) , ps =

∫

dy ψ∗(−iε∂yψ) , (31)

where the subscript s stands for scalar. The quantities (ys, ps) in (31) are averaged position
and momentum, just as (yv , pv) in (30), albeit with a different weight. In the case of (yv , pv),
the weight was the local energy density, a physically meaningful quantity. This is not the case
for (ys, ps). In fact, we will see in subsection 3.3 that (ys, ps) are not physical observables for
the wave-packet since they depend on the gauge choice for the wave vector reconstruction
operator χ̂ that relates the scalar field ψ to the vector field Ψ through (9).

The two different definitions (30) and (31) for an averaged position and momentum of
the wave packet can be related together. As we shall see, they are not equivalent, due to the
non-commutation between the multicomponent projection operator χ̂ and the operators y
or ∂y . Defining

z= (y, p) , zv = (yv , pv) , zs = (ys, ps) , (32)

and using the commutation relations (A.12-A.13) established in Appendix A.3, together with
the Poisson bracket definition in (20), we find

zv = zs + iε

∫

dy ψ∗χ̂† ·Ø
¦

z,χ
©

ψ . (33)

From (30) to (33), no approximation is involved, as no assumption on the form of Ψ or ψ is
needed.

3.2 WKB ansatz for the scalar wavefield

We now consider the traditional WKB ansatz for the scalar wave field ψ:

ψ(y, t) = a0e
i
ε (φ0+εφ1) +O(ε) , (34)

where a0(y, t), φ0(y, t) and φ1(y, t) are real fields of order ∼ 1. The normalization condi-
tion (10) for ψ leads to the constraint

∫

dy a2
0 = 1 . (35)

The scalar wave field ψ is related to the multicomponent wave field Ψ through (9). Using
the order zero expansion of operators acting on the WKB ansatz (as detailed in Appendix A.5)
leads to

Ψ(y, t) = a0e
i
ε (φ0+εφ1)χ

0
(y, p(y, t)) +O(ε) , (36)

p(y, t) = ∂yφ0 + ε∂yφ1 . (37)

Using this WKB ansatz, the operators in (33) can be replaced by the expression of their symbols
at leading order, in order to obtain an approximation at order ε:

zv = zs + iε

∫

dy a2
0(y)χ

†
0
·
¦

z,χ
0

©
�

�

z=(y,p) +O(ε2) , (38)

where the symbol χ
0

and the Poisson bracket are evaluated at point (y, p), with p(y, t) given
by (37).
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3.3 Assumption of a localized wave packet

We now assume that the wave packet is localized at yv and extends over a scale ∆y ≪ 1,
keeping ∆y ≫ ε. Using (35), equation (38) is further simplified into

zv = zs + iεχ†
0
·
¦

z,χ
0

©

+O(ε∆y2) , (39)

where the terms in the r.h.s. are evaluated at zs. The expression remains actually correct when
evaluated at zv , but corrections are then of order O(ε∆y). From now on, we remove those
correction terms. It is worth insisting on the importance of (39) by writing independently the
two components, and by expanding the Poisson bracket:

yv = ys + iεχ†
0
· ∂pχ0

, (40)

pv = ps − iεχ†
0
· ∂yχ0

. (41)

The correction terms involve the components of a vector called the Berry connection:

A(zs) = iχ†
0
· ∇zχ0

, with ∇z = (∂y , ∂p) . (42)

Here, the Berry connection is a measure of how the polarization vector χ
0
(ys, ps) varies in

phase space (ys, ps). This term is gauge dependent: it is not invariant for a change of phase
choice in χ

0
. Since yv and pv are quantities built from the initial multicomponent wave prob-

lem that does not depend on any phase choice, they are gauge invariant. Thus, the breaking
of gauge invariance by the Berry connection implies that the coordinates (ys, ps) based on the
scalar wave equation are not gauge-invariant. Those observations will be confirmed by the ray
tracing equations obtained in both choices of coordinates.

Equations (40)-(41) correspond to the change of variable proposed by Littlejohn and Flynn
to obtain gauge-independent phase space coordinates. [9]. We showed here that this change
of variable has a wave packet interpretation.6

3.4 Ray tracing equations

3.4.1 Gauge dependent, canonical Hamiltonian form

A time differentiation of (31), together with the Hermiticity of the operator Ω̂ and the com-
mutation rule (A.12), leads to

ẏs =

∫

dyψ∗Ô∂pΩψ , ṗs = −
∫

dyψ∗Ô∂yΩψ . (43)

Using the WKB ansatz in the limit ε → 0 followed by the localized wave packet assumption
leads to the canonical ray tracing equations, where the frequency Ω0 + εΩ1 plays the role of
the Hamiltonian,

ẏs = +∂ps
Ωs , (44)

ṗs = −∂ys
Ωs , (45)

Ωs(ys, ps) = Ω0(ys, ps) + εΩ1A(ys, ps) + εΩ1B(ys, ps) , (46)

whereΩs is the symbol of the scalar operator. An unpleasant situation occurs: the ray dynamics
in phase space (ys, ps) depends on the term Ω1B which is gauge-dependent, as Ω1B depends
on the phase choice for χ

0
.

6The change of variable from scalar wave packet quantities (ys, ps) to vectorial wave packet quantities (yv , pv)
correponds to the change of variables from (x,k) to (x′,k′) with Littlejohn and Flynn’s notations.
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3.4.2 Gauge independent, non-canonical Hamiltonian form

Using the change of variables (40)-(41) in ray tracing equations (44)-(45)-(46) leads to a new
set of equations:

ẏv = +∂pv
Ωv + εFyp ẏv , (47)

ṗv = −∂yv
Ωv + εFyp ṗv , (48)

Ωv(yv , pv) = Ω0(yv , pv) + εΩ1A(yv , pv) , (49)

where Fyp(yv , pv) = −Fp y(yv , pv) is called the Berry curvature:

Fyp = i{χ†
0
,χ

0
} . (50)

The Berry curvature is the curl of the Berry connection A(y, p) = (Ay , Ap) introduced in (42):

Fyp = ∂yAp − ∂pAy . (51)

By contrast with the Berry connection, the Berry curvature is gauge-independent, as it is left
unchanged by a change of phase choice for χ

0
. In fact, all terms in the ray tracing equa-

tions (47)-(48)-(49) are gauge-independent. In particular, the term Ω1B present in (46) has
been cancelled out in (49) by a contribution induced by the change of variable from (ys, ps)
to (yv , pv). This was expected as we already noticed that yv and pv are physical observable
interpreted as averaged position and momentum with a local energy density weight, and the
temporal evolution of such physical observables cannot be gauge-dependent. The price to
pay for being gauge-independent in this new set of coordinates is that the presence of Berry
curvature renders the Hamiltonian dynamics non-canonical [9]. Indeed, the system of equa-
tions (47)-(48) is Hamiltonian as it can be written at order ε in the form:

żi = Ji j∂z j
Ωv , with z =

�

yv
pv

�

, (52)

and where J is the antisymmetric matrix

J =

�

0 1
1−εFyp

− 1
1−εFyp

0

�

. (53)

It is not a canonical Hamiltonian system as yv and pv are not conjugate variables. The con-
served “Hamiltonian energy” in phase space yv , pv is the frequencyΩv . This conserved quantity
is indeed left invariant by the change of phase space coordinates: Ωv(yv , pv) = Ωs(ys, ps), up
to order ε, as noted by Littlejohn and Flynn [9].

