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Abstract

Integrability of the one-dimensional Hubbard model and of the factorised scattering
problem encountered on the worldsheet of AdS strings can be expressed in terms of a
peculiar quantum algebra. In this article, we derive the classical limit of these algebraic
integrable structures based on established results for the exceptional simple Lie super-
algebra d(2, 1;ε) along with standard sl(2) which form supersymmetric isometries on
3D AdS space. The two major steps in this construction consist in the contraction to
a 3D Poincaré superalgebra and a certain reduction to a deformation of the u(2|2) su-
peralgebra. We apply these steps to the integrable structure and obtain the desired Lie
bialgebras with suitable classical r-matrices of rational and trigonometric kind. We illus-
trate our findings in terms of representations for on-shell fields on AdS and flat space.
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1 Introduction

Integrable systems play an important role in theoretical physics, especially for models of con-
densed matter physics as well as of high energy physics. Integrability of such models is often
attributed to the existence of particular extended types of symmetry algebra. In the case of
many integrable quantum models, the relevant algebras are known as quantum groups and
quantum algebras [1, 2]. These describe not only the extended symmetries of a quantum
model, but also allow one to formulate the integrable structure purely in the algebraic lan-
guage. Quantum algebras thus give us a useful tool to describe, evaluate and study integrable
systems.

Two important, yet elaborate examples of integrable models are given by the one-
dimensional Hubbard model, and by the planar limit of N = 4 supersymmetric gauge theory,
which is AdS/CFT dual to strings on AdS4,1 × S5. In fact, these two particular examples are
not unrelated. The algebraic structures underlying integrability in the 1D Hubbard model and
factorised worldsheet scattering in the AdS/CFT models are given by one and the same alge-
bra. Many features of this quantum algebra have already been worked out, importantly, that it
is based on certain extensions of the Lie superalgebra u(2|2) and that it is of some exceptional
kind. The latter means that established standard constructions in quantum algebra based on
simple or semi-simple Lie algebras and superalgebras are not sufficient to describe it. Let us
elaborate on these achievements and on open questions.

The quantum R-matrix for the integrable structure of the 1D Hubbard model [3], see [4],
has been proposed by Shastry [5]. It is the result of an elaborate combination of two six-vertex
models at the free fermion point using elliptic functions and it was shown to satisfy the quan-
tum Yang–Baxter equation. A significant feature of this R-matrix is that it is not of a so-called
difference form, a feature that most of the known solutions to the Yang–Baxter equation share.
Much later, the R-matrix was reproduced [6] by a construction of the AdS/CFT worldsheet
scattering matrix [7], see [8], which was based on a central extension of the Lie superalgebra
psu(2|2) in combination with dynamics of excitations on the worldsheet. Quantum algebra
structures were established for this system in [9, 10], and the algebra was extended to an
infinite-dimensional Yangian algebra in [11].

Equipped with these algebraic tools, scattering matrices for some higher representations
[6, 12–14] have been constructed [15–17]. Importantly, also the overall phase for the scat-
tering matrix could be pinned down by consistency considerations of the quantum algebra
together with considerations of the underlying physical system [18–23]. All of this calls for
the formulation of a universal R-matrix which (in principle) could be evaluated in arbitrary
representations in order to yield the corresponding scattering matrix along with a suitable over-
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all phase. Yet, our understanding of the quantum algebra is not complete, nor is the original
Drinfel’d presentation well suited towards the construction of a universal R-matrix. Alterna-
tive presentations of the Yangian algebra have been formulated in [24–27] with the aim of
providing a complete formulation of this quantum algebra from which all relevant properties
of the algebra can be derived using established methods.

Progress towards a complete formulation of the quantum algebra is compromised by an
elevated complexity of the structures for this case. In general, quantum algebras are highly
non-linear objects, but certain functions and structures have been established to formulate
their objects in more convenient terms. Among others, these are so-called q-deformations of
group actions, exponential functions, logarithms, dilogarithms, factorials, Gamma functions
and Pochhammer symbols. Unfortunately, in the present case, it is not yet known precisely
how to compose these to formulate, e.g., the universal R-matrix. Here, the classical limit
comes along very handy, where expressions are reduced to their leading order terms. Conse-
quently, the quantum algebra reduces to a Lie bialgebra where most relations are linearised.
The classical limit for the R-matrix has been introduced in [28–30], and a formulation as a Lie
bialgebra was completed in [31]. The underlying algebra turned out to be a novel deformation
of the u(2|2) loop superalgebra. A corollary of this result was the discovery of an additional
u(1) derivation to extend the psu(2|2) symmetry algebra [32].

The article [31] made an auxiliary proposition for the derivation of the deformed u(2|2)
loop superalgebra as a curious reduction of a maximally extended sl(2)⋉ psu(2|2)⋉R2,1 loop
superalgebra. The latter is a non-simple Lie superalgebra, yet its bialgebra structures take a
standard form in the rational case.

A further clue in this direction was provided in the article [33], where the above maxi-
mally extended sl(2) ⋉ psu(2|2) ⋉ R2,1 superalgebra was shown to be an algebraic contrac-
tion of the semi-simple algebra d(2, 1;ε) × sl(2) involving the exceptional Lie superalgebra
d(2, 1;ε).1 This contraction follows along the lines of the contraction of the 3D AdS algebra
so(2,2) = sl(2)× sl(2) to the 3D Poincaré algebra iso(2, 1) = sl(2)⋉R2,1. The latter contrac-
tion can be supersymmetrised by the replacement of one (or two) factors of sl(2) by d(2, 1;ε),
and by the introduction of one (or two) factors of the superalgebra psu(2|2) into the Poincaré
algebra sl(2)⋉R2,1.

The combination of the latter two insights opens up a path towards a complete algebraic
formulation of the classical integrable structures purely in terms of established elements of
simple loop superalgebras and their Lie bialgebra structures. In the present article, we carry
out the full procedure in order to obtain the complete Lie bialgebra with its classical r-matrix.
In particular, we will explore two concepts, contraction and reduction, that are essential in
avoiding the complications mentioned above. Moreover, we will resort to the well-established
representation theory of sl(2) together with analogous representations of d(2,1;ε) to express
a relevant class of representations for the resulting algebra. This will allow us to express the
classical r-matrix as the classical limit of a particle scattering matrix, and it will generally
illustrate some of the abstract results in more applied terms.

In this article we fill some of the missing steps of the above construction in the classical
limit. In Sec. 2 we start with the reduced case of the contraction of the algebra so(2, 2) of
isometries of AdS2,1 to the 3D Poincaré algebra iso(2, 1). In particular, we describe on-shell
field representations on AdS2,1 and on flat R2,1, and we show how to perform the contraction
between the two. Then we promote the discussion to loop algebras in Sec. 3 and establish
the contraction of the r-matrix of rational type. In Sec. 4 we discuss a particular reduction of
the algebras, their r-matrices and representations. We then extend the receding construction
from the rational to the trigonometric case in Sec. 5. Finally, the supersymmetric extension of
the above constructions involving the exceptional superalgebra d(2, 1;ε) is discussed in Sec. 6.

1The idea to involve the exceptional Lie superalgebra d(2, 1;ε) in the limit ε→ 0 appeared earlier in [34].
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Table 1: Generators of spacetime symmetries.

algebra generators indices sl(2) form a ∈ {0,±}
so(3) Jk 1,2, 3 sl(2) (generic) Ja

so(2,2) Mαβ x , y; u, v sl(2)× sl(2) Ma
1,Ma

2

iso(2,1) Lµν, Pµ x , y; t sl(2)⋉R2,1 La, Pa

Eventually, our construction yields the classical r-matrix which describes the classical limit of
the 1D Hubbard model and of the AdS/CFT worldsheet S-matrix.

2 Contraction

Our aim is to understand integrable structures of a physical model with (an extension as well
as a reduction of) Poincaré symmetry on flat Minkowski space R2,1. A difficulty is that the Lie
algebra iso(2, 1) = sl(2)⋉R2,1 incorporating Poincaré symmetry is non-simple, whereas struc-
tures of integrability are best developed for simple and semi-simple algebras, see [35]. More-
over, unitary representation of this non-compact algebra are necessarily infinite-dimensional,
which complicates constructions in terms of physically relevant representations. Our resolu-
tion to these problems is to resort to the fact that the Poincaré algebra is a contraction of the Lie
algebra so(2, 2) = sl(2)×sl(2)which incorporates the isometries of anti-de Sitter space AdS2,1.
The algebra factors sl(2) are simple, and their representation theory is well-understood and
easy to handle. We will then move, step by step, towards the originally intended situation in
the subsequent sections.

In order to set the stage for some more elaborate constructions in this work, we will review
the algebra contraction,

so(2,2) = sl(2)× sl(2) −→ iso(2,1) = sl(2)⋉R2,1 , (1)

first at the level of the algebra, then in terms of geometry and finally at the level of infinite-
dimensional representations. This will also introduce the notation and relate the abstract
mathematical considerations to physical fields on the symmetric space AdS2,1 and on flat
Minkowski space R2,1.

2.1 Algebra

We start by introducing the above Lie algebras in terms of their generators, see the summary
in Tab. 1, and by describing the contraction that relates the two.

Spacetime Algebras. Here we present the generators of the relevant spacetime Lie algebras
so(2,2) and iso(2,1) along with their Lie brackets and invariant quadratic forms.

The AdS algebra so(2,2) is spanned by a set of generators which we shall denote by
Mαβ = −Mβα with the indices α,β ∈ {u, v, x , y}. Their Lie brackets are given by2

[Mαβ , Mγδ] = −�ıηβγMαδ +�ıηαγMβδ +�ıηβδMαγ −�ıηαδMβγ , (2)

where η denotes a metric tensor of signature (−,−,+,+) corresponding to the directions
(u, v, x , y). The algebra has two independent invariant quadratic forms

M2
+ = −

1
2ηαγηβδMαβ ⊗Mγδ , M2

− := 1
4ϵαβγδMαβ ⊗Mγδ , (3)

2Here and below, we follow the physics convention that the generators for the real form of a Lie algebra are
typically assumed to be purely imaginary.
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where ϵ denotes totally anti-symmetric tensors (we choose the normalisation ϵuvx y = +1).
The Lorentz algebra so(2, 1) is spanned by the generators Lµν = −Lνµ with the indices

µ,ν ∈ {t, x , y} and the signature (−,+,+). Their Lie brackets take the same form as (2) but
with indices µ,ν ∈ {t, x , y}

[Lµν, Lρσ] = −�ıηνρLµσ +�ıηµρLνσ +�ıηνσLµρ −�ıηµσLνρ . (4)

It has an invariant quadratic form L2 := −1
2ηµρηνσLµν ⊗ Lρσ which is analogous to M2

+ of
so(2,2).

The Poincaré algebra iso(2, 1) supplements the Lorentz generators Lµν with the momentum
generators Pµ, µ ∈ {t, x , y}, which obey the additional algebra relations

[Lµν, Pρ] = −�ıηνρPµ +�ıηµρPν, [Pµ, Pν] = 0 . (5)

The Poincaré algebra has two invariant quadratic forms

P2 := ηµν Pµ ⊗ Pν , L·P := −1
4ϵµνρ(L

µν ⊗ Pρ + Pρ ⊗ Lµν) . (6)

Note that the above invariant quadratic form L2 of the Lorentz algebra is not an invariant for
the Poincaré algebra.

sl(2) Forms. All of the above algebras are related to sl(2) in some way. To make the relations
between the various algebras more evident, we will use a common notation. This will also
streamline the contraction procedure.

We will typically denote the generators of an abstract complexified algebra sl(2) by Ja with
index a ∈ {0,±}. The generators obey the algebra relations

[J0, J±] = ±J± , [J+, J−] = −2J0 ⇐⇒ [Ja, Jb] =�ı f ab
cJ

c . (7)

The structure constants f ab
c of the latter universal form are defined by the former explicit

relations. Finally, the quadratic invariant form of sl(2) reads

J2 := −J0 ⊗ J0 + 1
2J+ ⊗ J− + 1

2J− ⊗ J+ = cab(J
a ⊗ Jb) , (8)

with cab denoting the coefficients in the basis Ja. Concretely, the above two sets of coefficients
are given by

f 0±
± = ∓�ı , f ±∓0 = ±2�ı , c00 = −1 , c±∓ =

1
2 . (9)

As an aside, note that the set of generators {J0,±} maps almost trivially to the standard
Cartan–Weyl basis {H,E, F} of sl(2) by (J0,�ıJ+,�ıJ−) = (1

2H,E, F).3 It can also be cast as an
imaginary basis Jk, k = 1, 2,3 for the compact real form so(3) as4

(J0,�ıJ±) = (J3, J1 ±�ıJ2) , [J j , Jk] =�ıϵ jkmJm , J2 = −Jk ⊗ Jk . (10)

It is well-known that the AdS algebra so(2, 2) is isomorphic to sl(2) × sl(2). We use the
following map for the generators Ma

1,Ma
2 of two copies of the algebra sl(2)

M0
1 = −

1
2Muv + 1

2Mx y , M±1 =
1
2(−Mux +Mv y)∓ �ı2(+Muy +Mvx) , (11)

M0
2 = +

1
2Muv + 1

2Mx y , M±2 =
1
2(+Mux +Mv y)∓ �ı2(−Muy +Mvx) . (12)

3For the real form sl(2,R), the generators J0, J± or H, E,F can be taken to be real.
4For the real form so(3), the generators J0 is imaginary and J± obey (J±)∗ = J∓.
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Each set of generators Ma
1 and Ma

2 obeys the algebra relations of one copy of sl(2) while the
mixed Lie brackets are zero

[Ma
1,Mb

1] =�ı f ab
cM

c
1 , [Ma

1,Mb
2] = 0 , [Ma

2, Mb
2] =�ı f ab

cM
c
2 . (13)

The two quadratic invariant forms are related to the quadratic invariant form (8) for the two
copies of sl(2)

M2
+ = 2M2

1 + 2M2
2 , M2

− = 2M2
1 − 2M2

2 . (14)

The Lorentz algebra so(2,1) = sl(2,R) can also be cast in the above sl(2) form. The
generators Lµν are identified with La, and it makes sense to express the Poincaré generators
Pµ in the sl(2) basis Pa as follows5

L0 = Lx y , L± = Lt y ∓�ıLt x , 1
2L+ + 1

2L− = Lt y , �ı
2L+ − �ı2L− = Lt x . (15)

P0 = Pt , P± = Px ±�ıP y , 1
2P+ + 1

2P− = Px , −�ı2P+ − �ı2P− = P y . (16)

Altogether, the algebra relations of iso(2, 1) = sl(2)⋉R2,1 then take the form

[La, Lb] =�ı f ab
cL

c , [La, Pb] =�ı f ab
cP

c , [Pa, Pb] = 0 . (17)

The invariant quadratic forms match with their sl(2) counterparts as follows

P2 = cab(P
a ⊗ Pb) , L·P = 1

2 cab(L
a ⊗ Pb + Pa ⊗ Lb) . (18)

Algebra Contraction. The contraction so(2,2) → iso(2,1) is achieved by taking the limit
ε→ 0 for the following identification of generators6

La =Ma
1 +Ma

2 , Pa = εm̄Ma
1 . (19)

Here, we have introduced a supplementary reference mass constant m̄ in order to make ap-
propriate mass dimensions manifest when the limiting parameter ε is assumed to be dimen-
sionless. For finite ε this identification describes a bijective map between Ma

1, Ma
2 and La, Pa

which becomes singular at ε= 0. The algebraic relations of these generators at finite ε read

[La, Lb] =�ı f ab
cL

c , [La, Pb] =�ı f ab
cP

c , [Pa, Pb] =�ıεm̄ f ab
cP

c . (20)

In the limit ε→ 0, the Lie bracket of generators P becomes trivial due to [P, P] = O(ε), and
the algebra relations (17) of iso(2,1) are recovered.

