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Abstract

A large body of work has demonstrated that parameterized artificial neural networks
(ANNs) can efficiently describe ground states of numerous interesting quantum many-
body Hamiltonians. However, the standard variational algorithms used to update or train
the ANN parameters can get trapped in local minima, especially for frustrated systems
and even if the representation is sufficiently expressive. We propose a parallel tempering
method that facilitates escape from such local minima. This methods involves training
multiple ANNs independently, with each simulation governed by a Hamiltonian with a
different “driver” strength, in analogy to quantum parallel tempering, and it incorpo-
rates an update step into the training that allows for the exchange of neighboring ANN
configurations. We study instances from two classes of Hamiltonians to demonstrate
the utility of our approach using Restricted Boltzmann Machines as our parameterized
ANN. The first instance is based on a permutation-invariant Hamiltonian whose land-
scape stymies the standard training algorithm by drawing it increasingly to a false local
minimum. The second instance is four hydrogen atoms arranged in a rectangle, which is
an instance of the second quantized electronic structure Hamiltonian discretized using
Gaussian basis functions. We study this problem in a minimal basis set, which exhibits
false minima that can trap the standard variational algorithm despite the problem’s small
size. We show that augmenting the training with quantum parallel tempering becomes
useful to finding good approximations to the ground states of these problem instances.
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1 Introduction

Approximating the ground state of a many-body quantum Hamiltonian is a computational
task at the heart of many problems in the physical sciences. Tackling this problem requires
both an efficient representation of the wave function and an algorithm for optimizing the
wave function to minimize its energy whose individual update steps are efficient. A variety
of methods have been developed, each with its advantages and limitations. Quantum Monte
Carlo (QMC) [1, 2] methods are generically useful in the absence of the sign problem [3],
although there are QMC approaches that try to mitigate the bottlenecks associated with the
sign problem [4–6]. Methods based on Matrix Product States (MPS) [7–12] have been ex-
tremely successful at addressing systems in one dimension and methods based on Projected
Entangled Pair States (PEPS) [13,14] have allowed the study of certain systems in two dimen-
sions. More recently, artificial neural networks (ANNs) have been used as ansätze for quantum
ground states [15], with the advantages of being agnostic to the sign problem and able to take
as input Hamiltonians with arbitrary connectivity. While there have been important demon-
strations of the utility of this approach [16–18], it still suffers when studying frustrated systems
by getting stuck in the many local minima of a rugged optimization landscape [19].

Parallel tempering (PT) [20–22] is a Monte Carlo method that has been extensively used
to help explore the rugged energy landscapes of spin glasses [23]. In the typical PT approach,
multiple “replicas” of the system evolve independently at different temperatures and hence in
different free energy landscapes. The exchange of configurations between higher and lower
temperature replicas facilitates escape from local minima. There is nothing special about using
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temperature to alter the landscape, and other physically motivated choices can be made. In
quantum parallel tempering (QPT) [24,25], replicas are evolved according to different Hamil-
tonians, where the strength of a driver Hamiltonian, e.g. a uniform transverse field, is used to
control the landscape the replicas are evolving in instead of the temperature.

In this paper we combine the methods of QPT and the training of ANNs to approximate
ground states of quantum spin systems. For simplicity of presentation, we focus on a specific
choice of ANN, the restricted Boltzmann machine (RBM), and we demonstrate how a QPT
method implemented in addition to the standard training can help overcome barriers in energy
landscape. We do this using two examples. The first is based on a permutation-invariant
Hamiltonian that is designed to trap the standard training approach in a false minimum. In
this case, the QPT provides a clear advantage over simply repeating the standard algorithm
starting from independent initial points. The second is based on a molecular system of four
hydrogen atoms arranged in a rectangle with an angle θ between adjacent hydrogen atoms
that we can vary. The fermionic second quantized Hamiltonian is mapped to a system of qubits
using the Jordan-Wigner transformation [26], and we apply the ANN training methods to the
qubit Hamiltonian [27]. We find that the hardness of approximating the ground state of this
system depends on different aspects, such as the choice of angles and whether we constrain the
training to a fixed magnetization sector corresponding to a fixed particle number, and we find
that QPT can provide a computational advantage in the cases where the standard approach
struggles to find a good approximation of the ground state.

The paper is organized as follows. In Section 2, we review the standard training approach
of the RBM ansatz for quantum wave functions in addition to how we introduce QPT to it. In
Section 3, we introduce our two problem classes and compare the performance of the standard
training approach to our QPT augmented approach. In Section 4, we conclude with open
questions and future directions of our work.

2 Overview of the Methodology

We consider an unnormalized parameterized wave function expressed in the computational
basis |ψ(α)〉 =

∑

x∈{0,1}nψx(α)|x〉, where |x〉 ≡ |xn〉 ⊗ · · · ⊗ |x1〉 denotes the n-qubit compu-
tational basis state with σz

i |x i〉 = (1 − 2x i)|x i〉 = vi|x i〉 and α denotes the set of K complex
variational parameters. Here we restrict our attention to the case where ψx(α) is the weight
associated with a RBM with parameters α=

�

ai , bµ, Wiµ

	n,m
i=1,µ=1 and with x as the value of its

input layer,

ψx(α) = e
∑n

i=1 ai vi

m
∏

µ=1

cosh

�

bµ +
n
∑

i=1

Wiµvi

�

, (1)

where vi ∈ {−1, 1}. As long as m scales polynomially with n, the RBM representation provides
an efficient representation of the quantum state |ψ(α)〉.

Given a many-body Hamiltonian H defined on n qubits, our aim is to find an approxi-
mate RBM representation to the ground state of H. Therefore, our optimization problem is to
identify a set of parameters α∗ such that

α∗ ∈ argmin
α

〈ψ(α)|H|ψ(α)〉
〈ψ(α)|ψ(α)〉

. (2)

The cost function on the right hand side defines a multi-dimensional parameter landscape,
and if the number of variational parameters is sufficiently large, the global minimum of this
landscape gives an excellent approximation of the ground state.
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This optimization problem is solved using Stochastic Reconfiguration (SR) [28,29], which
updates the parameters as

α′k = αk +δαk = αk − γ
∑

k′
(S(α))−1

kk′ Fk′(α) , (3)

where Skk′(α) are the matrix elements of the covariance matrix and Fk(α) are the elements of
the force vector defined as,

Skk′(α) = 〈Ok(α)
†Ok′(α)〉 − 〈Ok(α)

†〉〈Ok′(α)〉 , (4a)

Fk(α) = 〈Ok(α)
†H〉 − 〈Ok(α)

†〉〈H〉 , (4b)

where the expectation values are taken with respect to the state |ψ(α)〉 and where Ok(α) is
the operator associated with the gradient of the state |ψ(α)〉 with respect to the variational
parameter αk,

Ok(α) =
∑

x={0,1}n

1
ψx(α)

∂

∂ αk
ψx(α)|x〉〈x | . (5)

Since S may not be invertible, S−1 is strictly speaking the Moore-Penrose pseudoinverse [30,
31]. We review the derivations of these formulas in Appendix A.

