
SciPost Phys. 14, 093 (2023)

Antagonistic interactions can stabilise fixed points
in heterogeneous linear dynamical systems

Samuel Cure1⋆ and Izaak Neri2

1 Okinawa Institute of Science and Technology, 1919-1 Tancha,
Onna-son, Okinawa 904-0495, Japan

2 Department of Mathematics, King’s College London,
Strand, London, WC2R 2LS, UK

⋆ samuel.cure@oist.jp

Abstract

We analyse the stability of large, linear dynamical systems of variables that interact
through a fully connected random matrix and have inhomogeneous growth rates. We
show that in the absence of correlations between the coupling strengths, a system with
interactions is always less stable than a system without interactions. Contrarily to the
uncorrelated case, interactions that are antagonistic, i.e., characterised by negative cor-
relations, can stabilise linear dynamical systems. In particular, when the strength of the
interactions is not too strong, systems with antagonistic interactions are more stable
than systems without interactions. These results are obtained with an exact theory for
the spectral properties of fully connected random matrices with diagonal disorder.
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1 Introduction

We consider a dynamical system described by n variables x j ∈ R that are labeled by indices
j = {1, 2, . . . , n} = [n] and where t ∈ R+ is the time index. The evolution in time of the
variables x j(t) is described by a set of randomly coupled, linear differential equations of the
form

∂t x j(t) =
n
∑

k=1

A jk xk(t) , (1)

where the A jk are the entries of a random matrix A of dimension n× n. The fixed point x⃗ = 0
of the set of Eqs. (1) is stable when all eigenvalues of A have negative real parts. On the other
hand, if there exists at least one eigenvalue with a positive real part, then the fixed point is
unstable.

Differential equations of the form Eq. (1) appear in linear stability analyses of complex
systems described by nonlinear differential equations of the form ∂t y⃗(t) = f⃗ ( y⃗(t)) where
y⃗ = (y1, y2, . . . , yn). For example, in theoretical ecology ecosystems are modelled with Lotka-
Volterra equations, where the variable y⃗ quantify the population abundances of the different
species in the population [1]. Other examples are models for neural networks, for which y⃗ rep-
resents the neuronal firing rates or the membrane potentials [2–4], and models of
economies [5], for which y⃗ represents economic variables such as the prices of goods. If
the differential system determined by f⃗ admits a fixed point, defined as f⃗ ( y⃗∗) = 0, then the
dynamics of x⃗ = y⃗ − y⃗∗ near the fixed point is given by Eq. (1), where A is the Jacobian of f⃗ .
The linear stability of a complex system that settles in a fixed point state is thus determined
by the real part of the leading eigenvalue λ1, which is defined as an eigenvalue of the Jacobian
matrix A that has the largest real part.

To study complex systems, Wigner [6], Dyson [7] and May [8], among others, suggested to
study random matrices A, and the task at hand is then to determine the real part of the leading
eigenvalue as a function of the parameters that define the random matrix ensemble. Although
one should be careful in drawing conclusions about the dynamics of nonlinear systems from
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the study of randomly coupled linear differential equations, random matrix theory has the
advantage of providing analytical insights about the influence of interactions on linear stability.
In fact, linear stability analyses with random matrix theory have been used to study the onset of
chaos in random neural networks [2–4], the stability of ecosystems modelled by Lotka-Volterra
equations with random interactions [8–14], economies [15], or gene regulatory networks [16].
Moreover, although traditionally random matrix models are fully connected, recently exact
results have been derived for the stability of linear models defined on complex networks [17–
19].

So far, stability analyses for randomly coupled, linear dynamical systems have mainly fo-
cused on matrices A with diagonal entries, which we also call the growth rates, that are fixed
to a constant value d, i.e., [8]

A jk =
J jk
p

n
(1−δ j,k) + dδ j,k , (2)

where δ j,k is the Kronecker delta function, and where the coupling strengths J jk are random
variables drawn from a certain distribution. Following Refs. [9,20], we consider the case where
the pairs of random variables (J jk, Jk j) are independent and identically (i.i.d.) distributed
random variables drawn from a distribution with

〈Ji j〉= 0 , 〈J2
i j〉= σ

2 , and



Ji jJ ji

�

= τσ2 , (3)

where the variance σ2 of the entries Ji j quantifies the strength of the interactions, and
τ ∈ [−1,1] is the Pearson correlation coefficient between the variables J jk and Jk j . The sign of
the parameter τ is important in theoretical ecology as it determines the nature of the trophic
interactions between two species. If the interactions are on average competitive (Ji j < 0 and
J ji < 0) or mutualistic (Ji j > 0 and J ji > 0), then τ > 0. On the other hand, if the interactions
are on average antagonistic (Ji j > 0 and J ji < 0 or Ji j < 0 and J ji > 0), then τ < 0 [9–11,19].
In theoretical ecology, antagonistic interactions are also called predator-prey interactions as
they describe trophic interactions between two species for which one predates on the other.

The leading eigenvalue of random matrices of the form (2) is given by [8,21–23]

Re(λ1) = σ(1+τ) + d . (4)

It follows from Eq. (4) that in the case of homogeneous relaxation rates d < 0 is required for
a linear system to be stable. Hence, when the diagonal entries of A are fixed to a constant
value d, then interactions J jk always destabilise fixed points in large dynamical system.

In the model given by Eq. (2) it holds that in the absence of interactions (Ji j = 0) either
all variables are stable (when d < 0) or all variables are unstable (when d > 0). In this
paper, we relax this condition and consider random matrix models with growth rates A j j = Dj
that fluctuate from one variable to the other. In the symmetric case (τ = 1), such random
matrices are called deformed Wigner matrices [24–26] and in this case a functional equation
that determines the spectral distribution in the limit of large n has been derived by Pastur
in Ref. [24]. Another case that has been studied in the literature is when A is the adjacency
matrix of a random directed graph with diagonal disorder [17, 18, 27], which corresponds in
the dense limit with τ = 0 [28], and for which a simple equation for the boundary of the
spectrum as a function of the distribution of diagonal matrix entries has been derived.

On the other hand, in the present paper we focus on the case of heterogeneous relaxation
rates Dj with negative τ, which is, as discussed, of particular interest for ecology. This case
has been studied signficantly less in the literature, a notable exception being Ref. [29]. Here,
apart from completing the theory of Ref. [29] by deriving analytical results for eigenvalue
outliers, which are important when considering the leading eigenvalue, we also show that for
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negative τ the leading eigenvalue can be negative, even if a finite fraction of the relaxation
rates Dj are positive. The latter finding, not discussed in Ref. [29], implies that antagonistic
interactions can stabilise linear systems when the interactions are neither too weak nor too
strong, even if a finite fraction of the variables are unstable in isolation, and this constitutes
the main result of this paper.

The paper is organised as follows. In Sec. 2 we define the model that we study, which
is a fully connected random matrix with diagonal disorder. In Sec. 3, we discuss the cavity
method, which is a method from theoretical physics that we use to study the model in the limit
of infinitely large random matrices. In Sec. 4, we present the main results for the boundary
for the spectrum of fully connected matrices with diagonal disorder and in Sec. 5 we present
analytical results for the eigenvalue outlier. In Sec. 6 we use the obtained theoretical results
to derive phase diagrams for the linear stability of fixed points. We end the paper with a
discussion in Sec. 7. The paper also contains a few appendices where we present details about
the mathematical derivations.

2 Fully connected random matrices with diagonal disorder

We consider the random matrix model

A jk =
J jk
p

n
(1−δ j,k) +

µ

n
+ Djδ j,k , (5)

where the (off-diagonal) pairs (Ji j , J ji) are i.i.d. random variables drawn from a joint distri-
bution pJ1,J2

with moments as specified in the Eqs. (3), where the diagonal elements Dj are
i.i.d. random variables drawn from a distribution pD, and where µ ∈ R is a constant shift of
the matrix elements. Note that without loss of generality we have set 〈Ji j〉 = 0, as a nonzero
average value can be incorporated into the parameter µ.