2.2 Geometry

Our aim is to construct a representation of the AdS algebra so(2, 2) which reduces to a field
representation of the Poincaré algebra iso(2, 1) under the contraction. Therefore it makes
sense to analyse the situation from a geometric point of view.

5For the real form so(2, 1), the generators L0 is imaginary and L± obey (L±)∗ = −L∓.
6Alternative choices of combinations for Pa are conceivable, e.g. Pa = 1

2εm̄(Ma
1 − Ma

2) or Pa = −εm̄Ma
2 or

Pa = cεm̄Ma
1. These lead to inessential modifications of the algebraic relations.
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G
F R2,1

AdS2,1

Figure 1: Mapping between a function on a small neighbourhood of a point on AdS2,1

and a function on the tangent space.

Anti-de Sitter Space. The algebra so(2, 2) acts canonically on the vector spaceR2,2 for which
we shall use linear coordinates Xα = (u, v, x , y)with signature (−,−,+,+). The corresponding
canonical action on a scalar field7 F(u, v, x , y) by means of differential operators D(M) takes
the form

D(Mαβ) = −�ıXα
∂

∂ Xβ
+�ıX β

∂

∂ Xα
. (21)

This action is reducible thanks to the invariance of the square form X 2 := ηαβXαX β un-
der so(2,2) which can be used to restrict to submanifolds at constant X 2. Correspondingly,
so(2,2) has an action on the symmetric space AdS2,1 which can be embedded into R2,2 as the
submanifold at X 2 = −1. We shall use the embedding angular coordinates (τ,ψ,φ) which are
given by the relationship8

Xα =







u
v
x
y






=







sec(ψ) cos(τ)
sec(ψ) sin(τ)
tan(ψ) cos(φ)
tan(ψ) sin(φ)






. (22)

The metric of AdS2,1 in these coordinates reads

ds2 = sec2(ψ)
�

−dτ2 + dψ2 + sin2(ψ)dφ2
�

. (23)

The restriction of the above so(2,2) differential action to the submanifold AdS2,1 is given by

D(M0
1) =

1
2

�

−�ı
∂

∂ τ
−�ı

∂

∂ φ

�

, (24)

D(M±1 ) =
1
2

e±�ı(τ+φ)
�

∓ sin(ψ)
∂

∂ τ
+�ı cos(ψ)

∂

∂ψ
∓ csc(ψ)

∂

∂ φ

�

, (25)

D(M0
2) =

1
2

�

+�ı
∂

∂ τ
−�ı

∂

∂ φ

�

, (26)

D(M±2 ) =
1
2

e±�ı(−τ+φ)
�

∓ sin(ψ)
∂

∂ τ
−�ı cos(ψ)

∂

∂ψ
± csc(ψ)

∂

∂ φ

�

. (27)

Contraction. The contraction can be thought of as the set of partially infinitesimal so(2, 2)
transformations acting on a tangent space of AdS2,1 as follows (see also Fig. 1 for an illustra-
tion): Without loss of generality, we consider the tangent space at the marked point τ=ψ= 0
with arbitrary angle φ. We want to blow up a small neighbourhood of this point, where the
curvature of AdS2,1 becomes irrelevant, to a finite neighbourhood of the origin in the tangent
space. The tangent space is R2,1 and it has coordinates (t, x , y) of signature (−,+,+). In the

7We initially restrict to scalar fields for simplicity. Later on, we will generalise our presentation to spinning
fields.

8The non-periodicity of time τ implies that AdS2,1 covers the submanifold of R2,2 infinitely often. Conversely,
the angle coordinate φ is 2π-periodic, and the domain of the radial coordinate ψ is 0≤ψ< 1

2π.
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neighbourhood of the marked point, we can map a function F on the tangent space R2,1 to a
function G on the manifold AdS2,1 according to the map

F(t, x , y)↔ G(τ,ψ,φ) , t =
2
εm̄
τ , x =

2
εm̄
ψ cosφ , y =

2
εm̄
ψ sinφ , (28)

where the time and radial coordinates τ and ψ need to be small in the limit ε → 0 while
the angle coordinate φ should remain finite. Note that the field G fluctuates rapidly with
the position as far as F is a smooth function. Suitable transformations of G then map to
transformations of F under the contraction. Using the appropriate transformation of partial
derivatives,

∂

∂ τ
=

2
εm̄
∂t ,

∂

∂ψ
=

2

εm̄
p

x2 + y2
(x∂x + y∂y) ,

∂

∂ φ
= x∂y − y∂x , (29)

we find the following contraction limit for the differential operators using the prescriptions
detailed in Sec. 2.1

D(L0) = −�ı(x∂y − y∂x) , D(L±) = ∓(x ±�ı y)∂t ∓ t(∂x ±�ı∂y) , (30)

D(P0) = −�ı∂t , D(P±) =�ı(∂x ±�ı∂y) . (31)

The resulting expressions have no divergent terms, and infinitesimal terms are discarded in
the limit. In the following, we demonstrate that these form a representation of the limiting
Poincaré algebra.

Minkowski Space. These differential operators clearly agree with the canonical action of
the Poincaré algebra iso(2, 1) for scalar fields on R2,1

D(Lµν) = −�ıxµ∂ ν +�ıxν∂ µ , D(Pµ) =�ı∂ µ . (32)

Here |x〉 is a position eigenstate on R2,1 on which the Poincaré algebra acts as9

Lµν|x〉= −D(Lµν)|x〉 , Pµ|x〉= −D(Pµ)|x〉 . (33)

Alternatively, fields on R2,1 can be expressed in momentum space by means of the Fourier
transformation

|p〉=
∫

(dx)3 exp(−�ıpµxµ)|x〉 , |x〉=
∫

(dp)3

(2π)3
exp(�ıpµxµ)|p〉 , (34)

where |p〉 is a state of definite momentum. We will also use the representation in momentum
space,

Lµν|p〉=�ıpµ
∂

∂ pν
|p〉 −�ıpν

∂

∂ pµ
|p〉 , Pµ|p〉= pµ|p〉 , (35)

which is obtained by Fourier transformation of the representation in position space.
Altogether, we have thus shown how to obtain the iso(2,1) momentum space representa-

tion on R2,1 as a contraction limit of the so(2,2) representation acting on AdS2,1.

9Note that a consistent representation of some generator J on a position eigenstate |x〉 requires the somewhat
unintuitive identification J|x〉 = −D(J)|x〉 with the negative differential operator D(J). For a functional eigen-
state |F〉 =
∫

dx F(x)|x〉 this leads to the desired positive sign upon acting on F by integration by parts, namely
J|F〉= |D(J)F〉. For this reason we shall explicitly distinguish between a generator J and its associated differential
operator D(J).
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2.3 Irreducible Representations

The above field representations are off-shell, i.e. the fields are unconstrained by differential
equations. Such representations are reducible, and it makes sense to identify their irreducible
components and subsequently describe their contraction limit.

Minkowski Space. Reducibility becomes most apparent for the above Poincaré representa-
tion in momentum space: The orbit of the momentum |pµ〉 under Lorentz transformations
is a shell of common mass rather than all of R2,1. The mass m and spin s are identified as
eigenvalues of the two quadratic invariants (6) of iso(2, 1)

P2 ≃ p2 = −m2 , L·P ≃ −sm . (36)

For the above momentum space representation, one finds that L·P ≃ 0 which is in line with
the fact that it describes a scalar field with s = 0.10

The reduction of the above representation for a scalar field to a mass shell can be performed
by setting

|p⃗〉m :=

∫

deθ (e)δ(−e2 + p⃗2 +m2)|e, p⃗〉=
1

2em(p⃗)

�

�em(p⃗), p⃗
�

, (37)

with the relativistic energy relation

em(p⃗) :=
Æ

p⃗2 +m2 . (38)

This identification fixes the energy component pt to em(p⃗) and effectively makes all derivatives
∂ /∂ pt drop out.11 Altogether the irreducible representation on an on-shell field of mass m
and spin s reads

Lx y |p⃗〉m,s =

�

�ıpx
∂

∂ py
−�ıpy

∂

∂ px
+ s+ px

∂ Θ

∂ py
− py

∂ Θ

∂ px

�

|p⃗〉m,s , (39)

Lt y |p⃗〉m,s =

�

�ıem(p⃗)
∂

∂ py
+

spx

em(p⃗) +m
+ em(p⃗)

∂ Θ

∂ py

�

|p⃗〉m,s , (40)

Lt x |p⃗〉m,s =
�

�ıem(p⃗)
∂

∂ px
−

spy

em(p⃗) +m
+ em(p⃗)

∂ Θ

∂ px

�

|p⃗〉m,s , (41)

Pt |p⃗〉m,s = em(p⃗)|p⃗〉m,s , (42)

Px |p⃗〉m,s = px |p⃗〉m,s , (43)

P y |p⃗〉m,s = py |p⃗〉m,s . (44)

Here, we have generalised the above representation by a non-trivial spin s.12 Furthermore,
the arbitrary function Θ = Θ(p⃗) incorporates the on-shell gauge freedom

|p⃗〉 → exp
�

�ıΘ(p⃗)
�

|p⃗〉 . (45)

In position space, the mass shell and spin conditions turn into differential equations for the
field. One can formally solve these equations by means of a Fourier transformation which
maps the representation to its momentum space counterpart.

10Non-scalar fields require additional spin components for each momentum eigenstate on which some extra
contributions to L act. For the sake of simplicity we do not discuss this more complicated case. Instead we shall
merely introduce a non-zero spin for irreps further below.

11More accurately, it leads to a derivative of the delta-function enforcing the mass shell condition. It cancels in
all combinations of derivatives that leave the mass shell condition invariant.

12The stabiliser of a massive momentum vector is so(2) whose irreducible representations are one-dimensional
and labelled by a spin s ∈ Z (or s ∈ 1

2Z for fields with bosonic and fermionic statistics). Consequently, there are no
additional spin degrees of freedom in this case.
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Anti-de Sitter Space. We would now like to formulate an irreducible representation of
so(2,2) on AdS2,1 that limits to the above iso(2, 1) representation upon contraction. Unfortu-
nately, the Fourier transformation does not apply to a curved manifold such as AdS2,1. Hence
it is not evident how to construct a momentum space representation, but we can still impose
a suitable differential equation. The solutions of the differential equation then serve as the
basis states for an irreducible representation of so(2, 2). This representation will be infinite-
dimensional.

The Laplacian for the AdS2,1 manifold reads

∆= − cos2(ψ)
∂ 2

∂ τ2
+ cos2(ψ)

∂ 2

∂ψ2
+ cot(ψ)

∂

∂ψ
+ cot2(ψ)

∂ 2

∂ φ2
. (46)

The eigenvalue equation ∆Υ = λΥ can be understood as an equation of motion for the free
scalar field Υ where λ= µ2−1 describes its AdS mass µ.13 The eigenfunctions for eigenvalue
λ= µ2 − 1 are given by the following hypergeometric functions14

Υµ,ω,κ(τ,ψ,φ)∼ e�ıωτ+�ıκφ sinκ(ψ) cos1+µ(ψ) (47)

· 2F1

�1
2(1+κ−ω+µ),

1
2(1+ κ+ω+µ), 1+µ; cos2(ψ)

�

. (48)

The particular exponential dependencies of the eigenfunction Υ on τ and φ identify ω and κ
as the energy and angular momentum, respectively.

Let us understand how the eigenfunctions transform under the isometries so(2,2). We find

D(M0
1)Υµ,ω,κ =

1
2(κ+ω)Υµ,ω,κ , (49)

D(M±1 )Υµ,ω,κ = ±
�ı
2(κ+ω±µ± 1)Υµ,ω±1,κ±1 , (50)

D(M0
2)Υµ,ω,κ =

1
2(κ−ω)Υµ,ω,κ , (51)

D(M±2 )Υµ,ω,κ = ∓
�ı
2(κ−ω±µ± 1)Υµ,ω∓1,κ±1 . (52)

Here it makes sense to consider the action of invariant elements. The two quadratic invariants
for so(2,2) act as eigenvalues

−D(M2
+) =∆≃ µ

2 − 1 , D(M2
−)≃ 0 . (53)

Moreover, we can compute the invariant group elements

exp
�

2π�ıD(Mx y)
�

≃ e2π�ıκ , exp
�

2π�ıD(Muv)
�

≃ e2π�ıω , (54)

which generate shifts of φ and τ by 2π, respectively. On AdS2,1 a shift φ → φ + 2π must be
trivial, hence κ ∈ Z, while the time τ is non-periodic, and consequently ω ∈ R.

Finally, the eigenfunctions may or may not be normalisable where the canonical square
norm is given by





Υµ,ω,κ







2
:=

∫

dφ dψ tan(ψ)
�

�Υµ,ω,κ(τ,ψ,φ)
�

�

2
. (55)

Normalisability is relevant for unitarity of the representation which is a useful classification
criterion in (quantum) physics. Let us therefore discuss it: A finite norm requires that the
asymptotic behaviour at ψ→ 0 and at ψ→ 1

2π must be benign, i.e.

lim
ψ→0

ψ−|κ|Υµ,ω,κ(τ,ψ,φ)<∞ , lim
ψ→π/2

Υµ,ω,κ(τ,ψ,φ) = 0 . (56)

13The dimensionless AdS mass µ is measured in units of the inverse AdS radius.
14Note that the two functions Υ±µ,ω,κ with opposite sign of µ serve as a basis for the two-dimensional space of

solutions of the second order differential equation with otherwise equal dependency on τ and φ.

