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Abstract

We construct planar black hole solutions of AdS gravity minimally coupled to a scalar
field with an even, super-exponential potential. We show that the evolution of the black
hole interior exhibits an infinite sequence of Kasner epochs, as the scalar field rolls back
and forth in its potential. We obtain an analytic expression for the ‘bounces’ between
each Kasner epoch and also give an explicit formula for the times and strengths of the
bounces at late interior times, thereby fully characterizing the interior evolution. In this
way we show that the interior geometry approaches the Schwarzschild singularity at late
times, even as the scalar field is driven higher up its potential with each bounce.
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1 Introduction

The role of black hole interiors in Anti-de Sitter (AdS) holography remains to be fully elu-
cidated. The interior is causally disconnected from the asymptotic boundary and yet is de-
termined by initial data in the exterior. Previous works have related black hole interiors to
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important dynamical processes in the dual quantum many-body system [1–5]. However, the
rich classical dynamics of black hole interiors — such as the emergence of BKL chaos [6–8]
— has yet to find a holographic home. Conversely, the dual field-theoretic description holds
out the prospect of understanding stringy and quantum gravitational effects at the interior
singularity, but these have proven challenging to nail down [9,10].

A widely employed simplification in the study of cosmological dynamics, and in particular
the approach to singularities, is minisuperspace. This amounts to an ansatz in which the fields
depend on time but not space. It has recently been emphasized that interior minisuperspace
dynamics is naturally thought of as the continuation of the exterior holographic renormaliza-
tion group flow through the horizon [11, 12]. While solutions obtained by neglecting spatial
inhomogeneities in the interior will be highly non-generic, at late times spatial gradient terms
are expected to drop out of the equations of motion [6–8]. This implies that different points
in space decouple and each separately evolve according to the minisuperspace equations.

A recent body of work has demonstrated that a common feature of (minisuperspace) holo-
graphic interiors is the emergence of Kasner scaling towards the singularity [11,13–29]. The
negative cosmological constant becomes irrelevant at late interior times, and therefore the
well-studied approach to spacelike singularities in gravity without a cosmological constant is
recovered. A further phenomenon that appears in these works are bounces between different
Kasner ‘epochs’, see e.g. [14,16,21,25,27–29]. This is again familiar from much earlier work,
most famously the chaotic bounces of the ‘mixmaster’ universe [30].

In this paper we obtain a holographic model of a black hole with an infinitely bouncing
interior, with the key aspects of the dynamics captured analytically. As part of this endeav-
our, we characterize the cosmological behavior of gravity with super-exponential potentials —
which has some differences to the well-studied case of exponential potentials [7,30].

Let us briefly outline the main technical results. We will find planar black hole solutions in
which the metric and a scalar field evolve from the AdS boundary to the black hole interior as a
function of a single ‘radial’ coordinate, in the spirit of [11]. The metric ansatz is given in equa-
tion (2). The evolution can be reduced to solving a single second-order, nonlinear ordinary
differential equation for the velocity of the scalar field — equation (12). If the scalar field has
an even, super-exponential potential then it cannot reach an asymptotic scaling behavior [16]
and necessarily bounces back and forth in its potential; this evolution of Kasner epochs punc-
tuated by ‘bounces’ is illustrated in Fig. 1. At the bounces the scalar field runs high up its
potential and the full equation of motion can be simplified to equation (20). As previously
noted in [28], this equation provides the analytic expression (24) for the bounces between
epochs. Using the simplified equation for the bounces we demonstrate that the velocity of the
scalar field relaxes at each bounce, while the field itself is driven higher and higher up its po-
tential. By obtaining the exponentially small variation of the velocity in the Kasner regimes, in
between bounces, we are able to set up recursion relations in (32) that characterize the evolu-
tion of the field and its velocity from bounce to bounce. Solving these recursion relations, we
show that at late interior times the velocity of the field tends to zero and the interior metric
tends towards the Schwarzschild singularity. All analytical expressions are corroborated by
numerical solution to the equations of motion.