As will become clear later, just as is the case for the circular law [30, 31], in the limit
of n ≫ 1 the boundary of the spectrum of A is a deterministic curve in the complex plane
that depends on the distribution pJ1,J2

of (Ji j , J ji) only through its first two moments given
in Eq. (3), and hence we will not need to specify pJ1,J2

. On the other hand, the boundary of
the spectrum of A depends in a nontrivial way on the distribution pD, and therefore it will be
interesting to study the effect that the shape of pD has on the leading eigenvalue. Due to the
constant shift µ, the spectrum may also contain a single (deterministic) eigenvalue outlier in
the limit of large n≫ 1 [17,27,32,33].

In the special case when pD(x) = δ(x − d) we recover the model given by Eq. (4). A more
interesting case is when the growth rates Dj are heterogeneous, and arguably the most simple
model for heterogeneous growth rates considers that the Dj can take two possible values,
yielding a bimodal distribution

pD(x) = p δ(x − d−) + (1− p)δ(x − d+) , (6)

with d− < 0, d+ > 0, and p ∈ [0,1], and where δ(x − d) denotes the Dirac delta distribution.
In this example, a fraction (1− p) of variables x j are unstable in the absence of interactions
(σ2 = 0). We also consider cases where pD is a continuous distribution. One example of a
continuous distribution is the uniform distribution defined on an interval [d−, d+], i.e.,

pD(x) =

�

0 , if x /∈ [d−, d+] ,
1

d+−d−
, if x ∈ [d−, d+] .

(7)

Since the uniform distribution is supported on a bounded set, we will also consider an example
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for which pD has unbounded support, namely, we will consider the Gaussian distribution

pD(x) =
1
p

2π
e−

x2
2 , (8)

with zero mean and unit variance.
The main question we address in this paper is whether the interaction variables Ji j can

stabilise a linear dynamical system even when a finite fraction of variables are unstable in the
absence of interactions, i.e., a finite fraction of species i ∈ [n] have a positive growth rate Di .
In other words, we ask whether it is possible to have Reλ1 < 0 even when there exists a value
d > 0 such that pD(d)> 0.

3 Cavity method for the empirical spectral distribution of
infinitely large matrices

We determine the leading eigenvalue λ1 in the case of µ = 0, when the spectrum of A has no
outliers in the limit of n→∞.

In this case, the leading eigenvalue of the adjacency matrices A is determined by the em-
pirical spectral distribution ρ of the eigenvalues λ j of A, defined by

ρ(z) = lim
n→∞

1
n

*

n
∑

j=1

δ
�

x −Re(λ j)
�

δ
�

y − Im(λ j)
�

+

, (9)

for all z = x + iy ∈ C. The spectral distribution determines the leading eigenvalue of the
continuous part of the spectrum through

λ1 = argmax{z∈C:ρ(z)>0}Re(z) . (10)

Equation (10) holds as long as the spectrum of A does not have eigenvalue outliers [17, 27],
which for the model defined in Sec. 2 is the case as long as µ= 0 [17,27].

The convergence in Eq. (9) should be understood as weak convergence [31], which implies
that the average of any bounded and continuous function f (z) defined on the complex plane
converges in the limit of large n to

∫

C dzρ(z) f (z). Also, we can drop the average in the right-
hand side of Eq. (9) as the spectral distribution converges almost surely and weakly to ρ [31],
and hence also the leading eigenvalue λ1 as defined in Eq. (10) is a deterministic variable for
large values of n.

The limiting distribution ρ of random matrix models as defined in Sec. 2 have been studied
before in several special cases. Notably, for the symmetric case with τ = 1 Pastur derived a
functional equation that determinesρ [24]. Recently, the symmetric case was revisited in [26],
and in that reference also the large deviations of λ1 were computed in the case when the matrix
entries Ji j are drawn from a Gaussian distribution; note that large deviations are not universal
and depend on the statistics of (Ji j , J ji) as determined by the distribution pJ1,J2

. In the case
when τ = 0 and pD is a bimodal distribution the spectral distribution ρ has been determined
in Refs. [34, 35] and the τ = 0 case for general pD has been considered in [28]. For random
directed graphs with a prescribed distribution of indegrees and outdegrees, which corresponds
with the case τ = 0 in the limit of large mean degrees, a simple equation was derived for the
boundary of the spectrum in Refs. [17,18,27]. Lastly, Ref. [29] obtained analytical results for
the spectrum when τ < 0 and µ= 0.

We determine the spectral density ρ(z) from the resolvent of the matrix A, which can be
determined with the cavity method [36,37]. The resolvent is defined as

G(z) = (z1n −A)−1 , z /∈ {λ1,λ2, . . . ,λn} , (11)

5

https://scipost.org
https://scipost.org/SciPostPhys.14.5.093


SciPost Phys. 14, 093 (2023)

where 1n is the identity matrix of size n. The spectral distribution can be expressed in terms
of the diagonal elements of the resolvent by [34]

ρ(z) = lim
n→∞

1
πn
∂ ∗TrG(z) , where ∂ ∗ =

1
2
∂

∂ x
+

i
2
∂

∂ y
. (12)

For non-Hermitian matrices, the eigenvalues are in general complex-valued, and therefore
in the limit of n →∞ we cannot get ρ(z) from TrG(z) [23]. To overcome this, we use the
Hermitization method [34] that considers the enlarged 2n× 2n matrix

H=

�

η1n z1n −A
z∗1n −AT η1n

�

, (13)

where we have introduced a regulator η that keeps all quantities well-defined in the limit of
large n, where AT is the transpose of the matrix A, and where z∗ is the complex conjugate of
z. The inverse of the matrix H is

H−1 =

� η
η21n−Il

−(η21n − Il)−1 (z1n −A)

−
�

z∗1n −AT
� �

η21n − Il

�−1 η
η21n−Ir

�

, (14)

where
Il = (z1n −A)

�

z∗1n −AT
�

and Ir =
�

z∗1n −AT
�

(z1n −A) . (15)

In the limit η→ 0, we obtain

H−1 =

�

0n G(z)
G(z) 0n

�

−η
�

I−1
l −0n
0n I−1

r

�

+η2

�

0n G(z)I−1
l

G(z)I−1
l 0n

�

+O(η3) , (16)

where 0n is the matrix with zero entries. Hence, combining Eqs. (12) and (16), we find that

ρ(z) = lim
n→∞

lim
η→0

1
πn
∂ ∗Tr21H−1 , (17)

where Tr21 is a block trace over the diagonal of the lower-left block of H−1.
Defining the jk-th block of the generalized resolvent as

G jk =

� �

H−1
�

j,k

�

H−1
�

j,k+n
�

H−1
�

j+n,k

�

H−1
�

j+n,k+n

�

, (18)

the spectral distribution (17) can be written as [37]

ρ(x , y) = lim
n→∞

lim
η→0

1
π
∂ ∗g21 , (19)

where

g =

�

g11 g12
g21 g22

�

=
1
n

n
∑

j=1

G j j . (20)

In Appendix A, we use the cavity method to derive a selfconsistent equation for the matrix g
at fixed η in the limit of n≫ 1, viz.,

�

g11 g12
g21 g22

�

=

®

�

η−σ2 g22 z − D−τσ2 g21
z∗ − D−τσ2 g12 η−σ2 g11

�−1¸

D

, (21)

where 〈. . . 〉D denotes the average over the distribution pD.
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Note that to derive (21) we have determined g at finite values of η in the limit of large n,
and afterwards we take the limit of η→ 0. Hence, we interchange the two limits in Eq. (19),
which is not evident as the leading order, correction terms in Eq. (16) at large values of n
and small values of η intertwine the two limits. Demonstrating that these two limits can be
interchanged constitutes the main challenge in rigorous approaches to non-Hermitian random
matrix theory, see e.g. Refs. [31, 38–42]. This involves bounding the rate at which the least
singular value of z1n−A converges to zero for large values of n, as the correction terms in (16)
depend on the inverse of the matrices Il and Ir. In this paper, we use the theoretical physics
approach, i.e., we exchange the two limits in good faith and then corroborate theoretical
results with direct diagonalisation results. In the next section, we use the Eq. (21) together
with Eq. (19) to determine the boundary of the support set of ρ in the complex plane.