10

https://scipost.org
https://scipost.org/SciPostPhys.14.6.157


SciPost Phys. 14, 157 (2023)

The function Υµ,ω,κ is a linear combination of two basis functions with the leading behaviours
∼ ψ±κ at ψ → 0. Clearly, one of these two is divergent and therefore undesirable. Within
Υµ,ω,κ it must have a vanishing coefficient which happens to be achieved under the conditions
κ = n1 − n2 and |ω| = 1 + µ + n1 + n2 with n1, n2 ∈ Z+0 non-negative integers. At ψ → 1

2π

one finds the asymptotic behaviour Υµ,ω,κ ∼ (
1
2π−ψ)

1+µ which implies a lower bound on µ.
Altogether, an eigenfunction Υµ,ω,κ is normalisable provided that

1
2

�

|ω| − |κ| − 1−µ
�

∈ Z+0 , µ > −1 . (57)

Principal Series Representations. The above representations (49) of M1 and M2 on the
scalar eigenfunctions can be identified as infinite-dimensional principal series representations
of the two copies of sl(2) in so(2, 2) = sl(2)×sl(2). A principal series representation of J ∈ sl(2)
on the tower of states |k〉, k ∈ Z, takes the form

J0|k〉γ,χ = (k+χ)|k〉γ,χ , (58)

J+|k〉γ,χ = θk(k+χ + γ+
1
2)|k+ 1〉γ,χ , (59)

J−|k〉γ,χ = θ
−1
k−1(k+χ − γ−

1
2)|k− 1〉γ,χ . (60)

The parameter γ describes the eigenvalue of the quadratic invariants (8) whereas the non-
integer part of the parameter χ describes the eigenvalue of the invariant group element
exp(2π�ıJ0)

J2 ≃ 1
4 − γ

2 , exp(2π�ıJ0)≃ e2π�ıχ . (61)

Furthermore, the parameters θk incorporate a gauge transformation |k〉 → exp(�ıΘk)|k〉 acting
on the states |k〉 as the map θk→ exp(�ıΘk−�ıΘk−1)θk which can be used to fix the θk to arbitrary
values. The states and parameters of the principal series representations are matched with the
scalar representation (49) by the identifications κ= k1+ k2+κ0 and ω= k1− k2+ω0 as well
as γ1,2 =

1
2µ and χ1,2 =

1
2(κ0 ±ω0). Note that this agrees with the relationship (14) between

the quadratic invariants of so(2, 2) and sl(2)× sl(2).
We want to generalise the above considerations to unitary irreps of so(2,2) with positive

energy ω and non-zero spin s: This constrains the parameters γ,χ of the sl(2) principal series
representations somewhat: the representation of M1 needs be of lowest-weight type with

χ1 > 0 , γ1 = χ1 −
1
2 , θ1;k =

√

√ k+ 1
k+ 2χ1

, (62)

while the representation of M2 needs to be of highest-weight type with

χ2 < 0 , γ2 = −χ2 −
1
2 , θ2;k =

√

√−k− 2χ2 − 1
−k

. (63)

A non-zero spin s is achieved by choosing distinct values for χ1 and −χ2
15

γ1,2 =
1
2(µ± s) , χ1,2 =

1
2(s± (µ+ 1)) . (64)

Unitarity then implies the bound µ > −1+ |s|.
15In the above discussion, this would correspond to certain tensor and/or spinor fields which are eigenfunctions

of both 2M2
1 and 2M2

2.
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Altogether the representation for a field on AdS2,1 with spin s is given by

M0
1|k1, k2〉µ,s = (k1 +

1
2µ+

1
2 s+ 1

2)|k1, k2〉µ,s , (65)

M+1 |k1, k2〉µ,s =
Æ

(k1 + 1)(k1 +µ+ s+ 1) |k1 + 1, k2〉µ,s , (66)

M−1 |k1, k2〉µ,s =
Æ

k1(k1 +µ+ s) |k1 − 1, k2〉µ,s , (67)

M0
2|k1, k2〉µ,s = −(k2 +

1
2µ−

1
2 s+ 1

2)|k1, k2〉µ,s , (68)

M+2 |k1, k2〉µ,s = −
Æ

k2(k2 +µ− s) |k1, k2 − 1〉µ,s , (69)

M−2 |k1, k2〉µ,s = −
Æ

(k2 + 1)(k2 +µ− s+ 1) |k1, k2 + 1〉µ,s . (70)

Here, the labels k2 for states of the representation of M2 have been flipped to make both
numbers k1 and k2 non-negative integers. The eigenvalues of the quadratic invariant forms
and the full spatial rotation are given by

M2
1,2 =

1
4(1−µ

2 ∓ 2sµ− s2) , exp(2π�ıMx y)≃ exp(2π�ıs) . (71)

The quadratic form eigenvalues identify µ and s as mass and spin, respectively

M2
+ ≃ 1−µ2 − s2 , M2

− ≃ −2sµ . (72)

The above representation for normalisable fields on AdS2,1 will serve as a principal starting
point for many investigations of this article.

2.4 Irrep Contraction

Next we would like to derive a Poincaré representation from a unitary irrep of the AdS algebra.
We have already constructed irreps for both algebras in (65) and (39), and they describe fields
with certain properties such as an AdS or Minkowski mass µ or m and an intrinsic spin s. It
is therefore conceivable that the AdS representation contracts to the Poincaré representation.
However, there is also a major difference between the states of the representation: the AdS
states are labelled by discrete numbers whereas the Minkowski states are described by con-
tinuous momenta. The contraction limit can indeed induce such a transmutation, but this is a
singular process which requires some care. Let us therefore describe the limiting relationship
of the representation in detail.

Parameters. The contraction limit is performed via an identification of generators

(L, P) = (M1 +M2, m̄εM1) ⇐⇒ (M1,M2) = (ε
−1m̄−1P,−ε−1m̄−1P+ L) . (73)

We need to find a family of representations for M1,M2 so that the limiting representation for
L, P is finite. As the two representations superficially look rather unrelated, a useful first step
is to consider the eigenvalues of the algebra invariants. These expressions are independent of
the states, so the contraction limit will directly fix their relationship.

Altogether, we have the eigenvalue relations

(P2, L·P)≃ (−m2,−sm) , (M2
+, M2

−)≃ (1−µ
2 − s2,−2sµ) . (74)

The spin s is a discrete quantity and it has to be identified directly between the two represen-
tations. For the masses m and µ, we use the relationship of invariants

M2
+ =

4
ε2m̄2

P2 +O(ε−1) , M2
− =

4
εm̄

L·P+O(ε0) , (75)
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|p− 1
2εm̄em(p)/p,φ〉

|p,φ〉

|p+ 1
2εm̄em(p)/p,φ〉

|k1, k2〉

|k1 + 1, k2〉|k1, k2 + 1〉

|k1, k2 − 1〉|k1 − 1, k2〉

k1k2

k
− 1/2 0 1/2 1 3/2 2 5/2 3 7/2

2em

εm̄

Figure 2: Discrete states |k1, k2〉 of AdS irrep vs. continuous states |p,φ〉 of Poincaré
irrep. Note that the lattice of permissible k is alternating between integers and half-
integers for consecutive energy levels.

from which one obtains

µ=
2m
εm̄
+O(ε0) . (76)

We thus identify the parameters γ1,2 of the sl(2) representations by

γ1 =
m
εm̄
+

s
2

, γ2 =
m
εm̄
−

s
2

. (77)

States. We can now approach the contraction limit for the representation. The discrete states
of the AdS representation have to turn into continuous momentum states of the Poincaré rep-
resentation by some continuum limit involving states with large indices k1, k2. For how to
identify the indices precisely, we can take inspiration from their roles in the AdS represen-
tation. We know that ω = 1 + µ + k1 + k2 represents the energy on AdS space and in the
contraction limit it must diverge. Conversely, κ = k1 − k2 is an angular momentum which
should remain finite in the limit. These two considerations are taken into account by the
following prescription for a suitable state in the contraction limit

|p,φ〉m,s :=
∑

k

e−�ı(k1−k2)φ |k1, k2〉2m/m̄/ε,s , k1,2 :=
em(p)−m
εm̄

± k . (78)

Some remarks are in order: The indices k1,2 are not necessarily integers for any given param-
eters p, m,ε, but for sufficiently small ε one can always find a nearby momentum p′ such that
k1,2 become integers while approximating the desired state well. The bounds for the sum over
k are determined by non-negativity of k1 and k2, and for small ε these diverge to ±∞. Finally,
note that the prescription assumes k1−k2 = 2k, and for k1 and k2 to be arbitrary non-negative
integers, we allow k to be either an integer or a half-integer. However, the sum over k as-
sumes a step size of 1, so it is defined to be either over the integers or over the half-integers,
depending on where one starts. The situation is perhaps best illustrated by a figure, see Fig. 2.

Momentum Generators. Carrying out the contraction is most straight-forward for the en-
ergy generators P0

P0|p,φ〉= εm̄
∑

k

e−�ı(k1−k2)φ M0
1|k1, k2〉 (79)

=
∑

k

e−�ı(k1−k2)φ εm̄(k1 +
1
2µ+

1
2 s+ 1

2)|k1, k2〉 (80)

=
∑

k

e−�ı(k1−k2)φ
�

em(p) +
1
2εm̄(2k+ s+ 1)

�

|k1, k2〉 (81)

= em(p)|p,φ〉+O(ε) . (82)
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The result is the same state multiplied by the energy em(p). For the momentum generators
P±, some more work is needed, e.g.

P+|p,φ〉=
∑

k

e−�ı(k1−k2)φ εm̄
Æ

(k1 + 1)(k1 +µ+ s+ 1) |k1 + 1, k2〉 (83)

= p
∑

k

e−�ı(k1−k2)φ |k1 + 1, k2〉+O(ε) . (84)

Next we have to express the sum as a limiting state. For that we shift the summation index
by 1/2 to bring the sum closer to the original form. The resulting overall shift of k1,2 by 1/2
corresponds to a shift of energy by an elementary level and thus to a shift of momentum

k′1,2 = k1,2 +
1
2 , em(p

′) = em(p) +
1
2εm̄ , p′ = p+ 1

2εm̄
em(p)

p
+O(ε2) . (85)

According to Fig. 2 the shift of energy fits nicely to the alternating lattices for the index k. We
thus find
∑

k

e−�ı(k1−k2)φ |k1 + 1, k2〉=
∑

k−1/2

e−�ı(k1−k2−1)φ |k1 +
1
2 , k2 +

1
2〉= e�ıφ
�

�p+ 1
2εm̄em(p)/p,φ

�

. (86)

The shift of k1 leads to a shift of energy and a phase e�ıφ . Similar identities hold for shifts of
k1,2 by ±1. This concludes the evaluation of the contraction limit for the momentum generator

P+|p,φ〉= p e+�ıφ
�

�p+ 1
2εm̄em(p)/p,φ

�

+O(ε) = e+�ıφp|p,φ〉+O(ε) . (87)

In the limit, we end up with the same state we started with, therefore P+ also acts by multipli-
cation with the momentum e�ıφp. The limit for the other momentum generator P− is analogous
and yields the eigenvalue e−�ıφp.

Lorentz Generators. We can now turn to the Lorentz generators L. The rotation generator
L0 is easiest to handle, we find

L0|p,φ〉=
∑

k

e−�ı(k1−k2)φ(M0
1 +M0

2)|k1, k2〉=
∑

k

e−�ı(k1−k2)φ(k1 − k2 + s)|k1, k2〉 (88)

=
∑

k

�

�ı
∂

∂ φ
+ s
�

e−�ı(k1−k2)φ |k1, k2〉=
�

�ı
∂

∂ φ
+ s
�

|p,φ〉 . (89)

Here the appearance of a factor of k1,2 in the Fourier sum translates to a derivative term in
the conjugate variable as usual. Finally, we compute the contraction limit for the remaining
Lorentz generator L+ where recycle most of the previously used relations

L+|p,φ〉=
∑

k

e−�ı(k1−k2)φ
Æ

(k1 + 1)(k1 +µ+ s+ 1) |k1 + 1, k2〉 (90)

−
∑

k

e−�ı(k1−k2)φ
Æ

k2(k2 +µ− s) |k1, k2 − 1〉 (91)

=
∑

k

e−�ı(k1−k2)φ
�

p
εm̄
+ (k+ 1)

em(p)
p
+

1
2

sp
em(p) +m

+O(ε)
�

|k1 + 1, k2〉 (92)

−
∑

k

e−�ı(k1−k2)φ
�

p
εm̄
− k

em(p)
p
−

1
2

sp
em(p) +m

+O(ε)
�

|k1, k2 − 1〉 (93)

= e�ıφ
p
εm̄

��

�p+ 1
2εm̄em(p)/p,φ

�

−
�

�p− 1
2εm̄em(p)/p,φ

��

(94)

+ e�ıφ
�

�ı
em(p)

p
∂

∂ φ
+

sp
em(p) +m

�

|p,φ〉+O(ε) (95)

= e�ıφ
�

em(p)
∂

∂ p
+�ı

em(p)
p

∂

∂ φ
+

sp
em(p) +m

�

|p,φ〉+O(ε) . (96)
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In the final step, we have encountered the additional phenomenon that a small shift of energy
levels times a divergent factor of 1/ε gives rise to a derivative with respect to momentum.

Comparison. In summary, we have obtained the contraction limit of the irrep

L0|p,φ〉m,s =
�

�ı
∂

∂ φ
+ s
�

|p,φ〉m,s , (97)

L±|p,φ〉m,s = e±�ıφ
�

±em(p)
∂

∂ p
+�ı

em(p)
p

∂

∂ φ
+

sp
em(p) +m

�

|p,φ〉m,s , (98)

P0|p,φ〉m,s = em(p)|p,φ〉m,s , (99)

P±|p,φ〉m,s = e±�ıφp|p,φ〉m,s . (100)

One can convince oneself that these satisfy the relations of the Poincaré algebra. In fact,
the representation matches precisely with the Poincaré irrep (39) with trivial gauge function
Θ(p⃗) = 0 provided we express the two-dimensional momenta (px , py) in polar momentum
coordinates (p,φ) as

|p,φ〉m,s =
�

�p cos(φ), p sin(φ)
�

m,s . (101)

3 Loop Algebras and r-Matrices

The integrable structure of many classical physics models in 1+ 1 dimensions are related to
loop algebras based on some finite-dimensional Lie algebra with a classical r-matrix of rational
or trigonometric kind. The framework for models with underlying Lie algebras of simple or
semi-simple kind is developed very well. The situation is not as fortunate for non-simple
algebras. Here we use the contraction limit of the AdS algebra so(2, 2) to derive an algebraic
integrability framework based on the non-simple Poincaré algebra iso(2, 1).

We start by reviewing some relevant elements of quasi-triangular loop algebras of rational
type for simple Lie algebras g. We then apply the contraction of Sec. 2 to derive the alge-
braic integrability structures for the Poincaré loop algebra. We also introduce the notion of
integrable twists that will be needed later on.

The results concerning quasi-triangular loop algebras based on non-simple Lie algebras
(with invertible quadratic forms) will turn out to be straight-forward and unsurprising gener-
alisations of the case of simple Lie algebras. Nevertheless we will also use this section as an
opportunity to introduce the relevant algebraic framework and to derive their application to
the quasi-triangular Poincaré loop algebra.