2 Equations

We consider gravity minimally coupled to a scalar field in 3+1 bulk dimensions. We allow the
scalar field to have an arbitrary potential, so that the Lagrangian density is

L= R− 1
2 gab∂aφ∂bφ − V (φ) . (1)
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We have set the gravitational coupling to one. The negative cosmological constant is included
within the definition of V (φ). We wish to study planar black hole solutions to the theory (1)
that have the form

ds2 =
1
z2

�

− f (z)e−χ(z)dt2 +
dz2

f (z)
+ dx2 + dy2

�

, φ = φ(z) . (2)

The AdS boundary is at z = 0 and the singularity will be at z →∞. At a horizon, f = 0. We
will take the potential to have the asymptotic behavior as φ→ 0 near the AdS boundary

V (φ)→−6−φ2 + · · · . (3)

This fixes the asymptotic AdS radius to unity and the scaling dimension of the scalar field to
∆= 2, using standard quantization. It follows that to leading asymptotic behavior at the AdS
boundary as z→ 0:

f → 1 , χ → 0 , φ→ φ(0)z . (4)

Here φ(0) is the boundary source for the scalar field. The asymptotic value of χ may be set to
zero by rescaling the time coordinate. The well-established holographic dictionary, e.g. [31],
relates the setup just described to a three dimensional conformal field theory at nonzero tem-
perature and deformed by a relevant operator O, dual to the bulk field φ.

It is straightforward to verify that the Einstein and scalar field equations are solved on the
ansatz (2) so long as

2zχ ′ = z2φ′2 , (5)

4z f ′ =
�

12+ z2φ′2
�

f + 2V (φ) , (6)

2z2 f φ′′ = zφ′
�

−2z f ′ + [4+ zχ ′] f
�

+ 2V ′(φ) . (7)

These equations imply a single third order, nonlinear equation for φ. Before writing down this
equation it will be helpful to parametrize the potential as

V (φ) = e
´

H(φ)dφ , (8)

for some function H(φ) and introduce the coordinate ρ via

z = eρ . (9)

At the AdS boundary ρ→−∞ while at the singularity ρ→ +∞. The equation for φ is then
obtained from (5) – (7) as

4[2H(φ)− φ̇]
...
φ

φ̈
= 8[H(φ)]2φ̇ − 8φ̈ + 4[3+ 2H ′(φ)]φ̇ + φ̇3 − 6H(φ)(4+ φ̇2) . (10)

Here dots denote derivatives with respect to ρ. Finally, this equation may be written as a
second order equation for v(φ) where the ‘velocity’

v ≡ φ̇ . (11)

Equation (10) then becomes

4(2H − v)
vv′′

v′
= 8H2v − 2H[3v2 + 4(3+ v′)] + v[12+ v2 + 4(2H − v)′] . (12)

In this equation both v and H are functions of φ. Our objective is to understand the behavior
of (10) or (12) at late interior times.
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3 Kasner epochs and numerics

In the absence of a potential V it has been long known [32] that at late interior times ρ→ +∞
the solution will evolve towards a Kasner spacetime with the velocity

v = v∞ , (13)

a constant. On this solution the field φ = v∞ρ → +∞ at late interior times if v∞ > 0. The
other fields are then, from the equations of motion above and ignoring the potential,

χ̇ =
v2
∞

2
,

ḟ
f
= 3+

v2
∞

4
. (14)

In particular, v∞ = 0 describes the Schwarzschild singularity, with no scalar field.
Kasner spacetimes continue to play a central role once a potential is included, but they

may not persist for ever. To see this, consider a perturbation of the Kasner behaviour

v = v∞ +δv(φ) . (15)

Linearising equation (12) in δv and integrating gives

δv(φ) = a
ˆ

e−(3+v2
∞/4)φ/v∞
�

V (φ)−
2

v∞
V ′(φ)
�

dφ . (16)

