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Abstract

The shallow water equations describe the horizontal flow of a thin layer of fluid with
varying height. We show that the equations can be rewritten as a d = 2 + 1 dimen-
sional Abelian gauge theory. The magnetic field corresponds to the conserved height of
the fluid, while the electric charge corresponds to the conserved vorticity. In a certain
linearised approximation, the shallow water equations reduce to relativistic Maxwell-
Chern-Simons theory. This describes Poincaré waves. The chiral edge modes of the
theory are identified as coastal Kelvin waves.
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1 Introduction

The shallow water equations describe the dynamics of a thin layer of fluid whose height is
much smaller than its horizontal extent. The basic equations, and a number of extensions, are
ubiquitous in modelling of the atmosphere, oceans, rivers, and lakes.
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The variables of the shallow water equations are the height h(x , y, t) of the fluid, and the
horizontal velocity u(x , y, t). Writing the components of the 2d velocity vector as ui , with
i = 1, 2, the equations are

Dh
Dt
= −h∇ · u and

Dui

Dt
= f εi ju j − g

∂ h
∂ x i

. (1.1)

Here the material time derivative, Dh/Dt = ∂ h/∂ t+u ·∇h, tracks the variation of height with
the flow. Similarly, Dui/Dt = ∂ ui/∂ t + (u · ∇)ui .

The shallow water equations contain two parameters: the gravitational acceleration g,
and the Coriolis parameter f . On Earth, at latitude θ , the Coriolis parameter is given by
f = 4π sinθ (day)−1. A derivation of the shallow water equations, together with many detailed
applications can be found in the textbook [1]. A whirlwind tour of some highlights can be
found in Section 4.3 of the lecture notes [2].

In recent years, a number of surprising parallels have been found between the shallow
water equations, at least in their linearised form, and topological phases of matter. With a
healthy dose of hindsight, the story goes back to the work of William Thomson who, in 1879,
showed that the linearised shallow water equations admit chiral edge modes, now known as
coastal Kelvin waves [3]. These waves are exponentially localised at the coast and propagate
clockwise around land masses in the Northern hemisphere and anti-clockwise in the Southern
hemisphere. Similar chiral modes in the shallow water equations are also found localised at
the equator, now propagating from west to east [4, 5]. At a calculational level, these chiral
waves are strikingly reminiscent of the chiral fermion zero modes of the Dirac equation that
were discovered a century later [6].

In the quantum world, chiral edge modes are the smoking gun for a topological phase of
matter [7–10]. This is also true for the classical shallow water equations, as first shown in the
beautiful paper [11]. We will now give a cartoon version of the argument.

The linearised shallow water equations admit a band of solutions known as Poincaré waves,
whose frequency ω is related to their wavevector k through the dispersion relation

ω2 = c2k2 + f 2 . (1.2)

Here the speed is given by c =
p

gH, with H the average height of the fluid. (The derivation
of this dispersion relation will be reviewed in Section 3.) For non-vanishing Coriolis force,
f ̸= 0, the frequency has a gap. But the gap closes at the equator where f = 0. Given such
a gapped band of solutions, labelled by 2d momentum k, one can follow lattice models and
compute the Chern number by integrating a suitable Berry curvature over momentum space,
á la TKNN [12] and Haldane [13]. This Chern number is non-vanishing, seemingly integer-
valued, and depends on the sign of f . This means that the Chern class jumps as we cross the
equator. This change in the underlying topology can be viewed as responsible for the existence
of chiral equatorial waves.

The cartoon sketched above is sloppy for a number of reasons, not least the fact that mo-
mentum space in this problem is non-compact. This is in sharp contrast to the original uses
of a Chern number which was for lattice models where momentum space is a compact Bril-
louin zone [12, 13]. This compactness is necessary for the Chern number to be an integer,
and hence topological. To circumvent this issue, the original paper [11] used a slightly more
subtle topological invariant, and subsequent papers have explored the possibility of regulating
the momentum integral in some way [14, 15], although not without inducing further diver-
sions [16]. Meanwhile, a topological explanation for the original coastal Kelvin waves has
also been presented, involving spatially varying f (x) and mean height H(x) [17]. These com-
plications notwithstanding, the main lesson is clear: chiral modes observed in shallow water
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owe their existence to topology. Further studies of topological properties of the shallow water
system can be found in [19–24].

The purpose of this work is to provide an effective field theory description of shallow water
dynamics in the hope that it may make topological properties more manifest. We do this by
writing the shallow water equations as a gauge theory. As we will see, this gauge theory
involves Chern-Simons terms, which are the archetypal example of a topological field theory.
In particular, chiral edge modes arise automatically in Chern-Simons theories, a fact that is
familiar from quantum Hall physics [25,26].

In Section 2, we show that the non-linear shallow water equations have a natural rendering
as an Abelian gauge theory. The magnetic fields is associated to the height in the shallow water
equations, while the electric charge is associated to the vorticity. We will see that the vorticity
current must take a particular form, and therein lies many of the subtleties of the system.

