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Abstract

We show that vector-like quarks in the fundamental or higher-dimensional representa-
tions of QCD can generate the electro-weak scale in a phenomenologically viable way by
chiral symmetry breaking condensates. The thereby generated scales are determined by
numerically solving the Dyson-Schwinger equation and these scales are sizable, because
they grow with the hard vector-like mass. Communicating such a scale to the Standard
Model via a conformally invariant scalar sector can dynamically generate the electro-
weak scale without a naturalness problem, because all non-dynamical mass scales are
protected by chiral symmetry. We present a minimal setup which requires only a new
neutral scalar with mass not too far above the electro-weak scale, as well as vector-like
quarks at the (multi-)TeV scale. Both are consistent with current bounds and are attrac-
tive for future experimental searches at the LHC and future colliders. Depending on the
hypercharge of the vector-like quarks, hadrons made of them are color-neutral bound
states which would be interesting Dark Matter candidates.
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1 Introduction

For many years supersymmetry was expected to be the solution to the hierarchy problem.
Meanwhile supersymmetric explanations are pushed to specific corners of parameter space
suggesting that other mechanisms may be at work. An interesting direction is that the hi-
erarchy problem might be related to scale invariance which is only broken at the quantum
level. The dynamical generation of the electro-weak (EW) scale can then either be real-
ized via a Coleman-Weinberg mechanism [1–5] or by dimensional transmutation in a strongly
interacting sector. Concerning the latter approach, many models rely on additional hidden
gauge groups [6–9] while others rely only on standard quantum chromodynamics (QCD) (see
e.g. [10]). This last scenario is particularly tempting as it does not require a further gauge
extension of the SM. In fact, the idea of generating the EW scale from non-perturbative QCD
effects exists for a while. Already in the 1980s, the authors of [11–14] suggested to break
the EW symmetry by the condensation of chiral fermions in high color representations. They
conjectured that exotic fermion condensates generate larger scales than the usual triplet rep-
resentation since the criticality condition

C2(R)αs(Λ)≳O(1) ,

is fulfilled for smaller values of the strong coupling αs owing to a larger Casimir Constant
C2(R) of a higher representation R. Albeit an interesting and natural mechanism, the original
idea is ruled out from EW precision observables [15,16].

We suggest in this paper a modified scenario with a vector-like (VL) fermion being a sin-
glet under the EW gauge group but charged under SU(3)C . The chiral symmetry breaking
condensate 〈ψψ〉 ̸= 0 can then induce a vacuum expectation value (VEV) for the SM Higgs φ
by a singlet scalar mediator S. Thus, EW symmetry breaking (EWSB) is triggered indirectly
via the scalar portal. This mechanism enables the dynamical generation of the EW scale, de-
spite starting from a classically scale invariant scalar sector. A realistic model requires that
the explicit VL fermion mass is ≳O(1TeV) to escape current direct detection limits. Although
this introduces an explicit scale to the model, it can be thought of as being generated in an
enlarged scale-invariant setting. Note that such a VL mass is technically natural as chiral sym-
metry protects the fermionic mass term [17]. The main part of this work is devoted to the
unusual dynamics of the problem, i.e. to determine the condensate of a massive VL fermion.
Instead of relying on the approximate gap equation, we study the condensate and dynamical
chiral symmetry breaking (DCSB) in the framework of Dyson-Schwinger equations (DSEs).

The paper is organized as follows:. In Section 2 we recapitulate the fermion DSE and
the truncation scheme that is used to solve the equation. Furthermore, we introduce the
formalism to extract the quark condensate beyond chiral limit and apply this to more general
representations of the color gauge group in Section 3. In Section 4 we outline how the quark
condensate can induce EWSB. Finally, we summarize our results in Section 5.

2 Fermion Condensate Beyond the Chiral Limit

To study the properties of the quark condensate beyond the chiral limit, we solve the DSE for
the quark propagator [18–20]. In its renormalized form, it is given by

S−1(p) = Z2

�

/p− Zm mµ
�

− i C2(R) Z1F g2

∫

d4k
(2π)4

γµ S(k) Γν(k, p)Dµν(p− k) , (1)

where the renormalization constants for quark wavefunction, quark-gluon vertex and mass are
denoted by Z2, Z1F and Zm, respectively. mµ indicates the renormalized current quark mass at
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the renormalization scale µ and C2(R) is the Casimir invariant for a quark in representation R.
The DSE for the quark propagator depends on both, the full gluon propagator Dµν and the
dressed quark-gluon vertex Γν. These, in turn, fulfill their own DSEs which together form
a system of coupled differential equations. Since we do not want to solve these equations
simultaneously, we decouple the system by setting Γµ(k, p) = γµ, which is also referred to as
the “rainbow approximation” [19]. Furthermore, we substitute the factor

Z1F g2 Dµν(p− k) −→ 4παeff

�

(p− k)2
�

Dµν0 (p− k) , (2)

where Dµν0 (p) := p−2
�

gµν − pµpνp−2
�

is the free gluon propagator in Landau gauge and
αeff(k2) is an effective strong coupling evaluated at a scale k2 [18]. Under these assumptions,
all non-perturbative effects of the dressed gluon propagator are completely incorporated by a
phenomenologically motivated effective running coupling. For our study, we follow [21, 22]
and use an effective running coupling which is given by