Here a is a constant. Suppose firstly that V (φ) is sub-exponential as φ →∞. In this case
the integral in (16) is dominated at large φ by the first, exponentially decaying term. The
perturbation δv(φ) therefore remains small and the Kasner asymptotic survives. However,
if the potential is super-exponential then the V (φ) terms dominate the integral in (16) at
large φ, and therefore δv(φ) becomes large. It follows that in such cases Kasner is not a
stable asymptotic behaviour for the interior [16]. When the potential is precisely exponential,
then it is possible for asymptotic Kasner behavior to survive by self-consistently approaching
a value of v∞ such that the negative exponential term in (16) dominates over the potential.
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Figure 1: Evolution of φ (left plot) and v = φ̇ (right plot) as a function ρ. The AdS
boundary is at ρ → −∞, the horizon at ρ = ρH and the singularity at ρ → +∞.
Numerics have been performed with the potential V = −6 − φ2 + 1

10 exp
� 1

10φ
8
�

.
Towards the boundary φ ∼ φ̇ ∼ eρ. The constants of integration have been fixed
by regularity at the horizon combined with φ(ρH) = 1. Numerical evolution with a
super-exponential potential is delicate. We have found it most convenient to integrate
the original equations (5) – (7), converted to the ρ coordinate. See e.g. [11] and
references therein for discussion of numerical methods.
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In the remainder of this paper we will determine, analytically, the asymptotic behavior of
the interior in cases where V (φ) is super-exponential at large φ. We restrict to even potentials
so that the field may not escape to infinity in either direction. We may first, however, gain
some intuition from numerics. Fig. 1 shows an illustrative evolution of the scalar field φ
and its derivative v = φ̇ from the boundary to the interior. Similar bouncing behaviour has
previously been seen numerically in [16]. We have chosen a strong potential that rapidly
develops several Kasner epochs in the interior.

The interior dynamics in Fig. 1 exhibits a sequence of Kasner epochs characterized by
decreasing constant velocities v1 > v2 > v3 > · · · The epochs are separated by abrupt ‘bounces’
in which the velocity changes sign. The maximal value of the scalar field increases from bounce
to bounce. The relatively small, and decreasing, values of the Kasner velocities suggests that
the solution is slowly approaching the Schwarzschild singularity at late interior times. This
fact is furthermore illustrated in Fig. 2, and will be shown to be the case in §5.
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Figure 2: The metric slowly approaches the Schwarzschild singularity behaviour
∂ρ f / f = 3 at late interior times, through a sequence of Kasner epochs. The sharp
dips in ∂ρ f / f at the transitions between epochs are not spurious. The inset zooms
in on one of the transitions.

4 Analytic description of the extended bounce

While the scalar field and its derivative never become large, there are large numbers appearing
in the equations. Close to the transitions the potential V and its ‘exponent’ H, evaluated on
the solution φ(ρ), become large. This is illustrated in Fig. 3, using the numerics from the
previous section. Recall that it is only H and its derivatives that appear in the scalar equations
of motion (10) or (12). It is important to note in Fig. 3 that while V is large very close to the
transition, and this will be the narrow region where the velocity v changes sign, H remains
(less) large over a wider range of values of ρ. We will call this the ‘extended bounce’ region.

An analytic understanding of the bounces between Kasner epochs is obtained by identifying
the terms in the equation of motion (12) that dominate throughout the ‘extended bounce’
regimes. Figs. 1 and 3 together suggest that these regimes have

|H| ≫ |v| . (17)

The numerics furthermore indicate, see Fig. 4 below, that this condition continues to hold
well into the Kasner epochs on each side of the transition, where the velocity v has become
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Figure 3: The potential V (φ(ρ)) (right axis, orange) and H(φ(ρ)) = V ′/V (left axis,
blue) close to one of the transitions between Kasner epochs shown in Fig. 1. The
potential varies much more abruptly than H. This leads to a narrow as well as an
extended bounce regime.

constant. The overlap of the extended bounce with the constant v epochs will be important
later, as it will allow us to match the Kasner epochs onto the far narrower regime over which v
changes sign.