In Section 3, we turn to the linearised equations. We will show that the effective field
theory describing Poincaré waves (1.2) is given by relativistic Maxwell-Chern-Simons theory.
The coastal Kelvin waves arise as chiral edge modes of this Chern-Simons theory.

2 A Gauge Theory for Shallow Water

In this section we formulate the shallow water equations as a gauge theory in d = 2 + 1
dimensions. Our strategy will be to identify conserved currents in the shallow water equations
and identify them with appropriately conserved quantities in the gauge theory. Rather than
simply write down the Lagrangian, we will instead proceed in smaller steps, and occasional
missteps, to build some intuition for the gauge theoretic formulation. The more impatient
reader can find the final answer in (2.11).

To understand the physics, we focus on conserved quantities. The shallow water equa-
tions (1.1) enjoy a number of conservation laws, but for our immediate purposes we need
just two. Both are conserved quantities in the sense that they admit a current obeying the
continuity equation,

∂µJµ =
∂ J0

∂ t
+∇ · J = 0 .

Throughout, we use µ = 0,1, 2 to denote space and time indices, and i = 1,2 to denote only
spatial indices. Note that, unlike in relativistic systems, x0 = t with no additional factor of
speed. This means that x0 and x i have different dimensions.

The first conserved quantity is the height h of the fluid. Indeed, the first equation in (1.1)
is a continuity equation with

J0 = h and J = hu . (2.3)

This is a manifestation of the conservation of mass of the fluid. The second conserved quantity
is associated to the vorticity, defined in two dimensions as

ζ=
∂ u2

∂ x
−
∂ u1

∂ y
.

The presence of the Coriolis force means that there is a slight modification to the conserved
current, which is given by

J̃0 = ζ+ f and J̃ = (ζ+ f )u . (2.4)
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Importantly, the two conserved currents (2.3) and (2.4) are not fully independent: this is
because the 3-vectors Jµ and J̃µ are always aligned,

J̃µ =QJµ , with Q=
ζ+ f

h
. (2.5)

The proportionality factor Q is known as the potential vorticity. From the expression (2.5), it
follows that Q is materially conserved, meaning DQ/Dt = 0. Part of the challenge will be to
reproduce the dependent currents Jµ and J̃µ from an action principle.

We now turn to the gauge theory. We denote our gauge field as Aµ, with µ = 0,1, 2. In
d = 2+1 dimensions, the electric field is a vector Ei , while the magnetic field B is a (pseudo)-
scalar,

Ei =
∂ Ai

∂ t
−
∂ A0

∂ x i
and B =

∂ A2

∂ x1
−
∂ A1

∂ x2
.

Both are invariant under gauge transformations Aµ→ Aµ + ∂µθ .
Abelian gauge fields in d = 2+ 1 dimensions are special because they come with an asso-

ciated conserved, global charge. This follows simply from the Bianchi identity which reads

εµνρ∂µ∂νAρ = 0 ⇒
∂ B
∂ t
−
∂ E2

∂ x1
+
∂ E1

∂ x2
= 0 . (2.6)

This has the form of the continuity equation, with the magnetic field as the charge and the
components of the electric field as the current,

J0 = B and J = (−E2, E1) or J i = −εi j E j .

Currents that are conserved by virtue of the Bianchi identity are sometimes said to be topolog-
ical.

To formulate a gauge theory description of shallow water, we will identify the topological
current with the height current (2.3). This means that we take

B = h and Ei = εi jhu j . (2.7)

This single gauge field includes all degrees of freedom of the shallow water system, with the
velocity given by ui = −εi j E j/B. The first of the shallow water equations (1.1) is automatically
obeyed due to the Bianchi identity (2.6). It remains to write the second shallow water equation
in the language of the gauge theory. For this, we will adopt an action principle. We will make
a first attempt at writing down an action for the shallow water system and see that it fails. But
the way in which it fails will be instructive.

To motivate the action, we first note that the shallow water system has a conserved energy,
given by

E = 1
2

hu2 +
1
2

gh2 =
E2

2B
+

1
2

gB2 .

This takes the form of kinetic energy plus potential energy, so a natural guess for the action is

Sfail =

∫

d t d2 x

�

E2

2B
−

1
2

gB2

�

. (2.8)

The fact that there is an inverse power of B in the kinetic term should cause no more concern
that an inverse power of the metric in the Einstein-Hilbert action: the dynamics should be
thought of as an expansion around a non-vanishing fluid height, meaning that B ̸= 0.
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To derive the equations of motion, we vary the action with respect to Aµ. The equation of
motion for A0 is Gauss’ law and reads

∂

∂ x i

�

E i

B

�

= 0 ⇒ ζ= 0 . (2.9)

This is the first way in which the action (2.8) fails: Gauss’ law only allows irrotational flows
with the vorticity ζ forced to vanish. We’ll rectify this shortly. For now, we note that that
vorticity is the analog of electric charge in our theory. This restriction notwithstanding, we
fare slightly better with the equations of motion for Ai . These are

∂

∂ t

�

Ei

B

�

+
1
2
εi j
∂

∂ x j

�

E2

B2

�

+ gεi j
∂ B
∂ x j

= 0 .