3.1 Simple Rational Case

In the following, we review rational r-matrices and loop algebras for simple Lie algebras g.

Classical r-Matrix. A Lie algebra g can be supplemented by a classical r-matrix r in order
to turn it into a so-called quasi-triangular Lie bialgebra. Such an algebra provides relevant
structures for integrability and it is a suitable starting point for quantisation [2].

A classical r-matrix is an element r ∈ g⊗ g with two key properties. First, the symmetrisa-
tion r +P(r) must be a quadratic invariant element of g, that is for any elements X ∈ g

�

r +P(r), X
�

:=
�

r12 + r21, X1 + X2

� !
= 0 . (102)

Second, r must satisfy the classical Yang–Baxter equation

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23]
!
= 0 . (103)
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These two properties ensure that the Lie cobracket δ : g→ g∧ g, defined by

δ(X) := −[r, X] := −[r12, X1 + X2] , (104)

extends the Lie algebra to a proper Lie bialgebra.

Parametric r-Matrices and Loop Algebras. A classical r-matrix may also depend on a pair
of so-called spectral parameters u1, u2 ∈ C. The two spectral parameters are associated to the
two tensor sites of the r-matrix r : C×C→ g⊗ g such that in its relations the latter typically
extends according to the rule

r12→ r(u1, u2)12 . (105)

In the parametric case, r(u1, u2) is usually anti-symmetric as follows

P
�

r(u2, u1)
�

= −r(u1, u2) ⇐⇒ r(u1, u2)12 = −r(u2, u1)21 , (106)

so that its symmetric part is zero and thus trivially invariant. The classical Yang–Baxter equa-
tion also extends canonically to
�

r(u1, u2)12, r(u1, u3)13

�

+
�

r(u1, u2)12, r(u2, u3)23

�

+
�

r(u1, u3)13, r(u2, u3)23

�

= 0 . (107)

The dependency on spectral parameters uk can be encoded at the algebraic level by lifting
a given Lie algebra g to the infinite-dimensional loop extension g[u, u−1] of g. This is achieved
by adjoining g with Laurent polynomials in a formal parameter u:

g[u, u−1] := C[u, u−1]⊗ g . (108)

For a Lie algebra spanned by the generators Ja ∈ g with a = 1, . . . , dimg, the corresponding
loop algebra is spanned by un ⊗ Ja =: Ja

n with n ∈ Z. The Lie brackets are defined as

[Ja
n, Jb

m] =�ı f ab
cJ

c
n+m . (109)

For any representation ρ of the original algebra g there is a corresponding one-parameter
family of evaluation representations of the loop algebra ρu, u ∈ C, defined by:

ρu(J
a
n) = unρ(Ja) . (110)

With these relations and identifications (as well as an implicit reference to the evaluation
representation) the parametric r-matrix r(u1, u2) ∈ g⊗ g becomes a plain r-matrix in the loop
algebra r ∈ g[u, u−1]⊗g[u, u−1]. The cobracket in a quasi-triangular loop algebra thus becomes

δ(Ja
n) = −[r, J

a
n] = −
�

r(u1, u2)12, un
1 ⊗ Ja

1 + un
2 ⊗ Ja

2

�

. (111)

Rational r-Matrices. Many of the known parametric r-matrices obey the difference form
r(u1, u2) = r(u1 − u2). Such r-matrices for simple Lie algebras are classified by their poles
which form regular lattices in the complex plane of dimension 0, 1 or 2 [36]. These classes
are respectively called rational, trigonometric and elliptic. In this article we discuss rational
and trigonometric r-matrices for which standard expressions exist and are well-known. In this
and the following section we will deal only with rational r-matrices, the generalisation to the
trigonometric case is described in Sec. 5.

For a Lie algebra g with a quadratic invariant J2 = cabJa ⊗ Jb, in particular for g = sl(2),
the standard parametric r-matrix of rational types takes the form

r(u1, u2) =
−ν J2

u1 − u2
. (112)

16

https://scipost.org
https://scipost.org/SciPostPhys.14.6.157


SciPost Phys. 14, 157 (2023)

This r-matrix is anti-symmetric and it satisfies the classical Yang–Baxter equation.
We can recast this r-matrix to the loop algebra form by identifying the spectral parameters

u1 and u2 with the loop parameters of two copies of the loop algebra g[u, u−1]. We may expand
the r-matrix around the point u1/u2 = 0 using a geometric series and obtain

r = νcab

∞
∑

k=0

Ja
k ⊗ Jb

−k−1 . (113)

This r-matrix satisfies the classical Yang–Baxter equation, but notably it is not anti-symmetric in
contradistinction to the corresponding parametric r-matrix r(u1, u2).16 The cobrackets based
on the rational r-matrix read

δ(Jc
n) =

�ı
2ν f c

ab

n−1
∑

k=0

Ja
k ∧ Jb

n−1−k , (114)

with the dual structure constants defined by f c
ab := cda f cd

b.
For g= sl(2) we have concretely the rational r-matrix

rsl(2) = ν
∞
∑

k=0

�

−J0
k ⊗ J0

−k−1 +
1
2J+k ⊗ J−−k−1 +

1
2J−k ⊗ J+−k−1

�

, (115)

and the resulting cobrackets

δ(J0
n) = −

1
2ν

n−1
∑

k=0

J+k ∧ J−n−1−k , δ(J±n ) = ±ν
n−1
∑

k=0

J0
k ∧ J±n−1−k . (116)

3.2 Contraction

Now we apply the contraction to the so(2,2) loop algebra with rational r-matrix, and we
investigate several relevant aspects of it.

Limit. As discussed above, the AdS algebra so(2, 2) has two quadratic invariants M2
1 and M2

2.
Therefore, there is a family of rational r-matrices for this algebra

rso(2,2)(u1,1, u2,1; u1,2, u2,2) = −
ν1M2

1

u1;1 − u1;2
−

ν2M2
2

u2;1 − u2;2
, (117)

with two constants νk and two pairs of spectral parameters uk; j which can all be chosen inde-
pendently.17

Now let us see how the contraction limit of the so(2, 2) r-matrix leads to an r-matrix for
iso(2,1). We change variables from M1,2 to L,P according to (19) to obtain

rso(2,2) = −
ν1m̄−2ε−2P2

u1;1 − u1;2
+
−ν2m̄−2ε−2P2 + 2ν2m̄−1ε−1L·P− ν2L2

u2;1 − u2;2
. (118)

We observe that this expression is divergent in the contraction limit ε→ 0. In order for it to
have a finite limit, we need to transform the coefficients ν1,2 and spectral parameters u1,2; j

16An alternative but equivalent form for r is based on the expansion about the point u2/u1 = 0. Here we fix the
choice on one of the two alternative forms.

17Since the overall pre-factor of an r-matrix is usually of minor importance, the r-matrix for this semi-simple
algebra still depends on the ratio of ν1 and ν2 as one essential constant.
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accordingly such that ν1 + ν2 = O(ε2) and ν2 = O(ε) as well as u1; j − u2; j = O(ε). This is
easily achieved by the combinations

ν1,2 = ±νεm̄+ 1
2ν
′ε2m̄2 +O(ε3) , u1,2; j = u j ±

1
2εm̄v j +O(ε2) . (119)

Then we find in the contraction limit ε→ 0

rso(2,2)→ riso(2,1)(u1, v1; u2, v2) = −
2νL·P
u1 − u2

−
ν′ P2

u1 − u2
+
ν(v1 − v2)P2

(u1 − u2)2
. (120)

The resulting expression up to the last term is of the generic rational form (112) for an algebra
with two independent quadratic invariants L·P and P2. Indeed, the construction of the rational
r-matrix merely relies on a quadratic invariant form, whose existence is guaranteed for semi-
simple Lie algebras, but it may also exist in suitable non-simple Lie algebras.

Merely the last term proportional to the difference of the second spectral parameters v j is
unusual. In fact, it is curious that the r-matrix admits a second spectral parameter v j: This
spectral parameter appears in a very regular way thanks to its origin in the semi-simple loop
algebra. For instance, the dependency on it can be reproduced easily by a suitable evaluation
representation of the loop algebra with two spectral parameters

ρu,v(L
a
n) = unρ(La) + nvun−1ρ(Pa) , ρu,v(P

a
n) = unρ(Pa) . (121)

The parametric r-matrix then follows as the evaluation representation of the loop algebra r-
matrix

riso(2,1) =
∞
∑

k=0

�

νcabLa
k ⊗ Pb

−k−1 + νcabPa
k ⊗ Lb

−k−1 + ν
′cabPa

k ⊗ Pb
−k−1

�

. (122)

This expression agrees with the canonical form for rational r-matrices with two independent
quadratic invariants L·P and P2. In fact, for many purposes, it would do to drop the second
spectral parameter by setting it to zero, v j = 0. However, for reasons of generality, we shall
keep it explicitly.

Twists. Later on, we will need to apply a twist to the coalgebra structure. Let us introduce
the twist deformation already here. A twist of some original r-matrix r is obtained by adding
some anti-symmetric combination of generators [37]

r̃ = r + ξX ∧ Y , (123)

while ensuring that the classical Yang–Baxter equation remains valid. Towards understanding
the latter, we express the relevant combination of the classical Yang–Baxter equation in terms
of the original cobracket δ as

[[r̃, r̃]] = [[r, r]]− ξδ(X)∧ Y+ ξδ(Y)∧ X+ ξ2(X ∧ Y)∧ [X, Y]
!
= 0 . (124)

In particular, if δ(X) ∧ Y, δ(Y) ∧ X and [X, Y] are all linear combinations of X and Y, the
twist applies to arbitrary continuous values of the deformation parameter ξ. The twist then
correspondingly deforms the cobracket as follows

δ̃(Z) = δ(Z)− ξX ∧ [Y,Z] + ξY ∧ [X, Z] . (125)

For example, we will later need to twist the rational so(2, 2) r-matrix as follows:

r̃so(2,2) = rso(2,2) + ξ(M
0
1 +M0

2)∧M+2 . (126)
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Defining the pair of level-0 generators X := M0
1 +M0

2 and Y := M+2 we see that the twist is
applicable for arbitrary ξ because

δ(X) = δ(Y) = 0 , [X,Y] = Y . (127)

In the contraction limit with the scaling of parameter ξ= εm̄ξ′, the twist yields the following
r-matrix

r̃iso(2,1) = riso(2,1) + ξ
′L0 ∧ P+ . (128)

This is in fact also a proper twist of riso(2,1) in (120) because the generators X := L0 and Y := P+

obey the relations as described above.

Momentum Representation. Now, we can evaluate the twisted rational r-matrix (128) on
the momentum representations which are the unitary irreps of the Poincaré algebra. Upon
subsequent reduction to be discussed in the following Sec. 4, this representation of the r-matrix
forms the diagonal part of the tree level AdS/CFT S-matrix, as we will see in Sec. 6.

The r-matrix acts on the tensor product of two states of the momentum representation
(101):

|p1,φ1〉m1,s1
⊗ |p2,φ2〉m2,s2

(129)

as the differential operator

r̃iso(2,1)(u1, v1; u2, v2)≃�ıA12
∂

∂φ2

−�ıA21
∂

∂φ1

+�ıB12
∂

∂p2

−�ıB21
∂

∂p1

+ C12 − C21 , (130)

with the coefficient functions

A12 =
ν

u1 − u2

�

em1
(p1)−

p1

p2
em2
(p2) cos(φ1 −φ2)

�

− ξ′ e�ıφ1 p1 , (131)

B12 =
ν

u1 − u2
p1em2

(p2) sin(φ1 −φ2) , (132)

C12 =
ν

u1 − u2
s2

�

em1
(p1)−

p1p2

em2
(p2) +m2

cos(φ1 −φ2)

�

− ξ′s2 e�ıφ1 p1 (133)

+

� 1
2ν
′

u1 − u2
−

1
2ν(v1 − v2)

(u1 − u2)2

�

�

em1
(p1) em2

(p2)− p1p2 cos(φ1 −φ2)
�

. (134)

By construction, the above r-matrix differential operator acting on two-particle states obeys the
classical Yang–Baxter equation. We shall return to these expressions after having introduced
a reduction procedure for the algebra and for the states.

4 Reduction

In this section we discuss a particular reduction of the (3+3)-dimensional Poincaré bialgebra
sl(2)⋉R2,1 to a (1+1)-dimensional bialgebra u(1)×R. This reduction was introduced in [31]
as a possibility to embed the classical algebra of the AdS/CFT worldsheet matrix in a larger but
more conventional algebra. It was motivated by the observation that particle momenta take
values in a three-dimensional linear space [7,38,39], but are further non-linearly constrained
to one degree of freedom. At the algebraic level, the reduction consists in restricting to a one-
dimensional subalgebra of the Lorentz algebra sl(2) and dividing out a newly established two-
dimensional ideal of the algebra of momentum generatorsR2,1. The two remaining generators
represent the length of a momentum vector in three-dimensional space as well as a Lorentz
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rotation about this vector. The most interesting aspect of the reduction is that it incorporates
a dependency on the spectral parameter u of the loop extension of the Poincaré algebra. In
other words, the reduction is not homogeneous in the level of the loop algebra because it
relates generators of different loop levels. On the one hand, the resulting reduced algebra
is abelian and thus hardly exciting. On the other hand, the reduction mechanism leaves the
coalgebra and r-matrix structures intact,18 and we end up with a non-standard form for the
r-matrix. This makes the overall construction extendable by psu(2|2) supersymmetry without
further ado, and has important applications within the AdS/CFT correspondence. Also in
practical terms it makes the reduction conveniently applicable to representations, in particular
to representations of the r-matrix.

Subalgebra and Ideal. In [31] the classical limit of the relevant representation for the
AdS/CFT worldsheet S-matrix was discussed. This representation involves a R2,1 momentum
vector which was shown to be aligned along a common direction depending on the spectral
parameter u. This direction can be described by the two relations

p± =
e±�ıαβ

u
p0 . (135)

Next to the spectral parameter u it also depends on two constants α,β . These can be chosen
arbitrarily; keeping them merely serves a more universal treatment. Furthermore, we can
simply view the parameter u, for the time being, as just another adjustable parameter of the
Poincaré representation, as opposed to the spectral parameter for its loop algebra which it
ultimately becomes.