The same set of gauge-invariant ray tracing equations can actually be obtained with a dif-
ferent derivation. Starting from a variational formulation of the linearized dynamics with a
similar scaling, Perez et al recovered (47)-(49), and discussed geophysical applications. Our
contribution here is to clarify the reason why the term Ω1B that contributes to the symbol of Ω̂
does not enter into the ray tracing equations with gauge-independent phase space coordinates.
Note that Ωv is denoted by Ω in Perez et al [13].

We conclude that the ray tracing equations describing the trajectories of the center of mass of
the multicomponent wave involve only gauge-independent terms. The presence of Berry curvature
corrections to those trajectories makes the Hamiltonian dynamics non-canonical.
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3.4.3 Application to shallow water waves

For shallow water waves described by the operators Ĥ±, the Berry curvature is computed

by using the expression (27) for χ±
0

in (50). This yields an explicit expression of the Berry
curvature for each of the three wave bands

F±yp =

¨

±
1
p

1+ y2 + p23 , 0, ∓
1
p

1+ y2 + p23

«

. (54)

As noticed in [13], there is no Berry curvature correction for the flat geostrophic wave band,
but inertia-gravity wave packet trajectories are influenced by those corrections. We show in
the next section that this Berry curvature is related to peculiar topological properties of the
symbol of the rotating shallow water wave operator.

4 Topological properties of Matsuno symbol

The aim of this section is to interpret the Berry curvature (54) as a limiting case of a more
general computation performed in [5], that highlights the topological origin of this quantity.

For that purpose, we need to step back to the original Matsuno shallow wave operator Ĥ
k

defined in (3), and to compute its symbol. This is done by noting that each term of the matrix
operator in (3) is an elementary operator ĝ( ỹ ,∂ ỹ) whose symbol has already been computed
in (A.4):

H
k
=





0 i ỹ k
−i ỹ 0 l

k l 0



 , l =
p̃
ε

. (55)

Note that we have introduced the wavenumber l = p̃/ε in zonal direction, that will be more
convenient to manipulate than the rescaled wavenumber p̃. Recall also that ỹ = |k|y . One
can then check that the symbols of the original shallow water wave operator and of the
rescaled shallow water operators used previously in the semi-classical computations are re-
lated by H

k
= |k|H±

0
. Note that there is no higher order corrections to the symbol, due to

its simple form that involves no products of derivatives by functions of y . Such higher or-
der corrections would emerge for instance when considering the effect of a varying bottom
topography in this model, as detailed in [23,24].

Our strategy now is (i) to compute the eigenvectors of this symbol matrix, (ii) to introduce
the Berry curvature describing how the polarization relations of those eigenvectors change
when parameters (k, l, ỹ) are varied, (iii) to show that such Berry curvature is generated by a
topological singularity in parameter space (iv) to recover the Berry curvature terms (54) as a
limiting case. Those steps will be essential to bridge the gap between spectral flow properties
of the operator Ĥ

k
, and ray tracing equations deduced from operators Ĥ± in the semi-classical

limit k→±∞.

4.1 Matsuno symbol and Kelvin plane waves.

The symbol matrix (55) can be interpreted as the Fourier representation of the wave operator
considered in the original work of Kelvin for shallow water waves on the unbounded tangent
plane to the sphere, assuming ỹ = f as a constant [31], see Fig. 3.

Delplace et al showed that the spectral flow associated with Matsuno wave operator for
shallow water waves on the beta plane is encoded in the topological properties of eigenvectors
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Figure 3: Dispersion relation of shallow water waves on a plane tangent to the planet,
assuming constant Coriolis parameter f = ỹ (Kelvin wave problem). Geostrophic
modes correspond to the Rossby modes of the Matsuno wave problem. The pink dot
corresponds to the band degeneracy point that plays a central role in the topology of
shallow water waves [5].

of those shallow water plane waves considered originally by Kelvin [5]. The Kelvin wave prob-
lem is simpler to solve than the Matsuno wave problem as it only involves the diagonalization
of the 3× 3 matrix (55).

Existence of a degeneracy point. We now assume that ỹ is a constant parameter. Except
in the particular case (k, l, ỹ) = (0,0, 0) The symbol matrix (55) admits three eigenvalues,
namely 0 and±

p

k2 + l2 + ỹ2. These three eigenvalues define three distinct wave bands when
(k, l, ỹ) are varied, except at the particular point (k, l, ỹ) = (0, 0,0). This point is peculiar as
it corresponds to a degeneracy point for the eigenvalues, where the three wave bands touch
each other. This band-touching point will play an important role later on.

4.2 Berry curvature for eigenvectors of Matsuno symbol

Berry curvature in (k, l, ỹ)-parameter space. An explicit expression for the normalized eigen-
vectors χ(k, l, ỹ) of the symbol matrix (55) is given in [13]. From the knowledge of these
eigenvectors, one can compute the Berry curvature F, which is conveniently expressed as a
vector in parameter space (k, l, ỹ):

F= (Fl ỹ , F ỹk, Fkl) , (56)

where each component is obtained by applying the formula

Fλµ = i
∂

∂ λ
χ† ·

∂

∂ µ
χ − i

∂

∂ µ
χ† ·

∂

∂ λ
χ . (57)

The Berry curvature of the three shallow water wave bands was computed in [5]:

F=
n

−
r
r3

, 0,
r
r3

o

, (58)

with r = (k, l, ỹ) and r its norm. Those vector fields are displayed in Figs. 4a and 4b for
negative and positive Poincaré wavebands, respectively.

Let us now explain how this Berry curvature vector is related to the Berry curvature intro-
duced previously in (50).

From (k, l, ỹ)-parameter space to phase space (y, p). The eigenvectors χ±
0
(y, p) of H±

0
are given by the eigenvectors χ(k, l, ỹ) of the matrix H

k
defined in (55), using the change of

variable
(k, l, ỹ) = |k| (±1, p, y) . (59)
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The Berry curvature introduced in (50) for ray tracing equation is then recovered from the
first component Fl ỹ = −F ỹ l of the Berry curvature introduced through (57), by expressing the
semi-classical limit ε→ 0 as a limiting case for k:

F±yp dy dp =
h

lim
k→±∞

F ỹ l

i

d ỹ dl . (60)

This expression will play a crucial role in the next section, to relate the spectral properties
found by quantization of ray trajectories to the topological properties in parameter space.

4.3 From Berry curvature to the first Chern number and Berry monopoles

The first Chern number. The Berry curvature introduced previously is a geometrical quantity,
as it describes local properties of eigenvectors in parameter space. In loose terms, it describes
how twisted is the eigenvector field locally, independently from any phase choice of the eigen-
vectors. Let us now introduce a topological invariant, the first Chern number, an integer that
counts singularities in families of eigenvectors parameterized over a closed surface. Although
more detailed and formal definitions of this invariant exist, we give below a definition of this
number as an integral quantity involving the flux of Berry curvature across a closed surface.