4 Boundary of the spectrum

The support set of ρ(z) is defined as

S = {z ∈ C : ρ(z)> 0} , (22)

where · denotes the closure of a set. From Eq. (10) it follows that the support set determines
the leading eigenvalue whenever the spectrum does not contain eigenvalue outliers [27],
which for the model defined in Sec. 2 is the case as long as µ= 0.

The support set S follows from the solutions to the Eqs. (19)-(21). The Eq. (21) admits
two types of solutions [17,19]. First, there is the trivial solution for which g11 = g22 = 0 and
∂z∗ g21 = 0, yielding a distribution ρ = 0 for z /∈ S. Second, there is the nontrivial solution
for which g11 > 0 and g22 > 0 and ∂z∗ g21 ̸= 0, yielding the probability distribution ρ > 0 for
z ∈ S.

Although the trivial solution solves the set of Eqs. (21) for any value of z and for η = 0,
it is only for z /∈ S that the trivial solution is relevant. Indeed, when z ∈ S the trivial solution
is unstable with respect to infinitesimal small perturbations, and hence the regulator η > 0
guarantees that the spectral distribution for z ∈ S is determined by the nontrivial solution. As
a consequence, the boundary of the support set S follows from a linear stability analysis of the
Eqs. (21) around the trivial solution [19]. Expanding the Eqs. (21) in small values of g11 > 0
and g22 > 0, we obtain that for all values of z ∈ S it holds that

�

σ2

(D− z∗ +τσ2 g12) (D− z +τσ2 g21)

�

D
≥ 1 , (23)

and the boundary of the support set is given by
�

σ2

(D− z∗ +τσ2 g12) (D− z +τσ2 g21)

�

D
= 1 . (24)

Note that, in general, Eq. (24) is coupled with the Eq. (21) and therefore these equations have
to be solved together.

In what follows, we first analyse the Eqs. (21)and (24) in two limiting cases, and then we
discuss the general case.

4.1 Symmetric matrices with Ji j = J ji (τ= 1)

For symmetric random matrices the Eq. (21) reduces to a functional equation for the resolvent
of a Wigner matrix with diagonal disorder derived originally by Pastur in Ref. [24]. Indeed, in
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(a) Uniform distribution pD as defined in Eq. (7) with d+ = 1 and d− = −1; the parameter µ= 0.

Im(λ)

Re(λ)

-2 -1 0 1 2
-1.0

-0.5

0.0

0.5

1.0

λisol

↗

(b) Uniform distribution pD as defined in Eq. (7) with d+ = 1 and d− = −1; the parameter µ = 2. The
arrow points at the eigenvalue outlier

Im(λ)

Re(λ)

(c) Gaussian distribution pD as defined in Eq. (8); the parameter µ= 0.

Im(λ)

Re(λ)

Figure 1: Spectra of three random matrices A as defined in Eq. (5) for the uncorre-
lated case τ = 0 and with diagonal elements that are independently drawn from a
uniform distribution [Panel (a) and Panel(b)] or a Gaussian distribution [Panel (c)].
Markers denote the eigenvalues of a random matrix of size n = 3000 and with off-
diagonal elements Ai j = Ji j + µ/n, where the Ji j are drawn independently from a
Gaussian distribution with zero mean and unit variance and where µ is as given in
the subfigure captions. The red solid line denotes the solution to Eq. (27), which pro-
vides boundary of the support set S in the limit of infinitely large n. The eigenvalue
outlier is indicated by an arrow in Panel (b). Panel (a) and (b) show the analytical
solution Eq. (29) and Panel (c) is obtained by numerically solving Eq. (27).

this case g22 = g11 = 0 for all z with nonzero imaginary part so that

g21 =

∫

R
dx pD(x)

1
z − x −σ2 g21

, (25)

for all z /∈ R, which is identical to Equation (1.6) in Ref. [24]. Since g21 is the Stieltjes trans-
form of the spectral distribution defined on the real line, we can use the Sokhotski-Plemelj
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inversion formula (see e.g. Chapter 8 of [43])

ρ(x + iy) =
1
π
δ(y) lim

ε→0+
Im (g21(x − iε)) , (26)

to obtain the spectral distribution. Note that the delta distribution δ(y) on the right hand-side
of Eq. (26) specifies that the eigenvalues of A are real, and hence the distribution ρ defined
on the complex plane equals zero for all values y ̸= 0.

4.2 Uncorrelated interaction variables Ji j and J ji (τ= 0)

In the absence of correlations between Ji j and J ji , the Eq. (24) decouples from the Eq. (21).
Therefore, the “τ = 0”-case is mathematically simpler to solve than the “τ ̸= 0”-case. The
boundary of the support set S is determined by the values of λ ∈ C that solve the equation

1= σ2

∫

R
dx pD(x)

1
|λ− x |2

, (27)

which is closely related to the results obtained for the boundary of spectra of random directed
graphs in Refs. [17,18,27] and to those of perturbed random matrices with uncorrelated matrix
entries [28].

Equation (27) implies that for τ= 0 the leading eigenvalue satisfies

Re (λ1)≥ d+ =max {x ∈ R : pD(x)> 0} . (28)

In other words, in the absence of correlations between the interaction variables Ji j and J ji , in-
teractions always increase the real part of the leading eigenvalue and have thus a destabilising
effect on system stability.

Let us analyse the boundary of the spectrum and the leading eigenvalue for a couple of
examples. As shown in Appendix B, when pD(x) is the uniform distribution supported on the
interval [d−, d+], then the boundary of the support set S is given by values of (x , y) that solve

�

(d− − x) (d+ − x) + y2
�

=
y (d+ − d−)

tan
� y
σ2 (d+ − d−)

� , y ∈
�

−
πσ2

d+ − d−
,
πσ2

d+ − d−

�

\ {0} , (29)

a result that was also obtained in [29]. For (d+ − d−)/σ2 ≪ 1, we recover the celebrated
circular law [31, 44], while for (d+ − d−)/σ2 ≈ 1 the formula Eq. (29) expresses a deformed
circular law replacing the constant radius σ by y (d+ − d−)/ tan

� y
σ2 (d+ − d−)

�

. In Fig. 1(a)
we have plotted the curve Eq. (29) for the case d+ = 1 and d− = −1 and we show that this the-
oretical results is well corroborated by the spectrum obtained from numerically diagonalising
a matrix. From Eq. (29) it follows that the leading eigenvalue is given by

Re(λ1) =
1
2

�
Æ

(d− − d+) 2 + 4σ2 + d− + d+
�

. (30)

Eq. (30) reveals that Re(λ1) > d+ for any value of σ, and hence the interactions make the
system less stable. For d+ = d− = d we recover the formula Eq. (4), and in the limit of
large d− we get limd−→−∞Re(λ1) = d+.

As a second example we consider the case when pD is a Gaussian distribution with zero
mean and unit variance. In Fig. 1(c), we compare the solution to Eq. (27) with the spectrum
of a random matrix drawn from the ensemble defined in Sec. 2. In this case the spectrum S
in the limit n→∞ contains the whole real axis, contrarily to the case where pD is a uniform
distribution (compare Fig. 1(a) with Fig. 1(c)). The distinction between the two cases follows
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-3 -2 -1 0 1 2 3
-2

-1

0

1

2

(a) τ= 0

Im(λ)

Re(λ)
-3 -2 -1 0 1 2 3

-2

-1

0

1

2

(b) τ= −0.7

Figure 2: Comparison between the spectra of two random matrices A with two different
values of τ. Eigenvalues plotted are for two matrices of size n= 3000 whose diagonal
elements are drawn from the bimodal distribution Eq. (6) with d− = −1, p = 0.9 and
d+ = 0.1, and whose off-diagonal entries are drawn from a normal distribution with
zero mean µ = 0, variance σ2/n = 1/n, and τ = 0 [Panel (a)] or τ = −0.7 [Panel
(b)]. The red line denotes the solution to the Eqs. (32) and (33).

from the fact that pD is supported on a compact interval in the uniform case, while it is sup-
ported on the whole real axis in the Gaussian case. Indeed, Eq. (27) implies that in the former
case the spectrum S is a finite subset of the complex plane, while in the latter case it contains
the real axis. Consequently, for a compactly supported distribution pD the leading eigenvalue
converges to a finite value as a function of n, while for a distribution pD that is supported on
the real axis the leading eigenvalue diverges. The rate of divergence as a function of n of the
average of the leading eigenvalue, 〈λ1〉, is determined by the scaling of the maximum value
of the diagonal entries Di as a function of n. Since the maximum of n i.i.d. random variables
drawn from a Gaussian distribution with zero mean and unit variance scales as

p

log(n) (see
Theorem 1.5.3 in Ref. [45]), it holds that

〈λ1〉= On(〈Dmax〉) = O(
Æ

log(n)) , (31)

when pD is Gaussian, where Dmax =max {D1, D2, . . . , Dn} and where O(·) is the big O notation.