The above assignment of momentum components is clearly not invariant under the full
Lorentz algebra sl(2), but there is a one-dimensional u(1) subalgebra which rotates about the
direction of the above momentum. This subalgebra is generated by the combination

L= β−1uL0 − 1
2e−�ıαL+ − 1

2e+�ıαL− . (136)

As a one-dimensional subalgebra, the residual Lie bracket can only be trivial. The algebra with
the momentum generators is given by

[L,P0] = 1
2(e
−�ıαP+ − e+�ıαP−) = 1

2(e
−�ıαI+ − e+�ıαI−) , (137)

[L,P±] = ±β−1uP± ∓ e±�ıαP0 = ±β−1uI± . (138)

Among the three resulting linear combinations of the momentum generators, there are only
two linearly independent directions

I± := P± − e±�ıαβu−1P0 . (139)

Consequently, these two span an ideal of u(1) ⋉ R2,1. Removing the ideal by the identifica-
tions19

P0 = β−1uP , P± = e±�ıαP , (140)

where P is a single remaining momentum generator, we reduce the algebra to u(1)×R with
the abelian relation

[L, P] = 0 . (141)
18The reduction mechanism is the same at the level of the coalgebra, but the roles of taking a subalgebra and

dividing out an ideal are exchanged.
19Here we choose to identify P with P± such that the eigenvalue of P in a momentum representation is the

magnitude of spatial momentum p. Alternatively, one might choose to identify P0 = H with a different generator
H that measures the energy p0 = e(p). The identification between these two generators is βH= uP.
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r-Matrix. We can now address the reduction of the algebra to the coalgebra structures. Or-
dinarily, reducing an algebra to a subalgebra or removing an ideal is not compatible with the
coalgebra structure because the latter typically leads out of the subalgebra or does not respect
the trivialisation of the ideal. Here, the combination of subalgebra and removal of ideal also
ensures a proper coalgebra structure. First, removal of the ideal by the two relations

P± = e±�ıαβu−1P0 (142)

can be understood as two linear relations on the dual generators which reduce it to a one-
dimensional subcoalgebra. Second, reduction to the subalgebra spanned by

L= β−1uL0 − 1
2e−�ıαL+ − 1

2e+�ıαL− , (143)

specifies a two-dimensional coideal of dual generators which are annihilated by L.
The compatibility of these reductions is more clearly seen in the r-matrix. We first apply

the removal of the ideal to the twisted r-matrix r̃iso(2,1) in (128) and find

r̃iso(2,1)(u1, u2)→
ν

u1 − u2
L⊗ P+

ν

u1 − u2
P⊗ L (144)

+
�

ν′

β2
−
ν(v1 − v2)
β2(u1 − u2)

�

u1u2 − β2

u1 − u2
P⊗ P (145)

+
�

−
ν

β
+ ξ′ e�ıα
�

L0 ∧ P . (146)

We note that almost all occurrences of the individual generators La have been combined to
the generator L. Merely in the last term, there is a residual dependence on the generator L0

which does not belong to the u(1) subalgebra. This term can be removed by fixing the twist
parameter to20

ξ′ =
ν

β
e−�ıα. (147)

The twisted r-matrix thus reduces to

ru(1)×R :=
ν

u1 − u2
L⊗ P+

ν

u1 − u2
P⊗ L+
�

ν′

β2
−
ν(v1 − v2)
β2(u1 − u2)

�

u1u2 − β2

u1 − u2
P⊗ P , (148)

which now belongs completely to the reduced loop algebra (u(1)×R)[u, u−1]. Since the algebra
is abelian, the classical Yang–Baxter equation is trivially satisfied for any r-matrix.

Even though the classical Yang–Baxter equation is trivial in this case, it is worth pointing
out that it also holds by virtue of the reduction procedure alone. We will work out this fact in
Sec. 6 in order to conveniently demonstrate the applicability of the reduction procedure to an
extension by psu(2|2) supersymmetry.

In conclusion, we have constructed a consistent reduction of the Poincaré bialgebra
sl(2)⋉R2,1 to a quasi-triangular Lie bialgebra u(1)×R. In this construction, the role of the
coalgebra twist remains somewhat unclear. Here we constructed it by the requirement that the
r-matrix reduces consistently. However, it would be interesting to understand whether there
is some (abstract) connection between the twist and the choice of the subalgebra or ideal.
Why is the twist necessary in the first place? Could one also start with a (suitable) twist, and
construct the corresponding reduction?

20The reduction presented in [31] used a slightly different twist of the original algebra which respects the classical
Yang–Baxter equation only upon reduction. Our twist resolves this issue by adding terms involving the ideal so
that the result is equivalent upon reduction.
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Loop Algebra Form. It makes sense to cast the reduction and the resulting relations in terms
of the loop algebra, which we will occasionally need later on. This reformulation makes explicit
the non-standard nature of the resulting bialgebra which is non-homogeneous in the loop
levels. Even more importantly, working in terms of the loop algebra makes the statements
slightly more robust.21

The subalgebra u(1)[u, u−1] of sl(2)[u, u−1] is spanned by the generators

Ln := β−1L0
n+1 −

1
2e−�ıαL+n −

1
2e+�ıαL−n . (149)

Similarly, the removal of the ideal is achieved by the relations

P0
n = β

−1Pn+1 , P±n = e±�ıαPn . (150)

Evidently, the resulting loop algebra is abelian, [Ln, Pm] = 0. Finally, the reduced twisted
r-matrix in loop algebra form reads

r̃iso(2,1) = riso(2,1) +
ν

β
e−�ıαL0

0 ∧ P+0 → ru(1)×R , (151)

ru(1)×R := ν
∞
∑

n=0

[−Ln ⊗ P−n−1 − Pn ⊗ L−n−1] (152)

+ ν′
∞
∑

n=0

�

−β−2Pn+1 ⊗ P−n + Pn ⊗ P−n−1

�

. (153)

Momentum Representation. Let us finally apply the reduction to representations. In
the momentum representation (97), the momentum generators are represented on a state
|u, p,φ〉m,s by the eigenvalues

P0
n ≃ unem(p) , P±n ≃ une±�ıφp . (154)

In order to trivialise the ideal, we need to impose the following relations on the eigenvalues

e±�ıφp = e±�ıαβu−1em(p) . (155)

These are solved as functions of u by

φ = α , p(u) =
βm
p

u2 − β2
, e(u) =

mu
p

u2 − β2
. (156)

We thus define the reduced state as

|u, v〉m,s := |u, v, p(u),α〉m,s . (157)

The remaining generators act on this state as eigenvalues

Ln|u, v〉m,s = un sm
p(u)
|u, v〉m,s + vun−1

�

(n+ 1)u2β−2 − n
�

p(u)|u, v〉m,s , (158)

Pn|u, v〉m,s = unp(u)|u, v〉m,s . (159)

Note that all the derivative operators in the representation of L have cancelled out on the
particular state.

21For instance, the classical Yang–Baxter equation can involve distributional terms in the dependence on the
spectral parameter u which have been discarded in the above treatment.
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We can now act with the r-matrix on a tensor product state |u1, v1〉m1,s1
⊗|u2, v2〉m2,s2

. Here
we can either use the reduction of the r-matrix or apply the original twisted r-matrix to the
reduced state, in either case, the result is a pure scattering phase

ru(1)×R ≃
ν

u1 − u2

s1m1p2

p1
+

ν

u1 − u2

s2m2p1

p2
+
�

ν′

β2
−
ν(v1 − v2)
β2(u1 − u2)

�

u1u2 − β2

u1 − u2
p1p2 (160)

=
ν

β

s1m1p2
2 + s2m2p2

1

p2e1 − p1e2
+
�

ν′

β
−
ν(v1 − v2)p1p2

β2(p2e1 − p1e2)

�

(e1e2 − p1p2)p1p2

p2e1 − p1e2
. (161)

As an aside, the second line displays the scattering phase expressed purely in terms of energy
and momentum variables.

5 Trigonometric Case

The rational classical r-matrix which we have discussed up to now has a trigonometric gen-
eralisation [40]. The corresponding quantum R-matrix was constructed in [41] and its quan-
tum affine symmetry algebra was proposed in [42]. It provides the integrable structure for a
quantum deformation of the one-dimensional Hubbard model, as well as for the worldsheet
scattering matrix in quantum-deformed AdS/CFT [43–45].

In this section we will extend the discussion of the previous sections to the case of the
trigonometric r-matrix. Whereas the contraction is performed precisely as in the rational case,
the consistent reduction requires a different identification of the abelian subalgebra.

5.1 Contraction

We start with the trigonometric r-matrix of the algebra g = sl(2) [36]. The standard form
reads with zi := exp(ui)

rsl(2)(z1, z2) = +
1
2ν

z1 + z2

z1 − z2
J0 ⊗ J0 −

1
2νz1

z1 − z2
J+ ⊗ J− −

1
2νz2

z1 − z2
J− ⊗ J+ (162)

= −1
2ν

z1 + z2

z1 − z2
J2 − 1

4ν J+ ∧ J− . (163)

Similarly to the rational case, the trigonometric r-matrix can be expressed in terms of the loop
algebra, where z1,2 (rather than u1,2) serve as spectral parameters. The cobrackets take the
form

δ(J0
n) = −

1
2ν

n
∑

k=1

J+k ∧ J−n−k , (164)

δ(J+n ) = +
1
2ν J0

0 ∧ J+n + ν
n−1
∑

k=1

J0
k ∧ J+n−k , (165)

δ(J−n ) = −
1
2ν J0

0 ∧ J−n − ν
n
∑

k=1

J0
k ∧ J−n−k . (166)

Contraction Limit. Similarly to the rational case, we construct the trigonometric r-matrix
for the AdS algebra so(2,2)≃ sl(2)× sl(2) as a sum of two copies of the r-matrices above

rso(2,2)(z1;1, z2;1; z1;2, z2;2) = −
1
2ν1

z1;1 + z1;2

z1;1 − z1;2
M2

1 −
1
4ν1M+1 ∧M−1 (167)

− 1
2ν2

z2;1 + z2;2

z2;1 − z2;2
M2

2 −
1
4ν2M+2 ∧M−2 . (168)
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As the next step, we perform the contraction with the same prescription for the coefficients
ν1,2 as we had in the rational case (119) and for the spectral parameters
z1,2; j = z j(1 ±

1
2εm̄y j) +O(ε2). This gives us a trigonometric r-matrix for the 3D Poincaré

algebra

riso(2,1)(z1, y1; z2, y2) = −ν
z1 + z2

z1 − z2
L·P− 1

2ν
′ z1 + z2

z1 − z2
P2 + ν

z1z2(y1 − y2)
(z1 − z2)2

P2 (169)

− 1
4νL+ ∧ P− + 1

4νL− ∧ P+ − 1
4ν
′ P+ ∧ P− . (170)

This r-matrix can be obtained as the evaluation representation of the loop algebra r-matrix

riso(2,1) =
∞
∑

k=0

�

νcabLa
k ⊗ Pb

−k + νcabPa
k ⊗ Lb

−k + ν
′cabPa

k ⊗ Pb
−k

�

(171)

− νL·P− 1
2ν
′ P2 − 1

4νL+0 ∧ P−0 +
1
4νL−0 ∧ P+0 −

1
4ν
′ P+0 ∧ P−0 , (172)

with the evaluation representation being defined as

ρz,y(L
a
n) = znρ(La) + nyznρ(Pa) , ρz,y(P

a
n) = znρ(Pa) . (173)

Twist. Similarly to the rational case, there exists a twist with an arbitrary parameter ξ that
preserves the classical Yang–Baxter equation

r̃so(2,2) = rso(2,2) +
1
2ν2M0

1 ∧M0
2 + ξ(M

0
1 +M0

2)∧M+2 . (174)

After the contraction one obtains with ξ= −εm̄ξ′

r̃iso(2,1) = riso(2,1) +
1
2νL0 ∧ P0 + ξ′L0 ∧ P+ . (175)

We will use this twist later on.

Momentum Representation. Finally, we also compute the momentum representation of the
twisted trigonometric r-matrix on two-particle states. This yields the following differential
operator

riso(2,1)(z1, y1; z2, y2)≃�ıA12
∂

∂ φ2
−�ıA21

∂

∂ φ1
+�ıB12

∂

∂ p2
−�ıB21

∂

∂ p1
+ C12 − C21 , (176)

where we now define the coefficient functions as

A12 =
1
2ν

z1 + z2

z1 − z2

�

em1
(p1)− em2

(p2)
p1

p2
cos(φ1 −φ2)
�

(177)

− �ı2νem2
(p2)

p1

p2
sin(φ1 −φ2)− νem1

(p1)− ξ′p1e�ıφ1 , (178)

B12 =
1
2ν

z1 + z2

z1 − z2
p1em1

(p2) sin(φ1 −φ2)−
�ı
2νp1em2

(p2) cos(φ1 −φ2) , (179)

C12 =
1
2ν

z1 + z2

z1 − z2
s2

�

em1
(p1)−

p1p2 cos(φ1 −φ2)
m2 + em2

(p2)

�

− �ı2ν
p1p2s2

m2 + em2
(p2)

sin(φ1 −φ2) (180)

+
�

1
4ν
′ z1 + z2

z1 − z2
− 1

2ν
z1z2(y1 − y2)
(z1 − z2)2

�

�

em1
(p1)em2

(p2)− p1p2 cos(φ1 −φ2)
�

(181)

− �ı4ν
′p1p2 sin(φ1 −φ2)−

1
2νem1

(p1)s2 − ξ′p1s2e�ıφ1 . (182)
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5.2 Reduction

Now, we introduce a different reduction procedure to reduce the trigonometric 3D Poincaré
bialgebra to the bialgebra u(1) × R. The alternative reduction consists in a different choice
for the one-dimensional subalgebra of sl(2) and subsequent ideal subalgebra. Whereas the
difference is inessential for the resulting abelian algebras, in the supersymmetric extension
to be discussed in Sec. 6, the novel reduction will yield the trigonometric bialgebra for the
classical limit of the quantum-deformed Hubbard model [40].

Subalgebra and Ideal. The new u(1) subalgebra generator now is chosen as

L= 1
2h−1zL0 − 1

2h−1L0 + �ı2e�ıαL− + �ı2e−�ıαzL+ , (183)

where z will later be identified with the parameter of the evaluation representation. We also
introduce two global parameters h and α that take on the roles of β and α in the rational case.
This generator acts on the momentum generators according to

[L, P0] = �ı2e�ıαP− − �ı2e−�ıαzP+ =: I0 , (184)

[L, P+] =�ıe�ıαP0 − 1
2h−1P+ + 1

2h−1zP+ =: I+ , (185)

[L, P−] = −�ıe−�ıαzP0 + 1
2h−1P− − 1

2h−1zP− (186)

= −e−2�ıαzI+ −�ıe−�ıαh−1I0 +�ıe−�ıαh−1zI0 . (187)

We see that there are only two linear independent brackets out of three between L and P0,±.
This implies that {I0,+

n }n∈Z span an ideal subalgebra for u(1)⋉R2,1. By dividing the ideal out
we recover an abelian algebra spanned by L and P with the identifications:

P0 ≃ 1
2h−1zP− 1

2h−1P , P+ ≃ −�ıe�ıαP , P− ≃ −�ıe−�ıαzP . (188)

The relations (188) can be implemented at the level of the momentum representation
forming constraints on the eigenvalues of the momentum generators. However, it will prove
useful to consider an alternative parametrisation, in which the constraints are expressed as

em(p) = (z − 1)
qm
h

, p e�ıφ = −2�ı e�ıα qm , p e−�ıφ = −2�ı e−�ıα qzm . (189)

For the time being we consider the spectral parameter z as a usual representation variable.
The parameter q depends on z, but in order to resolve square roots in q(z) we introduce a new
parameter x such that

z =
�ıx

(h′x −�ıh)(hx +�ıh′)
, q =

(h′x −�ıh)(hx +�ıh′)
h′(x2 − 1)

, h′ =
p

1− h2 . (190)

The on-shell condition is explicitly satisfied in the new variables

e2 − p2 −m2 =
m2

h2

�

z2q2 + 2zq2(2h2 − 1) + q2 − h2
�

= 0 . (191)

r-Matrix. As we did for the rational case, let us apply the reduction relations (188) to the
twisted trigonometric r-matrix 175:

riso(2,1)→ ν
z2

z1 − z2
L⊗ P+ ν

z1

z1 − z2
P⊗ L (192)

+ ν′
1
8h−2(z1 + z2)(z1 − 1)(z2 − 1) + z1z2

z1 − z2
P⊗ P (193)

− ν
z1z2(y1 − y2)

z1 − z2

1
2(z1 + z2) +

1
4h−2(z1 − 1)(z2 − 1)

z1 − z2
P⊗ P . (194)
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As before, we observe that all the terms which do not belong to the reduced subalgebra cancel
thanks to the twist and we obtain a trigonometric classical r-matrix for u(1)×R.