The parameter γ sets the learning rate, and we choose it adaptively using a second-order
Runge-Kutta (RK) method [17, 19, 32]. We review this adaptive procedure in Appendix B.
While the RK method incurs a computational overhead because it requires multiple estimates
of the covariance matrix and force vector, the combination of RK with SR generally results in
more accurate results with fewer updates in total compared to other optimization schemes [19]
such as ADAM [33]with SR or stochastic gradient descent, and it eliminates the need to specify
a learning rate. In this regard, the RK with SR optimization approach to train the RBM sets a
competitive baseline for us to improve upon.

Calculating the covariance matrix S and force vector F requires expectation values of the
observables associated with the set {Ok} and H. These can be estimated using Monte Carlo
importance sampling [15], but in this work we will restrict ourselves to evaluating these ex-
pectation values exactly. The reason for using exact sampling is to eliminate the role of finite
sampling in the training. We give details of how to calculate the necessary expectation values
in Appendix C.

With S and F in hand, the final step to implement Eq. (3) is to calculate the pseudoinverse
of S. In what follows we calculate the inverse using an explicit regularization where we replace
the diagonal elements of S by [15]

Skk→ Sreg
kk = Skk (1+λ(p)) , (6)

where p denotes the update step and λ(p) = max (λ0 bp,λmin) with
λ0 = 100, b = 0.9,λmin = 10−4. We use the MINRES-QLP [34] with a maximum of 103 it-
erations and a stopping tolerance of 10−6 to solve the linear system of equations. The choice
of these parameters can affect the performance of SR to find a description of the ground state,
and we have not tried to optimize these parameters for our problem; our aim is to compare
the relative performance of the overall algorithm with and without QPT using the same set of
parameters otherwise.

The SR algorithm can be shown [35] to be a generalization of the Riemannian natural
gradient [36], so like other gradient descent algorithms it is susceptible to being trapped in
local minima of the energy landscape. Finite sampling and the resulting fluctuations in S and
F can be a source of noise that can help the training escape local minima [37], but it can also
hinder an accurate determination of the gradient and hence prevent the training from finding
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high-quality solutions. Motivated by the success of PT [20–22] in the study of equilibration in
spin systems, we propose the following optimization algorithm that is inspired by QPT [24,25].
We perform the usual training on N RBMs, each called a replica in the parlance of PT. Each
training is done with a different training Hamiltonian, where the Hamiltonian for the rth
replica is given as

H(Γr) = HT + Γr HM , (7)

where HT is the target Hamiltonian whose ground state we are actually after and HM is a
suitably chosen mixer Hamiltonian with a trivial ground state, preferably the one with a uni-
form superposition over the relevant basis states. This choice of training Hamiltonian is not
unique, and we give an alternative formulation in Appendix D. For example, in the absence
of any constraints, the mixer can be taken to be the uniform transverse field Hamiltonian,
HM = H0

∑n
i=1

1
2

�

1−σx
i

�

, where H0 is a characteristic energy scale of HT. In this case, for
replicas with Γr ≫ 1 the training Hamiltonian is dominated by the transverse field, and the
ground state is the uniform superposition state. This is analogous to the high-temperature
limit in “standard” PT, where the different replicas operate at different temperatures but with
the same Hamiltonian. For replicas with Γr close to 0, the training Hamiltonian is dominated
by the target Hamiltonian, and the ground state is close to the target ground state. This is
analogous to the low-temperature limit in standard parallel tempering. The parameter Γr thus
allows us to interpolate between the target parameter landscape at Γr = 0 and a much simpler
parameter landscape at Γr ≫ 1. We can therefore think of Γr as controlling the effective tem-
perature of the simulation. We note that using Eq. (7) as the training Hamiltonian and using Γr
as the temperature is similar to schemes that use the free energy to train the ANN [18,38,39],
where instead of using the entropy we use 〈HT〉. We leave it to future work to directly compare
these two approaches.

We choose our distribution of Γr to be a cubic function of the replica indices,

Γr = 10
� r

N − 1

�3
, r = 0, . . . , N − 1 . (8)

For our simulations, a ΓN−1 = 10 value was sufficient for the HM to dominate over HT. We em-
phasize that the choice of the distribution of Γr values can strongly influence the performance
of the QPT algorithm; for example, choosing a linear function for our simulations resulted in
very poor performance.

Our algorithm proceeds as follows. The N replicas (indexed by r = 0, . . . , N − 1) are
initialized randomly with both the real and imaginary components of the parameters αr chosen
from a Gaussian distribution with mean 0 and standard deviation 10−2. We perform 10 updates
of SR for all replicas, configuration swap between replicas r and r+1 for r even, 10 updates of
SR for all replicas, and finally a configuration swap between replicas r and r+1 for r odd. The
choice of the number of updates of SR between configuration swaps was not optimized, and
other choices may improve performance. This process is repeated until a total of u updates
are performed. The deterministic even-odd pattern for configuration swaps is a typical update
pattern in PT that helps improve the diffusion of replicas [40, 41]. For every update, we
calculate the expectation value of the target Hamiltonian for each replica, which we denote
by

Er ≡ 〈ψ(αr)|HT|ψ(αr)〉 . (9)

We denote the running average of an expectation value of an observable O over 10 updates of
SR by 〈O〉, which we will use to calculate the probabilities for configuration swaps.

The final issue we must address about the QPT algorithm is how to perform the swap
updates between the N replicas. We begin by reminding ourselves how the swaps are per-
formed in the case where each of the N replicas is evolving according to a Markov Chain
Monte Carlo simulation that is ergodic and has a unique equilibrium distribution. Assuming
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a finite state space, the i-th configuration of replica r has an equilibrium probability given by
Π(Γr) = Wi(Γr)/

∑

j Wj(Γr), where Wi(Γr) is the unnormalized weight of the i-th configura-
tion. The swap updates between replicas then occurs with a probability p chosen to satisfy the
detailed balance condition; specifically, if replica r is in configuration i and replica r + 1 is in
configuration i′, then the probability of a swap between the two is taken to be:

pr↔r+1 =min
�

1,
Wi(Γr+1)Wi′(Γr)
Wi(Γr)Wi′(Γr+1)

�

. (10)

While we may think of the SR algorithm as implementing imaginary-time evolution in a fixed
subspace (see Appendix A), we are not aware of a way to implement this evolution in terms of
an ergodic MCMC simulation that eventually converges to an equilibrium distribution. There-
fore we are not able to use the form in Eq. (10), and instead we will use physical intuition to
pick a swap update probability. This choice is not unique, and we expect different choices to
perform differently.

With these concerns in mind, we propose the following update. For Γr = 0(r = 0), we
expect the ANN to reach a good approximation of an eigenstate of HT, assuming the number
ANN parameters is sufficiently large and the ANN is sufficiently expressive. Similarly, for
replicas with Γr ≫ 1 we expect the ANN to be a good approximation of an eigenstate of HM.
Therefore, as we have already mentioned, we can think of Γr as being a measure of a “noise”
introduced, and we can think of Γr as being proportional to the temperature of the replica. We
thus propose the following probability rule for swap updates between neighboring pairs r and
r + 1:

pr↔r+1 =min
�

1, exp
�

�

Er − Er+1

�

�

1
H0Γr
−

1
H0Γr+1

���

. (11)

This choice for the probability rule is a heuristic choice motivated by the Metropolis up-
date [42] for the standard PT algorithm [20–22], but in no way do we claim that it satisfies
detailed balance [43]. The use of the target energy comes from the desire to move configu-
rations with lower target energies to smaller r. For our temperature, we use Γr multiplied by
some relevant energy scale H0 as motivated by our discussion above. We use Er as opposed
to simply Er in order to average out any fluctuations in the estimation of the target energy
during the ANN training.