With the assumption (17) the equation of motion (12) simplifies to

v′′

v′
+

v′

v
= H −

3
v
+

H ′

H
. (18)

We see that this simplified equation indeed allows for regimes where velocity terms dominate
— these will be the onset of the Kasner epochs where the terms involving H become negligible
— as well as regimes where the potential dominates. From (8) we have that H = V ′/V and
hence we may integrate (18) once to obtain

log
vv′

V ′
= −3

ˆ
dφ
v
= −3ρ + const . (19)

We used the definition of v from (11) in the final step. Also from (11) we have that vv′ = φ̈
and therefore we may write

φ̈ = cV ′(φ)e−3ρ . (20)

Here c is a constant. In principle this constant could be different for each bounce, as the
condition (17) does not hold all the way from one bounce to the next. In particular, H changes
sign and therefore vanishes in between bounces. The matching argument in §5 below, however,
will show that c is in fact the same on each bounce.

Equation (20) may also, of course, be obtained by integrating up (10) subject to the con-
ditions (17). We have found the above derivation cleaner.

The greatly simplified equation of motion (20) describes a particle moving in a poten-
tial V (φ) that is uniformly shrinking as a function of time due to the factor of e−3ρ. This is
very similar to the situation in which bounces between Kasner epochs were first described in
the context of the mixmaster universe [30]. Let us first recall qualitatively how this works.
On the nth Kasner epoch the scalar field grows according to φ = vnρ, and therefore the right
hand side in (20) is V ′(vnρ)e−3ρ. Because V is super-exponential, eventually the growth in V ′

dominates the exponential shrinking. This is entirely analogous to our discussion around (16)
above. Once the potential term dominates, it is clear what will happen: the scalar field will
bounce off the potential. As the field starts to roll back down the potential, the shrinking factor
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of e−3ρ will rapidly come to dominate. The field will then lose sight of the potential and will
again acquire a ‘free motion’ Kasner behavior φ = vn+1ρ. Because we are taking the potential
to be even, this new Kasner regime is again unstable and the process will repeat itself for ever,
consistent with the numerics in §3.

To obtain the form of the bounce analytically, one further approximation is necessary.
From (20) it is immediate to obtain

...
φ

φ̈
+ 3=

V ′′(φ)
V ′(φ)

φ̇ . (21)

Eq. (21) depends only on the rate of growth of the potential. From Fig. 3 we know that this
rate of growth varies slowly compared to the abruptness of the bounce itself. Thus the rate
of growth is approximately constant over the bounce, so that at the nth bounce V ′′/V ′→ kn

1

and we may simplify (21) to ...
φ

φ̈
+ 3= knφ̇ . (23)

Eq. (23) amounts to approximating the potential close to the bounce by the exponential
form V ′ ∝ eknφ , which is sufficient to capture the competition in (20) between the growth
of V with φ and the shrinking of the effective potential with ρ. Eq. (23) was previously found
to describe bounces off exponential potentials in [28], who also noted its solution

φ̇ =
3
kn
−
|∆vn|

2
tanh
�

kn|∆vn|
4

(ρ −ρn)
�

. (24)

There are two constants of integration in this solution. The change in the Kasner velocity at the
nth bounce is vn+1−vn = −|∆vn| sgn(kn), which occurs atρ = ρn (this is where

...
φ = 0, we may

alternatively think of the bounce as occurring where φ̇ = 0. Because kn is large in (24) these
two points are close together). In Fig. 4 we verify that the expression (24) gives an excellent
description of the bounces found numerically in §3. It may be noted that the equation (23)
and solution (24) are somewhat similar, but not quite identical, to the approximate analytic
description of ‘Kasner inversions’ of charged black holes obtained in [14,33]. A difference with
the Kasner inversions is that here the metric component gt t continues to collapse towards zero
across all transitions.

In Fig. 4 we see that the solution (24) describes a bounce between two Kasner epochs

φ̇ = vn , for ρ≪ ρn , → φ̇ = vn+1 for ρn≪ ρ . (25)

One observation that follows from (24) is that while the Kasner velocities may often change
sign, the magnitude always decreases from bounce to bounce: |vn| ≥ |vn+1|, consistently with
Fig. 1 above. We may think of the reduction in velocity as some ‘inelasticity’ in the bounce
although, possibly counterintuitively, we will also establish shortly that the fieldφ rolls further
up the potential on each subsequent bounce. This phenomenon is also visible in Fig. 1. In the
following section we will show that |vn| → 0 as n→∞, so that the solution eventually relaxes
to the Schwarzschild singularity.