αeff(k
2) = 2π

D
ω4

k2 exp

�

−
k2

ω2

�

+
2πγm

ln
�

τ+ (1+ k2

Λ2
QCD
)2
�

�

1− exp

�

−k2

4 m2
⊥

��

, (3)

with m⊥ = 0.5GeV, τ := e2−1, ΛQCD = 0.234GeV, γm =
12

33−2nF
, and nF = 6. The parameters

ω and D are responsible for the low momentum behavior and can be chosen in such a way that
there is enough integrated strength in the infrared (IR) for dynamical chiral symmetry break-
ing to happen.1 For large momenta, αeff reproduces the perturbative QCD running. Studies
aiming to fit observables in the vector and pseudoscalar meson sector have shown that there
is a good agreement with observations for ω ∈ [0.4,0.6]GeV, which is almost unaffected by
parametric variations as long as (ωD) = (0.8 GeV)3 is kept constant [24]. In the following we
will, therefore, employ the commonly used values ω= 0.5 GeV and D = 1.024GeV2.

The solution to Eq. (1) generally takes the form

S−1(p)≡ Z−1(p2)
�

/p−M(p2)
�

, (4)

with M(p2) being the dynamical mass function and Z(p2) the quark wave function renormal-
ization. For our numerical study, we choose a momentum subtraction renormalization scheme
atµ2 = Λ2, whereΛ is a momentum cutoff. This is a convenient choice of renormalization scale
since all renormalization constants are approximately one and we can neglect them from now
on. At the renormalization scale µ2, the boundary condition is given by S−1(p) |p2=µ2≃ /p−mµ.
Thus, at momenta p2 = µ2 the fermion self-energy vanishes, i.e. M(p2 = µ2) = mµ and
Z(p2 = µ2) = 1. In the subsequent calculations we chose Λ2 = (106 GeV)2 which is well
above the mass scale of a few TeV which we are interested in. The numerical calculation
is carried out in discretized momentum space with N = 500 sample points and an infrared
cutoff p2 = 10−4 GeV2, and we use Gauss-Legendre quadrature in order to solve the discrete
momentum integrals [25]. The resulting wave function renormalization and dynamical mass
functions are shown in Fig. 1 for a representative set of different current masses.

For quarks with zero current mass the chiral condensate is defined as the trace of the quark
propagator in Dirac and color space [26,27]

−〈ψψ〉µ = lim
x→0

Tr
�

S(x)mµ=0

�

=
d(R)
4π2

∫

dk2 k2 Z(k2)M(k2)
k2 +M2(k2)

. (5)

Here, S(x) is a position space solution to the DSE for mµ = 0 and d(R) is the dimension
of the quark representation under the color gauge group. In the chiral limit, the integral in

1Studies of weakly coupled theories like e.g. quantum electrodynamics [23] showed that there is a critical
coupling below which there is no dynamical chiral symmetry breaking and, hence, no condensate being generated.
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Figure 1: Wave function renormalization Z(p2) (left) and mass function M(p2)
(right) for fermions in a triplet representation with different current masses mµ, de-
fined at the scale µ = 106 GeV. For comparison, the chiral limit mµ = 0 is shown as
well (blue line).

Eq. (5) is well defined and finite due to the rapidly decreasing dynamical mass function for
large momenta (see Fig. 1). To understand the short distance behavior, it is helpful to consider
the operator product expansion (OPE) [28–30]. According to the OPE, the dynamical mass
function in the limit p→∞ behaves like

M(p2) ≃ m̂

�

1
2

ln

�

p2

Λ2
QCD

��−γm

−
2π2 γm

d(R)
〈ψψ〉inv

p2

�

1
2

ln

�

p2

Λ2
QCD

��γm−1

, (6)

where we have defined the renormalization group invariant quantities

m̂ := mµ

�

1
2

ln

�

µ2

Λ2
QCD

��γm

, and 〈ψψ〉inv := 〈ψψ〉µ

�

1
2

ln

�

µ2

Λ2
QCD

��−γm

. (7)

Whereas the coefficient of the operator 〈ψψ〉inv decays as p−2, the current mass is only sub-
ject to a logarithmic running. Hence, it is the large momentum behavior that provides a basic
distinction between the explicit symmetry breaking mass and the dynamically generated con-
densate.

Applying Eq. (5) to our solution for M(p2) and Z(p2) we find −〈ψψ〉inv = (0.218 GeV)3

for a chiral quark in the color triplet representation. For massive quarks, the definition (5) via
the trace of the propagator cannot simply be applied since the integral contains divergences
induced by the term linear in the current quark mass [31]. This fact can be illustrated by
considering the effect of an explicit mass term m that contributes to M(p2). Approximating
Z(p2) = 1, the condensate would become

−〈ψψ〉µ ∼
∫ Λ2

dk2 k2 m
k2 +m2

= mΛ2 +m3 ln

�

m2

Λ2 +m2

�

, (8)
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Figure 2: M̃(p2) (left) and ∆M (p2, mµ) (right) for fermions in a color triplet repre-
sentation with different current masses. The dashed vertical line in the right plot
indicates the momentum that we use to determine the value C(mµ).

which clearly exposes the appearing quadratic and logarithmic divergences as a function of
the momentum cutoff Λ2. An apparently straightforward alternative to using Eq. (5) would
be to employ the OPE for M(p2) and extract the condensate from the coefficient of the term
proportional to p−2. For instance, the authors of [21] attempted to fit Eq. (6) to their numer-
ical solution of the DSE. However, this turns out to be a delicate task that cannot simply be
performed for quarks which are heavier than the strange quark due to their dominating explicit
mass terms. There are several other proposals for an unambiguous definition for the conden-
sate of massive fermions, which try to cancel the divergent parts of the integral in Eq. (8) by
subtracting either a wisely chosen fraction of the strange quark condensate [32–34] or the
derivative of the condensate [35]. In our work we will follow the latter approach because we
are interested in current quark masses of much higher scales.