In what follows, we define success as finding a configuration below some relative error ε
of the energy given by

ε=

�

�

�

�

〈E〉 − EGS

EGS

�

�

�

�

, (12)

where EGS is the true ground state energy. To determine whether QPT can provide practical
advantages over its standard counterpart, we use the time-to-epsilon (TTε) metric [44, 45],
which is the time required to find a solution below a target relative error ε at least once with
probability 0.99. The TTε is given by

TTε=
N

Nmax
u

ln(1− 0.99)
ln(1− pS(u))

, (13)

where pS(u) is the probability of reaching the target ε within u steps of the algorithms, such
that the factor ln(1−0.99)

ln(1−pS(u))
counts the number of repetitions of the algorithm needed to ensure

the target ε is reached with probability 0.99 at least once. Nmax is the largest number of
QPT replicas we will use in our simulations, so that the factor N/Nmax takes into account
the reduction in computational cost possible by parallelization by exchanging replicas N with
independent runs of the algorithm. For every pair of values (n, N), we identify the value of u
that minimizes the TTε, and we choose this as the cost of running the algorithm. Using this
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approach we can determine unambiguously when it becomes more advantageous to use QPT
versus independent runs of the algorithm. We emphasize that this metric does not account for
the extra overhead associated with the communication needed between replicas to implement
the swap update, but we expect this to be minimal compared to the cost of finding a high
quality solution for hard problems.

3 Results

3.1 Precipice Problem

In order to illustrate the computational viability of the QPT approach, we study a problem class
of qubit Hamiltonians that are invariant under any permutation of the qubits. Specifically, we
take our target Hamiltonian to be of the form

HT =
1
2
(1− s)

n
∑

i=1

�

1−σx
i

�

+ s
∑

x∈{0,1}n
f (x)|x〉〈x | , (14)

where n is the total number of qubits and f (x) is a function that only depends on the Hamming
weight of the bit-string x . We can therefore label the energy eigenstates of HT in terms of their
symmetry properties under qubit permutation. We take the mixer Hamiltonian to be given by
the uniform transverse field Hamiltonian,

HM =
H0

2

n
∑

i=1

�

1−σx
i

�

, (15)

which is also qubit permutation invariant and we set H0 = 1. Because the Hamiltonian is
stoquastic [46, 47], the ground state of this Hamiltonian can be expressed entirely with non-
negative amplitudes, so it must be in the completely symmetric subspace, which has dimension
n+ 1. We can enforce this symmetry in our RBM ansatz

ψx(α) = ea
∑n

i=1 vi

m
∏

µ=1

cosh

�

bµ +Wµ

n
∑

i=1

vi

�

, (16)

where vi ≡ (1−2x i) ∈ {−1, 1}. This ansatz only depends on the total magnetization of the spin
configuration v, or equivalently on the Hamming weight of the bit-string x . This will enforce
that all equal Hamming weight bit-strings will have the same amplitude. This representation
has only K = 1 + 2m parameters. In principle these parameters need only be purely real to
capture the ground state, but we will allow the training to treat them as complex parameters.

In what follows, we will focus on a function f (x) first introduced in Ref. [48]

f (x) =

�

−1 , if x = 1 · · ·1 ,
w(x) , otherwise ,

(17)

where w(x) denotes the Hamming weight of the bit-string x . We call this problem the
“Precipice” problem because of the form of f (x), since it increases linearly with Hamming
weight until reaching Hamming weight n where it plummets to a value of −1.

For concreteness, we pick s = 4/5 for our target Hamiltonian in Eq. (14). For this value of
s, HT is dominated by its diagonal component, corresponding to the second term in Eq. (14).
The ground state of the corresponding target Hamiltonian HT has most but not all of its weight
on the all-one bit-string, which is the bit-string that minimizes f (x). On the other hand, the
first excited state of HT has most of its weight on the false minimum of f (x) given by the
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Figure 1: Relative frequency of finding the ground state for the Precipice problem to
within a relative error of ε = 0.1 for a random initialization of a trial RBM ansatz
without using QPT as a function of (a) number of updates and (b) system size n.
We used 103 independent trials for n = 6,7, 8, 4 × 103 for n = 9 and 4 × 104 for
n= 10. The error bars correspond to the 95% confidence interval calculated using a
bootstrap with 103 resamplings of the data. We describe this procedure in Appendix
E. Inset: Median number of updates to reach a relative error of ε = 0.1 when the
algorithm succeeds.

all-zero bit-string. The Hamiltonian HT has the feature that annealing from Γ ≫ 1 to Γ = 0
(Eq. (7)) encounters an exponentially closing ground state energy gap as a function of the
system size. One can understand this intuitively as arising from the system requiring to tunnel
between the two configurations above (the state with most of its weight on the all-one bit
string and the state with most of its weight on the all-zero bit string) that requires flipping n
spins [49].

This feature of the energy spectrum stymies the SR algorithm. Whether it will find the the
correct global minimum depends entirely on where the RBM parameters are initialized, be-
cause once it reaches the false minimum associated with the first excited state, the SR updates
do not provide a means to escape this local minimum and reach the global minimum. This is
where our QPT implementation helps, as it provides a mechanism for RBM configurations with
weight on the all-one bit-string to be reached and guide the training to the true ground state.
Since our aim is to distinguish between the two minima that the algorithm can get stuck in,
the choice of ε is not crucial as long as it is sufficiently small. We therefore fix it to ε = 10−1,
which is enough to distinguish between the two lowest energy eigenstates.

We begin by analyzing the behavior of the standard algorithm without QPT. We show in
Fig. 1 how the probability of finding the ground state within a relative error of ε behaves as
a function of system size. We see that the probability of finding the ground state saturates
to a value less than 1 as a function of the number of SR updates, and the saturation value
decreases faster than exponentially with system size. This behavior indicates that once the
system reaches the false minimum it is trapped there without the possibility of escape, and the
probability of initializing at a point where the SR updates guide you to the correct minimum
decays faster than exponentially.

To show how QPT boosts the probability of finding the ground state, we show in Fig. 2
how with increasing number of updates in QPT we can increase the probability of finding
the ground state. In order to compare these results to the standard approach without QPT,
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Figure 2: Relative frequency of finding the ground state for the Precipice problem
to within ε = 10−1 with increasing number of updates in QPT for 50 independent
simulations. Here we use N = 10 replicas for all QPT simulations.

we use the results at n = 10 as a benchmark. In the standard approach, the probability of
finding the ground state is approximately 2.5 × 10−3 with a median number of steps of 440
(Fig. 1). Therefore, to guarantee that we find the ground state at least once with probability
0.99, we would need to perform 1840 independent trials. With QPT, we can achieve almost
a probability of 1 of finding the ground state using less than 500 steps and 10 replicas with
a single simulation. Therefore, we already see a significant advantage for using QPT in this
model.