1More precisely, the condition to make this replacement is that |∆(V ′′/V ′)| ≪ |V ′′/V ′| over the range∆φ of the
narrow bounce. The range can be estimated from (21) as ∆φ ∼ V ′/V ′′. Using ∆V ′′ ∼ V ′′′∆φ and ∆V ′ ∼ V ′′∆φ
the required condition is that

�

�

�

�

V ′′′V ′

V ′′2
− 1

�

�

�

�

≪ 1 . (22)

This condition is seen to hold at large φ for the kind of potentials we are considering.
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Figure 4: Evolution of φ̇ (left) and ḟ / f (right) across a bounce. Orange dashes
are the full numerical solution (cf. inset of Fig. 2 for ḟ / f ). Solid blue lines show
the analytic expressions following from a fit to (24). This is a two-parameter fit
for ρn and |∆vn|, with kn = V ′′/V ′ at ρn. ḟ / f is obtained from (24) using
ḟ / f = 3+ 1

4 φ̇
2+φ̈/(2k̃n−φ̇). This expression follows from the equations of motion,

together with setting V ′/V → k̃n, its value at the bounce.

5 Late time evolution of the interior

To completely describe the late time evolution of the interior we must patch together the
sequence of bounces using the intervening Kasner epochs. We are able to do this because of the
overlap between the extended bounce regime and the Kasner epochs, emphasized above and
illustrated in Fig. 5. These overlaps will allow us to set up and solve a recursion relation for the
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<latexit sha1_base64="gXLpS3IKuljLo4cAeBgQKk0i2s0=">AAAB8XicbVBNSwMxEJ34WetX1aOXYBEEoexKUY9FLx4r2A9sl5JNs21oNlmSrFCW/gsvHhTx6r/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+0crq2vrGZmGruL2zu7dfOjhsGpVqyhpUCaXbITFMcMkallvB2olmJA4Fa4Wj26nfemLacCUf7DhhQUwGkkecEuukx64eql4mz/1Jr1T2Kt4MeJn4OSlDjnqv9NXtK5rGTFoqiDEd30tskBFtORVsUuymhiWEjsiAdRyVJGYmyGYXT/CpU/o4UtqVtHim/p7ISGzMOA5dZ0zs0Cx6U/E/r5Pa6DrIuExSyySdL4pSga3C0/dxn2tGrRg7Qqjm7lZMh0QTal1IRReCv/jyMmleVPzLSvW+Wq7d5HEU4BhO4Ax8uIIa3EEdGkBBwjO8whsy6AW9o4956wrKZ47gD9DnD0nqkK0=</latexit>⇢n+1

<latexit sha1_base64="27cVmprMlt13N6b01hNgqgXysPs=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoMgCGE3BPUY9OIxgnlAsoTZSScZMju7zMwGwpKP8OJBEa9+jzf/xkmyB00saCiquunuCmLBtXHdbye3sbm1vZPfLeztHxweFY9PmjpKFMMGi0Sk2gHVKLjEhuFGYDtWSMNAYCsY38/91gSV5pF8MtMY/ZAOJR9wRo2VWpNeKq8qs16x5JbdBcg68TJSggz1XvGr249YEqI0TFCtO54bGz+lynAmcFboJhpjysZ0iB1LJQ1R++ni3Bm5sEqfDCJlSxqyUH9PpDTUehoGtjOkZqRXvbn4n9dJzODWT7mME4OSLRcNEkFMROa/kz5XyIyYWkKZ4vZWwkZUUWZsQgUbgrf68jppVsredbn6WC3V7rI48nAG53AJHtxADR6gDg1gMIZneIU3J3ZenHfnY9mac7KZU/gD5/MHB8WPYQ==</latexit>vn+2

Figure 5: Overlap of the Kasner (red rectangles) and extended bounce (orange
squares) regimes. The nth bounce is strongly localized to ρ ≈ ρn and φ ≈ φn.
However, the extended bounces described by (24) are wider and overlap with the
Kasner regimes. On the nth Kasner regime φ̇ ≈ vn.

locations of the bounces ρn, Kasner velocities vn and field values at the bounces φn = φ(ρn).
We shall obtain three separate relations.