Chern-Gauss-Bonnet formula. When considering eigenvectors parameterized over a 2D
closed surface embedded in the 3D parameter space, one can compute a Berry flux induced
by this curvature across any surface elements da as F · n̂da, with n a unit vector normal to the
surface, as displayed in Fig. 4. When integrated over the whole surface and normalized by 2π,
we get an integer, which is the first Chern number:

C ≡ 1
2π

∫

S
da F · n̂ , C ∈ Z . (61)

(61) is a generalization of the more familiar Gauss-Bonnet formula that relates the integral
of the (geometrical) Gaussian curvature over a closed surface to the (topological) gender of
this surface (the number of holes). Here, we consider a simply connected surface that can be
continuously deformed to a sphere, and the Chern number appearing in (61) counts the num-
ber of phase singularities associated with the bundle of eigenvectors that are parameterized
over the surface. This first Chern number is a topological index as it can not be changed under
continuous deformation of the surface S, provided that no degeneracy point is crossed during
the deformation, just as the number of holes of a given closed 2D surface is not changed by
continuously deforming this surface. Since the first Chern number is a topological invariant,
singularities can be moved on a given surface (for instance by changing the phase choice for
the eigenvectors), but can not be removed.

Application to shallow water waves. Coming back to the particular case of the shallow water
wave problem, it turns out that only two configurations are possible depending on the surface
S, when computing (61) using the Berry curvature definition in Eqs (56)-(57): If the surface S
encloses a degeneracy point, the Chern number can be nonzero. Otherwise, the Chern number
is always zero. For this reason, it is sometimes said that the band degeneracy point carries a
topological charge for a given wave band, whose value is given by the Chern number that can
be computed either from (61), as done originally in [5], or by other methods [7]. Consider-
ing the parameter space (k, l, ỹ) the result of the computation7 is a triplet of Chern numbers
associated with the three wave bands (by increasing order of frequency):

C = {−2, 0, 2} . (62)
7Note that the parameter space (k, l, ỹ) is considered in ref. [7], hence the sign difference in the Chern numbers.
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Figure 4: a) Berry curvature F vector field of the Matsuno symbol (55) for the neg-
ative Poincaré band. b) The same for the positive Poincaré band. Both diverge in
amplitude at (k, l, ỹ) = (0, 0,0). c) An integral of the flux of this vector field on
any closed surface S enclosing this point evaluates to −4π and 4π, for the nega-
tive and positive Poincaré bands respectively. The pink dot represents a Berry-Chern
monopole of charge ±2 that can be interpreted as the source of observed Berry cur-
vature.

Thus, the positive-frequency Poincaré wave band is described by the first Chern number C = 2.
Our aim in the next section will be to explain how this topological invariant is related to the
observed spectral flow of 2 in Matsuno spectrum through ray tracing dynamics in the semi-
classical limit.

Physical interpretation: analogy with a magnetic monopole. As noted previously, the Berry
curvature does not depend on the phase choice for the normalized eigenvector χ. It describes
how fast the polarization relation changes when parameters are varied in the vicinity of a
given point in parameter space. A direct consequence of (61) together with the existence of a
degeneracy point carrying a non-zero Chern number is that the Berry curvature diverges close
to the band-degeneracy points. In fact, one can interpret this curvature F as being generated
by a Berry monopole, in the same way as a divergent or convergent magnetic field would be
generated by a positive or negative magnetic monopole, whose charge must be quantized,
according to a celebrated work by Dirac [6, 8]. In this analogy the first Chern number plays
the role of the magnetic charge of the monopole. The Berry monopole can be interpreted as a
hedgehogs topological point defect for the Berry curvature vector field F. This whole section
on Berry curvature and Berry monopoles can now be summarized as follows:

To conclude, the presence of a non-zero Berry curvature term in ray tracing equations is related
to the presence of a Berry monopole at the origin of parameter space (k, l, ỹ), where the three bands
touch each others. This Berry monopole generates the Berry curvature away from the degeneracy
point, and, in particular, generates the component Fyp involved in (47)-(48) for ray trajectories
in phase space (y, p).

5 From ray tracing to the spectrum of the wave operator

5.1 Bohr-Sommerfeld Quantization

Ray tracing can be used to find the set of eigenfunctions of the wave equation in the limit
ε → 0. The standard semi-classical procedure is to look for closed orbits indexed by the
frequency ω in phase space, and to select those orbits such that the phase gained by the wave
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after a period (in phase space) is a multiple of 2π, taking into account additional phase jumps
of ±π/2 picked up at turning points [15, 32]. Turning points occur where the wavenumber
vanishes (p = 0). WKB expansion fails at such point, but the solution can be patched with
another ansatz, and matching those two solutions in the asymptotic limit ε → 0 yields to a
phase jump π/2 (see [32, 33]). Those phase jumps are related to a Maslov index [34]. To
describe eigenmodes within the ray tracing framework, the phase φ originally defined in (34)
is now assumed to be separated like φ(y, t) = φ′(y) −ωt. In the following discussion we
describe φ′(y) while dropping the prime to simplify notations.

In phase space with canonical coordinates (ys, ps), ray trajectories with frequency ω are
found by solving

ω= Ωs(ys, ps = ∂ys
φ) . (63)

This is the equivalent of the Hamilton-Jacobi equation in classical mechanics, with the phase
φ playing the role of an action. The phase picked up along a segment d y is

dφ = ps(ys)d ys . (64)

We explained in the previous section that computing trajectories in phase space (ys, ps) is not
easy and awkward, as the computation involves gauge-dependent terms. Following Littlejohn
and Flynn [9], it is more convenient to consider phase space variable involving gauge-invariant
coordinates (yv , pv), with

ω= Ωv(yv , pv) , (65)

where Ωv is defined in (49). Using the relations (40)-(41), the integral transforms into

dφ = pv(yv)dyv + iεχ†
0
· dχ

0
+ εd g , (66)

where d g is the differential of the function g = −pv iχ†
0
· ∂pv

χ
0

in phase space. A proof of this
can be found in [9] (p. 5249).

Let us now consider the case of a closed ray trajectory of frequency ω, with two turning
points. This will be the case of all ray trajectories for equatorial beta plane shallow water waves
to be considered later. Let us compute the total phase ∆φ picked up along a closed trajectory
winding the origin once clockwise. First, we note that the term involving dg vanishes. Second,
we add the contributions from the WKB solutions to the phase jump picked up at turning
points:

∆φ =

∮

ω

pv(y)d y + i

∮

ω

εχ†
0
· dχ

0
+ επ , (67)

where the contour integral are taken along the trajectory given by (65). For more complex
trajectories with µ ∈ N turning points, the additional term επ should be replaced by εµπ/2.
The second term of the r.h.s. involves the Berry connection defined in (42). Using the Stokes
theorem, it can be expressed as a flux of Berry curvature across the surface delimited by the
closed trajectory at frequency ω:

Γ (ω) =

∫∫

ω

dyvdpv Fp y(yv , pv) , (68)

where the integral is performed in the region delimited by the closed trajectory solution of
(65).