To illustrate how the QPT algorithm is helping, we show in Fig. 3 an example of a random
walk for one of our simulation trials. In Fig. 3a, we see that both replicas at r = 0 and r = 1
very quickly converge to the first excited state and only after approximately 1500 network
updates does the r = 0 replica find the ground state. As we can see in Fig. 3b, the transition
to the ground state is precipitated by a swap between the r = 0 and r = 1 configurations.
While the configuration at r = 0 remains unchanged for a large fraction of the earlier updates,
the configuration at r = 1 is swapped multiple times with other configurations, allowing it to
explore the landscape of possible solutions.

Finally, we show our results for the TTε in Fig. 4 with Nmax = 40. We see that at small
system sizes (< 8), using the standard approach (N = 1) is more advantageous than incurring
the added computational cost of QPT. Here the probability of reaching the ground state is
sufficiently high (even if it is not close to 1 as seen in Fig. 1) that running multiple independent
runs of the algorithm is the optimal strategy. However beyond system sizes of > 8, we see a
significant advantage to using QPT. In this case, the optimal strategy is to use QPT with more
updates to achieve higher probabilities of reaching the ground state.

We note that for intermediate values of n we see similar performance for N = 10 and
N = 20, indicating that increasing the number of replicas does not improve the success proba-
bility enough to outweigh the cost of simulating additional replicas. However, we also see that
at larger system sizes it does become more advantageous to use more replicas. For example,
at n= 17 our simulations with N = 10 replicas fail to find the ground state, and at n= 18 our
simulations with N = 20 replicas fail to find the ground state. Because increasing N changes
the distribution of Γr values and includes more replicas at smaller Γr values, the need to in-
crease N to find the ground state at larger system sizes indicates the importance of optimizing
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Figure 3: An example of a random walk for a single simulation of the Precipice
problem with n= 12 and N = 10. In (a), we show the target energy (Eq. (9)) of the
configuration at r = 0 and r = 1 during the simulation. The dotted lines correspond
to the ground state energy and first excited state energy for the target Hamiltonian.
In (b), we label each configuration by its original replica index at initialization, and
we show which index is at position r = 0 and r = 1 during the simulation. This
allows us to monitor how configurations walk on the space of Γr .

this distribution to get the best results.

3.2 H4 Rectangle

The second system we study is that of four hydrogen atoms arranged in a rectangle with an an-
gle θ between adjacent atoms. This is an example of a molecular system that is small enough
to be exactly solved that includes a type of configurational degeneracy that gives some ap-
proximate quantum chemistry algorithms trouble [50,51]. We consider a particular encoding
of the second quantized Hamiltonian into 8 qubits; further details of this system and how we
construct the qubit Hamiltonian are given in Appendix F.

The ground state of the 8-qubit Hamiltonian has non-zero amplitudes only on compu-
tational basis states with Hamming Weight four or equivalently with four fermions or zero
z-magnetization. This observation motivates two different RBM ansätze: (1) we restrict the
input of the RBM to Hamming-weight-four computational basis states and assume that all
other inputs give zero amplitude, and (2) we allow all inputs to the RBM and the training of
the RBM must find the Hamming weight-four subspace. While the first case is a more efficient
representation for the H4 Rectangle, we still consider both ansätze since they could be rele-
vant in different contexts for fermionic simulation beyond the H4 Rectangle: the first applies
to cases where particle number is conserved, whereas the second applies to cases where the
chemical potential is fixed.

In what follows, we fix our desired error to ε= 10−3. The reason for this smaller choice of
relative error, compared to the Precipice example, is that this problem requires a relative error
less than 6×10−3 for θ = 90◦ to begin distinguishing the two lowest energy eigenstates. So we
choose an ε that is sufficiently small to ensure that we are finding a high quality approximation
of the ground state. For the simulations, we use a up to 104 updates.
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Figure 4: Optimum time to epsilon to reach a relative error of ε = 10−1 for the
Precipice problem as a function of system size n for the Precipice problem with dif-
ferent number of QPT replicas N with Nmax = 40. The error bars correspond to the
95% confidence interval calculated using a bootstrap with 103 resamplings of the
data.

3.2.1 Fixed Hamming Weight

We first consider the case where the RBM is only sampled with Hamming-weight-four states.
In this case, we choose a mixer Hamiltonian given by the ferromagnetic Heisenberg model
with all-to-all connectivity,

HM =
H0

2n

n
∑

i=1

n
∑

j=i+1

�

1−σx
i σ

x
j −σ

y
i σ

y
j −σ

z
iσ

z
j

�

, (18)

for which the (degenerate) ground state is the uniform superposition of fixed Hamming weight
states with energy 0 and H0 is the absolute magnitude of the largest coupling strength in the
target Hamiltonian. This choice is made to ensure that the energy scales of HM and HT are
comparable.

For the simulations, we find that using m = 8 hidden units is sufficient to represent the
ground state with the required accuracy, so we use this value for all our training simulations
with a fixed Hamming weight exact sampling. We show in Fig. 5 the results for the optimal
TTε for three different θ values, where we find rich behavior as a function of θ . We find
that for a sufficient number of replicas, the QPT approach demonstrates an advantage over
the standard approach for angles θ = 80◦ and 85◦. For θ = 90◦, the ground state is found
readily by the standard approach that the additional cost of running N replicas does not intro-
duce any benefit. The θ = 90◦ instance was found to be pathological for the coupled cluster
doubles (CCD) approximation but not its variational counterpart in Ref. [51]. It is therefore
unsurprising that a variational RBM ansatz that explores a similar Hilbert space captures the
ground state well. Because the root of the CCD pathology is ultimately degeneracy of two of
the dominant configurations, it seems like this degeneracy might provide an advantage for the
RBM ansatz training that is worthy of further investigation.

We also note that this particular radius provides a uniquely easy energy landscape for the
single-replica approach at 90◦, and at different radii the 90◦ case is more difficult. In fact,
among the instances considered, the instance that we are highlighting was found to be the
one for which achieving an advantage with QPT was most difficult. At θ = 80◦ and 85◦, we

11

https://scipost.org
https://scipost.org/SciPostPhys.14.5.121


SciPost Phys. 14, 121 (2023)

80 82 84 86 88 90
3

102

103

104

T
T
0

N = 1
N = 5
N = 10
N = 20

Figure 5: Optimum time to epsilon to reach a relative error of ε = 10−3 for the H4
Rectangle at different angles with fixed Hamming weight exact sampling. We use
Nmax = 20. The error bars correspond to the 95% confidence interval calculated
using a bootstrap with 103 resamplings of the data. The lines are to guide the eye.

observe that N = 5, N = 10 and N = 20 replicas exhibit a definitive advantage over the
single-replica approach.

3.2.2 No Fixed Hamming Weight

We now consider the case where the RBM is sampled with all possible computational basis
states. In this case, we choose a mixer Hamiltonian to be the uniform transverse field:

HM =
H0

2

n
∑

i=1

�

1−σx
i

�

, (19)

where H0 is again the absolute magnitude of the largest coupling strength in the target Hamil-
tonian.

For the simulations, we find that using m = 48 hidden units is sufficient to represent the
ground state with the required accuracy but also allow the simulations with N = 1 to find the
ground state with sufficient frequency, so we use this value for these simulations.1 We show in
Fig. 6 the results for the optimal TTε for the same three values of θ ∈ {80◦, 85◦, 90◦}. While
generally the problem of approximating the ground state is harder in this case compared to
the fixed Hamming weight case, the advantage for QPT training with a sufficient number of
replicas for all three angles is clear, indicating that the energy landscape is more efficiently
searched using the QPT training in this case. This is a promising indication of the advantages
of the QPT approach for more generic problems that may not exhibit any symmetries that can
be used to restrict the wave function ansätze.