When translated into the the variables h and u, the equation becomes

u̇i +
1
2
∂ u2

∂ x i
= −g

∂ h
∂ x i

⇒
Dui

Dt
+ εi ju jζ= −g

∂ h
∂ x i

.

With the Gauss’ law constraint ζ = 0, this gives us something close to the shallow water
equation (1.1). We see that, in addition to the fact the vorticity is forced to vanish, the action
does not accommodate the Coriolis force. Of course, this should be no surprise as we made
no attempt to include it.

With this failure behind us, we can now see how to resolve both issues. Clearly we need
to include some additional degrees of freedom, charged under Aµ, so that Gauss’ law (2.9)
receives an extra contribution, breathing life into the otherwise frozen vorticity. The question
is: how can we introduce a vorticity current so that obeys the constraint (2.5)?

The way to achieve this is to introduce two, new scalar fields α and β , and couple them to
the gauge field through the term

J̃µ = −εµνρ ∂νβ ∂ρα . (2.10)

At the same time, we also introduce the Coriolis parameter f through a background charge.1

The resulting action is

S =

∫

d t d2 x

�

E2

2B
−

1
2

gB2 + f A0 − εµνρAµ ∂νβ ∂ρα

�

. (2.11)

It is straightforward to see why the form of the current (2.10) gives the required result. If we
vary the action with respect to the two scalar fields, β and α, we have the the equations of
motion

εµνρFνρ∂µβ = Jµ∂µβ = 0 and εµνρFνρ∂µα= Jµ∂µα= 0 . (2.12)

So both ∂µα and ∂µβ are orthogonal to the height current Jµ. But, in 3d, this means that
the cross-product of ∂µα and ∂µβ must be parallel to Jµ. This cross-product is precisely the
vorticity current J̃µ, defined in (2.10), and this reproduces the desired dependency (2.5).

We can rerun this same calculation in component form. First, Gauss’ law for the revised
action (2.11) is

∂

∂ x i

�

Ei

B

�

+ f − εi j∂iβ ∂ jα= 0 ⇒ εi j∂iβ ∂ jα= ζ+ f , (2.13)

1As an aside: if the Coriolis parameter is time-dependent, so that ḟ ̸= 0, then the action (2.11) is no longer
gauge invariant. To remedy this, we should replace the term f A0 with a coupling to a background current fµA

µ,
with f 0 the Coriolis parameter and ∂µ f µ = 0. One can check that the additional terms f iAi reproduce the Euler
force.
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which is simply confirmation of the form of the current (2.10).
Next, the equations of motion (2.12) read

Bα̇+ εi j Ei∂ jα= 0 and Bβ̇ + εi j Ei∂ jβ = 0 . (2.14)

From this we can construct an expression for the spatial part of the vorticity current (2.10),
which is

J̃ i = εi j(β̇∂ jα− α̇∂ jβ) = −
εi j E j

B
ε jk∂kα∂lβ = −

εi j E j

B
(ζ+ f ) =

J i

J0
J̃0 .

This explicitly shows that the topological height current Jµ and the electric charge vorticity
current J̃µ lie parallel.

It remains only to compute the equation of motion for the original spatial gauge field, Ai .
This is

∂

∂ t

�

Ei

B

�

+
1
2
εi j
∂

∂ x j

�

E2

B2

�

+ gεi j
∂ B
∂ x j
− εi j(β̇∂ jα− (∂iβ)α̇) = 0 .

This time, when translated into the the variables h and u, this equation coincides with the
second shallow water equation (1.1). This confirms that the gauge theory action (2.11) does
indeed describe the shallow water system. An alternative derivation of this action, using a
duality transformation, is given in Appendix A.

The action (2.11) breaks time reversal invariance only when f ̸= 0. In particular, the
current intereaction A∧dβ∧dα itself is invariant under time reversal which acts as T : t →−t
and x→ x, together with

T : A0→−A0 , Ai → Ai , β →−β , α→ α . (2.15)

Meanwhile, the action is invariant under parity which acts as x1→−x1 and x2→ x2, together
with

P : A0→ A0 , A1→−Ai , A2→ A2 , β → β , α→−α . (2.16)

The f A0 term also breaks charge conjugation, which acts as Aµ → −Aµ. Before we proceed,
we note that the final term in (2.11) can be written as a Chern-Simons like form

εµνρAµ ∂νβ ∂ρα= ε
µνρAµ∂νÃρ , with Ãµ = ∂µχ + β∂µα . (2.17)

Any d = 2 + 1 dimensional gauge field can be written in the form above, a choice known
as Clebsch parameterisation. This parameterisation is non-linear and non-unique. It does not
often arise in quantum field theory but there is a long history of using this parameterisation
in fluid mechanics, typically for the velocity field in three spatial dimensions. Here, we see
that the shallow-water gauge theory (2.11) has what might be called a Clebsch-Chern-Simons
term. We will later see that, in the linearised theory, this reduces to a genuine Chern-Simons
term.

