
SciPost Phys. 14, 162 (2023)

Chiral higher spin gravity and convex geometry

Alexey Sharapov1, Evgeny Skvortsov2 and Richard Van Dongen2

1 Physics Faculty, Tomsk State University, Lenin ave. 36, Tomsk 634050, Russia
2 Service de Physique de l’Univers, Champs et Gravitation, Université de Mons,

20 place du Parc, 7000 Mons, Belgium

Abstract

Chiral Higher Spin Gravity is the minimal extension of the graviton with propagating
massless higher spin fields. It admits any value of the cosmological constant, includ-
ing zero. Its existence implies that Chern–Simons vector models have closed subsec-
tors and supports the 3d bosonization duality. In this letter, we explicitly construct an
A∞-algebra that determines all interaction vertices of the theory. The algebra turns
out to be of pre-Calabi–Yau type. The corresponding products, some of which originate
from Shoikhet–Tsygan–Kontsevich formality, are given by integrals over the configura-
tion space of convex polygons.
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1 Introduction

The idea of Higher Spin Gravity (HiSGRA) is to construct quantum gravity models by exploring
extensions of gravity with massless fields of all spins [1]. While masslessness can simulate the
high energy regime, the importance of higher spin states for the quantum gravity problem is
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supported by string theory, whose spectrum is populated by massive higher spin fields, and
by the AdS/CFT correspondence since conformal field theories in d ≥ 3 have single-trace
operators of arbitrarily high spin, e.g. (Chern–Simons) vector models and N = 4 SYM.1 Even
before constructing any HiSGRA it can be seen that the smallest multiplet is unbounded in
spin with an∞-dimensional symmetry behind [2–4].

Due to HiSGRA being at the brink it should not be surprising that constructing such theories
faces numerous problems and naive attempts come immediately in contradiction with the basic
field theory requirements [5–11]. Within AdS/CFT correspondence HiSGRA should be dual
to vector models [12–15] or to (free) N = 4 SYM [16–18], which is based on matching the
spectrum of fields/operators. However, not every CFT has a well-defined, (i) quasi-classical,
(ii) local dual with (iii) finitely-many fields. HiSGRA duals of vector models immediately
violate (ii) and (iii). It is (ii) that presents a serious obstacle, eliminating the standard field
theory tools in an attempt to construct the theories.2

With all hurdles already mentioned, it comes as a surprise that there exists a class of well-
defined, local HiSGRA for any value of the cosmological constant, including zero. Its flat space
origin is easier to explain. As is well-known [19,20], there is a unique cubic amplitude/vertex
for any three given helicities λ1 +λ2 +λ3 > 0:

Vλ1,λ2,λ3
∼ [12]λ1+λ2−λ3[23]λ2+λ3−λ1[13]λ1+λ3−λ2 , (1)

and its complex conjugate is expressed in terms of 〈i j〉 and is valid for λ1+λ2+λ3 < 0. Each
theory comes with a particular spectrum of helicities and with cubic (and possibly higher)
couplings Cλ1,λ2,λ3

,

V3 =
∑

λ1,λ2,λ3

Cλ1,λ2,λ3
Vλ1,λ2,λ3

. (2)

Chiral HiSGRA [21–23] is a unique class of theories that completes a genuine higher spin
interaction3 to a Lorentz-invariant, local theory. The spectrum has to contain all helicities (at
least even) and the coupling constants are uniquely fixed to be [21–23]

Cλ1,λ2,λ3
=
κ (lp)λ1+λ2+λ3−1

Γ (λ1 +λ2 +λ3)
, (3)

where lp is of length dimension. No higher order interactions are needed. All tree-level am-
plitudes can be shown to vanish on-shell (like in self-dual Yang–Mills theory and self-dual
gravity) and the theory is at least one-loop finite [24–26]. These results were obtained in the
light-cone gauge and argued to admit a smooth deformation to (A)dS4, which was supported
by [27,28].

Chiral HiSGRA’s spectrum suggests the dual to be (Chern–Simons) vector models. How-
ever, the interactions being chiral, it has to be dual to a closed subsector thereof [23, 28, 29].
Through the ABJ triality [30] one can also argue that its supersymmetric N = 6 version is
dual to a closed subsector of tensionless strings on AdS4 ×CP3.4 Chiral HiSGRA can also be
detected through celestial studies [31,32].

1There can be regions in the coupling space where, as in the SYM example, the higher-spin states decouple and
the stress-tensor multiplet remains, but only in the first approximation.

2The results of [7–11] imply that this class of theories cannot be constructed by any Noether procedure. Never-
theless, one can ‘reconstruct’ them from correlation functions [8,79,80], which, however, has its own puzzles and
is not applicable to Chern–Simons vector models before they are solved.

3One- and two-derivative Yang–Mills and gravitational vertices are not enough. One needs higher-derivative
non-abelian interaction with a higher spin field.