Firstly, because the Kasner regimes extend to very close to the bounces we may write

φn+1 −φn = vn+1(ρn+1 −ρn) . (26)

We will see shortly that the width of the bounce gets narrower with increasing n, even while the
distance between successive bounces grows. Therefore, the relation (26) becomes increasingly
accurate asymptotically.
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Secondly, by adding the bounce solution (24) at times well before and after a bounce we
obtain

vn + vn+1 =
6
kn
≈ 6

V ′(φn)
V ′′(φn)

≈
6

H(φn)
. (27)

The final step holds to leading order at large φ due to the super-exponential potential,
wherein V ′/V ′′ ≈ V/V ′ = 1/H. Equation (27) amounts to matching the extended bounce
solution (24) to the Kasner regimes on either side. It may be verified to high accuracy in the
numerics. However, because the full underlying equation of motion for φ is third order, we
must also match the second derivative φ̈ between the extended bounce and Kasner regimes.
This is a little more elaborate, as we now explain.

On the Kasner regime the second derivative is exponentially small and can be obtained
by differentiating (16), and setting v∞ → vn. Does the linearized expression for φ̈ obtained
in this way remain valid into the extended bounce regime? As discussed around (16), the
linearized solution breaks down when the potential terms become important compared to the
exponential in (16). If the Kasner velocity

|vn| ≪ 1 , (28)

then this occurs at |H| ∼ 1/|vn|. Because |vn| ≪ 1, this breakdown takes place well within the
extended bounce regime |H| ≫ |vn|. Therefore the two descriptions overlap. Conversely, if
|vn| is not small there is no parametric regime of overlap between the linearized solution and
the extended bounce. Therefore, we will assume that (28) holds so that this matching of φ̈
is possible. We will see that (28) indeed holds asymptotically, with |vn| → 0 as n→∞. Our
analysis is therefore self-consistent in this limit. We will furthermore verify that the expressions
we obtain under the assumption (28) agree with numerical results where |vn| is small but not
yet tiny.

Assuming that (28) holds, from (16) we obtain, on the overlap of the Kasner and extended
bounce regimes,

φ̈ = ãe−3φ/vn V ′(φ) = âe−3ρV ′(φ) . (29)

Here ã and â are constants (in a given Kasner regime). In the first equality we used the fact
that H = V ′/V ≫ vn in the extended bounce regime to drop the V term in (16). In the second
equality we used the Kasner relation φ = vnρ + const. We immediately recognize that (29)
agrees perfectly with the simplified equation (20) for the extended bounce. This had to happen
because we are considering a regime of overlapping validity of the two descriptions. However,
the constant c in (20) holds for a given extended bounce while the constant â in (29), inherited
from a in (16), holds through a given Kasner regime that connects two sequential bounces. It
follows that the constant c in (20) does not change between bounces, asymptotically, so that
we may write c = cn = cn+1.

With the knowledge that the constant c does not vary between bounces, it will be helpful
to use (20) to obtain a formula for the difference in Kasner velocities across a bounce:

vn+1 − vn =
ˆ ρ+n
ρ−n

φ̈ dρ = ±c
ˆ ρ+n
ρ−n

e−3ρ+log |V ′(φ)|dρ

≈ ±c
p

2π
V ′(φn)e−3ρn

p

c e−3ρn V ′′(φn)
.