1We can actually use fewer hidden units (as low as m = 16) and still have an approximation of the ground
state to the desired accuracy, but in this case we only find a good approximation to the ground state using our QPT
method when using our simulation parameters.
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Figure 6: Optimum time to epsilon to reach a relative error of ε = 10−3 for the H4
Rectangle at different angles with full exact sampling. We use Nmax = 20. The error
bars correspond to the 95% confidence interval calculated using a bootstrap with 103

resamplings of the data. The lines are to guide the eye.

4 Conclusions

We have shown that using a QPT method as part of the training of ANNs to approximate
ground states of quantum Hamiltonians can help overcome barriers in the energy landscape.
To illustrate this, we simplify our analysis by using exact sampling in order to eliminate the
role of fluctuations introduced by finite sampling. We demonstrated the utility of the QPT
approach using two Hamiltonians with very different profiles. For the permutation invariant
problem, the QPT approach demonstrated a clear advantage over repetitions of the standard
algorithm even for small system sizes. A possible criticism of this problem is that it is described
by a stoquastic Hamiltonian [46, 47]. Stoquastic Hamiltonians have ground state that can
be described in terms of non-negative real amplitudes, and they admit efficient quantum-to-
classical mappings [52]. While these properties do not necessarily mean there is an efficient
algorithm to find the ground state, the existence of an efficient classical representation is often
taken to mean that the ground states of stoquastic Hamiltonians are not as difficult to find as
those of non-stoquastic Hamiltonians. We therefore consider a second problem based on four
hydrogen atoms arranged in a rectangle with a variable angle between adjacent atoms, and we
observe a clear advantage for the QPT approach at some angles where the standard approach
struggled to find the ground state. These promising initial results indicate that using the QPT
approach to train ANNs may be useful for a broad range of Hamiltonians with difficult to
explore parameter landscapes.

We focused on using an RBM as our ANN ansatz, but the implementation of QPT is indepen-
dent of the choice of ANN architecture and can be applied equally well to convolutional neural
networks (CNNs) [16], to two disconnected real ANNs to represent the magnitude and phase
of wave function amplitudes [19], or to group convolutional neural networks (GCNNs) [18],
which have also been shown to be efficient at representing quantum states. This makes our
proposed approach quite versatile, with only the added complexity of training multiple replicas
of the ANNs and implementing configuration swaps between them.

We emphasize that we made several choices in this work for simplicity that might have
been suboptimal for the performance of the QPT approach. For example, we chose a cubic
distribution of the parameter Γ for our replicas (Eq. (8)), and a suboptimal distribution of Γ
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values around a bottleneck for the simulation does hinder the random walk of replicas [53].
We conjecture that optimizing this distribution will further increase the advantage of the QPT
approach in our problems. We leave it to future work to develop a methodology to identify
more optimal distributions.

Furthermore, our choice of swap probability (Eq. (11)) was based on an intuitive argument,
and we provided examples of other possible choices in Appendix D. It would be ideal to identify
a choice that can satisfy some appropriate notion of detailed balance. We believe that this is
the most important open theoretical problem with our proposal. Such a formalism would
also allow us to adopt some of the strategies and methods using in conjunction with QPT
to characterize the hardness of the landscape, such as using the autocorrelation time of the
replica random walk as a proxy for the mixing time [23].

5 Code

Code for this project can be found at https://github.com/talbash/QPTforRBM.
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A Review of Stochastic Reconfiguration

We consider a (possibly unnormalized) wave function |ψ(α)〉 parameterized by K complex
parameters denoted by α = (α1, . . . ,αK)

T . We are interested in finding the parameter values
α that minimize

E(α)≡
〈ψ(α)|H|ψ(α)〉
〈ψ(α)|ψ(α)〉

= 〈H〉 . (A.1)

The true minimum is given by the ground state energy EGS. Because the parameterization of
the wave function |ψ(α)〉 is unlikely to be general enough to capture the ground state exactly,
we can only hope for |ψ(α)〉 (when normalized) to provide an approximation to the ground
state.
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Assume the wave function has an expansion in a basis of the form: |ψ(α)〉=
∑

x ψx(α)|x〉.
For simplicity, we will assume thatψx(α) only depends on αk and not on both (αk,α∗k). Let us
consider a small variation of the parameters α′k = αk +δαk Let us expand the wave function:

|ψ(α′)〉= |ψ(α)〉+
∑

k

δαk

∑

x

�

1
ψx(α)

∂

∂ αk
ψx(α)

�

ψx(α)|x〉

+
1
2

∑

k,k′
δαkδαk′

�

1
ψx(α)

∂

∂ αk

∂

∂ αk′
ψx(α)

�

ψx(α)|x〉+ . . . (A.2)

It is convenient to define the operators:

Ok(α) =
∑

x

1
ψx(α)

∂

∂ αk
ψx(α)|x〉〈x | , (A.3 a)

Mkk′(α) =
∑

x

1
ψx(α)

∂

∂ αk

∂

∂ αk′
ψx(α)|x〉〈x | , (A.3 b)

(We will suppress their α dependence for notational brevity) such that we can write

|ψ(α′)〉= |ψ(α)〉+
∑

k

δαkOk|ψ(α)〉+
1
2

∑

k,k′
δαkδαk′Mkk′ |ψ(α)〉+ . . .

=

�

1+
∑

k

δαk〈Ok〉+ . . .

�

|ψ(α)〉+
∑

k

δαk (Ok − 〈Ok〉) |ψ(α)〉

+
1
2

∑

k,k′
δαkδαk′ (Mkk′ − 〈Mkk′〉) |ψ(α)〉+ . . . , (A.4)

where

〈Ok(α)〉=
〈ψ(α)|Ok(α)|ψ(α)〉
〈ψ(α)|ψ(α)〉

, (A.5 a)

〈Mkk′(α)〉=
〈ψ(α)|Mkk′(α)|ψ(α)〉
〈ψ(α)|ψ(α)〉

. (A.5 b)

We will denote the coefficient of the |ψ(α)〉 term in Eq. (A.4 ) by δα0, such that
〈ψ(α)|ψ(α′)〉= δα0〈ψ(α)|ψ(α)〉 and

〈ψ(α′)|ψ(α′)〉= |δα0|2〈ψ(α)|ψ(α)〉

+
∑

k,k′
δα∗kδαk′〈ψ(α)|

�

O†
k − 〈O

†
k〉
�

(Ok′ − 〈Ok′〉) |ψ(α)〉+ . . .

= |δα0|2
 

1+
1
|δα0|2

∑

k,k′
δα∗kδαk′Sk,k′ + . . .

!