Evidently, the term linear in mµ can be removed from Eq. (6) by considering the redefined
quantity

M̃(p2) :=

�

1−mµ
d

dmµ

�

M(p2) . (9)

According to the OPE this should scale like

M̃(p2)
p→∞
≃ −

2π2 γm

d(R)

C(mµ)

p2

�

1
2

ln

�

p2

Λ2
QCD

��γm−1

. (10)

Here we have defined the function

C(mµ) :=

�

1−mµ
d

dmµ

�

〈ψψ〉mµinv , (11)

where the new dependency of the condensate 〈ψψ〉mµinv on the current quark mass mµ is indi-
cated by a superscript. The left plot in Fig. 2 illustrates the behavior of M̃(p2) for different
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Figure 3: The order parameter of chiral symmetry breaking in the infrared, C(mµ),
as a function of the current quark mass, mµ, for fermions in the color triplet repre-
sentation. The two different methods we use to extract this behavior (see text) are
in reasonable agreement.

masses, which agrees well with the expected behavior from Eq. (10). Using these considera-
tions, we apply two different methods to isolate the momentum independent quantity C(mµ)
from M̃(p2).

Method 1: As M̃(p2), by definition, does not depend linearly on mµ, none of the divergences
shown in Eq. (8) emerge and we can safely evaluate the integral on the right side of Eq. (5)
with M(p2) replaced by M̃(p2). This results in

d(R)
4π2

∫ Λ2

dk2 k2 Z(k2) M̃(k2)
k2 + M̃2(k2)

Eq. (10)
≃ − C(mµ)

�

1
2

ln

�

Λ2

Λ2
QCD

��γm

, (12)

where we again used the OPE and divide by the factor [1/2 ln
�

Λ2/Λ2
QCD

�

]γm to remove it from
the right hand side in order to obtain −C(mµ).

Method 2: Alternatively, we can infer C(mµ) from the large momentum behavior of M̃(p2).
From Eq. (10) it follows that the quantity

∆M (p
2, mµ) := p2 M̃(p2)

d(R)
2π2 γm

�

1
2

ln

�

p2

Λ2
QCD

��−(γm−1)
p→∞
−−−→ − C(mµ) , (13)

is a constant in momentum for p→∞. We can, therefore, derive −C(mµ) from the plateau
region of ∆M (p2, mµ) (see right plot in Fig. 2).
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Figure 4: Absolute value of the condensate |〈ψψ〉inv| (left) and the ratio
|〈ψψ〉inv/mµ| (right) as a function of the fermion current mass mµ for fermions in
the color triplet representation. The blue and black lines show two different meth-
ods to extract the condensate which are in reasonable agreement and show the the-
oretical error involved. The solid(dashed) line shows regions where 〈ψψ〉inv < 0
(〈ψψ〉inv > 0).

The result of our evaluation for both methods are shown in Fig. 3. Evidently, both methods
agree to a level that is more than sufficient for our purpose here. In the limit mµ→ 0 our result
reproduces the chiral condensate obtained from Eq. (5), while −C(mµ) increases for larger
masses. A similar behavior was found only recently by [36]. We note that the kink for masses
near 105 GeV is a cutoff effect that will not affect our final result as we are mostly interested
in current masses of a few TeV. In any case, the effect could easily be overcome by choosing
a larger Λ.

Earlier studies of massive quark condensates typically stop with C(mµ) as the final order
parameter of chiral symmetry breaking [32,33,35]. However, for our model we are interested
in the expectation value of the fermion two point function, which is precisely the expansion
coefficient 〈ψψ〉mµinv of the OPE. This is why we proceed by extracting 〈ψψ〉mµinv from the obtained
C(mµ). From the definition, Eq. (11), we know that

−
C(mµ)

m2
µ

=
d

dmµ

�

〈ψψ〉mµinv

mµ

�

. (14)

Integrating over mµ then gives

−
〈ψψ〉mµinv

mµ
=

�

−
〈ψψ〉mµinv

mµ

�

mµ=ε

+

∫ mµ

ε

C(mµ)

m2
µ

dmµ , (15)

where ε is a small current mass that we use as a reference point. We assume that the
condensate of a light quark is essentially the same as that of a chiral quark. Therefore,
for quarks in the triplet representation, we choose boundary conditions ε = 0.001 GeV

7

https://scipost.org
https://scipost.org/SciPostPhys.14.4.076


SciPost Phys. 14, 076 (2023)

and −〈ψψ〉mµ=εinv = (0.218 GeV)3, corresponding to the scale of an up quark. The resulting

condensate 〈ψψ〉mµinv as a function of the current quark mass is illustrated in Fig. 4. Remark-
ably, the condensate changes sign near the scale ΛQCD. For larger masses the absolute value of
the condensate increases monotonically. The shown results can be applied to quarks of the SM
as well. For example, for a bottom quark we obtain 〈ψψ〉inv ≈ (4.12 GeV)3. This agrees within
a factor two with earlier work [36] which however calculated a slightly different quantity (see
discussion before Eq. (14)). For a current mass mµ = 1TeV we find 〈ψψ〉inv ≈ (415 GeV)3.
The apparent power law behavior for masses mµ > 1 GeV allows us to infer the general em-
pirical relation

〈ψψ〉inv = (c1 GeV)3−c2 ×mc2
µ ≈ (3.7 GeV)1/2 m5/2

µ , (16)

where c1 and c2 are two dimensionless constants and the numerical values in the last step
apply to the case of VL triplet quarks.2 In the following we will generalize our discussion to
VL quarks in larger QCD representations.