(30)

Here ρ±n are points close to the bounce locations ρn that are within the overlap regime. In
the second step ± = sgn(V ′(φ)). In the third step we have evaluated the integral using the
Laplace method. The maximum of the exponent obeys −3+ V ′′(φ)/V ′(φ)φ̇ = 0. From (21),
this is precisely where

...
φ = 0, which is at ρ = ρn. We have furthermore simplified the final
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expression using the fact, cf. footnote 1, that V ′′′V ′ ≈ (V ′′)2 at large φ for super-exponential
potentials. Squaring (30) we obtain

(vn+1 − vn)
2 = c̃ e−3ρn

V ′(φn)2

V ′′(φn)
≈ c̃ e−3ρn V (φn) . (31)

Here c̃ = 2πc is a constant that is independent of n. In the final step we used that to leading
order at large φ the derivative V ′′ = V ′2/V .

We may now use (26), (27) and (31) as recurrence relations to solve for the late time
(large n) behavior of {φn,ρn, vn}. It is best to make the signs of the various terms explicit, asφn
and vn are alternating in sign between epochs. From (24) it is in fact possible for the velocity
not to change sign during a bounce. However, we will see that asymptotically |kn||∆vn| →∞
so that indeed each bounce leads to a change in sign, as we also saw in the numerics above.
The equations to solve are then:

|φn|+ |φn+1|= |vn+1|(ρn+1 −ρn) , |vn+1|= |vn| −
6
|Hn|

, |vn+1|+ |vn|=
Æ

|c̃| e−
3
2ρn
p

Vn . (32)

One may eliminate ρn and c̃ from these equations to obtain, in addition to the second equation
in (32),

log

�

|Hn+1|
p

Vn+1

|Hn|
p

Vn

|Hn||vn| − 3
|Hn+1||vn+1| − 3

�

=
3(|φn|+ |φn+1|)

2|vn+1|
. (33)

As n → ∞ we may look for solutions that are effectively continuous functions of n,
i.e. v(n) = |vn| and φ(n) = |φn|. In this limit, differences become derivatives. However, a
sum may be approximated as twice the function, e.g. |φn|+ |φn+1| ≈ 2φ(n). In this way the
recursion relations in (32) and (33) become the differential equations

H(φ)
dv
dn
= −6 ,

d
dn

log
H(φ)
p

V (φ)
H(φ)v − 3

=
3φ
v

. (34)

The potential V is varying much more strongly than the other quantities inside the log, at
large φ, and therefore we may approximate the equations by

H(φ)
dv
dn
= −6 , H(φ)

dφ
dn
=

6φ
v

. (35)

Here we used V ′ = HV .
The solution to the differential equations (35) is

v =
b
φ

, n− no =
b
6

ˆ
H(φ)
φ2

dφ . (36)

Here b and no are constants of integration. It follows from (36) that if H(φ) grows at least as
fast as φ as φ →∞, then v → 0 and φ →∞ as n →∞. For example, if H(φ) ∼ qφp at
large φ, with p > 1, we have

|φn| ∼ b̃ (n− no)
1/(p−1)→∞ , as n→∞ . (37)

Here the constant b̃ = [6(p − 1)/(bq)]1/(p−1). When p = 1, φ ∝ log(n). For weakly super-
exponential potentials with 0< p < 1, an example would be V ∼ eφ

3/2
, we find thatφ does not

diverge at late times. As many of our intermediate steps have been predicated on φ becoming
large and v becoming small, we will not consider these weakly super-exponential cases further
here. We may note from (37) that |kn∆vn| ≈ |Hn∆vn| ≈ 2|Hnvn| ∝ n → ∞. Using the
bounce solution (24), this divergence validates two statements that we made above: firstly,
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that the bounces indeed become progressively narrower (from (24), 1/|kn∆vn| is the width of
the bounce), and secondly, that indeed the Kasner velocity changes sign at each bounce (also
from (24), φ̇ changes sign between ρ≪ ρn and ρn≪ ρ when |kn∆vn| is large).

In Fig. 6 we verify that the asymptotic solution (36) agrees exquisitely with the numerics.
We have extended the numerical range of ρ plotted in §3 to capture the first 18 bounces. The
asymptotic behavior (37) for φn matches the data very well from the second bounce on.