× 〈ψ(α)|ψ(α)〉 , (A.6)

where we have defined the covariance matrix

Skk′ =
〈ψ(α)|

�

O†
k − 〈O

†
k〉
�

(Ok′ − 〈Ok′〉) |ψ(α)〉
〈ψ(α)|ψ(α)〉

= 〈O†
kOk′〉 − 〈O

†
k〉〈Ok′〉 . (A.7)

Here we have suppressed the dependence of S on α. We see from Eq. (A.6 ) that renormalizing
|ψ(α′)〉 by δα0 amounts to rescaling δαk by δα0. We will exploit this freedom later. Finally,
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for completeness, we note that we can expand the energy as:

E(α′) = E(α) +
1

〈ψ(α)|ψ(α)〉

∑

k

�

δα∗k〈ψ(α)|
�

O†
k − 〈O

†
k〉
�

H|ψ(α)〉

+ δαk〈ψ(α)|H (Ok − 〈Ok〉) |ψ(α)〉) + . . .

= E(α) +
∑

k

�

δα∗kFk +δαkF∗k
�

+ . . . , (A.8)

where we have defined

Fk =
〈ψ(α)|

�

O†
k − 〈O

†
k〉
�

(H − E(α)) |ψ(α)〉
〈ψ(α)|ψ(α)〉

= 〈O†
kH〉 − 〈O†

k〉〈H〉 . (A.9)

Here we have suppressed the dependence of F on α.
For the SR algorithm we further demand that:

|ψ(α′)〉= P (Λ−H) |ψ(α)〉 , (A.10)

where Λ is taken to be a sufficiently large (larger than the largest eigenvalue of H) positive
number and P is the projector onto the subspace of the parameterization. By acting with
〈ψ(α)| and 〈ψ(α)|

�

O†
k − 〈O

†
k〉
�

, and by restricting to linear order in δα, we get K + 1 linear
equations:

δα0 = Λ− E(α) , (A.11 a)
∑

k′
δαk′〈ψ(α)|

�

O†
k − 〈O

†
k〉
�

(Ok′ − 〈Ok′〉) |ψ(α)〉= −〈ψ(α)|
�

O†
k − 〈O

†
k〉
�

H|ψ(α)〉

= −〈ψ(α)|
�

O†
k − 〈O

†
k〉
�

(H − E(α)) |ψ(α)〉 ,
(A.11 b)

we get the linear equation:

−Fk =
∑

k′
Skk′δαk′ ⇒ δαk = −

∑

k′
S−1

kk′Fk′ . (A.12)

Since S may not be invertible, S−1 is strictly speaking the Moore-Penrose pseudoinverse. There-
fore, the update rule for the parameters α is given by:

α′k = αk +δαk = αk −
∑

k′
S−1

kk′Fk′ . (A.13)

Furthermore, if we renormalize the state ψ(α′) by δα0, we effectively are rescaling δαk by
δα0. Therefore, our update rule after this renormalization is given by:

α′k = αk +
δαk

δα0
= αk −

1
δα0

∑

k′
S−1

kk′Fk′ , (A.14)

and we have (from Eq. (A.6 )):

〈ψ(α′)|ψ(α′)〉 − 〈ψ(α)|ψ(α)〉
〈ψ(α)|ψ(α)〉

=
1
|δα0|2

∑

k,k′
δα∗ksk,k′δαk′ + . . . (A.15)
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By repeating this iterative scheme, convergence is reached when the ratio δαk/δα0 → 0:
we have from Eq. (A.8 ):

E(α′)− E(α) = −
1
|δα0|2

∑

k,k′

�

F∗k S−1
kk′Fk′ +

�

F∗k S−1
kk′Fk′

�∗�
. (A.16)

Because the covariance matrix is a positive semi-definite matrix, the term in the sum is positive,
which says that on every iteration the energy decreases, and in the limit of δαk/δα0→ 0, the
energy ceases to change.

As we noted earlier, there is some freedom in picking the value of Λ. Since Λ controls the
value of δαk, which in turn controls both the parameter update rate (Eq. (A.14 )) and the
wave function change rate (Eq. (A.15 )), in practice we treat δα−1

0 ≡ γ as a free parameter
that is chosen to get a stable convergence. The value of γ is the learning rate. As we describe
in Appendix B, we will use an adaptive scheme to update this learning rate.

In the case of the RBM ansatz, the operators Ok can be calculated analytically. The relevant
quantities are given by:

1
ψx(α)

∂

∂ ai
ψx(α) = (1− 2x i) , (A.17 a)

1
ψx(α)

∂

∂ bµ
ψx(α) = tanh (θ (x)) , (A.17 b)

1
ψx(α)

∂

∂Wiµ
ψx(α) = (1− 2x i) tanh (θ (x)) . (A.17 c)

B Adaptive Learning Rate Scheme

We begin by interpreting Eq. (3) as being a discretization of a dynamical equation for α with
γ being the step size; therefore, let us recast it as:

d
dγ
αk(γ) = −

∑

k′
(S(α(γ))−1)kk′Fk′(α(γ))≡ fk(α(γ)) , (B.1)

where we have introduced the dependence of α on γ. In this form, we can use a Heun second
order consistent integrator to adaptively update γ. We calculate two quantities:

κ⃗1 = f⃗ (α⃗(γ)) , (B.2 a)

κ⃗2 = f⃗ (α⃗(γ) +∆γκ⃗1) , (B.2 b)

and then update using:

α⃗(γ+∆γ) = α⃗(γ) +
∆γ

2
(κ⃗1 + κ⃗2) . (B.3)

In order to dynamically adjust the step∆γ, we calculate the ANN parameters at the same time
γ+∆γ but now using two ∆γ/2 steps. Therefore, we define:

κ⃗3 = f⃗
�

α⃗(γ) +
∆γ

2
κ⃗1

�

, (B.4 a)

κ⃗4 = f⃗
�

α⃗(γ) +
∆γ

4
(κ⃗1 + κ⃗3)

�

, (B.4 b)

κ⃗5 = f⃗
�

α⃗(γ) +
∆γ

4
(κ⃗1 + κ⃗3) +

∆γ

2
κ⃗4

�

, (B.4 c)
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such that
α⃗′(γ+∆γ) = α⃗(γ) +

∆γ

4
(κ⃗1 + κ⃗3) +

∆γ

4

�

κ⃗4 + κ⃗5

�

. (B.5)

We define ∆α= ∥α⃗′(γ+∆γ)− α⃗(γ+∆γ)∥S(α(γ)), where the norm here is defined as:

∥ x⃗∥S(α(γ)) =
1
M

√

√

√

√

M
∑

k,k′=1

x∗kSkk′(α(γ))xk′ . (B.6)

The adjusted time step is then taken to be [17]:

∆γ′ =∆γ
�

6ε
∆α

�1/3

, (B.7)

for a fixed tolerance ε. In our simulations, we fix ε = 10−6. We note that in a single update
step in this framework requires performing 5 different calculations of S and F , one for each of
the different κ values.

C Calculating the expectation value of operators with respect to
an RBM ansatz

We begin by first considering a diagonal operator D, meaning it is diagonal in the compu-
tational basis. In this case, the expectation value of the operator can be straightforwardly
calculated using the RBM ansatz in Eq. (1) (we will suppress the α dependence):

〈D〉=
1
Z

∑

x

|ψx |2〈x |D|x〉 , (C.1)

where Z = 〈ψ|ψ〉=
∑

x |ψx |2. Note that |ψ〉/
p
Z defines a normalized state.