Finally, the quantization condition is obtained by stating that the phase φ/ε picked up
along the trajectory must be an integer multiple of 2π to ensure that the WKB ansatz is single-
valued. The quantization condition is finally expressed as

∮

ω

pv(yv)dyv = 2πε
�

m+
1
2

�

− εΓ (ω), m ∈ Z . (69)
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Note that some values of m may not be associated with solution of this equation. In fact, we
show in the next section that m admits a lower bound for shallow water waves.

Note on the literature. This quantization relation has long been used in condensed matter
context to address the role of Berry curvature generated by a topological charge in shaping
electronic waves, see e.g. [11]. Yet there seems to be so far little discussion on how to use
those relation to describe the spectral flow. This is the aim of the next subsection, in the case
of shallow water wave.

5.2 Application to shallow water waves

Let us now consider the two scalar operators Ω̂± describing the positive-frequency Poincaré
wave band of Ĥ± in the semi-classical limit ε→ 0. To find the eigenvalues ω± of the opera-

tors Ω̂±, we apply the quantization procedure introduced in subsection 5.1.
Ray trajectories in phase space (yv , pv) are found by solving (65), using Ωv = Ω0 + εΩ±1A,

where Ω0 is given by (26) and Ω±1A is given by (28). This computation leads to circular trajec-
tories of radius ϱ(ω), and eigenvalues ω± are solutions of

ω=
Æ

1+ϱ2 ∓
ε

2
1

1+ϱ2
, ϱ(ω) =
q

y2
v + p2

v . (70)

Admissible values of ω± are then obtained by applying the quantization relation (69),
which leads to

m± =
1

2πε

∮

ω

pv(yv)dyv +
1

2π
Γ±(ω)−

1
2

, m± ∈ Z , (71)

where the integral in the r.h.s. of (71) is just the area inside the (clockwise) trajectory, and
where the Berry flux is obtained by injecting in (68) the expression of the Berry curvature
Fp y = −Fyp given in (54):

∮

ω

pv(yv)dyv = πϱ
2(ω) ,

1
2π
Γ± = ±
�

1−
1
p

1+ϱ2(ω)

�

. (72)

The functions ϱ(ω) and Γ±(ω) for the positive frequency Poincaré wave band are displayed
in Fig. 5a and 5b, respectively. Our aim is now to compare the spectra of Ω̂+ and Ω̂−, taking
advantage of the quantization condition in (71).

We need to choose a convention to index the eigenfunctions of both operators, in such
a way that it may be possible to pair them together based on some physical criterion. For
that purpose, it is useful to consider the limit of large frequency ω → +∞. In this limit,
the Berry curvature terms Γ± tend to ±2π, and the phase space trajectories ω = Ω±v (yv , pv)
become identical at order ε. Indeed, the symbols Ω± are expressed as ω0+εΩ±1 +O(ε

2), with
Ω±1 = Ω

±
1A +Ω

±
1B given in (28)-(29). A direct inspection of those first-order correction terms

for the positive-frequency Poincaré wave band shows that they vanish in the large frequency
limit, for which ϱ(ω)→ +∞. This implies

lim
ω→+∞

�

m+ −m−
�

= 2 . (73)

Because of the convergence of their symbol to a common expression, spectral properties of the
operators Ω̂± are also expected to converge in the large frequency limit. The pairing procedure
between eigenmodes of Ω̂+ and Ω̂− can thus formally be performed by assigning a common
index n to those modes in the large frequency limit. This is done by choosing

m± = n± 1 . (74)
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The term ±1 cancels the Berry curvature terms in (71) in the large frequency limit.
While the WKB solution is valid in the limit ε→ 0 for a given value of ϱ, the quantization

condition (71) is not guaranteed in the limit ϱ→ 0, for a given ε, as one can not distinguish
anymore phase jumps at the turning points from the phase gained by the WKB solution. More
precisely, (71) is valid with the scalingϱ≫

p
ε, that makes possible a scale separation between

the WKB part of the solution and the phase picked up at the turning points. Fortunately, in the
limit ϱ→ 0 the operators Ω̂± are described by shifted quantum harmonic oscillator operators,
which allows us to find an explicit computation for their eigenmodes at finite n±, as shown in
Appendix B. This part of the spectrum can then be matched to the semi-classical computation
presented in this section, as the quantum harmonic oscillator soution remains valid for ϱ ∼ εα

with 0 < α < 0.5. An important outcome of the quantum harmonic oscillator computation is
the condition:

n≥ 1 , for eigenfunctions of Ω̂− , ensuring m− ∈ N , (75)

n≥ −1 , for eigenfunctions of Ω̂+ , ensuring m+ ∈ N . (76)

In fact, these results could have directly been deduced from Bohr-Sommerfeld rule (71) by
noting that the area term must be positive and that Γ± = 0 in the limit ϱ → 0, as displayed
Fig. 5. The constraints (75)-(76) mean that two modes labelled by n = −1 and n = 0 are
unpaired! This was precisely expected from the bulk-boundary correspondence [5,7]. In fact,
one can check that

• n= −1 is the Kelvin mode,
• n= 0 is the Yanai (or mixed Rossby-gravity) mode,

and that n ≥ 0 counts the number of zeros for the field v, which is an invariant of a given
branch in the dispersion relation of equatorial shallow water waves [1].

To conclude, ray tracing and quantization condition in the limit ε → 0 allow us to recover
a semi-classical version of the spectral flow result: just as two modes are gained by the positive-
frequency Poincaré wave band as k is varied from −∞ to +∞, the operator Ω̂+ admits two more
eigenmodes than the operator Ω̂− in the semi-classical limit ε→ 0.

5.3 Mode imbalance interpreted by Chern-Gauss-Bonnet formula

The analysis of subsection 5.2 shows that the imbalance of 2 modes between operators Ω̂+ and
Ω̂− in the semi-classical limit is due to the Berry curvature flux corrections Γ± involved in the
Bohr-Sommerfeld quantization conditions, with

lim
ω→+∞

Γ+(ω)− Γ−(ω)
2π

= 2 , (77)

as illustrated graphically in Fig. 5b. We explained in subsection 5.2 that the Berry curvature
term F±yp involved in the expression of Γ± in (68) is related to the presence of a Berry monopole
in parameter space (k, l, ỹ) for the eigenvectors of the symbol matrix (55).

In fact, (77) can be interpreted as the direct outcome of the Chern-Gauss-Bonnet for-
mula (61). To show this, let us consider the parameter space (k, l, ỹ), and the closed cylindrical
surface S depicted Fig. 6. The length of the cylinder is 2k = 2/

p
ε, while its circular ends

are delimited by a closed circular ray trajectory with a radius ϱ(ω) in phase space (±1, y, p),
which is related to parameters (k, l, ỹ) through the relation (59), where the index v for phase
space variables (y, p) has been dropped for convenience.
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Figure 5: (a) Variations of the circular trajectory radius ϱ as a function of fre-
quency ω in phase space (yv , pv). (b) Variation of the Berry flux across the area
delimited by a circular ray trajectory having a radius ϱ. (c) A circular trajectory
in phase space. (d) Quantization condition for shallow water waves in the semi-
classical limit, as expressed in (71)-(74). Red and blue curves are associated respec-
tively with operators Ω̂+ and Ω̂−. The sign ± is due to the definition n± = 1 Dashed
lines correspond to explicit computations performed in the limit ε → 0 at finite n,
see Appendix B.