4.3 The case of generic correlations between Ji j and J ji (τ ∈ [−1, 1])

We consider now the case of nonzero correlations between the interaction variables Ji j and J ji .
In this case, it is more difficult to find the values of z that solve the Eq. (24), as contrarily to
the τ = 0 case Eq. (24) is coupled with Eq. (21). Nevertheless, we can simplify the Eqs. (24)
and (21) by using generic properties of H and A.

Using that H is Hermitian, which is implied by the definition Eq. (18), we obtain that
g12 = g∗21, Im(g11) = 0 and Im(g22) = 0. In addition, since A and AT have the the same
statistical properties, we can set g11 = g22. Also, since we are interested in the boundary
of the continuous part of the spectrum, which is located at the edge between the trivial and
the nontrivial solutions, we can set g11 = g22 = 0, as this is satisfied for the trivial solution.
Furthermore, we make the ansatz that Im(g12) is independent of the distribution pD, and
therefore Im(g12) = y/σ2(τ − 1), which is the solution when pD(x) = δ(x). In addition,
using that g11 g22 = 0, we can express the Eq. (21) as

Re(g12) =

*

D− x +Re(g12)τσ2

− ((D− x) +Re(g12)τσ2)2 − y2

(1−τ)2

+

D

, (32)
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and Eq. (24) reads

1=

*

σ2

((D− x) +Re(g12)τσ2)2 + y2

(1−τ)2

+

D

. (33)

We could not simplify these equations further, and hence we will obtain the boundary of the
spectrum by solving the Eqs. (32-33).

In Figs. 2 and 3, we corroborate the boundary of the spectrum, obtained from solving the
Eqs. (32-33), with numerical results for the eigenvalues of matrices of finite size, obtained
with numerical diagonalisation routines. We show the boundary of the spectrum for the case
of the bimodal distribution pD given by Eq. (6). Figure 2 compares two spectra with the same
σ but different values of τ, whereas Fig. 3 considers one negative value of τ and observes how
the spectrum changes as a function of σ. Note that the the real part of the leading eigenvalue
Re(λ1) decreases as a function of τ.

The leading eigenvalue is obtained by solving Eqs. (32)-(33) at y = 0. For bimodal pD we
obtain a quartic equation in x and we identify the largest real-valued solution of this quartic
equation with Re(λ1). We have obtained an analytical expression for Re(λ1) as a function of
the system parameters, which we omit here as it is a long mathematical formula without clear
use. However, it can be found in the Supplemental Material of Ref. [29].

For uniform pD the Eqs. (32)-(33) can be solved explicitly as shown in Appendix C. Re-
markably, in this case we obtain a simple, analytical expression for the leading eigenvalue,
viz.,

Re(λ1) =
1
2

�
Æ

(d− − d+) 2 + 4σ2 + d− + d+
�

+τ
σ2

d+ − d−
log

�p

(d− − d+) 2 + 4σ2 + d+ − d−
p

(d− − d+) 2 + 4σ2 − d+ + d−

�

, (34)

where d+ > d− ∈ R. One readily verifies that for τ= 0 Eq. (34) reduces to Eq. (30), for τ= 1
Eq. (34) recovers the result in Ref. [26] for the case of symmetric matrices with entries drawn
from a Gaussian distribution, and for σ = 1 it is equivalent to a formula that appeared in the
Supplemental Material of [29]. Since the sign of the second term of Eq. (34) is equal to the
sign of τ, the leading eigenvalue λ1 decreases as a function of negative values of τ.

In Fig. 4 we compare Eq. (34) with numerical results of the leading eigenvalue obtained
through the direct diagonalisation of matrices of finite size n. The numerics corroborate well
the analytical results that are valid for infinitely large n. We make a few interesting observa-
tions from Fig. 4: (i) for τ = 0, the leading eigenvalue is a monotonically increasing function
of the interaction strength σ implying a continuous increase of the width of the spectrum as
a function of σ; (ii) for τ = −0.8, the leading eigenvalue is a nonmonotonic function of σ.
Initially, for small values of σ, the width of the spectrum decreases as a function of σ, while
for large enough values of σ the width of the spectrum increases as a function of σ; (iii) for
τ = −1, the leading eigenvalue is monotonically decreasing. In this case, the width of the
spectrum decreases continuously as a function of σ and converges for large σ to a vertical
spectrum centered on the mean value of pD.

5 Eigenvalue outlier

Now, we determine the leading eigenvalue when µ ̸= 0. Even though, the continuous part
of the spectrum is not affected by µ (see Appendix E), the spectrum may have an eigenvalue
outlier, which can be the leading eigenvalue; this is illustrated in Panel (b) of Fig. 1. Hence,
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for µ ̸= 0 the leading eigenvalue

λ1 =max
�

λc
1,λisol

	

, (35)

(a) σ = 0.5

Im(λ)

Re(λ)

(b) σ = 0.7

Im(λ)

Re(λ)

(c) σ = 1

Im(λ)

Re(λ)

Figure 3: Comparison between the spectra of random matrices A with different values of
the interaction strengthσ. Eigenvalues plotted are for three matrices of size n= 3000
whose off-diagonal elements (Ji j , J ji) are drawn from a joint Gaussian distribution
with zero mean, a Pearson correlation coefficient τ = −0.7, and a variance σ2/n
as indicated. The diagonal elements follow a bimodal distribution with parameters
p = 0.9, d− = −1, d+ = 0.1, and µ = 0. The red line denotes the solution to the
Eqs. (32) and (33).
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-0.4

-0.2

0.0

0.2

0.4

Re(λ1)

σ

Figure 4: Effect of the interaction strength σ on the real part of the leading eigenvalue
λ1 when µ = 0 and for τ = 0 (triangle, dotted), τ = −0.8 (circle, solid) and τ = −1
(diamond, dashed). Lines show the Eq. (34). Markers are numerical results obtained
for random matrices A with diagonal elements Dj that are drawn independently from
a uniform pD supported on the interval [d−, d+] = [−1,0.1] and with pairs of off-
diagonal elements (Ji j , J ji) that are drawn independently from a normal distribution
with mean 0, variance σ2/n, and Pearson correlation coefficient τ as provided. Each
marker represents the largest eigenvalue of one matrix realisation of size n= 7000.

where λisol is the eigenvalue outlier, if it exists, and λc
1 is the leading eigenvalue of the contin-

uous part of the spectrum, as defined by Eq. (10) with λ1 replaced by λc
1. In what follows, we

determine λc
1 and λisol.

The leading eigenvalue λc
1 of the support set S is, in the limit of large n, independent of µ.

Indeed, as shown in Appendix E, the boundary of the support set S solves the Eqs. (21) and
(24), just as was the case for µ= 0.