Let us now consider the expectation value of an arbitrary Pauli operator acting on n qubits,
which we denote by P. We can express the expectation value as:

〈P〉=
1
Z

∑

x ,x ′
ψ∗xψx ′〈x |P|x ′〉

=
1
Z

∑

x

|ψx |2
�

∑

x ′

ψx ′

ψx
〈x |P|x ′〉

�

, (C.2)

where the term in parenthesis defines the local Pauli operator P(x):

P(x) =
∑

x ′

ψx ′

ψx
〈x |P|x ′〉 . (C.3)

For a given P, let Iα, α = x , y, z, denote the qubit indices where a single-qubit Pauli operator
σα acts. For example, consider the Pauli operator acting on 3 qubits P = σx

2 ⊗ σ
y
1 ⊗ σ

z
0; in

this case we would have Ix = {2}, Iy = {1}, Iz = {0}. For the RBM ansatz in Eq. (1), we can
calculate the local Pauli operator straightforwardly:

P(x) =





∏

j∈Iz

(−1)x j







i|Iy |
∏

j∈Iy

(−1)1−x j



exp



−2
∑

j∈Ix∪Iy

a j(1− 2x j)





×
m
∏

µ=1

cosh
�

θµ(x)− 2
∑

j∈Ix∪Iy
Wjµ(1− 2x j)

�

cosh
�

θµ(x)
� ,

(C.4)
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where θµ(x) = bµ +
∑n

j=1 Wjµ(1− 2x j).
The above prescription allows us to calculate the expectation values in the covariance

matrix and force vector in Eq. (4). For example, let us consider the term 〈O†
kH〉. We can write:

〈O†
kH〉=

1
Z

∑

x ,x ′
ψ∗xψx ′〈x |O

†
kH|x ′〉

=
1
Z

∑

x ,x ′,x ′′
ψ∗xψx ′〈x |O

†
k |x
′′〉〈x ′′|H|x ′〉

=
1
Z

∑

x

|ψx |2
�

∑

x ′′

ψx ′′

ψx
〈x |O†

k |x
′′〉 ×

∑

x ′

ψx ′

ψx ′′
〈x ′′|H|x ′〉

�

=
1
Z

∑

x

|ψx |2〈x |O
†
k |x〉H(x) , (C.5)

where we have used that the operators Ok are diagonal and where we defined a local Hamil-
tonian:

H(x) =
∑

x ′

ψx ′

ψx
〈x |H|x ′〉 . (C.6)

Since any Hamiltonian can be expressed in terms of diagonal operators and arbitrary Pauli
operators, we can calculate the local Hamiltonian using our prescription above for diagonal
and local Pauli operators.

In the case of the completely symmetric RBM ansatz, the expectation values take a simple
form. For example, we can express the contribution of the transverse field as:

n
∑

i=1




σx
i

�

=
n
∑

w=0

�

n
w

�

|ψw(α)|2×
�

nδw0
ψw+1(α)
ψw(α)

+ nδwn
ψw−1(α)
ψw(α)

+δ0<w<n

�

(n−w)
ψw+1(α)
ψw(α)

+w
ψw−1(α)
ψw(α)

��

, (C.7)

where we have defined ψw(α) as

ψw(α) = ea(n−2w)
m
∏

µ=1

cosh
�

bµ +Wµ(n− 2w)
�

. (C.8)

We can also calculate:

n
∑

i ̸= j

〈σx
i σ

x
j 〉=

n
∑

w=0

�

n
w

�

|ψw(α)|2×
�

δw0n(n− 1)
ψw+2

ψw
+δwnn(n− 1)

ψw−2

ψw

+δw1

�

2(n− 1) + (n− 1)(n− 2)
ψw+2

ψw

�

+δw,n−1

�

2(n− 1) + (n− 1)(n− 2)
ψw−2

ψw

�

+δ1<w<n−1

�

2w(n−w) + (n−w)(n−w− 1)
ψw+2

ψw

+w(w− 1)
ψw−2

ψw

��

. (C.9)

19

https://scipost.org
https://scipost.org/SciPostPhys.14.5.121


SciPost Phys. 14, 121 (2023)

D Alternative Parallel Tempering Schemes

D.1 Standard deviation of H2 as a measure of temperature

As we indicated in the main text, there is a lot of freedom in choosing the training Hamiltonian
and the parallel tempering update scheme. Here we present an alternative approach. We can
choose the Hamiltonian for the rth replica to be given by

H(Γr) = (1− Γr)HM + Γr HT , (D.1)

where HT is the target Hamiltonian whose ground state we are actually after and HM is a
suitably chosen mixer Hamiltonian with a trivial ground state. For example, in the absence
of any constraints, the mixer can be taken to be the uniform transverse field Hamiltonian,
HM = −H0

∑n
i=1σ

x
i , where H0 is a characteristic energy scale of HT. In this case, for replicas

with Γr close to 0 the training Hamiltonian is dominated by the transverse field, and the ground
state is the uniform superposition state. This is analogous to the high-temperature limit in
“standard” PT, where the different replicas operate at different temperatures but with the same
Hamiltonian. For replicas with Γr close to 1, the training Hamiltonian is dominated by the
target Hamiltonian, and the ground state is close to the target ground state. This is analogous
to the low-temperature limit in standard parallel tempering. The parameter Γr thus allows us
to interpolate between the target parameter landscape at Γr = 1 and a much simpler parameter
landscape at Γr = 0. For simplicity we choose our distribution of Γr to be linearly spaced,

Γr = 1−
r

N − 1
, r = 0, . . . , N − 1 . (D.2)

We then propose the following PT update. Since Γr controls the relative energy scales of HT
and HM, it is not a suitable candidate for the temperature as it was in the main text, so we
propose a different choice. We expect the standard deviation σr to be 0 for Γr = 1 (r = 0)
because we expect the ANN to reach a good approximation of an eigenstate of HT, assuming
the number ANN parameters is sufficiently large. Similarly, for larger r replicas this quantity
should be non-zero since we expect the ANN to be a good approximation of an eigenstate of
H(Γr). Therefore, we can think of σr as being a measure of the broadening of the eigenstates
of HT due to the “noise” introduced by Γr < 1. In this sense, we can think of σr as being a
kind of temperature. We thus propose the following probability rule for swap updates between
neighboring pairs r and r + 1:

pr↔r+1 =







1 , if r = 0 and Er+1 < Er ,
0 , if r = 0 and Er+1 > Er ,

min
�

1, exp
�

�

Er − Er+1

�

�

2
σr
− 2
σr+1

���

, otherwise .
(D.3)

While it is not strictly necessary, the r = 0 replica only swaps its configuration with its neighbor
if its neighbor has a better approximation of the ground state. This is equivalent to what
happens in the main text at zero temperature. The factor of 2 in 2/σr is a choice we make to
ensure that enough replica swaps happen in our simulations. This is a hyper-parameter that
could be optimized.

We show the QPT simulation results using this rule for the Precipice problem in Fig. 7 and
for the H4 Rectangle in Fig. 8. The results are comparable to our results from the main text
(Figs. 4, 5, and 6), although the performance using the rule in the main text is better. We also
emphasize that our simulations with this rule did not succeed at finding a good approximation
of the ground state with N = 5 replicas, while the approach in the main text does.
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Figure 7: Optimum time to epsilon to reach a relative error of ε = 10−1 for the
Precipice problem as a function of system size n using the QPT swap probability rule
in Eq. (D.3 ) with different number of QPT replicas N with Nmax = 40. The error
bars correspond to the 95% confidence interval calculated using a bootstrap with
103 resamplings of the data.