The surface S encloses the degeneracy point (0,0, 0). Thus, according to Chern-Gauss-
Bonnet formula (61), the Berry flux across this surface normalized by 2π is equal to the Chern
number carried by this degeneracy point for each wave bands, which are given by (62) for the
shallow water case. The normalized Berry flux can be decomposed into three contributions:

1
2π

∫

S
daF · n=

1
2π

∫

Sc y l

daF · n+
1

2π

∫

p
y2+p2≤ϱ

dydpF+p y −
1

2π

∫

p
y2+p2≤ϱ

dydpF−p y , (78)

where Sc y l represents the open cylindrical surface, and where we have used
F ỹ ld f dl = Fypdydp, consistently with the definition of Berry curvature in (57).

To estimate those three contributions to the Berry curvature flux, we consider a double
limit whose order matters: first, the limit of infinite radius ϱ → +∞ for a given value of k
second, the semi-classical limit k→±∞. The motivation for this double limit comes from the
fact that we want to interpret how global properties of the full spectrum are changed when k
is varied. The first limit allows to get properties of the full spectrum for a given value of k,
since this limit allows to scan all possible trajectories in phase space (y, p). The second limit
allows us to get asymptotic properties of this full spectrum in the semi-classical limit.

The first limit ϱ→ +∞ implies that the contribution of Berry flux across the open cylinder
surface Sc y l vanishes, as the Berry curvature vanishes at infinite distance from the origin in
parameter space [5]. More precisely, the Berry curvature decreases as ϱ−3/2, which is faster
than the increase in the area Sc y l ∼ ϱk. Once this limit has been taken, the only non-zero
contribution to the Berry flux across S comes from the two circular surfaces at the ends of the
cylinder. The Berry flux across those surfaces only involve the component Fyp which tends to
F±yp computed in (54) when taking the limit k → ±∞. We note that the limit ρ → +∞ is
equivalent to the limit ω→ +∞ for positive-frequency Poincaré waves, and that k→±∞ is
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equivalent to the semi-classical limit ε→ 0. Finally, we get

lim
ε→0

lim
ω→+∞

1
2π

∫

S
daF · n= lim

ω→+∞

Γ+(ω)− Γ−(ω)
2π

, (79)

which is equal to a first Chern number C = 2, according to the Chern-Gauss-Bonnet formula
(61) and expression (62) for the Chern number in shallow water case. This shows the topo-
logical origin of the integer number 2 in the r.h.s. of (77). A last remark is in order:

Our point here is to stress that ray tracing followed by quantization in an appropriate semi-
classical limit offers a physically appealing intuitive explanation on the relation between the topo-
logical index and the spectral properties of the operator. In that respect, it may complement
previous lecture notes on this topic [7, 8]. While the derivation has been focused on the shallow
water wave problem, the method illustrated with this example applies to a much broader class of
wave problems.

Figure 6: Parameter space and phase space for ray tracing. A Berry monopole is
located at the origin of (k, l, ỹ)-parameter space, which corresponds to a degeneracy

point for the eigenvalues of matrix Hk. Phase space for ray tracing associated with
the scalar wave operators Ω̂± are recovered in the semi-classical limit ε→ 0, with the
change of variable from (l, ỹ) to (pv , yv) given in (59). The surface S in parameter
space is a cylinder where both circular ends are delimited by closed phase space
trajectories of radius ϱ at positions k = ±1/

p
ε.

5.4 Spectral flow and phase space density of states

Liouville theorem. We noticed that ray tracing equations (47)-(48) in phase space (yv , pv) are
an example of non-canonical Hamiltonian systems, which are commonly encountered in fluid
dynamics [35]. For such systems, the equivalent of standard Liouville theorem holds [35]. To
see this, let us start with the canonical Hamiltonian system (44)-(45) for trajectories in phase
space (ys, ps). In that case phase space volume element δV = dysdps is trivially conserved
owing to the canonical structure of the ray tracing equations. Now, the non-canonical ray
tracing equations (47)-(48) were derived from this canonical set of equations by performing
the change of variable (40)-(41). Applying this change of variable to the volume element then
yields to the conservation of

δV = det
�

∂ (ys, ps)
∂ (yv , pv)

�

dyvdpv = (1− εFyp)dyvdpv . (80)
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This means that a Liouville theorem holds in phase space (yv , pv), albeit with a modified den-
sity of states that depends on the Berry curvature.

Counting the number of states. Owing to the uncertainty principle, a given state of the
system occupies at least the elementary phase space volume 2πε. According to standard ar-
guments, this elementary phase space volume just reflects the impossibility to have a perfectly
localized wave packet with a given wavenumber [36]. One can then count the total number
of states that can be hosted in phase space as the integral of δV over phase space divided by
the elementary phase space volume 2πε. Here, this number is infinite. However, just as one
can compute mode imbalance between operators Ω̂+ and Ω̂−, we can compare the number of
modes that are hosted in phase space (yv , pv) for ray trajectories ruled by Ω̂+ and Ω̂−. The
corresponding volume elements are denoted by δV±, and a direct application of (80) leads to:

1
2πε

�∫

δV+ −δV−
�

=
1

2π

∫

dyvdpv

�

F−yp − F+yp

�

= 2 , (81)

where the integrals are performed over the whole phase space (yv , pv). The last equality fol-
lows from previous computations involving (54).

We see that the mode imbalance between operators Ω̂+ and Ω̂− can be interpreted as a con-
sequence of the continuous deformation of the density of state (1− εF±yp)/(2πε) induced by
the Berry curvature in phase space (yv , pv). In condensed matter context, this phenomenon
has been realized and popularized by Niu and coworkers [10]. In fact, the modification of
phase space density has long been known by physicists working with non canonical hamilto-
nian systems, e.g. [35]. Yet the relation with a spectral flow was not explicit in those previous
studies. This relation can now be stated as follows for the shallow wave problem:

The Berry curvature induced by a Chern-Berry monopole of charge 2 in (y, p, k)-space modifies
phase space density in (yc , pc)-space such that 2 more states (among an infinite number) are
hosted in the limit k→ +∞ than in the limit k→−∞.

6 Discussion and conclusion

6.1 Main physical ideas underlying the bulk-interface correspondence

By considering the particular case of equatorial waves, we have proposed a novel physical
interpretation of the interface-bulk correspondence that is commonly invoked to interpret the
wave spectrum of continuous media with spatially varying coefficients. Let us summarize the
main points of the argument to emphasize the physical concepts that have been introduced
along the way and to show how they are related to previous work.

In the case of equatorial shallow water waves, Mastuno discovered in 1966 a spectral flow
of index 2, corresponding to two modes gained by the upper frequency waveband when the
zonal wavenumber k was varied from −∞ to +∞ [1]. He found that those modes were more
localized than the others along the equator, and that they only propagate energy eastward. In
2017, [5] noticed that this spectral flow index is related to a Chern number describing singu-
larities in families of plane wave solutions for the same shallow water flow model albeit in a
simpler f -plane configuration, where the Coriolis parameter is held constant in space, and thus
considered as an external parameter. Concretely, [5] computed this Chern number carried by
a three-fold degeneracy point for the f -plane wave bands in (k, f , p) parameter space, with p
the wavenumber in meridional direction, and interpreted it as the charge of a Berry monopole.
The authors concluded that global properties of the dispersion relation in the the beta-plane
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(complicated) problem could be predicted just by computing the polarization relation of the
(simpler) f -plane wave problem, as expected from an interface-bulk correspondence and in-
dex theorems [7].