The fact that a Clebsch parameterisation of Ãµ gives rise to currents Jµ and J̃µ that are
not fully independent is related to remarks make in [27, 28] about the role the Clebsch pa-
rameterisation plays in the symplectic structure of the Euler equation. Another approach to
invoking Chern-Simons terms to describe rotating fluids was developed in [29], albeit with a
rather different map between gauge fields and fluid variables. Related ideas, this time in the
context of quantum Hall fluids, can also be found in [30].
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3 The Linearised Shallow Water Equations

Much interesting physics, including aspects of topology, can be found in the linearised version
of the shallow water equations. We expand about a fluid of constant, average height H, and
write

h(x, t) = H +η(x, t) .

Then, keeping only terms linear in η and u, the shallow water equations (1.1) become

∂ η

∂ t
+H∇ · u= 0 and

∂ ui

∂ t
= f εi ju j − g

∂ η

∂ x i
. (3.18)

In this section we first review some properties of the solutions to (3.18) and then turn to their
description in the language of gauge theory.

3.1 Poincaré Waves

It is straightforward to find solutions to the linearised equations (3.18) by looking at Fourier
modes. We write

η= η0ei(ωt−k·x) and u= u0ei(ωt−k·x) .

The linearised shallow water equations (3.18) can then be written in a way that looks sugges-
tively like the Dirac equation

HΨ =ωΨ , where H =





0 ckx cky
ckx 0 −i f
cky i f 0



 and Ψ =





p

g/Hη0
u0
v0



 . (3.19)

Here we’ve written the two-component velocity as u0 = (u0, v0) and defined c =
p

gH which
we recognise as the speed of surface waves in the absence of the Coriolis force. We will see
that c plays a similar role in the present context.

The eigenvalue problem (3.19) is easily solved. There are two, gapped bands with fre-
quencies

ω= ±
Æ

c2k2 + f 2 . (3.20)

These are known as Poincaré waves. For small wavelengths, c|k| ≫ f , these waves travel with
speed c. The long-wavelength modes are affected by the presence of the Coriolis force.

In addition to the Poincaré waves, there is a flat band of solutions to (3.19), with

ω= 0 .

This reflects the fact that there are static solutions to the full non-linear equations (1.1) be-
yond the obvious h= constant. These solutions have a non-trivial profile in one direction, say
h = h(y), with the gravitational force balanced by a corresponding velocity profile
f u = −∂ h/∂ y generating a Coriolis force. This is known as geostrophic balance. These static
solutions manifest themselves in the linear problem as a flat band.

There is one other feature of the linearised shallow water equations (3.18) that we will
need. This follows from conservation laws. The linearised version of the conservation of
height (2.3) and vorticity (2.4) becomes

∂ η

∂ t
+H∇ · u= 0 and

∂ ζ

∂ t
+ f∇ · u= 0 .
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Eliminating ∇ · u from both of these expressions gives us the surprisingly powerful formula

Q̇ = 0 , with Q = Hζ− f η . (3.21)

This is much stronger than most conservation laws: it is telling us that there is a function Q(x)
that does not change in time. This function Q is, up to a rescaling,2 the linearised potential
vorticity defined in (2.5).

We can ask: what is the potential vorticity evaluated on the solutions to the eigenvalue
problem (3.19)? It is simple to check that the flat band, with ω= 0, has

Q ∼
√

√H
g

�

c2k2 + f 2
�

. (3.22)

Meanwhile, the Poincaré waves with dispersion relation (3.20) have

Q = 0 . (3.23)

This fact will be important in the next section when we write down an effective field theory
for the Poincaré waves.

3.2 A Linearised Gauge Theory

We now return to our gauge theory (2.11). We will see how the above phenomena arise in
this language. We linearise the Aµ gauge fields as

Aµ = Âµ +δAµ , with Â0 = 0 and ∂1Â2 − ∂2Â1 = H .

We’re going to abuse notation slightly and refer to the fluctuation δAµ simply as Aµ. (In other
words, we make the substitution, Aµ → Âµ + Aµ.) This will make the subsequent equations
somewhat clearer. The translation (2.7) to the fluid variables then becomes

B = η and Ei = Hεi ju
j , (3.24)

which ensures that the first equation in (3.18) is obeyed courtesy of the Bianchi identity. Mean-
while, we also linearise the Clebsch gauge field Ãµ, with components

β = β̂ + p and α= α̂+ q , with ∂1β̂ ∂2α̂− ∂2β̂ ∂1α̂= f . (3.25)

The fluctuations are written as δβ = p and δα= q to avoid an overload of ∂ δ’s in the expres-
sions below. Expanding the action (2.11), we find that the terms linear in fluctuations vanish,
as they must, while the terms quadratic in fluctuations read

S =

∫

d t d2 x
�

1
2H

E2 −
1
2

gB2 −Hpq̇+ εi j Ei

�

q ∂ jβ̂ − p ∂ jα̂
�

�

. (3.26)