Loop Form. For slightly more rigorous treatment we can reformulate the reduction and the
r-matrix in the loop algebra form by identifying z with the spectral parameter. The u(1)[z, z−1]
generators then read

Ln =
1
2h−1L0

n+1 −
1
2h−1L0

n +
�ı
2e�ıαL−n +

�ı
2e−�ıαL+n+1 , (195)

and the following identifications between R2,1[z, z−1] generators remove the ideal

P0
n ≃

1
2h−1Pn+1 −

1
2h−1Pn , P+n ≃ −�ıe

�ıαPn , P−n ≃�ıe
−�ıαPn+1 . (196)

In the loop form, the resulting reduced trigonometric r-matrix reads

ru(1)×R = −ν
∞
∑

k=0

[Lk ⊗ P−k + Pk+1 ⊗ L−k−1] (197)

− 1
4ν
′h−2

∞
∑

k=0

[Pk+1 ⊗ P−k+1 + Pk+1 ⊗ P−k−1 + (4h2 − 2)Pk+1 ⊗ P−k] (198)

− 1
8ν
′h−2(P0 ⊗ P0 − P1 ⊗ P1 + P1 ∧ P0) . (199)

Rational Limit. The trigonometric and rational reductions are actually related by the so-
called rational limit. We identify

zi = eλui , yi = λvi , h= �ı2λβ , (200)

and consider the leading-order terms in λ in all expressions as λ → 0. In the evaluation
representation the leading terms of the generator L coincide with the rational generator (136)
(up to a factor of�ı) and the leading terms of I0,+ span the same ideal as in the rational case.
We can also verify that the obtained trigonometric twist is consistent with the rational one in
the limiting sense. We apply the rational limit relations (200) to the r-matrix and only keep
track of leading order terms in λ:

r trig
iso(2,1)(z1, y1; z2, y2) = −

ν

λ

2L·P
u1 − u2

−
ν′

λ

P2

u1 − u2
+
ν

λ

(v1 − v2)P2

(u1 − u2)2
(201)

+
ν

λ

e−�ıα

β
L0 ∧ P+ +O(λ0) (202)

= λ−1rrat
iso(2,1)(u1, v1; u2, v2) +O(λ0) . (203)

The singular contribution in the limit λ → 0 is the resulting r-matrix rescaled by λ−1. We
observe that it exactly coincides with the rational twisted r-matrix (128):

rrat
iso(2,1)(u1, v1; u2, v2) = −

2νL·P
u1 − u2

−
ν′ P2

u1 − u2
+
ν(v1 − v2)P2

(u1 − u2)2
+
ν

β
e−�ıαL0 ∧ P+ . (204)

Momentum Representation. Relations (189) define a reduced state that depends on the
variable z

|z〉m,s :=
�

�p(z),φ(z)
�

m,s . (205)
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The reduced generators then act on this state according to

Ln|z〉m,s =
szn

2q(z)
|z〉m,s +

2mq(z)yzn

(2h)2
�

(n+ 1)z2 + (2h2 − 1)(2n+ 1)z + n
�

|z〉m,s , (206)

Pn|z〉m,s = 2mq(z)zn|z〉m,s . (207)

Altogether, the representation of the r-matrix reads (with q1,2 = q(z1,2))

ru(1)×R(z1, y1; z2, y2)≃
ν

z1 − z2

�

q2

q1
z2m2s1 +

q1

q2
z1m1s2

�

(208)

+
ν′

z1 − z2

�

z1z2 +
1
8h−2(z1 + z2)(z1 − 1)(z2 − 1)

�

q1q2 (209)

−
ν(y1 − y2)
(z1 − z2)2
�1

2(z1 + z2) +
1
4h−2(z1 − 1)(z2 − 1)

�

z1z2q1q2 . (210)

6 Supersymmetric Extension

In this section we consider supersymmetric extensions of the algebras we discussed so far.
Namely, we extend the AdS algebra so(2, 2) to a semi-simple superalgebra d(2, 1;ε)× sl(2),22

where so(2,2) = sl(2) × sl(2) is realised as the combination of the external sl(2) and the
sl(2) subalgebra inside d(2,1;ε). On the other hand, the Poincaré algebra iso(2, 1) is lifted to
sl(2)⋉psu(2|2)⋉R2,1 where the Lorentz and momentum generators of iso(2, 1) = sl(2)⋉R2,1

act as three derivations and three central charges, respectively, to the simple super-algebra
psu(2|2). The extension of the contraction and reduction is rather plain and we obtain a
(deformed) loop u(2|2) algebra and classical r-matrices for it that are relevant for AdS/CFT
integrability and for the one-dimensional Hubbard model [28,29,31,40].

In the following we shall introduce the above superalgebras and some relevant represen-
tations. We will then discuss how they are related by contractions, generalise their reduction
and investigate r-matrices of rational and trigonometric form. Finally, we discuss how a sec-
ond superalgebra d(2, 1;ε′) can be used in place of a plain sl(2) algebra in order to double the
amount of supersymmetry.

6.1 Superalgebras

Let us briefly introduce the relevant superalgebras, their Lie brackets and explain how the
contraction works in the supersymmetric setting.

Exceptional Lie Superalgebra d(2, 1;ε). The exceptional Lie superalgebra d(2,1;ε) is
spanned by a set of sl(2) generators J0,±

M , two copies of su(2) generators J0,±
L , J0,±

R and eight
supercharges {Q j,l r} j,l,r=↑,↓. The algebra relations for the sl(2) or su(2) subalgebras are de-
scribed in Sec. 2.1, whereas the supercharges transform in spin-1/2 representations of sl(2)M
and su(2)L,R in each index, respectively. In other words, the Lie brackets read

[Ja
M, Q j,l r] = −1

2 cab(σ̃b)
j
kQk,l r , (211)

[Ja
L ,Q j,l r] = −1

2 cab(σ̃b)
l
mQ j,mr , (212)

[Ja
R, Q j,l r] = −1

2 cab(σ̃b)
r

pQ j,l p , (213)

22Throughout this article, we consider the real form of d(2,1;ε) whose even part is sl(2)× su(2)× su(2).
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where we introduce a set of Pauli matrices σ̃ adjusted to the signature of sl(2) as well as the
anti-symmetric tensor ϵ

σ̃0 =

�

1 0
0 −1

�

, σ̃+ =

�

0 �ı
0 0

�

, σ̃− =

�

0 0
�ı 0

�

, ϵ =

�

0 +1
−1 0

�

. (214)

The anti-symmetric Lie bracket between the supercharges is

{Q j,l r , Qk,mp}= −sM(σ̃aϵ)
jkϵlmϵrp Ja

M − sLϵ
jk(σ̃aϵ)

lmϵrp Ja
L − sRϵ

jkϵlm(σ̃aϵ)
rp Ja

R . (215)

It depends on three parameters sM,L,R subject to two considerations: First, the Jacobi identity
requires the linear constraint sM+sL+sR = 0. Second, the possibility to rescale the supercharges
removes another degree of freedom. Thus, there is effectively only one independent parameter
that we label as ε. For further purposes we fix the parameters to

sM = ε , sL = 1− ε , sR = −1 . (216)

The superalgebra has a quadratic invariant form given by

J2 = −εJ2
M − (1− ε)J

2
L + J2

R+Q2 , (217)

where J2
M,L,R denote the invariant quadratic forms for the even subalgebras sl(2)M and suL,R(2),

respectively, and where we have defined Q2 as the following quadratic combination of the
supercharges

Q2 := 1
2ϵ jkϵlmϵrp Q j,l r ⊗Qk,mp . (218)

AdS Supersymmetry. The simple superalgebra d(2, 1;ε) can be supplemented by a factor of
sl(2) to a supersymmetry algebra d(2,1;ε)× sl(2) for AdS2,1 space. In that case, we relabel
the generators J0,±

M of the subalgebra sl(2)M as M0,±
1 of the subalgebra sl(2)1. The additional

algebra sl(2)2 is spanned by the triplet of generators M0,±
2 which have trivial algebra relations

with d(2,1;ε).

Poincaré Supersymmetry. The other relevant superalgebra is maximally extended psu(2|2)
algebra which can also be expressed as sl(2)⋉psu(2|2)⋉R2,1 [46]. We would like to obtain it
as a contraction limit of the algebra above. Therefore, we write the algebra starting from the
above basis where the triplet of generators Ja

M is replaced by the triplet of Lorentz generators
La, and an additional triplet of momentum generators Pa is introduced. The action of the sl(2)
and su(2)L,R generators on the supercharges is the same as in the algebra d(2, 1;ε) where La

replaces Ja
M. The Lie bracket between the supercharges is

{Q j,l r ,Qk,mp}= −
1
m̄
(σ̃aϵ)

jkϵlmϵrp Pa − ϵ jk(σ̃aϵ)
lmϵrp Ja

L + ϵ
jkϵlm(σ̃aϵ)

rp Ja
R . (219)

Here, we have introduced a reference mass scale m̄, which could be absorbed by rescaling the
momentum generators. Nevertheless, we would like to keep it explicit to manifestly make the
momenta have the dimension of a mass. The algebra has two invariant quadratic forms

2L·P− m̄(Q2 − J2
L + J2

R) , P2 . (220)
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Contraction. We start with the semi-simple AdS superalgebra d(2,1;ε)× sl(2) with the AdS
generators M0,±

1 = J0,±
M from d(2, 1;ε) and M0,±

2 from sl(2). One can easily check that the
contraction (19) prescribed by the identifications

La =Ma
1 +Ma

2 , Pa = εm̄Ma
1 , (221)

leads to the algebra sl(2)⋉psu(2|2)⋉R2,1 in the limit ε→ 0. Note that the limit now involves
both the identification of generators for the contraction as well as the structure of the algebra
d(2,1;ε) itself. For the even subalgebra all the relations hold precisely the same as before.
For the odd subalgebra the contraction is manifest, since [Ma

2, Q j,l r] = 0 and the Lie brackets
between supercharges coincide if we replace εMa

1→ Pa/m̄ and then take the limit ε→ 0. Note
that the limits of the quadratic invariants read

εm̄2J2→−P2 , ε2m̄2M2
2→ P2 , m̄J2 + εm̄M2

2→−2L·P+ m̄
�

Q2 − J2
L + J2

R

�

. (222)

6.2 Irreducible Representations

Now, we would like to discuss a particular type of irreducible representation for the alge-
bras above that appear in the context of AdS integrability [7]. Since these representations
are intended for physics applications, we use unitarity considerations to select appropriate
representation parameters.

Poincaré Supersymmetry. Asymptotic particles on the string worldsheet or spin states of
the one-dimensional Hubbard model transform in a four-dimensional representation of the
even subalgebra su(2)L × su(2)R. The representation space consists of two two-dimensional
components ‘L’ and ‘R’ as follows: On the components ‘L’, the su(2)L generators act in the
fundamental representation 2 and the su(2)R generators act in the trivial representation 1.
On the other component ‘R’, the roles of the two su(2)’s are exchanged. We denote the states
by |R↑,↓〉, |L↑,↓〉 and they transform canonically in the representations (1,2) and (2,1), re-
spectively, under su(2)L × su(2)R. Furthermore, these states must obey opposite bosonic and
fermionic statistics.

For the Poincaré subalgebra iso(2, 1)we assume a field representation in momentum space
whose states |p,φ〉m,s are labelled as in (101) by the two spatial momentum components p
and φ (in radial coordinates), the mass m and the spin s. Altogether, the basis states of the
representation are given by

|p,φ; R↑,↓〉m,sR
, |p,φ; L↑,↓〉m,sL

, (223)

where we allow the two components to have different spins sR and sL while the same mass m
applies to both. The even generators act as in (97). The supersymmetry generators act on the
components according to

Q↑,l r |p,φ;Rp〉s = ζm̄−1/2
Æ

em(p) +mϵrp|p,φ; Ll〉s , (224)

Q↓,l r |p,φ;Rp〉s =�ıζm̄−1/2e−�ıφ
Æ

em(p)−mϵrp|p,φ; Ll〉s , (225)

Q↑,l r |p,φ; Lm〉s = −�ıζ−1m̄−1/2e�ıφ
Æ

em(p)−mϵlm|p,φ; Rr〉s , (226)

Q↓,l r |p,φ; Lm〉s = ζ−1m̄−1/2
Æ

em(p) +mϵlm|p,φ;Rr〉s , (227)

where the constant ζ governs the relative normalisation of states R vs. L. The algebra relations
then imply the following mass and spin constraints23

m= 1
2 m̄ , s := sR = sL −

1
2 . (228)

23In fact, the consistency conditions require m2 = 1
4 m̄2. Depending on the concrete root chosen, the lowering

supercharges annihilate either R or L states for p = 0 in (224), and in addition the difference between spins in
(228) is flipped.
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The invariant quadratic forms (220) take the following eigenvalues on the momentum repre-
sentation

2L·P− m̄(Q2 − J2
L + J2

R)≃ −m̄
�

s+ 1
4

�

, P2 ≃ −1
4 m̄2 . (229)

Ultra-Short Representation of d(2, 1;ε). We would now like to identify an irreducible rep-
resentation of d(2,1;ε) that could lead to the above representation upon contraction. The rep-
resentation theory of d(2,1;ε) is given in [47] (see also [48,49] in the context of AdS3/CFT2).
In particular, the configuration of su(2)L × su(2)R representations will serve as a convenient
starting point.