To determine the eigenvalue outlier we follow the theory for eigenvalue outliers of ran-
dom matrices, as developed in Ref. [17], which is also based on the cavity method, albeit
works in a different way as in this approach recursion relations are derived for entries of right
eigenvectors, instead of the entries of the resolvent. Following this approach, we show in the
Appendix F that the eigenvalue outliers λisol of A in the limit for large n solve

1= µ g21(λisol) , λisol /∈ S , (36)

where g21 is the trivial solution to Eq. (21), i.e., for g11 = g22 = 0. For τ= 0,

g21(z) =
¬ 1

z − D

¶

D
, (37)

which leads to the equation

1= µ
¬ 1
λisol − D

¶

D
, (38)

for the outlier λisol.
In general for τ ̸= 0, we do not have an explicit expression for g21, and hence we express

λisol in terms of the functional inverse f21 of g21, namely,

λisol = f21

�

1
µ

�

, (39)
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where
z = f21(g21(z)) . (40)

Using Eq. (21) for g22 = g11 = 0, corresponding to the trivial solution, we obtain the
following selfconsistent equation for g21(z),

g21 =
¬ 1

z − D−τσ2 g21

¶

D
, with z /∈ S . (41)

If we can rewrite Eq. (41) as z = f21(g21), then we readily obtain the functional inverse f21 of
g21.

Now, we determine f21 for specific distributions of the diagonal disorder D. First, we
consider the case when pD is uniform, as in Eq. (7). It then holds for real values of z ∈ R that
Im(g21) = 0, and

Re(g21) =
1

d+ − d−

∫ d+

d−

du
1

z − u−τσ2Re(g21)

=
1

d+ − d−
log

z − d− −τσ2Re(g21)
z − d+ −τσ2Re(g21)

, (42)

from which it follows that

z = d− +
d− + d+

e−(dp−dm)Re(g21)
+τσ2Re(g21) , (43)

and thus

f21(u) = d− +
d− + d+

e−(dp−dm)Re(u)
+τσ2Re(u) . (44)

Inserting the expression Eq. (44) into Eq. (39), we obtain

λisol = d− +
d− − d+

e−
(d+−d−)
µ − 1

+τ
σ2

µ
, (45)

which is an explicit analytical expression for the outlier when D is uniformly distributed.
Equation (45) shows that for negative τ the eigenvalue outlier decreases monotonically

as a function of σ, which is different from the nonmonotonic behaviour λc
1 as a function of

σ, see Eq. (34). In Fig. 5, we plot λ1 = max
�

λc
1,λisol

	

as a function of σ. For small values
of σ, the leading eigenvalue λ1 decreases rapidly as a function of σ, as λ1 is an outlier, until
λisol = λc

1, at which point the outlier stops existing and λ1 is located at the boundary of S.
Also for the case of bimodal pD, as given by Eq. (6), we can obtain an explicit expression

for λisol. Following the same steps as for uniform disorder, we get

λisol =
1
2

�

d− + d+ +µ+
Æ

(d+ − d−)2 + 2(d− − d+)(2p− 1)µ+µ2
�

+τ
σ2

µ
. (46)

Again, as in the case for uniform disorder, the outlier decreases monotonically as a function of
σ when τ < 0.

Comparing Eqs. (45) with (46), we make the following interesting observation. Both equa-
tions take the form

λisol = λ
(0)
isol +τ

σ2

µ
, (47)

where λ(0)isol is the corresponding eigenvalue outlier for τ= 0 solving

1= µ
¬ 1

λ
(0)
isol − D

¶

D
. (48)
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Since Eq. (47) holds for both uniform and bimodal pD, we conjecture that Eq. (47) holds for
general pD. The Eq. (47) is a convenient result as λ(0)isol can be obtained easily from solving
Eq. (48). Notice that for constant diagonal matrix entries, i.e., Di = d for all i ∈ [n], Eq. (47) is
consistent with Theorem 2.4 of Ref. [33] for the eigenvalue outliers of finite rank perturbations
of elliptic random matrices.

0 1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re(λ1)

σ

Figure 5: Effect of the interaction strengthσ on the real part of the leading eigenvalueλ1
for random matrices with µ= 2 and all other parameters the same as in Fig. 4. Similar
to Fig. 4, solid lines/circles correspond withτ= −0.8 and dashed lines/triangles with
τ= −1. Gray lines show Eq. (34). Black lines show the maximum between Eq. (45),
for the eigenvalue outlier, and Eq. (34), for the leading eigenvalue of S. Each marker
represents the largest eigenvalue of one matrix realisation of size n= 3000.

6 Stability of linear dynamical systems

We discuss the implications of the spectral results obtained in the previous two sections for the
stability of linear systems of the form given by Eq. (1).

6.1 Uncorrelated interactions destabilise dynamical systems

For τ = 0 it holds that Re(λ1) ≥ d+ for all values of σ [see Eq. (28)], which has a couple of
interesting implications for the stability of linear dynamical systems. First, a linear dynamical
system with τ = 0 cannot be stable if the support of pD covers the positive axis. Second,
interactions Ji j destabilise linear dynamical systems as λ1 is an increasing function of σ (see
also Fig.3). Third, if the support of pD covers the whole real line, then the leading eigenvalue
λ1 diverges as a function of n. In the latter case we obtain a tradeoff between diversity, as
measured by n, and stability, as measured by Re(λ1) [8,46]. Indeed, when pD has unbounded
support, then for any realisation of the system parametersσ, τ, and pD, there will exist a value
n∗ so that with large probability Re(λ1) > 0 when n > n∗. In Ref. [19], the latter scenario
is referred to as size-dependent stability, as the system size n is an important parameter in
determining system stability.
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6.2 Antagonistic interactions can render dynamical systems stable

In the case of negative τ values the interactions Ji j can stabilise linear dynamical systems
when they are neither too strong nor too weak. To understand how this works, consider linear
systems A for which there exist values x ∈ R+ with pD(x)> 0, such that the system is unstable
in the absence of interactions. As illustrated in Fig. 3, adding antagonistic interactions to a
linear system can retract the real part Re(λ1) of the leading eigenvalue and make it negative.
This example demonstrates that unlike the uncorrelated case with τ = 0, interactions can
contribute to the stability of a system when τ < 0. However, as shown in Figs. 4 and 5, for
large values of the interaction strength σ the leading eigenvalue increases as a function of
σ, and hence antagonistic interactions stabilise linear dynamical systems as long as they are
neither too strong nor too weak.

Fig. 6 draws the lines of marginal stability, corresponding with Re(λ1) = 0, in the (σ,τ)
plane for µ ≤ 0 and for homogeneous growth rates pD(x) = δ(x − D) (dotted line), for a
bimodal distributions pD (dashed line), and for a uniform distribution pD (solid line). In these
cases, the leading eigenvalue λ1 is located at the boundary of the support set S, such that,
λ1 = λc

1. For all cases we have set 〈D〉 = −1, so that we see the effect of fluctuations in D on
system stability. Note that for the dotted line d+ = −1, whereas for the dashed and solid lines
d+ = 0.1. As a consequence, for the dotted line a stable region exists when τ = 0 and σ is
small enough, while for the other cases there is no stable region when τ= 0. Interestingly, for
negative values of τ and for interaction strengths σ that are neither too weak nor too strong,
there exists a stable region with Re(λ1)< 0. This region exists even though d+ > 0 (solid and
dashed lines). On the other hand, for τ= 0 a stable region can only exist when d+ < 0, which
is the case of the dotted line with homogeneous rates.

Figure 6 shows that Re(λ1) is independent of pD for large values of σ and fixed 〈D〉.
We explore this universal behaviour in more depth. Expanding the expression of Re(λ1) for
Eq. (34) in large values of σ we obtain

Re(λ1) = (1+τ)σ+
1
2
(d− + d+) + (3+τ)

(d− − d+) 2

24σ
+O(1/σ2) . (49)

Identifying the mean and variance of the uniform distribution pD in Eq. (49), we can write

Re(λ1) = (1+τ)σ+ 〈D〉+
(3+τ)

2σ
〈〈D2〉〉+O(1/σ2) , (50)

where 〈〈D2〉〉 represents the variance of the diagonal elements. If D is a deterministic variable
with zero variance, then we recover the Eq. (4). This suggests that when the interactions are
strong enough, only the first moment of the diagonal elements is important, rather than the
distribution of their elements. Although the relation Eq. (50) is derived for the uniform case,
numerical evidence shows that it also holds for the bimodal case, and therefore we conjecture
that it holds for arbitrary pD distributions. Demonstrating the validity of the Eq. (50) beyond
the uniform case would be an interesting extension of the present work.