4E.S. is grateful to Andre Coimbra for asking a question that leads to this idea.
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The problem of covariantization and extension to (A)dS4 of Chiral HiSGRA was solved in
the recent papers [29,33,34]. However, the solution was wrapped into a rather abstract form
of homological perturbation theory with considerable technical difficulties to extract explicit
vertices and with many hidden gems that we uncover in this letter.

The main result of the letter is an explicit construction of classical field equations for Chiral
HiSGRA. These originate from a cyclic A∞-algebra of pre-Calabi–Yau type [35]. The (higher)
multiplications of the A∞-algebra are given by integrals over the configuration space of some
convex polygons. This gives the first example of a local covariant HiSGRA with propagating
massless fields. A grain of salt is that Chiral HiSGRA appears to be non-unitary due to in-
teractions being complex in Minkowski signature and it is close in spirit to self-dual theories.
Nevertheless, the theory should be unitary in flat space [24–26] at the price of having the triv-
ial S-matrix, while in (A)dS4, similarly to self-dual theories, the fact that it is a closed subsector
of a unitary theory implies that all solutions and amplitudes of Chiral theory should carry over
to the holographic dual of (Chern–Simons) vector models.

2 Chiral HiSGRA and A∞

2.1 Initial higher spin data

For a given set of physical degrees of freedom there is more than one way to incorporate them
into Lorentz covariant (spin-)tensor fields. For a massless spin-s particle a common way is
to take a rank-s symmetric tensor Φµ1···µs

, known as Fronsdal’s field [36]. In the spinorial
language its traceless component takes values in the (s, s)-representation of the Lorentz alge-
bra,5 ΦA(s),A′(s). In principle, any spin-tensor ΦA(n),A′(m) with n+m= 2s allows one to describe
the same degrees of freedom. Most of these spin-tensor fields, while completely equivalent
at the free level, resist including many important interactions, e.g. the gravitational one. For
Chiral HiSGRA an optimal way to describe a massless spin-s particle is rooted in the twistor ap-
proach [37–40]. Accordingly, positive and negative helicity states are placed into two different
fields: the zero-form ΨA(2s) and the one-form ΩA(2s−2). The free action reads [41]

S =

∫

ΨA(2s) ∧ eAB′ ∧ eA
B′ ∧∇ΩA(2s−2) , (4)

where eAA′ is the vierbein one-form and ∇ is the compatible Lorentz-covariant derivative
(∇eAA′ = 0). Note that ∇ does not have to be flat/(A)dS and describes an arbitrary self-
dual background, i.e., ∇2χA ≡ 0 for any χA. The action is invariant under the infinitesimal
gauge transformations δΨA(2s) = 0 and

δΩA(2s−2) =∇ξA(2s−2) + eA
C ′ η

A(2s−3),C ′ , (5)

where the gauge parameters ξ’s and η’s are zero-forms. One can also append this action with
Yang–Mills and gravitational interactions among the higher spin fields to construct higher spin
extensions of self-dual Yang–Mills theory and of self-dual gravity [41,42]. These two theories
are consistent truncations of Chiral HiSGRA [42], from which the scalar field can be safely
discarded for the gravitational and Yang–Mills interactions are not much restrictive. Once a
genuine higher spin interaction is present a unique completion gives Chiral HiSGRA.

5Hereinafter A, B, . . . = 1, 2, A′, B′, . . . = 1,2 are the indices of two-fundamental representations of the Lorentz
algebra, e.g. of sl(2,C) for the Minkowski signature. We also abbreviate a group of totally symmetric (or to be
symmetrized) indices A1 . . . Ak as A(k). All spinor indices are raised and lowered with the help of the anti-symmetric
ε-symbols εAB and εA′B′ with ε12 = 1.
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The fields ΩA(2s−2) can be packaged into a single gauge field Ω(y) =
∑

sΩ
A(2s−2) yA · · · yA

assuming its values in the Weyl algebra Aλ. By definition, Aλ is generated by the formal vari-
ables ŷA subject to the canonical commutation relations [ ŷA, ŷB] = −2λεAB. We prefer to think
of the algebra Aλ as resulting from the deformation quantization of R2, i.e., as the space of
complex polynomials in yA endowed with the Moyal–Weyl ⋆-product. The numerical parame-
ter λ will be proportional to the square root

p

|Λ| of the cosmological constant Λ. Likewise,
after extending with the scalar field, the fields ΨA(2s) can be packaged into a single matter
field Ψ(y). It is convenient to think of Ψ(y) as taking values in the dual space A∗

λ
≃ C[[yA]],

the space of formal power series in y ’s with complex coefficients. In the commutative/flat
limit λ = 0, the Weyl algebra Aλ passes smoothly to the commutative algebra of complex
polynomials A0 = C[yA].