3 Exotic Quarks in Higher Color Representations

Let us now discuss the impact of higher color fermion representations on dynamical chiral
symmetry breaking. Therefore, we solve the DSE for chiral quarks up to the 15-dimensional
representation (with Dynkin labels (2,1), see Tab. 1) assuming the effective running coupling
of Eq. (3). Numerical results for the chiral condensates found by evaluating Eq. (5) are dis-
played in Tab. 1. Here we use γm = 3C2(R)/

�11
3 C2(8)−

2
3 nF

�

, see e.g. [37]. Evidently, the
strength of the condensates increase with the dimension (more precisely, with the increasing
quadratic Casimir invariant) of the representations. However, we can not confirm the gen-
eration of largely separated scales, as hypothesized by [11–14]. To thoroughly include the
effects of fermions in higher dimensional color representations at higher scales (in particular
at scales larger than the mass threshold mµ) it is, of course, necessary to include their effect
on the running of αs itself. At the one loop level, the perturbative running is given by

αs(p
2) =

1

2π b ln
�

p2

Λ2
QCD

� , (17)

where b =
�11

3 C2(8)−
2
3 nF −

4
3 T (R)nV

�

/(8π2), with nV being the number of active VL
fermions in a representation R with Dynkin index T (R), while nF is the number of flavors
in the fundamental representation. In the SM with nF = 6 active quarks, b = 7/(8π2)> 0 and
the strong interaction is asymptotically free. The addition of VL fermions contributes nega-
tively to b. In fact, as a result of the increasing Dynkin index, asymptotic freedom is already
lost by adding a 10-plet. Nonetheless, it is possible to include up to two 6-plets or one 8-plet
fermion while still preserving asymptotic freedom of QCD (see Fig. 5). For the asymptotically
free cases of 6 and 8-plets we have repeated the analysis of the previous section to determine
the condensate as a function of the current quark mass. The resulting empirical values for the
constants c1 and c2 are collected in Tab. 1. Also for higher dimensional representations the
power law behavior 〈ψψ〉inv∝ m5/2

µ turns out the be a good approximation.
Altogether, we see that there is not much freedom to add many quarks in higher dimen-

sional representations without running into a strong coupling regime at new high energy

2We have fit the general relation in Eq. (16) to our result for 〈ψψ〉inv obtained with the two different methods.
We obtain (c1, c2) = (3.71, 2.53) for method 1, and (c1, c2) = (44.40, 2.66) for method 2. This shows that c2 is
sufficiently close to 5/2, which is the value we adopt for our approximation in Eq. (16).
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Table 1: Summary of our results for the chiral and vector-like condensates for quarks
in different representations of QCD. We show Dynkin labels (p, q), quadratic Casimir
invariants C2(R) and Dynkin indices T (R) of the representations, as well as the cor-
responding mass anomalous dimensions γm. The renormalization group invariant
chiral condensates 〈ψψ〉inv are obtained from Eq. (5). The last two columns describe
the VL quark condensates 〈ψψ〉mµinv as a function of the current quark mass mµ in the
limit mµ≫ ΛQCD, in terms of the fit values c1 and c2 of the general empirical relation
Eq. (16) for two different extraction methods (see text). The full solution for a VL
quark in the triplet representation is shown in Fig. 4. We do not include representa-
tions larger than the 8 here, as the strong interaction then turns non asymptotically
free (n.a.f.).

Rep R (p, q) C2(R) T (R) γm −〈ψψ〉inv
(c1, c2)

Method 1
(c1, c2)

Method 2

3 (1, 0) 4/3 1/2 12/21 (0.218GeV)3 (3.71, 2.53) (44.40, 2.66)

6 (2, 0) 10/3 5/2 30/21 (0.337GeV)3 (62.32,2.30) (163.73,2.41)

8 (1, 1) 3 3 27/21 (0.363GeV)3 (91.71,2.34) (317.52,2.45)

10 (3, 0) 6 15/2 54/21 (0.485GeV)3 n.a.f. n.a.f.

15 (2, 1) 16/3 10 48/21 (0.521GeV)3 n.a.f. n.a.f.

scales. We want to avoid this situation in the following and, instead, focus on a minimal
setting with only one heavy VL quark in the fundamental representation. This minimal set-
ting will be enough to generate a new infrared scale as the expectation value of the fermion

10−2 101 104 107 1010 1013 1016
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α
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p
2
)
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Figure 5: Perturbative one-loop running coupling αs(p2) for the SM particle content
(blue line) and for the case of SM+a single additional 1 TeV vector-like fermion in a
higher dimensional representation of SU(3)C.
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two-point function (the condensate) which can be communicated to the Higgs field in order to
explain the observed EW scale of the Standard Model. While this requires introducing a new
mass scale of the vector-like fermions, it avoids the usual fine-tuning of the hierarchy problem
because this new scale is protected by chiral symmetry.