Irreducible representations of the superalgebra d(2, 1;ε) are composed from irreps of the
even subalgebra sl(2)M × su(2)L × su(2)R. These could be principal series, highest-weight,
lowest-weight or fixed spin representations. The interaction with supercharges organises a
collection of different irreps of sl(2) into a supermultiplet. These typically have a large number
of components, but for particular choices of the sl(2) representations, they may be substan-
tially shorter. For instance, if we take the representation of the compact subalgebras su(2)L
and su(2)R to be 1 or 2, we obtain the so-called ultra-short representation. Just as the above
representation for the Poincaré supersymmetry algebra, this representation consists of two
components, on which su(2)L × su(2)R act in (1,2) and (2,1), respectively. We denote the
corresponding states as |R↑,↓〉, |L↑,↓〉, and they need to respect opposite bosonic and fermionic
statistics. The third, non-compact sl(2)M acts on the two components in the principal series
representation (58) with the parameters (γR,L,χR,L). It turns out that a consistent action of the
supercharges on the ultra-short multiplet implies the following constraints on the representa-
tion parameters

(γR,χR) =
�1

2ε
−1 − 1

2 ,χ
�

, (γL,χL) =
�1

2ε
−1,χ + 1

2

�

, (230)

which leaves just a single adjustable representation parameter χ.
Here we assume that the representation space is spanned by the vectors

|k;R↑,↓〉χ , |k+ 1
2 ; L↑,↓〉χ with k ∈ Z , (231)

where the label k enumerates states of the principal series representation. Notice that we label
the L states by a half-integer index. The even generators then act as in (58) with a shift of L
labels by 1/2,

J0
M|k;Rr〉χ = (k+χ)|k;Rr〉χ , (232)

J+M|k;Rr〉χ = θR
k (k+χ +

1
2ε
−1)|k+ 1; Rr〉χ , (233)

J−M|k;Rr〉χ = (θR
k−1)
−1(k+χ − 1

2ε
−1)|k− 1; Rr〉χ , (234)

J0
M|k+

1
2 ; Ll〉χ = (k+χ +

1
2)|k+

1
2 ; Ll〉χ , (235)

J+M|k+
1
2 ; Ll〉χ = θ L

k (k+χ + 1+ 1
2ε
−1)|k+ 3

2 ; Ll〉χ , (236)

J−M|k+
1
2 ; Ll〉χ = (θ L

k−1)
−1(k+χ − 1

2ε
−1)|k− 1

2 ; Ll〉χ . (237)

The supercharges act on the components according to

Q↑,l r |k;Rp〉χ = (k+χ +
1
2ε
−1)θR

k η
−1
k ϵrp|k+ 1

2 ; Ll〉χ , (238)

Q↓,l r |k;Rp〉χ =�ı(k+χ −
1
2ε
−1)η−1

k−1 ϵ
rp|k− 1

2 ; Ll〉χ , (239)

Q↑,l r |k+ 1
2 ; Lm〉χ = −�ıεηk ϵ

lm|k+ 1;Rr〉χ , (240)

Q↓,l r |k+ 1
2 ; Lm〉χ = εηk(θ

R
k )
−1 ϵlm|k;Rr〉χ . (241)
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Here, the normalisation coefficients ηk must satisfy the difference equation

ηk+1θ
L
k = ηkθ

R
k+1 , (242)

and θR,L
k are the gauge degrees of freedom of the principal series representations for the R

and L components, respectively. The representation is characterised by the eigenvalues of the
quadratic invariant form (217) and of the group invariant

J2 ≃ 1
4ε
−1 − 1

4 , exp
�

2π�ıJ0
M + 2π�ıJ0

L

�

≃ e2π�ıχ . (243)

In what follows we will need the representation to be of the unitary semi-infinite type.
This is achieved by fixing the presentation parameter and the gauge as follows

χ = 1
2ε
−1 , θR

k =

√

√ k+ 1
k+ ε−1

, θ L
k =

√

√ k+ 1
k+ ε−1 + 1

, ηk =
p

k+ 1

ζ̃
p
ε

. (244)

The normalisation ζ̃ needs to be a pure phase, |ζ̃| = 1. The lowest-weight representation
closes on the states with half-integer label k ≥ 0 and it is unitary for ε > 0. The highest-
weight representation closes on the states with label k ≤ −1

2 and it is unitary for ε < 0 or
ε > 1. An alternative pair of unitary semi-infinite representations is obtained by setting

χ = −1
2ε
−1 , θR

k =

√

√k− ε−1 + 1
k

, θ L
k =

√

√k− ε−1 + 1
k+ 1

, ηk =
p

k− ε−1 + 1

ζ̃
p
ε

. (245)

Here, the lowest-weight representation closes on states with label k ≥ 1
2 , and it is unitary for

ε < 0 or ε > 1. The highest-weight representation closes on the states with label k ≤ 0 and it is
unitary for ε > 0. These four semi-infinite representations mainly differ in the lowest-weight
or highest-weight states being either type R or L.

AdS Supersymmetry. Now we supplement the d(2,1;ε) algebra with another set of sl(2)
generators Ma

2 to a supersymmetry algebra for AdS2,1. The additional non-compact sl(2) acts
on the states in a principal series representation (58), and we thus add an additional integer
label k2 to the states (231).

In Sec. 2.3 we identified the pair of principal series representations with the (normalisable)
(tensor) fields on AdS space. In the supersymmetric case we have two types of on-shell fields,
R and L. Therefore, we would like to identify both states in (247) with AdS fields of, possibly,
different masses µR,L and spins sR,L. In order to ensure a positive energy, as in Sec. 2.3, we
turn the states of the representation of sl(2)2 around and use a highest-weight representation
instead, while the representation of d(2,1;ε) remains of lowest-weight type.

As we have already seen in the previous paragraph, the two components must have differ-
ent parameters (γR,L,χR,L) for the representations of the sl(2)1 subalgebra (230). On the other
hand, due to the overall algebra being a direct product, the commutator between supercharges
and Ma

2 must be trivial. Thus, the parameters (γ2,χ2) of the principal series representation
must be the same for R and L states.

As pointed out in Sec. 2.3, the mass and spin are encoded into γ1 = γR,L and γ2 according
to (64) resulting in µR,L = γR,L + γ2 and sR,L = γR,L − γ2. The above constraint (230) then
relates the mass and spin parameters for R and L states according to

(µR, sR) = (ε
−1 − 1− s, s) , (µL, sL) =

�

ε−1 − 1
2 − s, s+ 1

2

�

, (246)
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where the overall spin parameter s is one remaining degree of freedom for the representa-
tion.24 Finally, we impose the lowest-weight relation χ = 1

2ε
−1 for d(2, 1;ε) and the highest-

weight relation χ2 = −(γ2 +
1
2) for sl(2)2. This constrains the labels k1 and k2 to be non-

negative and the representation for both R and L components is given by (65) with masses
and spins (µR,L, sR,L). Unitarity imposes the bounds 2s < ε−1 and ε > 0 on the algebra param-
eter ε and on the spin s. The resulting states

|k1, k2; R↑,↓〉s , |k1 +
1
2 , k2; L↑,↓〉s , with k1, k2 ∈ Z+0 , (247)

transform under the AdS representation (65) supplemented by the supercharge actions in
(238,244).

Irrep Contraction. The contraction of the representation of d(2, 1;ε)×sl(2) discussed above
follows the same lines as for the case of so(2, 2) in Sec. 2.4 with some minor adjustments.

First of all, we note that the constraints (246) can be expressed due to the mass constraint
m= 1

2 m̄ as

µR,L =
2m
εm̄
+O(ε0) . (248)

This relation agrees with the relation (76) required for a proper contraction of the represen-
tation. We then generalise the prescription introduced in (78) by supplementing the identifi-
cations for the L states

|p,φ; L j〉s :=
∑

k

e−�ı(k1−k2)φ |k1 +
1
2 , k2; L j〉s , k1,2 :=

em(p)−m
εm̄

± k . (249)

Furthermore we identify the normalisations ζ̃ in (244) and ζ in (224) as ζ̃= ζ.
Contraction of the momentum and Lorentz generators precisely repeats the calculation

given in Sec. 2.4. The last step is to consider the contraction of the supercharge generators.
Let us perform the computation explicitly only for Q↑,l r |p,φ; Rp〉s as other cases are treated
analogously:

Q↑,l r |p,φ;Rp〉s = ζ̃
∑

k

e−�ı(k1−k2)φ
p
ε
Æ

k1 + ε−1 ϵrp|k1 +
1
2 , k2; Ll〉s (250)

= ζm̄−1/2
Æ

em(p) +mϵrp|p,φ; Ll〉s , (251)

which precisely reproduces the action of the supercharge on the R state in the conven-
tions (224). One may easily check that the representation of other supercharges is contracted
consistently as well.

6.3 Reduction

In the full sl(2)⋉ psu(2|2)⋉R2,1 superalgebra we only apply the reduction procedure to the
sl(2) ⋉ R2,1 subalgebra. Thus, the supersymmetry generators as well as the left and right
su(2)L,R generators remain unchanged within the reduced subalgebra. The resulting set of
generators corresponds to those of u(2|2) superalgebra. However, the Lie brackets between the
supercharges and the u(1) generator are non-standard and depend on the reduction scheme.
Let us compute them explicitly.

24We will see in Sec. 6.5 that doubling the amount of supersymmetry singles out s = − 1
4 as the most symmetric

choice.
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Rational Case. We straight-forwardly compute the Lie bracket between L and Q j,l r using the
identification (136)

[L,Q j,l r] =Wrat(u)
j
kQk,l r , (252)

where we introduce the traceless matrix Wrat(u)

Wrat(u) =
1
2

�

β−1u �ıe�ıα

�ıe−�ıα −β−1u

�

. (253)

This matrix also allows us to write the anti-symmetric Lie brackets between supercharges com-
pactly

{Q j,l r , Qk,mp}= −
2
m̄

�

Wrat(u)ϵ
�

jkϵlmϵrp P− ϵ jk(σ̃aϵ)
lmϵrp Ja

L + ϵ
jkϵlm(σ̃aϵ)

rp Ja
R . (254)

We observe that now the Lie brackets involve the spectral parameter u. Therefore, we cannot
interpret the resulting algebra as a finite-dimensional u(2|2). Rather, we treat the relations
above as if they were computed in the evaluation representation of a loop algebra. There-
fore, we call the algebra a deformation of the loop algebra u(2|2)[u, u−1]. In fact, we here
merely reproduce the result obtained in [31] (upon some rescalings and shift of levels in the
generators).

Trigonometric Case. The trigonometric reduction, naturally, give the same form for the
brackets with the supercharges except for replacing the matrix Wrat(u) with

Wtrig(z) =
1
2

�1
2h−1(z − 1) e�ıα

ze−�ıα −1
2h−1(z − 1)

�

. (255)

As before, the algebra relations depend on the spectral parameter z and we interpret the result-
ing algebra as a (different) deformation of the loop algebra u(2|2)[z, z−1]. The commutation
relations coincide with those found in [40].

6.4 r-Matrix

The supersymmetric extension of the r-matrices is rather straight-forward. Let us briefly dis-
cuss the additional structures appearing in this case.

AdS Supersymmetry. In order to construct the rational and trigonometric r-matrices for the
superalgebra d(2, 1;ε)× sl(2), we simply add terms corresponding to the left and right sl(2)
and the supercharges to the r-matrices introduced earlier in Sec. 3.2 and Sec. 5.1. Namely, the
rational r-matrix reads

rrat
d(2,1;ε)×sl(2) =

ν1

ε

Q2 − εM2
1 − (1− ε)J

2
L + J2

R

u1;1 − u1;2
− ν2

M2
2

u2;1 − u2;2
, (256)

where the numerators are given by the invariant quadratic forms of d(2,1;ε) in (217) and of
sl(2)2.

Similarly, in the trigonometric case we have

r trig
d(2,1;ε)×sl(2) =

ν1

εν

�

ε r trig
1 (z1;1, z1;2) + (1− ε) r

trig
L (z1;1, z1;2)− r trig

R (z1;1, z1;2)
�

(257)

−
ν1

εν
r trig
Q (z1;1, z1;2) +

ν2

ν
r trig
2 (z2;1, z2;2) . (258)
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Here, r trig
1,2,L,R(z1, z2) denote the trigonometric r-matrices of the subalgebras sl(2)1,2 and su(2)L,R,

respectively, and (with some abuse of notation) r trig
Q (z1, z2) describes the supercharge contri-

bution to the r-matrix given by

r trig
Q (z1, z2) := −

1
2νz1

z1 − z2
ϵlmϵrp Q↑,l r ⊗Q↓,mp +

1
2νz2

z1 − z2
ϵlmϵrp Q↓,l r ⊗Q↑,mp . (259)

Contraction. As we discussed at the beginning of this section, the supercharges and addi-
tional su(2)’s do not interfere with the contraction procedure. Therefore, one can straight-
forwardly exploit the contraction prescription defined in Sec. 3 and obtain corresponding r-
matrices for the maximally extended sl(2|2). The rational r-matrix then takes the form

rrat
sl(2)⋉psu(2|2)⋉R2,1 = −ν

2L·P− m̄(Q2 − J2
L + J2

R)

u1 − u2
−
ν′P2

u1 − u2
+
ν(v1 − v2)P2

(u1 − u2)2
, (260)

and the trigonometric one

r trig
sl(2)⋉psu(2|2)⋉R2,1 = r trig

iso(2,1) − m̄
�

r trig
Q − r trig

L + r trig
R

�

. (261)

Reduction. The possible twists of the r-matrices introduced earlier also work without any
changes in the supersymmetric case. Since the reduction is not affected by the supercharges,
no new structures appear in the reduced r-matrices. In the end one obtains the r-matrices of
the deformed loop u(2|2) algebra that coincide with those obtained in [31,40].