Mastuno’s computation was performed for arbitrary wavenumber k with brute force analyt-
ical computation. Here, we have recovered Matsuno’s result in the particular limit |k| → +∞.
The interest of considering this particular limit is to take advantage of the small zonal wave-
length parameter to perform a multiple scale development akin to semi-classical or WKB anal-
ysis. In this particular situation, the semi-classical computation is less elegant that the direct
solution of the problem valid for all k, but is extremely useful to get a physical interpretation
of the result, and to be applied to a much wider class of wave problems.

In the semi-classical limit, the computation of the wave spectrum boils down to computing
trajectories of wave-packets in phase space (y, p), and to select trajectories such that the phase
picked up by a wave-packet along a closed contour is an integer multiple of 2π.

At lowest order, local properties of the wave-packet trajectory at point (y, p) in phase space
are obtained by assuming a local plane-wave solution, with f (y) considered constant at the
scale of the wave-packet. This local plane wave solution comes along with a polarization
relation, and a dispersion relation, which are obtained by solving a matrix problem, referred
to as the bulk problem – or the symbol in mathematics. As explained by [7] for a more general
class of wave problems exhibiting spectral flows, this procedure makes a direct connection
between the parameter space (k, f , p) considered in [5], and the phase space (y, p) for wave-
packets with zonal wavenumber k sufficiently large. Wigner-Weyl transforms and symbolic
calculus is just a standard technical way to formalize and perform this translation from the
operator to the phase space with local plane wave solutions.

Our contribution here is to explicitly compute the ray trajectories in phase space for a
wave-packet in a given wave band, including first order corrections within the semi-classical
expansion framework. The key point of our analysis is thus to compute the wave trajectory
taking into account a small correction in the polarization that results in asymmetry for phases
of left-ward and right-ward propagating waves. The formal development leading to those first
order corrections can be found in previous studies following the seminal work of Littlejohn
and Flynn [9,10,12,13].

Once trajectories are computed, the second key step is to use the Bohr-Sommerfeld selec-
tion rule to find the discrete set of wave-packet trajectories that correspond to eigenmodes of
the equatorial beta-plane shallow water wave problem, and to compare the sets of eigenmodes
in the limit k → +∞ and k → −∞, for the upper frequency Poincaré wave band. Any mis-
match is interpreted as a spectral flow for varying k. Indeed, wave branches in the dispersion
relation can neither be created nor annihilated as k is varied [37]. The reason is that the wave
operator is self-adjoint for any given k and admits only discrete spectrum. Thus it is possible
to follow the different dispersion branches by varying k. The set of eigenmodes for any value
of k defines a complete orthonormal basis for triplet of 1D fields in y direction. Thus, if a
wave-band has more modes for k → +∞ than for k → −∞, it means that the additional
modes have transited from other wave-bands as k was varied.

The phase picked up by the wave-packet along a closed trajectory in phase space (y, p)
involves two contributions, which can be interpreted as the dynamical and geometrical (Berry)
phase.

The dynamical phase is just the phase that one would expect from inspection of the disper-
sion relation. This dispersion relation is at lowest order the dispersion of the f -plane problem
with the value of f at the averaged location of the wave packet. This dispersion relation is the
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same for k > 0 and k < 0, and thus involve no asymmetry in the selection rule.
The geometrical phase corresponds to a mismatch of the (complex) polarization phase of

the eigenvector after circulating along the closed orbit. This is very much like the angle gained
by the pendulum in Foucault experiment after a day, after the system has completed a closed
trajectory along a latitude circle. In Foucault pendulum case, the angle increases from 0 to
2π when varying the latitude from the 0 to the North pole. Similarly, for shallow water wave
problem in phase space with k > 0, the geometrical phase picked up by the wave packets
also increases from 0 to 2π when the radius of ray trajectory increases from 0 to infinity. The
opposite phase is picked up for k < 0. The geometrical corrections in phase space (y, p) are
directly related to the Berry monopole described and computed in 2017 by [5] in parameter
space (k, f (y), p). The key message here is that the phase difference of 4π corresponds both
to this Berry-Chern monopole and to the mismatch of two modes in the Poincaré wave band
for k→ +∞ and k→−∞, and ray tracing bridge the gap between those two point of views.

It should be stressed here that gradients of the Coriolis parameter f involve additional
corrections to the dynamical phase that we computed, building upon [9, 10, 13], and that
are of the same order as the corrections due to the geometrical phase. It turns out that such
corrections do not lead to a net gain or loss of modes when counting them at a given value of k,
even if they play a prominent role in setting the value of the frequency levels. Such corrections
may break the k↔−k symmetry, but we showed that they actually vanish for closed orbits
with a sufficiently large radius.

Another subtlety of the approach is that the Bohr-Sommerfeld rule applies to trajectory
with sufficiently large radius. We explained that this regime could be matched asymptotically
with another regime for which the wave operator admits explicit solutions, corresponding to
the eigenmodes of a shifted scalar quantum harmonic oscillator. Again, the precise value of
the frequency levels depends on this procedure, but not the number of modes.

The ray tracing argument thus explains how a topological defect in parameter space leads
to a mismatch of wavemode numbers for the spectrum in the semi-classical limit. It also
predicts that the modes involved in the spectral flow have a lower index than the others,
meaning that the modes are more localized than the others at a given k, since the trajectories
in phase space associated with those modes are closer to the origin. It would be interesting
to show in this ray tracing framework that a deformation of the beta plane into a smooth
step profile for f (y) would indeed lead to the delocalization of all the modes but those two
additional modes of topological origin, as described for instance in [38] by computing explicitly
the spectrum in a solvable case.

We also showed along the way that the noncanonical structure of the Hamiltonian ray
equations allows for a second, physically appealing interpretation of the spectral flow: in the
limit of large wavenumber |k|, the density of state in phase space (y, p) is modified in such a
way that two more states can be accommodated for k > 0 than for k < 0. Again, this density
of state is governed by the presence of a Berry monopole in parameter space.