4 Inducing the Electro-Weak Scale

In order to transfer the scale of a heavy quark condensate to the EW sector, we introduce a
scalar singlet S which couples to both the new VL quark ψ and the SM Higgs field φ. Under
SU(3)C×SU(2)L×U(1)Y the scalar S transforms as (1,1, 0) while the VL quark is assigned to
the (R,1, 0) representation. There is no principal objection in assigning non-zero hypercharge
(hence, non-zero electric charge) to the new quarks but we choose to discuss the simplest
incarnation of our mechanism here. The interactions of the VL quark are then described by
the Lagrangian

LVLF =ψ
�

i /D−mψ − y S
�

ψ , (18)

where mψ is the current mass and y denotes the Yukawa coupling to the scalar S. We empha-
size that with the assigned quantum numbers a direct coupling of the VL quark to the SM color
triplet quarks is forbidden. Assuming scale invariance in the scalar sector, the scalar potential
is given by

V (φ, S) = λφ(φ
†φ)2 +

1
4
λSS4 −

1
2
λφSS2(φ†φ) , (19)

with the quartic couplings λφ and λS and the scalar portal coupling λφS . As shown in the pre-
vious sections, even (and in particular) for high current masses mψ the VL quark will develop
a chiral condensate in the infrared. The condensate eventually breaks scale invariance and
acts as a source term which induces a tadpole for S. In terms of a tree level effective potential
this can be written as

Veff(φ, S) = λφ(φ
†φ)2 +

1
4
λSS4 −

1
2
λφSS2(φ†φ)− y〈ψψ〉invS . (20)

Hence, the scalar S generically acquires a VEV that is subsequently also transmitted to the Higgs
boson via the scalar portal term. This triggers EWSB. It is worth mentioning that the sign of
the condensate is not relevant for this mechanism to work as it can always be compensated by
the sign of y . For the successful development of non-zero expectation values of both scalars,
the potential must satisfies the stability conditions 4λφλS > λ

2
φS , λφ > 0 and λS > 0. In

unitary gauge the scalar fields are given by

φ(x) =
1
p

2

�

0
v + h(x)

�

, S(x) = w+ s(x) , (21)

where v and w denote the two VEVs which can be obtained from minimization of Eq. (20) and
are given by

w2 =

�

4 y λφ 〈ψψ〉inv

4λφ λS −λ2
φS

�

2
3

,
v2

w2
=
λφS

2λφ
. (22)

Using the effective potential, the scalar mass matrix in the (h, s) basis is given by

Lmass =
1
2
(h, s)

�

2λφv2 −λφS vw
−λφS vw 3λSw2 − 1

2λφS v2

��

h
s

�

. (23)
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Diagonalization yields the physical mass eigenstates (H1, H2) which are, in the limit w≫ v,
given by

m2
H1
≈

�

2λφ −
λ2
φS

3λS

�

v2 ,

m2
H2
≈ 3λS w2 ,

(24)

with a mixing angle

tan(2θ )≈
2λφS v

3λS w
. (25)

The lighter mass eigenstate can be identified as the SM Higgs boson.
By using the empirical relation Eq. (16), we can relate the scale of the VL quark masses of

this model to the EW scale as

mψ ≈
v

6
5

(3.7 GeV)
1
5

×
�

2λφ
λφS

�
3
5
�

4λφ λS −λ2
φS

4 y λφ

�

2
5

. (26)

Furthermore, there is a relation between the new physical scales of the model given by

mψ ≈
m

6
5
H2

(3.7GeV)
1
5

×
�

1
3λS

�
3
5

�

4λφ λS −λ2
φS

4 y λφ

�

2
5

. (27)

We illustrate this correlation between the two new masses in Fig. 6, where we use a set of
8 × 104 random couplings in the reasonable range y,λS ,λφS ∈ [0.1,1.5] and λφ = 0.13
fixed to the value inferred for the SM [16]. Varying the scalar and Yukawa couplings in these
intervals implies a prediction of the VL quark mass in a range 1÷ 3000 GeV.

To show that our model can successfully reproduce the observed Higgs mass, we give here
an exemplary benchmark point. Choosing the color triplet representation and mψ = 1.5TeV

we find from our full numerical analysis 〈ψψ〉inv ≈ (590 GeV)3. Using the couplings

λφ = 0.130 , λS = 0.695 , λφS = 0.100 , y = 0.210 , (28)

the exact diagonalization of the mass matrix in Eq. (23) results in scalar masses

mH1
= 125.1 GeV , and mH2

= 574.7GeV , (29)

with a mixing angle tan(2θ ) = 6.3× 10−2. Even though the new scalar H2 has sub-TeV mass
at this benchmark point, it is not excluded by constraints from LHC data [38].

Experimental limits on VL quarks crucially depend on the their representation assignment.
Direct searches at the LHC usually consider either EW doublets or EW singlets with the same
electric charges as up- or down-type quarks, decaying into SM quarks under the emission
of W , Z or Higgs bosons. They constrain VL quark masses to be heavier than approximately
1.5 TeV [39,40] but apply to our model only if we assign the VL quark a non-zero hypercharge.
For our benchmark scenario of zero hypercharge, the VL quarks would be stable, but could still
be pair-produced to form exotic hadrons which results in similar limits on their mass [41,42].
Hence, mψ ≳ 1.5TeV may be regarded as a conservative lower limit on the VL current quark
mass.