The action is both simple and rather opaque. We will attempt to shed some light. First, we’ll
confirm that it reproduces the linearised shallow water equations. Then we’ll look at the
solutions. Gauss’ law is

∂i Ei = Hεi j
�

∂iβ̂ ∂ jq− ∂iα̂ ∂ j p
�

, (3.27)

while the equation of motion for Ai is

Ėi = −gHεi j∂ jB −Hεi j
�

∂ jβ̂ q̇− ∂ jα̂ ṗ
�

. (3.28)

2The non-linear potential vorticity is Q= (ζ+ f )/h. Upon linearising, it becomes Q= f H +Q/H2.
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Finally, the equations of motion for p and q read

Hq̇ = −εi j Ei∂ jα̂ and Hṗ = −εi j Ei∂ jβ̂ . (3.29)

We can substitute (3.29) into (3.28) to find

Ėi = εi j

�

f E j − gH∂ jB
�

. (3.30)

This coincides with the second linearised shallow water equation in (3.18) using the dictio-
nary (3.24).

As we’ve seen, the equations of motion have two classes of solution: the geostrophic flat
band and the Poincaré waves. Our next goal is to disentangle these two solutions, and con-
struct effective actions for each. This we now do in turn.

An Effective Action for the Flat Band

The geostrophic flat band consists time-independent solutions to (3.30) given by

A0 = −
c2

f
B .

Given such a solution to (3.30), we should still self-consistently solve (3.27), (3.28) and (3.29)
for the supplementary variables q and p. In the present case, one can check that the solution
is given by

Hq = −εi j Zi∂ jα̂ and Hp = −εi j Zi∂ jβ̂ , with Zi =
c2

f

�

∂iBt −
1
f
εi j∂ jB
�

.

These solutions obey the Gauss’ law constraint (3.27) which takes the form

∂i Ei =
c2

f
∇2B . (3.31)

An effective action for this flat band is given by

S =

∫

d t d2 x
1

2H

�

Ei −
c2

f
∂iB

�2

. (3.32)

It’s straightforward to check that Gauss’ law for this action coincides with (3.31). Meanwhile,
the other equation of motion requires that Ei − (c2/ f )∂iB is constant. Asymptotic conditions
on the field require that this constant vanishes, reproducing the requirement for geostrophic
balance.

An Effective Action for Poincaré Waves

Next, we turn to the Poincaré waves. Here, life is simpler if we work in the gauge A0 = 0. We
treat p in (3.26) as a Lagrange multiplier, imposing the equation (3.29) for q. The linearised
action (3.26) then becomes

S =

∫

d t d2 x
1

2H

�

Ȧ2
i − c2B2 + f εi jAiȦ j

�

, (3.33)

where we have used the condition εi j∂iβ̂ ∂ jα̂ = f . This should be accompanied by the Gauss’
law constraint (3.27).
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The Poincaré waves are solutions to the equations of motion arising from (3.33) of the form
Ai(x, t) = ei(ωt−k·x)Āi , for some integration constants Āi . One can check that the equations of
motion impose the relativistic dispersion relation (3.20). The supplementary variables are
now solved by

Hq = −εi jAi∂ jα̂ and Hp = −εi jAi∂ jβ̂ ,

with Gauss’ law (3.27) now taking the form

∂i Ei = f B . (3.34)

Translating back to the fluid variables, this tells us that the potential vorticity is
Q = Hζ− f η= 0, in agreement with expectations from Poincaré waves in (3.23).

The upshot is that the Poincaré waves are described by the linearised action (3.26), to-
gether with the Gauss’ law constraint (3.34). But these are the action and constraint of rel-
ativistic Maxwell-Chern-Simons theory. Indeed, we can reinstate A0 in the action so that its
equations of motion reproduce (3.34). The result is the familiar action

S =

∫

d t d2 x
1

2H

�

E2 − c2B2 − f εµνρAµ∂νAρ
�

. (3.35)

This, of course, is Maxwell-Chern-Simons theory. Here, it governs the dynamics of Poincaré
waves. It is simple to check that the profiles of the electric and magnetic fields coincide with
the velocity and height of Poincaré waves, using the dictionary (3.24).

3.3 Coastal Kelvin Waves in Maxwell-Chern-Simons

Finally, we turn to edge modes in the shallow water system. The existence of such modes
follows immediately from the description of the Poincaré waves as a Maxwell-Chern-Simons
theory.

There is, of course, a great deal of discussion in the literature about the existence of edge
modes in Chern-Simons theory, starting with the pioneering work of [31]. Indeed, these edge
modes famously manifest themselves in the quantum Hall effect [25,26]. Much of this discus-
sion takes place in the quantum theory, where the idea of anomaly inflow plays a key role. But
the quantum theory is not of much interest for our shallow water application. Nonetheless, as
we now review, the existence of edge modes is not restricted to the quantum theory, and is a
robust consequence of the classical dynamics.