D.2 Almost constant swap probability

In what follows we use the same the same definition of the training Hamiltonian as in the main
text (Eq. (7)), as well as the same distribution of Γr values (Eq. (8)). We consider a swap rule
that abandons the idea of a temperature altogether; instead we consider the following swap
probability rule:

pr↔r+1 =







1 , if r = 0 and Er+1 < Er ,
0 , if r = 0 and Er+1 > Er ,
1/4 , otherwise .

(D.4)

The motivation for this choice is as follows. The r = 0 replica only swaps its configuration with
its neighbor if its neighbor has a better approximation of the ground state. This is equivalent
to what happens in the main text at zero temperature. For the remaining replicas, we swap
the replicas with probability 1/4 irrespective of the energies of the configurations. We show
the QPT simulation results using this rule for the Precipice problem in Fig. 9 and for the H4
Rectangle in Fig. 10. The results are comparable to our results from the main text (Figs. 4, 5,
and 6), although the performance using the rule in the main text is better in all cases, although
there are some qualitative differences. For the Precipice problem, we see a clear separation be-
tween the different N values for intermediate n values, which suggests that the constant swap
probability with a smaller separation between replicas is hindering performance compared to
the probability rule in the main text. For the H4 Rectangle, the larger error bars suggest less
consistency in the performance using this scheme.

E Short Note On the Bootstrap Procedure

Let us assume we have repeated our stochastic simulations n times and gotten the set of out-
comes {x1, x2, . . . , xn}. The outcome of the i-th experiment can be treated as a random variable
Xi, with the i-th experimental outcome given Xi = x i . We will assume that all the random vari-
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Figure 8: Optimum time to epsilon to reach a relative error of ε = 10−3 for the H4
Rectangle at different angles with (a) fixed Hamming weight exact sampling and
(b) full exact sampling using the QPT swap probability rule in Eq. (D.3 ). We use
Nmax = 20. The error bars correspond to the 95% confidence interval calculated
using a bootstrap with 103 resamplings of the data. The lines are to guide the eye.

ables are independent and identically distributed with mean µx and standard deviation σx .
Our goal is to report the mean and uncertainty of some property of the random variables. For
example, if we are interested in estimating µx , we may use the the sample mean X̄ as our
function:

X̄=
1
n

n
∑

i=1

Xi . (E.5)

From the Central Limit Theorem, we expect that X̄∼N (µx ,σ2
x/n) for sufficiently large n. So

for sufficiently large n, we can report our 95% confidence estimate of µx as x̄ ± 2σxp
n where

x̄ = 1
n

∑n
i=1 x i . We can estimate σ2

x by using the sample variance for example.
However, if instead of estimating µx , we were interested in the median of Xi, then it is not

obvious how to use the above method to give confidence estimates. The bootstrap method
allows us to mitigate this problem in a simple way.

Bootstrapping requires resampling (with replacement) the data (x1, . . . , xn) uniformly to
acquire nb bootstrap resamples. Each bootstrap resample Si picks n of the data outcomes
randomly with replacement, i.e. Si =

�

x i1 , x i2 , . . . x in

	

. So a bootstrap resample effectively
amounts to randomly picking indices from 1 to n with replacement. For each Si , we calculate
the property we are interested in, like the median, giving a value Fi . We can treat the set
�

F1, F2, . . . , Fnb

	

as nb samples of the random variables Fi. We now calculate the sample mean
of F:

F̄=
1
nb

nb
∑

i=1

Fi . (E.6)

Now we can use the Central Limit Theorem (for sufficiently large nb) that F̄∼N . We can now
report our estimate with 95% confidence interval as:

F̄ ± 2σF , (E.7)

where F̄ is the sample mean:

F̄ =
1
nb

nb
∑

i=1

Fi , (E.8)
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Figure 9: Optimum time to epsilon to reach a relative error of ε = 10−1 for the
Precipice problem as a function of system size n using the QPT swap probability rule
in Eq. (D.4 ) with different number of QPT replicas N with Nmax = 40. The error
bars correspond to the 95% confidence interval calculated using a bootstrap with
103 resamplings of the data.

and σF is the standard deviation:

σ2
F =

1
nb − 1

nb
∑

i=1

(Fi − F̄)2 . (E.9)

F The H4 rectangle

The H4 rectangle, illustrated in Fig. 11, consists of four hydrogen atoms placed in a rectangle,
each with a distance to the center of R. The separation between these atoms can be further
controlled by the angle between adjacent hydrogen atoms θ . When θ is far away from 90◦,
the system resembles two disconnected H2 molecules and the energy can be approximately
calculated as twice the energy of an equivalent H2 molecule. As the angle approaches 90◦,
however, the distance between the different hydrogen atoms becomes equivalent and the sys-
tem becomes degenerate, leading to a frustrated system with a peak in energy at 90◦. By
moving from a rectangular system to a square one, the system can be brought arbitrarily close
to a strongly correlated, two configuration system. This configuration has been shown to lead
to difficulty for many atomic modeling algorithms, notably including Coupled Cluster meth-
ods, which incorrectly predict a cusp and minimum at 90◦ for certain radii [51]. Throughout
this work, following Pfau et al. and others [54, 55], we have used a radius of 1.738 Å, which
places the H4 rectangle in a regime where the atoms are nearing full dissociation. Coupled
Cluster methods have been shown to fail at this radius [51], and single replica RBM runs often
struggle to find the ground state energy as seen in the main text, providing a useful benchmark
for our parallel tempering scheme.

To create inputs for our calculations, we consider the Fermionic problem in the second
quantitized formalism

H =
∑

i, j

t i jc
†
i c j +

∑

i, j,k,m

ui jkmc†
i c†

kcmc j , (F.1)
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Figure 10: Optimum time to epsilon to reach a relative error of ε = 10−3 for the
H4 Rectangle at different angles with (a) fixed Hamming weight exact sampling and
(b) full exact sampling using the QPT swap probability rule in Eq. (D.4 ). We use
Nmax = 20. The error bars correspond to the 95% confidence interval calculated
using a bootstrap with 103 resamplings of the data. The lines are to guide the eye.

Figure 11: The arrangement of hydrogen atoms in the H4 rectangle. The configura-
tion is controlled by the radius R and the angle θ .

where we define the fermionic annihilation and creation operators with the anticommutation
relation {c†

i , c j} = δi, j . We define t i j and ui jkm as one- and two-body integrals, respectively.
We then map this fermionic Hamiltonian onto a spin Hamiltonian with the form

H =
r
∑

j=1

h jσ j , (F.2)

where h j are coefficients and σ j is an N-fold tensor product of single-qubit Pauli operators
I , σx , σ y , and σz . We use the canonical Jordan-Wigner transformation [26] to map Hamil-
tonians of the form of Eq. F.1 to Eq. F.2 . We use a minimal STO-3G basis set [56] and the
OpenFermion software package [57] to generate and map Hamiltonians for the H4 problem.

For θ = 80◦, the ground state energy of the 8 qubit Hamiltonian is −1.88016686; for
θ = 85◦, the ground state energy is −1.87584118; for θ = 90◦, the ground state energy is
−1.87420093.
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