In the case of zero hypercharge, neutral hadrons made out of the heavy VL quarks would,
in fact, be good, colored Dark Matter (DM) candidates [43]. The treatment in [43] mainly
focussed on quarks in the representation (8,1, 0), which would also work for our present
mechanism, and assumed the absence of condensates. Our present work would then also
motivate a more detailed look at the DM phenomenology of the (3,1, 0) VL quarks along the
lines of [43], and under the inclusion of condensates.
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Figure 6: Correlation between the new physics scales mψ and mH2
following

from Eqs. (26) and (27) for a set of 8 × 104 random combinations of couplings
y,λS ,λφS ∈ [0.1,1.5] and fixed λφ = 0.13. The blue line indicates the upper limit on
mH2

which is achieved for λS = 1.5 and λφS = 0.1, while the red envelope shows the
behavior for y = 1.5, λS = 1.5 and λφS varying between 0.1 to 1.5. The boundary
to lower values of mH2

is obtained as a superposition of curves with varying λS and
λφS with fixed y = 0.1. We show two of this curves for λS = 0.1 (solid orange) and
λS = 1.5 (dashed orange).

5 Discussion and Conclusion

In order to obtain the dynamical wave function renormalization and mass function of a heavy
VL quark, we have numerically solved the Dyson-Schwinger equation in rainbow approxima-
tion, using a phenomenologically motivated effective running QCD coupling. We have used
our solutions to extract the condensate (the expectation value of the fermion two-point func-
tion) as a function of the VL quark QCD representation and current quark mass. Using two
different methods, which agree in their result, we have extracted the numerical value of the
renormalization group invariant condensate.

Our computation allows us to reproduce the well-known values of the chiral condensate
for zero current quark mass, and for the light quark masses. Furthermore, we find that the
condensate has a zero-crossing around the QCD scale, after which it monotonically grows as
a function of the current quark mass. Hence, for heavy VL quarks the dynamically generated
expectation value of their two point function corresponds to large infrared scales. If the VL
quark couples to a scalar field, this will effectively generate a tadpole in the scalar potential
which can induce a VEV of the scalar field despite its otherwise scale invariant potential. If
the scalar couples to the SM Higgs portal, this VEV can serve to dynamically generate the EW
scale and EWSB.

We have presented the simplest realization of this mechanism which requires a new SM
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singlet scalar field as well as a VL quark in a low-dimensional representation of QCD. We have
given a set of benchmark parameters that reproduces the observed Higgs mass while predicting
a new neutral scalar field close to the EW scale, as well as a VL quark around the TeV scale.
In our simplest model, the relation

mH2
≈
�

6λφ λS

λφS

�1/2

× v , (30)

shows that we cannot decouple the new neutral scalar without fine-tuning scalar couplings,
which might be considered unnatural. By contrast, the fact that the VEV of the new scalar
depends on the VL mass scale proportional to a Yukawa coupling,

w ∝ y1/3〈ψψ〉1/3inv ∝ y1/3m5/6
µ (GeV)1/6 , (31)

shows that we can, in principle, decouple the VL quarks without spoiling the mechanism if
we allow for a small Yukawa coupling y . Such a smallness can be considered natural as it is
protected by the chiral symmetry of the new quarks.

Interestingly, if the VL quarks have zero hypercharge they are stable and form baryons
which have previously been discussed as very well suited, colored Dark Matter candidates [43]
and it will be interesting to see how the presence of condensates modifies this discussion.
Hence, our model could economically solve two of the most pressing puzzles in our under-
standing of Nature.

Finally, we note that while in our simplest setup classical conformal symmetry is explicitly
broken only by the rigid VL mass scale, our discussion can straightforwardly be extended to
other variations. On the one hand, including a VL condensate opens new parameter space for
EWSB because it can trigger spontaneous symmetry breaking even in the presence of scalar
mass terms with the usually “wrong” sign. On the other hand, our findings also reopen the
door to new, entirely conformal solutions to the EW hierarchy problem. This is straightforward
to realize by modifying our model in such a way that the current quark mass itself is generated
from yet another scale invariant scalar sector by spontaneous symmetry breaking á la Coleman-
Weinberg.

Acknowledgments

We would like to thank Fei Gao for useful discussions.

References

[1] S. Coleman and E. Weinberg, Radiative corrections as the origin of spontaneous symmetry
breaking, Phys. Rev. D 7, 1888 (1973), doi:10.1103/PhysRevD.7.1888.

[2] M. Holthausen, M. Lindner and M. A. Schmidt, Radiative symmetry breaking
of the minimal left-right symmetric model, Phys. Rev. D 82, 055002 (2010),
doi:10.1103/PhysRevD.82.055002.

[3] K. A. Meissner and H. Nicolai, Conformal symmetry and the Standard Model, Phys. Lett.
B 648, 312 (2007), doi:10.1016/j.physletb.2007.03.023.

[4] R. Foot, A. Kobakhidze and R. R. Volkas, Electroweak Higgs as a pseudo-
Goldstone boson of broken scale invariance, Phys. Lett. B 655, 156 (2007),
doi:10.1016/j.physletb.2007.06.084.

13

https://scipost.org
https://scipost.org/SciPostPhys.14.4.076
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.82.055002
https://doi.org/10.1016/j.physletb.2007.03.023
https://doi.org/10.1016/j.physletb.2007.06.084


SciPost Phys. 14, 076 (2023)

[5] A. Farzinnia, H.-J. He and J. Ren, Natural electroweak symmetry break-
ing from scale invariant Higgs mechanism, Phys. Lett. B 727, 141 (2013),
doi:10.1016/j.physletb.2013.09.060.