The story is slightly different for pure Chern-Simons theories and for Maxwell-Chern-
Simons theories. At long distances, the latter should be well approximated by the former
so we start here. We consider the Chern-Simons action with a boundary at x = 0. Varying the
action gives

SCS =

∫

d t d2 x εµνρAµ∂νAρ ⇒ δSCS = δSbulk +

∫

d t d y (A2δA0 − A0δA2) ,

where the bulk variation vanishes when the equations of motion are imposed (which, in this
case, is just the condition Fµν = 0.) To have a well defined variational principle, we should
pick a boundary condition so that the second term above also vanishes. There are two simple
choices: we could pick either A0 = constant or A2 = constant.

In the presence of a boundary, Chern-Simons theory comes with an additional concern. The
Chern-Simons action SCS is invariant under gauge transformations only up to a total derivative.

10

https://scipost.org
https://scipost.org/SciPostPhys.14.5.102


SciPost Phys. 14, 102 (2023)

This means that the theory risks a failure of gauge invariance in the presence of a boundary.
Under a gauge transformation Aµ→ Aµ + ∂µθ , the action (3.35) transforms as

SCS → SCS +

∫

d t d y θ E2 . (3.36)

For pure Chern-Simons theory, neither of the boundary conditions is sufficient to set E2 = 0
on the boundary, so we’re in trouble. The resolution is that one should restrict to gauge trans-
formations θ that vanish on the boundary. But restricting the allowed gauge transformations
resurrects modes that were previously gauge redundancies [31]. These are the edge modes. A
detailed classical analysis of these modes can be performed by carefully looking at the Poisson
bracket structure in the presence of a boundary [33].

Note that pure Chern-Simons theory has no parameter that can play the role of a speed.
This means that, without additional information, these edge modes have no dynamics. This
additional information could be provided by a boundary Hamiltonian, or by some deformation
of the bulk theory. (We’ll see an example of the latter below.) Only after this perturbation do
the edge modes reveal their chiral nature [25,26,32].

Next, we turn to Maxwell-Chern-Simons theory. This, as we’ve seen, is the effective de-
scription of Poincaré waves. Varying the action (3.35), again with a boundary at x = 0, gives

δS = δSbulk +
1

2H

∫

d t d y
�

−(2E1 − f A2)δA0 − (2c2B + f A0)δA2

�

. (3.37)

Again, the bulk term δSbulk vanishes when the equations of motion are obeyed. Again, we need
to think about what boundary conditions we can impose. Because the Maxwell-Chern-Simons
action has two derivatives, rather than just one, the phase space has twice the dimension of
pure Chern-Simons theory. This means that we get to impose two boundary conditions rather
than just one. A particularly natural boundary condition is A0 = constant and A2 = constant.
Note that the choice of constant splits the theory up into superselection sectors.

Importantly, any choice of constant ensures that E2 = 0 on the boundary. This means
that the gauge variation of the Chern-Simons action (3.36) vanishes. However, we must still
restrict to gauge transformations that do not change our choice of A0 and A2 on the boundary.
The Poisson bracket analysis for Maxwell-Chern-Simons theory was performed in [34] (albeit
in AdS space, rather than flat space but the essential details for our purposes are unchanged.)

In electromagnetism, the boundary condition E2 = 0 is appropriate for a conductor. In
our shallow water system, it is the boundary condition of choice because it translates to the
requirement that u · x̂= 0, so that no fluid flows into the boundary.

What becomes of the Chern-Simons edge modes now that we have a Maxwell term in the
bulk? From our previous discussion, we would expect the perturbation to breathe life into
these modes. Indeed, this happens in a very appealing way. The bulk equations of motion of
Maxwell-Chern-Simons theory are

∂i Ei = f B and Ėi = −c2εi j∂ jB + f εi j E j .

The boundary condition is A0 = A2 = 0. We can look for solutions that obey A0 = A2 = 0
throughout the bulk. We make the ansatz

A1 = A(x) ei(ωt−k y) .

The bulk equations tell us that

Ė1 = −c2∂2B ⇒ ω2 = c2k2 ⇒ ω= ±ck ,
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and

∂1E1 = f B ⇒ ωA′ = k f A ⇒ A′ = ±
f
c

A .

For f > 0, corresponding to the Northern hemisphere, a fluid restricted to lie in the region
x > 0 has the normalisable solution only if

ω= −ck ⇒ A(x)∼ e− f x/c .

This is the chiral, coastal Kelvin wave, first found in [3]. It is the manifestation of the Chern-
Simons edge modes, now appearing as a classical solution of Maxwell-Chern-Simons theory.
The Kelvin wave travels in the direction of decreasing y which, in this context, means south-
ward. Said differently, the wave moves around land masses in the clockwise direction in
the Northern hemisphere. The novelty here is to see this wave emerging from the effective
Maxwell-Chern-Simons description.

The fact that the edge modes of Chern-Simons theory become classical solutions of Maxwell-
Chern-Simons theory was, to my knowledge, first noted in [35], where the authors study the
connection to anomaly inflow.