Figure 7 draws the lines of marginal stability in the (σ,τ), similar to Fig. 6, albeit with
µ > 0. In this case, the leading eigenvalue λ1 is either the eigenvalue outlier, λ1 = λisol, when
it exists, or is the leading eigenvalue of the support set S, i.e., λ1 = λc

1. The eigenvalue outlier
exists whenσ is small enough, and in this regime the system stability increases as a function of
σ. For fixed τ, at a value σ = σ∗ the eigenvalue outlier merges into S, i.e., λisol = λc

1, and for
σ > σ∗ the leading eigenvalue is λc

1. We can clearly notice this transition in Fig. 7 due to the
cusp that appears in the lines of marginal stability. Hence, for σ > σ∗, the lines of marginal
stability in Fig. 7 are identical to those in Fig. 6. Comparing Panels (a) and (b) in Fig. 7, we
notice that increasing the parameter µ reduces system stability. This can be understood from
the fact that the eigenvalue outlier λisol increases as a function of µ, while the boundary of the
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Figure 6: Phase diagram for the stability of linear dynamical systems with antago-
nistic interactions when µ ≤ 0. Lines denote values of (τ,σ) of marginal stability,
i.e. Re(λ1) = 0, separating a stable region with Re(λ1) < 0 (below the lines) from
an unstable region with Re(λ1) > 0 (above the lines). Results shown are for the
random matrix model defined in Sec. 2 and for various distributions pD with the
same mean 〈D〉 = −1. The solid line represents a uniform disorder on the inter-
val I = [−2.1, 0.1]; the dashed line represents a bimodal disorder with parameters
p = 0.5, d− = −2.1, d+ = 0.1; and the dotted line represents the case where all diag-
onal elements take the value −1 with no disorder.

continuous spectrum is independent of µ. Note that negative values of µ have no influence on
system stability as in this case the eigenvalue outlier, when it exists, is located on the real axis
at the negative side of S.

7 Discussion

We have obtained exact results for the leading eigenvalue of random matrices of the form
Eq. (5), where the pairs (Ji j , J ji) are i.i.d. random variables drawn from a joint distribution with
moments as given in Eq. (3), and where the diagonal elements Di are i.i.d. random variables
drawn from a distribution pD.

If the Pearson correlation coefficient τ = 0, then the boundary of the spectrum solves the
Eq. (27), which implies that λ1 ≥ d+ [see Eq. (28)]. Hence, in this case interactions render
dynamical systems less stable, irrespective of the form of pJ1,J2

and pD. On the other hand, if
the Pearson correlation coefficient τ between the pairs (Ji j , J ji) is negative and the variance
of the distribution pD is nonzero, then λ1 can exhibit a nonmonotonic behaviour as a function
of the strength σ of the off-diagonal matrix elements, as illustrated in Figs. 4 and 5. As a
consequence, antagonistic interactions that are neither too strong nor too weak can stabilise
linear dynamical systems when the diagonal entries Di are heterogeneous, see Fig. 6.

The results in Figs. 4 and 5 can also be understood perturbatively. Indeed, a perturbative
expansion of the eigenvalues of A in the parameter σ starting from the diagonal case with
σ = 0 leads to the expression (see Appendix D)

λ j(σ) = Dj +
n
∑

i=1;(i ̸= j)

Ji jJ ji

(Dj − Di)
+O(σ3) . (51)
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(a) µ= 1
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Figure 7: Phase diagram for the stability of linear dynamical systems with antagonistic
interactions and for µ > 0. Lines show parameter values for which the system is
marginally stable (Re[λ1] = 0). The parameters are the same as in Fig. 6, except for
µ, which is set to µ= 1 in Panel (a) and µ= 5 in Panel (b).

For the leading eigenvalue j = 1 it holds that D1 − Di ≥ 0 for all values i ∈ [n], and hence
the second term is negative whenever Ji jJ ji < 0, leading to the initial decrease of the leading
eigenvalue λ1 in Fig. 4. For larger values of σ we need to consider the higher order terms in
the perturbative expansion of λ1, which are in general positive leading to the nonmonotonic
behaviour of λ1 in Fig. 4.

We discuss various interesting questions for future research, both from the mathematical
and ecological point of view.

For distributions pD that are uniform and bimodal, we have obtained the analytical ex-
pressions Eqs. (46) and (45) for the eigenvalue outlier, which led us to conjecture Eq. (47)
for general distributions pD. However, we have no proof of this general expression for the
eigenvalue outlier, and hence it will be interesting to construct a proof of this simple, generic
formula in future work.

For the case of a uniform distribution pD of the diagonal elements we have obtained an
analytical expression for λ1, which is given either by Eq. (34) or Eq. (45), depending on the
value of µ, and in the case of τ= 0 we have obtained a closed form expression for the boundary
of the support of the spectral density ρ, which is given by Eq. (29) and which also holds for
uniform pD. The peculiar solvability of the uniform disorder case is consistent with results
obtained recently in Ref. [26] for symmetric matrices (τ= 1). Reference [26] shows that when
Dj = a+ b j/n, with a and b arbitrary constants, and when the entries Ji j are complex-valued
and Gaussian distributed, then an explicit expression for the joint distribution of eigenvalues
can be obtained. Based on the results in the present paper, one may speculate that these results
are extendable to the case of τ= 0, which will be interesting to explore in future work.

An important extension of the present work are models of the form

Ai j = (Ji j +µ)Ci j +δi, j Di , (52)

where Ci j is now the adjacency matrix of a random graph. The case of random directed graphs
with a prescribed degree distribution pK in,Kout of indegrees and outdegrees has been solved in
Refs. [17,18,27]. This is the sparse equivalent of the “τ= 0”-case, and in fact the oriented and
locally tree-like structure of random directed graphs leads to a decoupling similar to those of
Eqs. (21) and (24) in the “τ= 0”-case. For this reason, random directed graphs are analytically
tractable, and Refs. [17,18,27] derived for the boundary of the spectrum an equation similar
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to Eq. (27), but with a prefactor that is given by (σ2 +µ2) 〈K
inKout〉

c , i.e.,

1= (σ2 +µ2)
〈K inKout〉

c

∫

R
dx pD(x)

1
|λ− x |2

, (53)

and analogously, Refs. [17, 18, 27] derived for the eigenvalue outliers an equation similar to
Eq. (54), viz.,

1= µ
〈K inKout〉

c

∫

R
dx pD(x)

1
λisol − x

. (54)

The case of antagonistic interactions (τ < 0) is considerably more challenging as one needs
to know the distribution of the diagonal entries [G]ii of the resolvent, which is non trivial in
the sparse case, see Ref. [19]. Nevertheless, Ref. [19] analysed the antagonistic case without
diagonal disorder and found that systems with antagonistic interactions are significantly more
stable than systems with mutualistic and competitive interactions (in fact, in the limit n→∞
they are infinitely more stable). Ref. [19] did however not study the effect of diagonal disorder
on system stability.

In an ecological setting, the Jacobian matrix of a set of randomly coupled Lotka-Volterra
equations have a specific structure, viz., all elements in a row are multiplied by the population
abundance so that

Ai j = DiJi j . (55)

The spectra of such random matrix ensembles have been studied in Refs. [48,49], and it would
be interesting to study the stabilising effect of antagonistic interactions in this setup.

The question of stability is also relevant for the study of experimental systems, see e.g. Refs.
[50–52], and the matrices studied in the present paper are null models for real-world systems.
However, as discussed in detail in Ref. [53], most ecological data on foodwebs is qualitative,
and obtaining quantative data in particular on the Jacobian, is challenging.

Other interesting applications of the theory developed in the present paper are the study of
Turing patterns that are governed by randomly coupled chemical reactions, which in Fourier
space involves a random matrix with diagonal disorder [54].