[6] M. Holthausen, J. Kubo, K. S. Lim and M. Lindner, Electroweak and conformal symme-
try breaking by a strongly coupled hidden sector, J. High Energy Phys. 12, 076 (2013),
doi:10.1007/JHEP12(2013)076.

[7] T. Hambye and M. H. G. Tytgat, Electroweak symmetry breaking induced by dark matter,
Phys. Lett. B 659, 651 (2008), doi:10.1016/j.physletb.2007.11.069.

[8] T. Hur and P. Ko, Scale invariant extension of the Standard Model with a
strongly interacting hidden sector, Phys. Rev. Lett. 106, 141802 (2011),
doi:10.1103/PhysRevLett.106.141802.

[9] T. Hambye and A. Strumia, Dynamical generation of the weak and dark matter scale, Phys.
Rev. D 88, 055022 (2013), doi:10.1103/PhysRevD.88.055022.

[10] J. Kubo, K. S. Lim and M. Lindner, Electroweak symmetry breaking via QCD, Phys. Rev.
Lett. 113, 091604 (2014), doi:10.1103/PhysRevLett.113.091604.

[11] W. J. Marciano, Exotic new quarks and dynamical symmetry breaking, Phys. Rev. D 21,
2425 (1980), doi:10.1103/PhysRevD.21.2425.

[12] G. Zoupanos, Fermion mass generation and electroweak symmetry breaking from colour
forces, Phys. Lett. B 129, 315 (1983), doi:10.1016/0370-2693(83)90673-1.

[13] D. Lust, E. Papantonopoulos, K. H. Streng and G. Zoupanos, Phenomenology of high colour
fermions, Nucl. Phys. B 268, 49 (1986), doi:10.1016/0550-3213(86)90201-4.

[14] D. Lüst, E. Papantonopoulos and G. Zoupanos, High-colour and mass hierarchies, Phys.
Lett. B 158, 55 (1985), doi:10.1016/0370-2693(85)90738-5.

[15] M. E. Peskin and T. Takeuchi, New constraint on a strongly interacting Higgs sector, Phys.
Rev. Lett. 65, 964 (1990), doi:10.1103/PhysRevLett.65.964.

[16] P. A. Zyla , Review of particle physics, Prog. Theor. Exp. Phys. 083C01 (2020),
doi:10.1093/ptep/ptaa104.

[17] G. ’t. Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,
Springer, Boston, Massachusetts, USA, ISBN 9781468475739 (1980), doi:10.1007/978-
1-4684-7571-5_9.

[18] C. D. Roberts and A. G. Williams, Dyson-Schwinger equations and their applica-
tion to hadronic physics, Prog. Part. Nucl. Phys. 33, 477 (1994), doi:10.1016/0146-
6410(94)90049-3.

[19] C. D. Roberts and S. M. Schmidt, Dyson-Schwinger equations: Density, temperature and
continuum strong QCD, Prog. Part. Nucl. Phys. 45, S1 (2000), doi:10.1016/S0146-
6410(00)90011-5.

[20] R. Alkofer, The infrared behaviour of QCD Green’s functions: Confinement, dynamical sym-
metry breaking, and hadrons as relativistic bound states, Phys. Rep. 353, 281 (2001),
doi:10.1016/S0370-1573(01)00010-2.

14

https://scipost.org
https://scipost.org/SciPostPhys.14.4.076
https://doi.org/10.1016/j.physletb.2013.09.060
https://doi.org/10.1007/JHEP12(2013)076
https://doi.org/10.1016/j.physletb.2007.11.069
https://doi.org/10.1103/PhysRevLett.106.141802
https://doi.org/10.1103/PhysRevD.88.055022
https://doi.org/10.1103/PhysRevLett.113.091604
https://doi.org/10.1103/PhysRevD.21.2425
https://doi.org/10.1016/0370-2693(83)90673-1
https://doi.org/10.1016/0550-3213(86)90201-4
https://doi.org/10.1016/0370-2693(85)90738-5
https://doi.org/10.1103/PhysRevLett.65.964
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.1007/978-1-4684-7571-5_9
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/0146-6410(94)90049-3
https://doi.org/10.1016/S0146-6410(00)90011-5
https://doi.org/10.1016/S0146-6410(00)90011-5
https://doi.org/10.1016/S0370-1573(01)00010-2


SciPost Phys. 14, 076 (2023)

[21] R. Williams, C. S. Fischer and M. R. Pennington, Extracting the q̄q conden-
sate for light quarks beyond the chiral limit in models of QCD, (arXiv preprint)
doi:10.48550/arXiv.0704.2296.

[22] S.-X. Qin, C. D. Roberts and S. M. Schmidt, Poincaré-covariant analysis of heavy-quark
baryons, Phys. Rev. D 97, 114017 (2018), doi:10.1103/PhysRevD.97.114017.

[23] A. Kızılersü, T. Sizer, M. R. Pennington, A. G. Williams and R. Williams, Dynamical mass
generation in unquenched QED using the Dyson-Schwinger equations, Phys. Rev. D 91,
065015 (2015), doi:10.1103/PhysRevD.91.065015.

[24] S.-x. Qin, L. Chang, Y.-x. Liu, C. D. Roberts and D. J. Wilson, Interaction model for the gap
equation, Phys. Rev. C 84, 042202 (2011), doi:10.1103/PhysRevC.84.042202.

[25] T. Arens et al., Mathematik, Springer, Heidelberg, Germany, ISBN 9783642449192
(2015), doi:10.1007/978-3-662-64389-1.