4 Discussion

We have shown the shallow water equations have a gauge theoretic description. In the lin-
earised theory, solutions neatly split into the geostrophic flat band and Poincaré waves. The flat
band is described by the gauge theory (3.32), while Poincaré waves are described by Maxwell-
Chern-Simons theory (3.35). The well-known edge modes of Chern-Simons theory are then
identified as coastal Kelvin waves.

There are a number of interesting open questions. First, the properties of coastal Kelvin
waves were studied in the presence of Hall viscosity in [16] and certain anomalous behaviour
was encountered, with the number of edge modes depending on the choice of boundary con-
ditions. Does the same behaviour arise in the Chern-Simons description, presumably after
implementing the Hall viscosity in some way? If so, does this, in turn, have implications for
quantum Hall systems?

Second, we have restricted ourselves here to the situation in which the Coriolis parame-
ter, f , is constant. If f depends on space (but not on time) then the non-linear action (2.11)
remains valid, as too does the linearised theory (3.26). It remains, however, to disentan-
gle the two branches of solutions and construct effective theories for each. In particular, the
geostrophic flat band famously picks up a dispersion when∇ f ̸= 0, giving rise to Rossby waves.
One interesting challenge is to extend the flat band effective theory (3.32), to derive a gauge
theoretic formulation of the so-called quasi-geostrophic equation that governs the dynamics
of Rossby waves.

Relatedly, finding the appropriate generalisation to situations with ∇ f ̸= 0 may give in-
sight into the topological nature of equatorial waves. This, of course, was the focus of the
original paper revealing topological structure in shallow water [11]. There, the topology of
the Poincaré band implied the existence of two chiral, equatorial modes and these were identi-
fied with the Kelvin wave and Yanai wave. The Kelvin wave is uncomplicated: like the Poincaré
waves it has potential vorticity Q = 0, which means that it doesn’t mix with the (now almost)
flat band of Rossby waves. But the Yanai wave is more mysterious since, in condensed matter
language, it hybridises with the Rossby waves. In particular, it has non-vanishing potential
vorticity, and it is not clear how such a wave can be constructed from bulk modes that have
strictly Q = 0. Perhaps these features of the Yanai wave go beyond topological considerations,
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but they are qualitatively striking and it would be nice to find some deeper explanation of
these properties.

Finally, and more generally, gauge theories have long proven themselves to be an arena in
which subtle and surprising topological effects arise. Hopefully it will be a useful framework
to find further effects in fluid dynamics.

A An Alternative Derivation of the Gauge Theory

There is a long history of constructing variational principles for fluids in the Eulerian frame-
work. The results do not usually look like a gauge theory. In this appendix we provide an
alternative derivation of the gauge theory action (2.11) that makes contact with the more
traditional approach.

For fluids in d spatial dimensions, one usually starts by introducing a map from physical
spacetime to the positions of fluid parcels.

α : Rd ×R→ Rd .

We write this map as αa(x, t) with a = 1, . . . , d. The map must be a diffeomorphism, with
det(∂ αa/∂ x i) ̸= 0. A discussion of this approach to fluids can be found in the textbook [36].
More recently, it has been revived in the context of relativistic fluids [37,38].

Given a map αa(x, t), the velocity field u is defined by the equation

Dαa

Dt
≡
∂ αa

∂ t
+ u · ∇αa = 0 . (A.38)

This captures the idea that the physical label αa(x, t) of the point in the fluid is unchanged
as the fluid moves. The velocity u defined in this way is invariant under diffeomorphisms
of α. Note, however, that this definition comes with a rather confusing minus sign, related
to active vs passive transformations. This is seen, for example, in the simplest laminar flow
α= (x − ut, y) which, according to (A.38), is associated to a velocity field u= (+u, 0).

For application to the shallow water equations, we have d = 2 dimensions. We also have
the height variable h(x , y, t), which obeys the continuity equation

Dh
Dt
+ h∇ · u= 0 , (A.39)

reflecting the incompressibility of the underlying fluid.
An action for the shallow water equations in these variables was given in [39]

S =

∫

d t d2 x
�

1
2

hu2 −
1
2

gh2 − hu · a(x)
�

+φ
�

Dh
Dt
+ h∇ · u
�

− hβa
Dαa

Dt
.

This action should be varied with respect to h, u, φ, αa and βa. Both βa and φ act as Lagrange
multipliers, imposing the conditions (A.38) and (A.39) respectively. We have introduced a
background gauge field a(x) whose role will be to implement the Coriolis force.3 This back-
ground field depends only on x and not on time. We will determine the form of a(x) shortly.

The equation of motion for u reveals that the velocity has a Clebsch-like parameterisation,

u=∇φ + βa∇αa + a(x) . (A.40)

3In quantum Hall physics, there is a convention that lower-case gauge fields aµ are dynamical while upper-case
gauge fields Aµ are background. Annoyingly, we have chosen the opposite convention here. As we will see, this has
the advantage that the field strength f12 = ∂1a2 − ∂2a1 coincides with the Coriolis parameter, canonically denoted
in geophysics as f .
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This differs from our previous Clebsch parameterisation for the gauge field (2.17) in that we
have a pair of potentials (βa,αa), with a = 1,2, with αa restricted to be a diffeomorphism. In
addition, the velocity gets a contribution from the fixed background a(x).