Let us end the paper with a word of caution when using the present results to understand
the dynamics of nonlinear systems. In a linear system there exist one fixed point, i.e., x⃗ = 0,
and the system parameters will not affect the existence and uniqueness of this fixed point.
However, in nonlinear systems this is in general not the case, see e.g. [55, 56], and therefore
system stability can also be affected by bifurcations that eliminate fixed points. Moreover,
for certain problems, such as stability in ecosystems, the fixed point has to be feasible, which
for ecosystems implies that all entries of the fixed point are nonnegative [1], and this also
constitutes an interesting random matrix theory problem [57]. Another issue is that A is the
Jacobian matrix, which is in general different from the interaction matrix. Nevertheless, stud-
ies in, among others, ecology [12–14] and neuroscience [2,3], show that nonlinear systems do
exhibit regimes with one unique stationary fixed point and random matrix theory can provide
insights on system stability in this regime. In the ecological context for symmetric interac-
tions Ji j = J ji , Refs. [12] shows that May’s stability argument, albeit in the symmetric setting,
applies when the number of extinct species is correctly taking into account, and the corre-
sponding spectrum of the Hessian is described by random matrix theory. Moreover, note that
for symmetric interactions replica theory can be used to determine the leading eigenvalue of
the Hessian, see Refs. [12,14,58], while for nonsymmetric interactions this is not possible.

When preparing the manuscript, we became aware of the preprint [59] that also studies
the spectral properties of matrices of the type defined in Sec. 2. However, the paper [59]
discusses the case of τ > 0 for which interactions further destabilise fixed points, whereas we
were interested in the potentially stabilising effect of interactions for τ < 0.
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A Derivation of the generalised resolvent equation (21) using the
Schur complement formula

We derive the Eq. (21) using two useful properties.
First, we use that permutation of a matrix and matrix inversion are two commutable oper-

ations. Indeed, let P be the orthogonal matrix that represents an arbitrary permutation of the
integers {1, 2, . . . , n}, then

PH−1P−1 =
�

PHP−1
�−1

. (56)

We use this property to perform the permutation [18,37]

[H] j,k→



















�

H̃
�

2 j−1,2k−1 , if 1≤ j, k ≤ n ,
�

H̃
�

2 j−n,2k−1 , if n+ 1≤ j ≤ 2n, 1≤ k ≤ n ,
�

H̃
�

2 j−1,2k−n , if 1≤ j ≤ n, n+ 1≤ k ≤ 2n ,
�

H̃
�

2 j−n,2k−n , if n+ 1≤ j, k ≤ 2n ,

(57)

where H̃ is the matrix of permuted entries of H. The effect of this permutation is to bundle
together the elements of H that depend on pairs of entries (Ai j , A ji).

Second, we use the Schur inversion formula for the inverse of a 2×2 block matrix [37,60],
�

a b
c d

�

=

�

s−1
d −sdbd−1

−d−1csd s−1
a

�

, (58)

where sd = a− bd−1c and sa = d− ca−1b are the Schur complements of the blocks d and a,
respectively. If we choose for a the upper diagonal 2× 2 block of H̃, then we obtain

G11 =

 

�

η z − D1
z∗ − D1 η

�

−
1
n

n
∑

j=2

n
∑

ℓ=2

�

0 J1 j
J j1 0

�

G(1)jℓ

�

0 Jℓ1
J1ℓ 0

�

!−1

, (59)

where G(1)jℓ is defined as in Eq. (18), but for a matrix A(1) obtained by deleting the 1-th row and
1-th column of A. Permuting the entries of the matrix so that the 1-th row and 1-th column are
swapped with the i-th row and i-th column, and using again Eq. (56), we obtain the analogous
formula

Gii =

 

�

η z − Di
z∗ − Di η

�

−
1
n

n
∑

j=1; j ̸=i

n
∑

ℓ=1;ℓ̸=i

�

0 Ji j
J ji 0

�

G(i)jℓ

�

0 Jℓi
Jiℓ 0

�

!−1

. (60)

Note that the sum in Eq. (60) that runs over the indices ℓ and j contains a very large
number of terms in the limit of n≫ 1. Assuming that the law of large numbers applies to this
sum — which can be verified to be the case, see Sec. 3 of Ref. [30]— we replace the sum by
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its average value leading to

n
∑

j=1; j ̸=i

n
∑

ℓ=1;ℓ̸=i

�

0 Ji j
J ji 0

�

G(i)jℓ

�

0 Jℓi
Jiℓ 0

�

= (n− 1)

�

〈J2
iu〉〈[G

(i)
uu]22〉 〈JiuJui〉〈[G(i)uu]21〉

〈JiuJui〉〈[G(i)uu]12〉 〈J2
ui〉〈[G

(i)
uu]11〉

�

+(n− 1)(n− 2)

�

〈Jiu〉〈Jiv〉〈[G(i)uv]22〉 〈Jiu〉〈Jvi〉〈[G(i)uv]21〉
〈Jiv〉〈Jui〉〈[G(i)uv]12〉 〈Jui〉〈Jvi〉〈[G(i)uv]11〉

�

, (61)

with u, v ∈ [n] \ {i} and u ̸= v. In Eq. (61) we have used that the pairs (Ji j , J ji) are identically
and independently distributed random variables. Moreover, we have used that 〈[G(i)uu]12〉 and
〈[G(i)uv]12〉 are independent of i, u and v, as in the definition of the random matrix model for A
all indices are equivalent. Since 〈Jiu〉 = 0, the second term in Eq. (61) equals zero, and using
that σ2 = 〈J2

ik〉 and τσ2 = 〈JikJki〉, we obtain

Gii =

��

η z − Di
z∗ − Di η

�

−σ2

�

〈[G(i)uu]22〉 τ〈[G(i)uu]21〉
τ〈[G(i)uu]12〉 〈[G(i)uu]11〉

��−1

+ on(1) , (62)

where o(·) is the small o notation. Taking the ensemble average of Eq. (62) and, in the limit
of large n, identifying

g = 〈Gii〉 , (63)

for all i ∈ [n], and
g = 〈G(i)uu〉 , (64)

for all u ∈ [n] \ {i}, we obtain Eq. (21). Equation (64) follows from the fact that A(i) is drawn
from the same ensemble as A, except that n→ n− 1.

B Derivation of Eq. (29) for the boundary of the spectrum when
τ= 0 and pD is uniform

Equation (27) for the uniform distribution Eq. (7) gives
∫ d+

d−

1
(x − u)2 + y2

du=
d+ − d−
σ2

, (65)

where we have used z = x + iy . Using the formula
∫

1
x2 + a2

d x =
1
a

arctan
x
a
+ constant , (66)

for the indefinite integral of 1/(x2 + a2) when a ̸= 0, we obtain that for y ̸= 0

arctan
�

(d+ − x)
y

�

− arctan
�

(d− − x)
y

�

=
(d+ − d−)
σ2

y . (67)

Notice that since arctan(a) ∈ (−π/2,π/2), we have the condition y ∈ (−πσ2/(d+ − d−),
πσ2/(d+ − d−). Subsequently, using

arctan a− arctan b = arctan
�

a− b
1+ ab

�

(68)

in Eq. (67), we obtain Eq. (29).
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C Derivation of Eq. (34) for the leading eigenvalue λ1 in the case
of uniformly distributed diagonal elements

We derive Eq. (34) for the leading eigenvalue λ1 when pD is the uniform distribution given by
Eq. (7).