[26] P. Maris and C. D. Roberts, π- and K- meson Bethe-Salpeter amplitudes, Phys. Rev. C 56,
3369 (1997), doi:10.1103/PhysRevC.56.3369.

[27] P. Maris, C. D. Roberts and P. C. Tandy, Pion mass and decay constant, Phys. Lett. B 420,
267 (1998), doi:10.1016/S0370-2693(97)01535-9.

[28] K. Lane, Asymptotic freedom and Goldstone realization of chiral symmetry, Phys. Rev. D
10, 2605 (1974), doi:10.1103/PhysRevD.10.2605.

[29] H. D. Politzer, Effective quark masses in the chiral limit, Nucl. Phys. B 117, 397 (1976),
doi:10.1016/0550-3213(76)90405-3.

[30] K. G. Wilson, Non-Lagrangian models of current algebra, Phys. Rev. 179, 1499 (1969),
doi:10.1103/PhysRev.179.1499.

[31] C. McNeile et al., Direct determination of the strange and light quark condensates from full
lattice QCD, Phys. Rev. D 87, 034503 (2013), doi:10.1103/PhysRevD.87.034503.

[32] C. S. Fischer and J. Luecker, Propagators and phase structure of N f = 2 and N f = 2+ 1
QCD, Phys. Lett. B 718, 1036 (2013), doi:10.1016/j.physletb.2012.11.054.

[33] A. Bazavov et al., Chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85,
054503 (2012), doi:10.1103/PhysRevD.85.054503.

[34] M. Cheng et al., QCD equation of state with almost physical quark masses, Phys. Rev. D
77, 014511 (2008), doi:10.1103/PhysRevD.77.014511.

[35] F. Gao and Y.-x. Liu, QCD phase transitions via a refined truncation of Dyson-Schwinger
equations, Phys. Rev. D 94, 076009 (2016), doi:10.1103/PhysRevD.94.076009.

[36] L.-f. Chen, Z. Bai, F. Gao and Y.-x. Liu, New insight on the quark condensate beyond the
chiral limit, Phys. Rev. D 104, 094041 (2021), doi:10.1103/PhysRevD.104.094041.

[37] H.-q. Zheng, A renormalization group analysis of the Higgs boson with heavy fermions and
compositeness, Phys. Lett. B 378, 201 (1996), doi:10.1016/0370-2693(96)00434-0.

[38] J. Beacham et al., Physics beyond colliders at CERN: Beyond the Standard Model work-
ing group report, J. Phys. G: Nucl. Part. Phys. 47, 010501 (2019), doi:10.1088/1361-
6471/ab4cd2.

15

https://scipost.org
https://scipost.org/SciPostPhys.14.4.076
https://doi.org/10.48550/arXiv.0704.2296
https://doi.org/10.1103/PhysRevD.97.114017
https://doi.org/10.1103/PhysRevD.91.065015
https://doi.org/10.1103/PhysRevC.84.042202
https://doi.org/10.1007/978-3-662-64389-1
https://doi.org/10.1103/PhysRevC.56.3369
https://doi.org/10.1016/S0370-2693(97)01535-9
https://doi.org/10.1103/PhysRevD.10.2605
https://doi.org/10.1016/0550-3213(76)90405-3
https://doi.org/10.1103/PhysRev.179.1499
https://doi.org/10.1103/PhysRevD.87.034503
https://doi.org/10.1016/j.physletb.2012.11.054
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1103/PhysRevD.77.014511
https://doi.org/10.1103/PhysRevD.94.076009
https://doi.org/10.1103/PhysRevD.104.094041
https://doi.org/10.1016/0370-2693(96)00434-0
https://doi.org/10.1088/1361-6471/ab4cd2
https://doi.org/10.1088/1361-6471/ab4cd2


SciPost Phys. 14, 076 (2023)

[39] M. Aaboud et al., Search for pair production of up-type vector-like quarks and for four-top-
quark events in final states with multiple b-jets with the ATLAS detector, J. High Energy
Phys. 07, 089 (2018), doi:10.1007/JHEP07(2018)089.

[40] M. Aaboud et al., Combination of the searches for pair-produced vector-like partners of the
third-generation quarks at

p
s = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121,

211801 (2018), doi:10.1103/PhysRevLett.121.211801.

[41] M. Aaboud et al., Search for heavy charged long-lived particles in the ATLAS detector in
36.1 fb−1 of proton-proton collision data at

p
s = 13 TeV, Phys. Rev. D 99, 092007 (2019),

doi:10.1103/PhysRevD.99.092007.

[42] CMS Collaboration, Search for heavy stable charged particles with 12.9 fb−1 of 2016 data,
Tech. Rep., CERN, Geneva, Switzerland, https://cds.cern.ch/record/2205281.

[43] V. De Luca, A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Colored dark matter, Phys.
Rev. D 97, 115024 (2018), doi:10.1103/PhysRevD.97.115024.

16

https://scipost.org
https://scipost.org/SciPostPhys.14.4.076
https://doi.org/10.1007/JHEP07(2018)089
https://doi.org/10.1103/PhysRevLett.121.211801
https://doi.org/10.1103/PhysRevD.99.092007
https://cds.cern.ch/record/2205281
https://doi.org/10.1103/PhysRevD.97.115024

	Introduction
	Fermion Condensate Beyond the Chiral Limit
	Exotic Quarks in Higher Color Representations 
	Inducing the Electro-Weak Scale
	Discussion and Conclusion
	References