The equation of motion for αa reveals a conserved current, involving the Lagrange multi-
plier βa,

∂ (hβa)
∂ t

+∇ · (hβau) = 0 ⇒
Dβa

Dt
= 0 , (A.41)

where the second equation follows from the conservation of the height (A.39). Finally, the
equation of motion for h gives

Dφ
Dt
=

1
2

u2 − gh− u · a , (A.42)

where an additional term has been set to zero courtesy of (A.38). Although it is not imme-
diately obvious, equations (A.38), (A.40), (A.41) and (A.42) are equivalent to the second of
the shallow water equations (1.1). To see this, we first use (A.40) to compute the material
derivative of the velocity

Dui

Dt
= (∂iφ̇ + u j∂ j∂iφ) + (β̇a + u j∂ jβa)∂iα

a + βa(∂iα̇
a + u j∂ j∂iα

a) + u j∂ jai .

Invoking (A.38), (A.41) and (A.42), a short calculation then reveals

Dui

Dt
= − fi ju

j − g∂ih , with fi j = ∂ia j − ∂ jai .

We see that the background field strength fi j acts like a Coriolis force. To reproduce the con-
stant Coriolis force of (1.1), we simply need to find a background a(x) that satisfies fi j = − f εi j .
For example, a = f (y, 0) or a = 1

2 f (y,−x) both do the job. Note that any choice necessarily
breaks translational symmetry and/or rotational symmetry, even though the final shallow wa-
ter equations do not. This is unavoidable in this formalism. The situation is identical to that
of a charged particle in a constant background magnetic field.

We now show how this formalism is related to the gauge theory introduced in Section 2.
The idea is to use a 3d duality transformation, first introduced in [40] and beloved of many a
high-energy and condensed matter theorist. To proceed, it’s useful to first integrate by parts,
so that the Lagrangian has an overall factor of the height h. (This reflects the fact that the
shallow water equations arise after integrating over the z-direction of the thin fluid.)

S =

∫

d t d2 x h
�

1
2

u2 −
1
2

gh− u · a(x)−
Dφ
Dt
− βa

Dαa

Dt

�

. (A.43)

Note that only derivatives of the Lagrange multiplier φ appear in this action. This allows us
to exchange φ for a vector field Cµ, by writing the action as

S =

∫

d t d2 x h
�

1
2

u2 −
1
2

gh− u · a(x)− C0 − uiCi − βa
Dαa

Dt

�

+ εµνρAµ∂νCρ .

Here we have further introduced a new Lagrange multiplier, Aµ. This can be viewed as a gauge
field because the action is invariant under transformation Aµ → Aµ + ∂µθ . The equation of
motion for Aµ gives the constraint εµνρ∂νCρ = 0 which can be solved locally by Cµ = ∂µφ. This
takes us back to our original action (A.43). Alternatively, we may instead choose to impose
the equation of motion for Cµ, which also acts as a Lagrange multiplier. This gives a constraint
on the magnetic field B = ∂1A2 − ∂2A1 and electric fields Ei = Ȧi − ∂iA0,

B = h and Ei = εi jhu j .
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These coincide with the relations introduced in (2.7). We may then replace h and u in the
action with our new gauge fields. This gives

S =

∫

d t d2 x

�

E2

2B
−

1
2

gB2 + εi j Eia j(x)− εµνρ∂µAν βa∂ρα
a

�

.

In its essential details, this coincides with the action (2.11) presented in Section 2. The Coriolis
term becomes the background charge f A0 after an integration by parts. The form above makes
it clear that this term too has its origin as a Chern-Simons term, now involving a background
field. After integration by parts, the action respects both translation and rotation symmetry
provided that f is constant. Meanwhile, the second gauge field arises automatically in the
Clebsch parameterisation in the above presentation,

Ãµ = ∂µχ + βa∂µα
a .

Here χ is pure gauge and does not contribute to the action. This differs from (2.17) only in
the a = 1,2 index ascribed to α and β . Diffeomorphism invariance ensures that this does not
contribute any further degrees of freedom.

There are other equations in fluid mechanics that have a similar structure to the shallow
water equations (1.1) and hence lend themselves to a gauge theoretic formalism. For example,
a compressible fluid obeys the equations

∂ ρ

∂ t
+∇ · (ρu) = 0 and ρ

Du
Dt
= −∇P ,

with an equation of state relating the pressure P to the density ρ of the form P = Cργ, where C
is a constant and γ is the ratio of specific heats. When the fluid lives in d = 2 spatial dimensions,
this too may be written as gauge theory, with B = ρ and Ei = εi jρu j and with the potential
term B2 in (2.11) replaced by Bγ−1. Again, the slightly disconcerting fact that the power γ
is not an integer is no cause for concern when it is appreciated that this theory should be
expanded around the solution B = ρ = constant ̸= 0.
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