Using the assumption that the leading eigenvalue λ1 ∈ R, we set y = 0 in equations
Eqs. (32-33) yielding

Re(g12) = −
­

1
(D− x) +Re(g12)τσ2

·

D
, (69)

and

1=

�

σ2

[(D− x) +Re(g12)τσ2]2

�

D

. (70)

Integrating the equations Eq. (69-70) over the uniform distribution pD supported on the
interval [d−, d+], we obtain

Re(g12) =
log

�

x − d− −Re(g12)σ2τ
�

d+ − d−
−

log
�

x − d+ −Re(g12)σ2τ
�

d+ − d−
, (71)

and

1=
σ2

(d+ − x +Re(g12)τσ2)(d− − x +Re(g12)τσ2)
. (72)

We first solve Eq. (72) towards Re(g12) with solutions

Re(g12) =
x
σ2τ
−
(d− + d+)

2σ2τ
+ s

q

(d+ − d−)
2 + 4σ2

2σ2τ
, (73)

where s = ±1. Replacing Re(g12) in Eq. (71) by this solution gives a linear equation in x . The
solutions of this linear equation provide the intersection points of the boundary of the support
of the spectral distribution with the real axis, viz.,

x =
1
2

�

−s
Æ

(d− − d+) 2 + 4σ2 + d− + d+
�

+τ
σ2

d+ − d−
log

�

−s
p

(d− − d+) 2 + 4σ2 + d+ − d−
−s
p

(d− − d+) 2 + 4σ2 − d+ + d−

�

. (74)

For s = 1 we obtain the leading eigenvalue given by Eq. (34).

D Perturbation theory for the leading eigenvalue

We use perturbation theory to understand the functional behaviour in Fig. 4 of Re(λ1) as a
function of σ.

Let D + σJ, where D is a diagonal matrix, σ a small parameter, and J an arbitrary σ-
independent matrix with zero-valued diagonal entries. Let λ(0)j , r⃗(0)j , and l⃗(0)j denote the eigen-
values, right eigenvectors, and left eigenvectors of D, respectively.

Let λ j(σ) denote the eigenvalues of D+σJ. An expansion around σ ≈ 0 gives

λ j(σ) = λ
(0)
j +λ

(1)
j σ+λ

(2)
j σ

2 +O(σ3) , (75)

with λ(0)j = Dj . Note that in this paper we use the convention that λ(0)1 ≥ λ
(0)
2 ≥ . . .λ(0)n and

thus D1 ≥ D2 ≥ . . . Dn.
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It then holds [61]

λ
(1)
j =

l⃗(0)j · Jr⃗(0)j

l⃗(0)j · r⃗
(0)
j

, (76)

and

λ
(2)
j =

1

l⃗(0)j · r⃗
(0)
j

n
∑

i=1;i ̸= j

[l⃗(0)j · Jr⃗(0)i ][l⃗
(0)
i · Jr⃗(0)j ]

(l⃗(0)i · r⃗
(0)
i )(λ

(0)
j −λ

(0)
i )

. (77)

Since D is a diagonal matrix, we can set l⃗(0)i · r⃗
(0)
i = δi, j and l⃗(0)j · Jr⃗(0)i = J ji(1− δi, j). In

this case, it holds that

λ j(σ) = Dj +
n
∑

i=1;i ̸= j

Ji jJ ji

(Dj − Di)
σ2 +O(σ3) . (78)

For σ = 0, it holds that D1 = Dmax and thus the denonimator in Eq. (78) is positive. From
this it follows that when Ji jJ ji < 0, λ1 initially decreases as a function of σ. However, when
σ is larger, then the O(σ3) becomes relevant, which provides the nonmonotonic behaviour in
Fig. 6.

E Boundary of the spectrum when µ ̸= 0

We show that the support set S of ρ(z) is, in the limit of large n, independent of µ, and hence
in this limit the boundary of S solves the Eqs. (21) and (24).

Following the derivation of Appendix A, we obtain, instead of the self-consistent Eq. (60)
for Gii , the self-consistent equation

Gii =

��

η z − Di +µ/n
z∗ − Di +µ/n η

�

− (79)

1
n

n
∑

j=1; j ̸=i

n
∑

ℓ=1;ℓ̸=i

�

0 Ji j +µ/n
J ji +µ/n 0

�

G(i)jℓ

�

0 Jℓi +µ/n
Jiℓ +µ/n 0

�

!−1

.

Assuming the law of large numbers applies, we obtain for the second term in the previous
equation,

n
∑

j=1; j ̸=i

n
∑

ℓ=1;ℓ̸=i

�

0 Ji j +µ/n
J ji +µ/n 0

�

G(i)jℓ

�

0 Jℓi +µ/n
Jiℓ +µ/n 0

�

= (n− 1)

 �

〈J2
iu〉+

µ2

n2

�

〈[G(i)uu]22〉
�

〈JiuJui〉+
µ2

n2

�

〈[G(i)uu]21〉
�

〈JiuJui〉+
µ2

n2

�

〈[G(i)uu]12〉
�

〈J2
ui〉+

µ2

n2

�

〈[G(i)uu]11〉

!

+
(n− 1)(n− 2)

n2
µ2

�

〈[G(i)uv]22〉 〈[G(i)uv]21〉
〈[G(i)uv]12〉 〈[G(i)uv]11〉

�

, (80)

with u, v ∈ [n] \ {i} and u ̸= v. Using that σ2 = 〈J2
ik〉 and τσ2 = 〈JikJki〉, Eqs. (80) and (80)

yield Eq. (62), and consequently, in the limit of large n the quantity Gii that determines the
resolvent of A is, neglecting subleading order terms in n, independent of µ.
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F Derivation of the Eq. (36) for the eigenvalue outlier λisol

We derive Eq. (36) for the eigenvalue outlier of random matrices A as defined in Sec. 2. To this
purpose, we use the cavity method for eigenvalue outliers of random matrices, as developed
in Refs. [17,27,62], and used in Ref. [63] for the case of symmetric block matrices. Note that
this method is distinct from the cavity method for the spectral density developed in [36].

Assuming A is diagonalisable, the matrix A has n left and right eigenvectors denoted, re-
spectively, by l⃗ j and r⃗ j . Normalising left and right eigenvectors such that

l⃗†
j r⃗k = δ j,k , ∀ j, k ∈ [n] , (81)

we can decompose the matrix as

A=
n
∑

j=1

λ j r⃗ j l⃗†
j , (82)

and analogously for the resolvent

G(z) =
n
∑

j=1

1
z −λ j

r⃗ j l⃗†
j , for z /∈ {λ1,λ2, . . . ,λn} . (83)

Consequently, for z = λ j +η it holds that

lim
η→0
ηG(λ j +η) = r⃗ j l⃗†

j +O(η) , (84)

as long as η is much smaller than the distance between λ j and any other eigenvalue of A.
Using the Schur complement formula Eq. (58), the Appendix F of Ref. [17] shows that the
eigenvector entries [r⃗ j]k of r⃗ j obey the recursion relation

[r⃗ j]k = Gkk(λ j +η)
n
∑

ℓ=1;(ℓ̸=k)

Akℓ[r⃗
(k)
j ]ℓ , (85)

in the asymptotic limit n≫ 1, where r⃗(k)j is the right eigenvector of the matrix A(k), obtained
from A by deleting the k-th rows and columns, and associated with the same eigenvalue λ j .
The derivation of Eq. (85) relies on two assumptions, mainly that the eigenvalue λ j is well
separated from other eigenvalues in the limit of large n, so that Eq. (84) applies, and that
λ j is both an eigenvalue of A and the cavity matrices A(k). Both assumptions are valid for
eigenvalue outliers λisol in the limit of large n.

Setting λ j = λisol, we find that the entries of the resolvent in the limit of large n are given
by

G j j(λisol +η) = g21(λisol) , (86)

where g21 solves Eq. (21) for g22 = g11 = 0 as the outlier is in the region of the complex plane
outside the support set S, and hence the trivial solution applies. Additionally, according to the
law of large numbers

lim
n→∞

n
∑

ℓ=1;(ℓ̸= j)

Akℓ[r⃗
(k)
j ]ℓ = µ〈Risol〉 , (87)

where 〈Risol〉 ̸= 0 is the average value of the entries of the right eigenvector associated with
the eigenvalue outlier. Substitution of Eqs. (86) and (87) in Eq. (85) yields

[r⃗ j]k = 〈Risol〉(1+ on(1)) , (88)
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where on(1) denotes subleading order contributions that vanish when n is large enough, and
where 〈Risol〉 solves

〈Risol〉= µg21(λisol)〈Risol〉 . (89)

As for eigenvalue outliers 〈Risol〉 ≠ 0, Eq. (89) implies that the outlier eigenvalue λisol solves
the Eq. (36).
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