5 10 15 20
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|vnϕn|

5 10 15 20
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Figure 6: Behavior of |vnφn| (left) and |φn| (right) as a function of bounce number n.
Dots are numerical results corresponding to the potential considered previously in
Fig. 1, extended to larger values of ρ to capture more bounces. The solid lines are
fits to the analytic expression (36). The analytic result fits both plots with only two
free parameters in total: b and no. The constant b ≈ 0.458 is determined by the
constant value of |vnφn|. The field values |φn| are then fit to (37) with p = 7 and
b̃ ≈ 2.15 fixed, leading to no ≈ 0.86.

The above arguments have proven that, with sufficiently strong super-exponential poten-
tials, the Kasner velocity relaxes all the way to zero and hence the interior tends towards the
Schwarzschild singularity through an infinite sequence of Kasner epochs. We may also ask
how long the Kasner epochs are. From (32) we have

dρ
dn
=

2φ
v

=⇒ ρn ∼ b̂ (n− no)
(p+1)/(p−1) , (38)

with b̂ a constant. This expression is again in excellent agreement with the numerical data.
A final technical comment is in order, to further shore up confidence in the results above.

It may be verified on the numerical solutions that the final recurrence relation in (32) is not
precisely obeyed, with c̃ = 2πc varying slightly from bounce to bounce. This variation is due
to the e−

1
4 vnφ term in the linearized solution (16) for the Kasner regime. We had dropped that

term previously in (29) because it was subleading compared to the e−3φ/vn term at |vn| ≪ 1. We
may re-instate this term and re-run the matching argument between the Kasner and extended
bounce regimes. To capture the leading order correction to the results above it is sufficient,
in matching the solutions, simply to evaluate e−

1
4 vnφ at the endpoints of the Kasner regime

φ ≈ φn−1 and φ ≈ φn, respectively. This leads to the variation

log
cn+1

cn
= −

1
4
(ρn+1 −ρn)v

2
n+1 . (39)

We have checked that this expression for cn+1/cn agrees very well with the numerically seen
variation of c between bounces.

The variation of the constant between bounces corrects the recurrence relations above by
adding one half times (39) to the left hand side of (33). In the large n limit (39) becomes
1
4(∂nρ)v2 = 1

2φv, using (38). Asymptotically this is much smaller than the right hand side
of (33), which is 3φ/v. Therefore, this extra term is negligible and the variation of the constant
c between bounces does not alter the late time asymptotic behavior of the interior.
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6 Discussion

We have explained that a scalar field with a super-exponential potential is a simple way to
realize an infinite sequence of Kasner epochs in the interior of an asymptotically AdS black
hole. We have been able to characterize the late interior time behavior rather explicitly. Our
main objective has been to develop a setting that may be useful for exploring the holographic
meaning of interior dynamics. However, it may also be interesting to investigate the approach
to singularities with super-exponential potentials more generally. The most fully characterized
‘cosmological billiards’ [7, 30], involves bounces off weaker, exponential barriers only. Those
exponential barriers — or ‘walls’ — originate from gravitational kinetic energy and curvature
terms as well as explicit potentials for matter fields.

Many dimensional reductions of string theory lead to exponential potentials for the various
Kaluza-Klein scalar fields. It may be interesting to understand how super-exponential poten-
tials can be realized in microscopic string-theoretic settings. This may allow interesting stringy
effects to arise towards the singularity in a controlled way, as the scalar field probes higher
and higher up its potential with each bounce. Relatedly, it may be interesting to understand
how various ‘swampland’ conjectures such as [34, 35], that constrain the behavior of scalar
potentials, relate to the approach to spacelike singularities.

In the solutions that we have discussed the scalar field bounces back and forth in its po-
tential, but the metric component gt t relaxes monotonically towards the Schwarzschild sin-
gularity. This can be contrasted with the ‘Kasner inversions’ described in [14] where gt t itself
experiences alternating period of growth and collapse. It would be interesting to find a simple
model, possibly along the lines of [16,28,29], exhibiting an infinite number of bounces of gt t
towards the singularity.
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