In that respect, our study provides a physical interpretation of the index theorem, comple-
mentary to more rigorous approaches [7]. In fact, our study relates a spectral flow index to
a topological index, while Atiyah-Singer theorem involves an analytical index, which, in the
shallow water case and other relevant physical systems, has been suitably defined and inter-
preted in a recent study by Delplace [8]. In the present paper, a semi-classical approach was
used to reconstruct formally spectral properties of a wave problem with a parameter varying
in a given direction. On a more rigorous side, semi-classical technique has been recently used
in mathematical context to describe how a given wave packet evolving between two topo-
logically distinct materials splits into a “bulk” part that spreads and eventually collapses and
“edge” part that remains coherent and propagates at the interface between the two topological
phases [39].
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6.2 Perspectives

We stress that we focused on a semi-classical interpretation of a bulk-interface correspondence,
in problems without boundaries. In such problems, waves of topological origin emerge along
an interface of a parameter that opens a frequency gap for the bulk waves, as the Coriolis
parameter for equatorial waves. While the method was presented in the case of equatorial
shallow water waves, it is sufficiently general to be applied to a much wider class of problems
including more general shallow water waves [24,52], plasma [27,28], continuously stratified
and compressible flows [25, 26], among others. In all those problems with Hermitian wave
operator, topological features are found by looking for Berry monopole in parameter space,
and we have shown how such monopole may affect wave-packet dynamics in phase space.
The bulk-interface correspondence discussed in this paper is different than the bulk-boundary
correspondence that is commonly encountered in condensed matter. In the case of a bulk-
boundary correspondence, a bulk Chern number can be defined on each side of the interface
(e.g. each side of the equator for shallow water waves). Assigning a topological invariant
on each side of the interface for continuous media is not always possible. For instance, for
rotating shallow water waves, it requires the introduction of a regularization parameter such
as odd-viscosity [38, 41–43]. When this parameter is added into the model, one can assign
a topological index to the f -plane problem, i.e. in each hemisphere, and predict the number
of unidirectional modes at the equator [38]. The case of sharp (discontinuous) interfaces or
hard boundaries such as solid walls is much more complicated for continuous media: unidi-
rectional modes exist [43], yet apparent violation of standard bulk-boundary correspondence
have been noted and explained [44,45]. Our present work applies to the unbounded case and
as such provide an explanation for the bulk-interface correspondence only. However, hard-
boundary cases may sometimes be interpreted as limiting cases of an interfaces. For instance,
unidirectional trapped modes along coasts found by Kelvin in 1880 [31] can be recovered
from the study of a shallow water with varying bottom topography defining an interface at
the coast [24]. In that context, the ray tracing approach may help to bridge the gap between
the modern topological point of view and the more traditional textbook skipping orbit picture
explaining the emergence of the unidirectional mode along the wall. In that context of coastal
waves, it will be interesting to relate the ray tracing approach to the interpretation of rotating
shallow water dynamics as a Chern-Simons topological field theory [46].

It will also be interesting to see in future work how non-Hermitian wave problems can be
tackled with the ray tracing approach. Such problems naturally occur in the context of flow
instabilities [47], or in the presence of dissipative terms in the dynamics. On the one hand,
some of the spectral flow properties found in the Hermitian case seem to be robust to the
presence of non-Hermitian effects, as reported in the context of shallow water dynamics in
the presence of a mean velocity shear [52]. On the other hand, intriguing new unidirectional
trapped modes have been reported in rotating convection [48, 53, 54]. The ray tracing point
of view may help to bring new hindsight on the topological origin of those phenomena.
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A Symbolic calculus in a nutshell

This appendix gives the definition and some important properties of the Weyl-Wigner transform
that are used for symbolic calculus. It follows closely the presentation given in Onuki 2020
[23], we chose to present them here to set our notations.

A.1 Wigner-Weyl transform

Let us consider a linear operator f̂ that can formally be written with an integral representation
as

f̂ψ(y) =

∫

dy ′ F(y, y ′)ψ(y ′) . (A.1)

The symbol of this operator is a phase-space function f (y, p) obtained through the Wigner
transform:

f (y, p) =

∫

dy ′ F
�

y +
y ′

2
, y −

y ′

2

�

e−
i
ε p y ′ . (A.2)

Knowing the symbol f (y, p), the operator f̂ is recovered through the Weyl transform defined
as

f̂ψ(y) =
1

2πε

∫

dy ′dp ei p
ε (y−y ′) f
�

y + y ′

2
, p
�

ψ(y ′) . (A.3)

This process is sometimes called Weyl quantization, as it is a way to deduce a quantum operator
from a classical phase-space function. The origin of this quantization procedure is given in
subsection A.4.

A.2 Simple examples

Here, in geophysical fluid dynamics, our starting point is the operator of the linearized flow
dynamics, writen formally as f̂ (y,∂y). The integral Kernel of the operator F(y, y ′) is in general
not known a priori, and, in fact, it does not need to be known to compute the symbol f (y, p),
in most practical situation. Indeed, the use of equation (A.3), together with one or several
integration by parts makes it possible to derive the following useful results:

Symbol ↔ Operator , (A.4)

g(y, p) ↔ ĝ(y,∂y) , (A.5)

y ↔ ŷ = y , (A.6)

p ↔ p̂ = −iε∂y , (A.7)

c(y)p ↔ ×c(y)p = −iεc(y)∂y − iε
c′(y)

2
. (A.8)

In the last line, c(y) is a sufficiently smooth function and c′ = dc/d y is its derivative. This
relation is important as it shows that products of symbols are in general different than products
of operators. We come back to this important point in the next subsection.

Up to now we have only discussed the case of scalar operators and symbols. It is straightfor-
ward to extend the definition of Wigner-Weyl transforms to matrix symbols and corresponding
operators, which are matrices where each component is a scalar operator. One then gets the
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symbol of the shallow water model operator:

Symbol ↔ Operator (A.9)

H(y, p) ↔ Ĥ(y,∂y) (A.10)




0 i y 1
−i y 0 p

1 p 0



 ↔





0 i y 1 ,
−i y 0 −iε ∂∂ y ,

1 −iε ∂∂ y 0



 . (A.11)

A.3 Products and commutation rules

One can also deduce from the definition of Weyl transform and an integration by part that

y f̂ − f̂ y = iεd∂p f , (A.12)

∂y f̂ − f̂ ∂y =Ô∂y f . (A.13)

In general, taking the Weyl transform of a symbol product f g does not lead to to the standard
product of corresponding operators f̂ ĝ. It is however possible to define a new product operator
at the level of symbol, called star product, or Moyal product, such that

f̂ ĝ =Öf ⋆ g . (A.14)

It follows from the definition of the Wigner-Weyl transform, a Taylor expansion and some
manipulations detailed in the next subsection that

f ⋆ g =
∑

(n,l)∈N2

(−1)n

n!l!

�

i
2
ε

�n+l
�

∂ l
y∂

n
p f
��

∂ n
y ∂

l
p g
�

. (A.15)

Now, we assume ε→ 0. Up to order one, the star product is

f ⋆ g = f g +
i
2
ε{ f , g}+O
�

ε2
�

, (A.16)

which is in practice the expression used in this paper for the star product.
A useful consequence is the commutation rule used in the main text:

f̂ ĝ − ĝ f̂ = iε×{ f , g}+O
�

ε2
�

. (A.17)

This is a generalization of (A.12) and (A.13).

A.4 Interpretation of the Weyl quantization and expansion of the star product

To see the origin of Weyl quantization procedure, it is useful to introduce the Fourier transform
of the symbol

f̃ (η,ξ) =

∫

dydp f (y, p)e−
i
ε (yη+pξ) , (A.18)

f (y, p) =
1

(2πε)2

∫

dηdξ f̃ (η,ξ) e
i
ε (yη+pξ) . (A.19)

The operator f̂ is recovered by replacing p with −iε∂y in this last expression, which allows
for a direct interpretation of the Weyl transform as a quantization procedure:

f̂ (y,∂y) =
1

(2πε)2

∫

dηdξ f̃ (η,ξ) e
i
εηy+ξ∂y . (A.20)
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Expression (A.20) is sometimes used as a definition for the Weyl transform [49]. To check
that this definition is equivalent to (A.3), recall two useful formula involving the exponential
function of operator derivative ∂y :

ei ηε y+ξ∂y = ei ηξ2ε ei ηε y eξ∂y , (A.21)

eξ∂yψ(y) =ψ(y + ξ) . (A.22)

The first equality is a particular case of Baker–Campbell–Hausdorff formula commonly en-
countered in physics [50].