Here, we notice that unlike u(1)×R from Sec. 4, the full supersymmetric reduced algebra
u(2|2) is not abelian. Evidently, the r-matrices (151) and (197) for an abelian algebra satisfy
the classical Yang–Baxter equation, but it is non-trivial that their supersymmetric counterparts
do so. The latter happens due to the consistency in choosing the ideal subalgebra of the
reduction and the twist of the r-matrix as follows:

Concretely, let us describe the reduction of the original algebra g= sl(2)⋉ psu(2|2)⋉R2,1

as
g→ h/i : g= k⊕ h , [h,h] ⊂ h , i ⊂ h , [h, i] ⊂ i , (262)

where k denotes the subspace of g which does not belong to the subalgebra
h = u(1) ⋉ psu(2|2) ⋉ R2,1, and i = R2 denotes the ideal of h. We know that the r-matrix
reduces to elements of the reduced algebra upon removing elements of the ideal. In other
words, the reduced r-matrix deviates from the original r-matrix by pairings of the ideal with
arbitrary elements of the original algebra

r ∈ h⊗ h+ i⊗ g+ g⊗ i . (263)

In particular, generators not belonging to the subalgebra can only be paired with elements of
the ideal

r ∈ (h⊗ h)⊕ (i⊗ k)⊕ (k⊗ i) . (264)

We now decompose the terms [[r, r]] of the original classical Yang–Baxter equation to these
subspaces as follows

[[r, r]] ∈ [h,h]∧h∧h+[h, i]∧h∧ k+[i, i]∧ k∧ k+[h, k]∧h∧ i+[i, k]∧ k∧ i+[k, k]∧ i∧ i . (265)

The original classical Yang–Baxter equation [[r, r]] = 0 holds by assumption, and it thus also
holds upon factoring out the ideal by setting i= 0. This eliminates all potential terms from the
listed subspaces but the first one because there is an explicit tensor factor from i or because the
Lie bracket [h, i] belongs to i. The remaining terms can only belong to the subspace [h,h]∧h∧h
or equivalently [h/i,h/i]∧h/i∧h/i. In particular, the residual terms rely on Lie brackets from
the subalgebra only, and thus they constitute the validity of the classical Yang–Baxter equation
for the reduced r-matrix.
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Representation. For completeness, let us write down the representation of the resulting
rational and trigonometric r-matrices after the reduction. We would like to recover the same
classical r-matrices as in [31,40]. Therefore, in the rational case we adopt the following change
of variables that resolves the square roots in various relations

u(x) :=
β

2
x2 + 1

x
. (266)

Then the momentum and energy eigenvalues read

p(x) = m̄
x

x2 − 1
, e(x) =

m̄
2

x2 + 1
x2 − 1

. (267)

For the explicit matching of all the coefficients we also fix the normalisation of the supercharge
representation to be

ζ= ζ(x) := m̄−1/2γ̃(x)
p

1− x−2 . (268)

The unitarity now requires γ̃(x) =
p

m̄/
p

1− x−2 . Notice that we naturally define the ac-
tion of the r-matrix on the tensor product such that it obeys the fermionic statistics when a
supercharge is interchanged with a fermionic state

(A⊗ B)
�

|u1, X〉m,s ⊗ |u2, Y〉m,s

�

:= (−1)|B||X|A|u1, X〉m,s ⊗ B|u2, Y〉m,s , (269)

where |. . .|= 0,1 describes the grading of a generator or a state. These identifications lead us
exactly to the classical rational r-matrix from [29, 31] (with the normalisation |m̄| = 1) plus
an additional term proportional to the unit matrix. The coefficient of the latter is given by the
scalar phase function

P12 = ν
m̄
2

p2(s1 +
1
4)

p1(u1 − u2)
+ ν

m̄
2

p1(s2 +
1
4)

p2(u1 − u2)
+
�

ν′ − ν
v1 − v2

u1 − u2

�

e1e2 − p1p2

u1 − u2
. (270)

For a perfect matching with [31], we need a trivial phase P12 = 0: We find that this is obtained
by fixing the two spin parameters s1,2, the secondary spectral parameters v1,2, as well as the
secondary r-matrix normalisation ν′ as follows

s1,2 = −
1
4

, v1,2 = 0 , ν′ = 0 . (271)

These assignments are in perfect agreement with the algebra representation proposed in [31].
Notably, this particular choice of spin leads to the trivial representation of one of the quadratic
invariants in (229).

It is interesting to contemplate different assignments for the parameters s1,2, v1,2 and ν′

or to add some other twist in L ⊗ P, all of which merely affect the phase function P12. For
instance, one could reproduce the phase factor obtained in [50] at the classical level [31]

P12 =
1
2νη(u2 − u1)p1p2 , (272)

with η some (dimensionful) normalisation constant. This phase was originally obtained by
twisting the r-matrix with terms non-homogeneous in loop level

1
2νηP0 ∧ P1 ≃ P12 , (273)

which obviously preserves the classical Yang–Baxter equation as the generators P0 and P1 are
central. Curiously, the same effect at the representation level can be achieved by merely fixing
the parameters as follows

s1,2 = −
1
4
+

p2
1,2

m̄
η(u2

1,2 − β
2) =

ηm̄β2 − 1
4

, v1,2 = ηβ
2u1,2 , ν′ = 0 . (274)
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However, it is not clear whether such manipulations are permissible, in particular once the
affine extension is taken into consideration [51]. It is interesting to pursue this question further
in order to better understand the phase of the r-matrix.

Similarly, in the trigonometric case we also obtain the fundamental r-matrix displayed
in [40] with an additional phase factor

P12 = ν
m̄
2

z2q2(s1 +
1
4)

q1(z1 − z2)
+ ν

m̄
2

z1q1(s2 +
1
4)

q2(z1 − z2)
+ ν′m̄2 z1z2q1q2

z1 − z2
+ ν′

e1e2

z1 − z2

z1 + z2

2
(275)

− ν
y1 − y2

z1 − z2

z1z2e1e2

z1 − z2
− νm̄2 y1 − y2

z1 − z2

z1z2q1q2

z1 − z2

z1 + z2

2
. (276)

Again, by varying the parameters s1,2, y1,2 or adding a twist we can shift the phase of the
r-matrix.

6.5 Double Supersymmetry

The symmetry relevant to worldsheet scattering in the AdS/CFT correspondence requires twice
as many supercharges and is attributed to the algebra [52]

u(1)⋉ psu(2|2)2 ⋉R . (277)

This algebra can be obtained by means of the contraction and reduction discussed in this article
from the extended AdS supersymmetry algebra

d(2,1;ε1)1 × d(2, 1;ε2)2 , (278)

where the corresponding so(2, 2) subalgebra is composed of the two sl(2)1,2 subalgebras taken
from each d(2, 1;ε1,2)1,2 factor. The consistent contraction limit requires ε1 ∼ ε2 → 0, thus
we set

ε1m̄1 = ε2m̄2 +O(ε2
1,2) . (279)

In this way one obtains an enhanced Poincaré superalgebra with two distinct mass scales m̄1,2.
Note also that the quadratic invariants are now contracted according to

ε1m̄2
1J2

1→−P2 , ε2m̄2
2J2

2→−P2 , m̄1J2
1 − m̄2J2

2→−2L·P+ . . . (280)

Next, we apply the representation theory that was developed earlier in this section. We
have two copies of the exceptional algebra, thus, the representations space is spanned by
a tensor product of two states from (231). Therefore, each state is labelled by two (half)
integers and four possible pairs of the letters R and L. We also exchange the roles of the states
L and R in the second d(2,1;ε2)2 compared to d(2, 1;ε1)1 for the reason explained shortly.
Recall, that we had to choose the principal series representation of the external sl(2) algebra
to be of the highest-weight type in order to contract the representations. Now, we redefine
the representation of the sl(2) algebra within d(2,1;ε2)2 to be of highest-weight kind, which,
according to (245), leads to the following constraints on the parameters of the representation

(γ2,R,χ2,R) =
�1

2ε
−1
2 , 1

2ε
−1
2 −

1
2

�

, (γ2,L,χ2,L) =
�1

2ε
−1
2 −

1
2 , 1

2ε
−1
2 − 1
�

. (281)

Note that we invert the sign of k2 in (232) and shift it by −1 so that one of the charge relations
takes the form

M0
2|k2; Lr〉χ = (−k2 +χ2,L)|k2; Lr〉χ , (282)

and so on for other generators. Now, we have the highest-weight representation with k2
bounded from below as k2 ≥ −

1
2 and unitarity holds if ε2 < 0 or ε2 > 1. For the parame-

ters of d(2,1;ε1)1 we have the analogous relations from (230) and the unitarity condition
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ε1 > 0. This representation has fixed masses µ(R,L)(R,L) = χ1,(R,L) − χ2,(R,L) − 1 and spins
s(R,L)(R,L) = χ1,(R,L) +χ2,(R,L).

A relevant observation is that a proper contraction limit of the above ultra-short represen-
tations requires ε2 = −ε1 +O(ε2

1,2) for the resulting spins to be finite. This also implies equal
reference masses, m̄1 = −m̄2, for the limiting Poincaré superalgebra.25 Incidentally, a proper
combination of two ultra-short representation of the Poincaré superalgebra needs |m̄1|= |m̄2|
because the Poincaré mass m is constrained to both m̄1 and m̄2. Furthermore, for unitary
representations, we need to assume that ε1 approaches 0 from above, consequently, ε2 will
approach 0 from below, which is consistent with the above assignments.

In the end, we find the following finite spin configuration for the full representation

sRL =
1
2ξ− 1+O(ε2

1,2) , sRR = sLL =
1
2ξ−

1
2 +O(ε2

1,2) , sLR =
1
2ξ+O(ε2

1,2) , (283)

where ξ is a parameter that relates ε1 and ε2 at sub-leading orders according to
ε2 = −ε1 − ξε2

1 +O(ε3
1,2). We observe that although all the parameters of the representa-

tion are constrained by the algebra parameters ε1,2, the spin s appears to be unconstrained in
the limit because ξ disappears from the algebra relations. This leads us to a rather curious
situation: before taking the limit the spin is determined by the remaining algebra parameter
ξ, whereas in the limiting Poincaré superalgebra the spin is rather a representation parameter
s.26 At this point, one would be tempted to assign ξ = 1 in order to achieve a symmetric
distribution of spins

sRL = −
1
2 , sRR = sLL = 0 , sLR = +

1
2 , (284)

and a natural interpretation of RR, LL being bosons and LR, RL being fermions. In fact, such
an assignment can be motivated by two observations: On the one hand, the physical phase of
the classical r-matrix required s1,L = −s1,R =

1
4 (see (271)). Since for the second exceptional

algebra we exchanged the roles of R and L, we also have s2,R = −s2,L =
1
4 . Altogether, this

consideration fixes spins to be as in (284). On the other hand, we may use one of the 6
equivalences of the d(2,1;ε) algebra to define ε2 in terms of ε1 as

ε2 =
−ε1

1− ε1
= −ε1 − ε2

1 +O(ε3
1) . (285)

This equally singles out the value ξ= 1. Furthermore, this equivalence exchanges the left and
right su(2)L and su(2)R, hence it motivates the exchange of the roles R and L in d(2, 1;ε2)2.

As a final remark, in [33] the contraction of the q-deformed algebras
Uh1
(d(2, 1;ε1))×Uh2

(d(2, 1;ε2)) is investigated. The consistent algebra contraction imposes a
relation between the deformation parameters h1,2 and algebra parameters ε1,2

h1ε1 + h2ε2 =O(ε2
1,2) . (286)

Our brief analysis of the representation contraction seems to suggest that one has to set h1 = h2
and fix the next to the leading order term to be−ε1/h1 in the quantum case. Therefore, it is in-
teresting to investigate the discussed representation for the quantum algebras and understand
all the interaction between deformation, algebra and representation parameters.

25A Poincaré superalgebra with unequal reference masses is perfectly conceivable, however, it does not support
doubly ultra-short irreps (of equal kinds).

26In particular, there is only a discrete choice of representations before the limit, whereas the representations in
the limit appear to have a continuous parameter. Consequently, two Poincaré superalgebra representations with
different spins should not be obtainable simultaneously as the contraction from the same AdS superalgebra. We
emphasise that this feature is perhaps curious but not self-contradictory.
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7 Conclusions and Outlook

In this article, we have constructed the classical algebra relevant to integrability of the one-
dimensional Hubbard model and worldsheet scattering in the AdS/CFT correspondence by
means of contracting the semi-simple loop superalgebra based on d(2,1;ε)× sl(2) to the loop
algebra of the 3D Poincaré superalgebra sl(2) ⋉ psu(2|2) ⋉ R2,1 and by subsequently reduc-
ing it to a deformation of the u(2|2) loop algebra. We have explicitly constructed infinite-
dimensional unitary irreducible representations compatible with the contraction and reduc-
tion that result in the physically relevant representations for the Hubbard model and AdS/CFT
models. We have also determined the rational and trigonometric r-matrices for these algebras
and deduced that they are consistent with the contraction and reduction so that they satisfy the
classical Yang–Baxter equation at each step. Evaluating the obtained r-matrices on the physi-
cally relevant representation produces the tree-level scattering matrix for the string worldsheet
within the AdS/CFT correspondence as expected. This constitutes a deductive derivation of
the classical r-matrix for the one-dimensional Hubbard model and for AdS/CFT worldsheet
scattering.

The natural future goal is to lift our construction to the level of quantum algebra. The
feasibility of the contraction of the finite quantum algebra based on d(2,1;ε) × sl(2) to the
one based on sl(2)⋉psu(2|2)⋉R2,1 has already been demonstrated [33]. However, it remains
to promote the construction to loop algebras and to the quantum level and to establish a
suitable prescription for the subsequent reduction. Based on that construction, one can aim
to derive the universal R-matrix, but this will conceivably constitute an elaborate challenge
in complexity. Therefore, lifting the notions of contraction and reduction to quantum algebra
at the level of the concrete representation developed in this article will be a very useful next
step [53].

Another useful aspect of the classical integrability algebras which we have not discussed
in this article is their affine extension. In the standard cases, the additional symmetry induced
by the derivation element of a Kac–Moody algebra implies the difference form of the classical
r-matrix. As we have seen, here the difference form is lost due to the reduction procedure,
nonetheless, there exists a deformation of twist of the derivation whose co-bracket effectively
describes the deviation of the r-matrix from the difference form, see [40,54]. Furthermore this
derivation may act as a deformed Lorentz boost for the three-dimensional momenta [7, 38].
In [55] the boost generator at the quantum level is proposed to be a Lorentz generator of
the quantum-deformed Poincaré superalgebra, and therefore the boost generator has non-
trivial co-bracket in the classical limit. Importantly, the derivation symmetry constrains the
form of the phase. We will return to this question in [51]. Furthermore, the integrability
algebras admit a novel second spectral parameter for each evaluation representation. So far
such a second degree of freedom has not appeared in physical applications, and thus it may
be interesting to study its potential implications.

It is also interesting to interpret the symmetry algebras discussed in this paper from the
worldsheet point of view. In [39] the momentum of the 3D Poincaré superalgebra is associ-
ated with the stretching of a piece of string. However, the Lorentz generators do not form a
symmetry in this setting. Therefore, it is important to understand how the extended symmetry
might fit within the worldsheet excitation picture and whether the procedure of contraction
and reduction can be realised for strings.

Whereas we now have the semi-simple algebra as the starting point, for which there exist
the standard construction of the rational and trigonometric r-matrix, consistency with the
reduction requires a non-standard twist of the r-matrix. Moreover, as we have seen in Sec. 4
and Sec. 5, the reduction is not unique. It amounts to identifying a two-dimensional ideal
within the momentum subalgebra, which, in fact, can be done in other ways. The twist of
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the r-matrix and the choice of the ideal subalgebra turn out to be closely related. It would
be interesting to consider generic reduction schemes in order to understand the twist of the
r-matrix, the resulting deformed loop algebras and possible models that correspond to the
symmetry algebras.

Finally, the full symmetry algebra of the AdS/CFT integrability is (a quantum extension
of) psu(2, 2|4). Therefore, it is important to understand how to extend the constructions de-
veloped in this article to the full symmetry algebra.
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