The definition (A.20) of the Weyl transform is a useful one to derive the product rule (A.15)
from the definition (A.14) of the star product, as shown for instance in Refs. [49,51], among
others. Indeed, the operator product is conveniently written in terms of the Fourier transform
of their symbol using (A.20), followed by (A.22):

f̂ ĝ =
1

(2πε)4

∫

dηdξdη′dξ′ f̃ (η,ξ) g̃(η′,ξ′)e
i
εηy+ξ∂y e

i
εη
′ y+ξ′∂y , (A.23)

=
1

(2πε)4

∫

dηdξdη′dξ′ f̃ (η,ξ) g̃(η′,ξ′)e
i

2ε (η
′ξ−ηξ′)e

i
ε (η+η

′)y+(ξ+ξ′)∂y , (A.24)

=
1

(2πε)2

∫

dη′′dξ′′àf ⋆ g(η′′,ξ′′)e
i
εη
′′ y+ξ′′∂y , (A.25)

where the last equality is just the definition of the Weyl transform (A.20) combined to (A.14).
Identifying the last two lines leads to

àf ⋆ g(η′′,ξ′′) =
1

(2πε)2

∫

dηdξdη′dξ′ f̃ (η,ξ) g̃(η′,ξ′)e
i

2ε (η
′ξ−ηξ′)δ(ξ′′− ξ′− ξ)δ(η′′−η′−η) . (A.26)

The expression (A.15) for the star product f ⋆ g is recovered by inserting (A.26) in (A.19),
using the expansion

e
i

2ε (η
′ξ−ηξ′) =
∑

(n,m)∈N2

(−1)n

n!m!

�

i
2
ε

�n+m� iη
ε

�m� iξ
ε

�n� iη′

ε

�n� iξ′

ε

�m

, (A.27)

together with basic properties of inverse Fourier transforms.

A.5 Symbolic calculus with a WKB ansatz

We recall classical results on the asymptotic development of an operator f̂ with symbol f (y, p)
acting on a scalar field

ψ= a(y)ei φ(y)ε . (A.28)

This is just a translation in our notations for the particular one-dimensional case. Using the
definition (A.3) together with a change of variable y ′′ = y ′ − y leads to

f̂ψ(y) =
1

2πε

∫

dy ′′dp f
�

y +
y ′′

2
, p
�

a(y + y ′′)e
i
ε(φ(y+y ′′)−y ′′p). (A.29)

A Taylor expansion of f , a and φ in terms of y ′′ (that will be justified a posteriori) yields

f̂ψ(y) =
ψ(y)
2πε

∫

dy ′′dp

�

f + y ′′
�

∂y f

2
+

f ∂y a

a

�

+O(y ′′2)
�

e
i
ε

�

(∂yφ−p)y ′′+ ∂y yφ
2 y ′′2+O
�

y ′′3
�
�

,

(A.30)
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where all functions inside the integral are evaluated at y . The term in the exponential is
expanded up to the second order because of the 1/ε prefactor. Powers of y ′′ in the integrand
can be replaced by derivatives with respect to p in front of the exponential term. Keeping only
terms up to order ε yields to:

f̂ψ(y) =
ψ(y)
2πε

∫

dy ′′dp

�

f + iε

�

∂y f

2
+

f ∂y a

a

�

∂p − iε f
∂y yφ

2
∂pp +O(ε2)

�

e
i
ε(∂yφ−p)y ′′ . (A.31)

We now expand the symbol, the amplitude and phase functions as

f = f0(y, p)+ε f1(y, p)+O(ε2) , a = a0(y)+O(ε) , φ = φ0(y)+εφ1(y)+O(ε2) . (A.32)

After integrations by parts for the variable p in Eq (A.31), and after using the identity

1
2πε

∫

dy ′′ g(y, p)e
i
ε(∂yφ−p)y ′′ = g(y,∂yφ)δ

�

∂yφ − p
�

, (A.33)

with δ(x) the Dirac distribution, we find

f̂ψ= f0ψ+ ε
�

f1 −
i
2

�

∂pp f0∂y yφ0 + ∂yp f0 + ∂p f0∂y ln(a2
0)
�

�

ψ+O(ε2) , (A.34)

where the symbols f0 and f1 are evaluated at (y, p(y)) with

p = ∂yφ0 + ε∂yφ1 . (A.35)

B Quantum harmonic oscillator limit

We show in this subsection that eigenmodes with sufficiently small n index can be approxi-
mated by solutions of a differential equation analogous to the quantum harmonic oscillator
problem [36], in the semi-classical limit ε → 0. This amounts to consider the limit of small
radius ϱ for trajectories in phase space, or equivalently, the limit of frequencies asymptotically
close to one: |ω− 1| ≪ 1.

Before presenting the computation, let us stress that operators Ω̂± are not differential oper-
ators in general. By contrast, the original multicomponent wave operator Ĥ± is a differential
operator. Differential operators involve only terms such as ∂ n/∂ yn with n a non-negative
integer. Consequently, their symbols involve only polynomial terms in the wavenumber p.
However, the scalar operators Ω̂± are obtained after a diagonalization procedure of the sym-
bols H±, and this diagonalization leads to the presence of non-polynomial terms in the ex-

pression of Ω±(y, p), see for instance the r.h.s. of (70). Owing to the presence of those non-
polynomial terms, the corresponding operators Ω̂± belongs to the family of pseudo-differential
operators.

In the limit of trajectories that are close to the origin in phase space (y, p), a Taylor expan-
sion allows us to turn the pseudo-differential operators into differential operators analogous to
the quantum harmonic oscillator operator, up to a constant. In the shallow water case, taking
the limit ϱ≪ 1 in (70) leads to

ω± = 1+
1
2
ϱ2 ∓

ε

2

�

1−ϱ2
�

+O(ϱ4) . (B.1)

The term εϱ2 can also be dropped in the small ε limit. Then, using Ω± = ω± + O(ε2),
ϱ2 = y2 + p2, and applying Weyl quantization to this symbol leads to

Ω̂± =
1
2

�

−ε2 d2

d y2
+ y2

�

+ 1∓
ε

2
+O(ε2) , (B.2)
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The eigenvalues of this operator are ω± = (m±+1/2)ε+1∓ ε/2 with m± ∈ N [36]. Now, we
want to match this dispersion relation with the semi-classical result obtained in the main text
under the condition ϱ≫ ε, while keeping ϱ≪ 1 to stay in the harmonic oscillator limit. This
is done by choosing m± = n± 1:

ω+ = 1+ ε(n+ 1) , n≥ −1 , (B.3)

ω− = 1+ εn , n≥ 1 . (B.4)

The expression n(ω) is drawn as a dashed line in Fig. 5d.
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