2.2 Sigma-model

The equations of motion of Chiral HiSGRA are constructed in the (AKSZ) sigma-model form:6

dΦ=
∞
∑

n=2

ln(Φ, . . . ,Φ
︸ ︷︷ ︸

n

) . (6)

Here Φ is a collection of zero- and one-form fields, d is the exterior differential, and the ln’s
are exterior polynomials in the form fields Φ. The formal integrability of system (6), steming
from d2 = 0, imposes an infinite sequence of quadratic relations on the multi-linear functions
ln, which can be recognized as defining relations of a minimal L∞-algebra L [43]. System (6)
admits a consistent truncation setting ln = 0 for all n > 2. The remaining bilinear function
l2 defines then a graded Lie bracket on the target space of form fields Φ. In general, the
trilinear function l3 is defined by a Chevalley–Eilenberg cocycle of the graded Lie algebra with
bracket l2.

In principle, any system of PDE can be cast into the form (6) at the expense of introduc-
ing auxiliary fields [44–46]. However, to describe propagating degrees of freedom the total
number of components of the fields Φ must necessarily be infinite.

A remarkable fact is that the algebraL underlying Chiral HiSGRA originates from a minimal
A∞-algebra Â via the standard symmetrization procedure.7 The A∞-algebra Â decomposes
further into the tensor product A ⊗ B of a smaller A∞-algebra A and a unital associative
algebra B. For Chiral HiSGRA B is chosen to be Aλ=1⊗MatN . The factor A1 is needed to have
the right set of auxiliary fields for (6) to reproduce free equations of motion resulting from
(4)8 and MatN accommodates possible Yang–Mills gaugings. Since A and B are completely
independent of each other, we may keep the latter as an arbitrary parameter of Â. It is also
striking that the A∞-algebra A is of a very special type known as a pre-Calabi–Yau algebra of
degree two [35]. This is defined as an A∞-algebra built on A[−1]⊕ A∗, where A=

⊕

An is a
graded associative algebra, A∗ is its dual bimodule, and A[−1]n = An−1. The A∞-products mn
in A[−1]⊕ A∗ together with the natural pairing 〈a|c〉 = −〈c|a〉 for a ∈ A and c ∈ A∗ give rise
to the multi-linear forms 〈mn(α0, . . . ,αn−1)|αn〉 on A[−1]⊕A∗ that are required to have cyclic
symmetry. In our case, A is concentrated in degrees 0 and 1, i.e., A= A0⊕A1, where A0 = A∗

λ
and A1 = Aλ[−1]. All the products mn in A are of degree −1. The canonical projection of

6It was first introduced by Sullivan [81] as a Free Differential Algebra and later leaked into supergravity [82,83]
and higher spins [84]. In modern terms this is AKSZ equations of motion [85], see [86] for the relation to the
HiSGRA problem and [46] for a broader context.

7This is just an A∞-extension of the familiar statement that the commutator in any associative algebra defines
a Lie bracket.

8This set of auxiliary fields depends on the free spectrum and, for that reason, is exactly the same as in [84,87].
Some further simple projections/reality conditions may be needed, e.g. to reduce MatN to U(N). An additional
factor of Clifford algebra will lead to supersymmetric extensions.
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A

B
−e⃗1

−e⃗2

a⃗1

a⃗2
a⃗1

a⃗0

a⃗n

1

1

0

Figure 1: Configuration space: a convex polygon B and a swallowtail A. The swal-
lowtail is built on −e⃗1, −e⃗2, a⃗1, . . . , a⃗n, a⃗0.

the field Φ onto the A∞-subalgebra A ⊂ Â reproduces the pair of form fields Ω and Ψ that we
started with.

2.3 Configuration space and Convex Geometry

The products mn in the A∞-algebra A are reminiscent of (Shoikhet–Tsygan)–Kontsevich for-
mality [47, 48]: they are poly-differential operators defined through integrals over configu-
ration spaces of points inside and on the boundary of disk. Let us, however, stress that an
extension of the formality that would generate the vertices of Chiral theory has not yet been
identified. Nevertheless, one would expect that since the Poisson structure behind the Weyl
algebra Aλ is εAB, i.e., constant and symplectic, the configuration space lacks the bulk part and
reduces to points on the boundary. Therefore, the configuration space defined below should
be identified with the boundary part of a yet to be found extension of the formality.

Our configuration space Vn admits two equivalent definitions: (a) the space of convex
polygons that can be inscribed into a unit square and have one edge along the diagonal (re-
gion B in Fig.1) or (b) the space of all concave polygons with three convex vertices on the
two adjacent sides of the unit square (region A), which we call swallowtails. Clearly, Vn is a
compact region in R2n.

Both the definitions suffice for practical applications, but definition (b) can be improved.
In a few words, one can consider the space of concave polygons with exactly three consecu-
tive convex vertices on the oriented Euclidian plane E2 modulo the affine transformations of
GL+(2,R)⋉R2. Any such polygon corresponds to a string of vectors Q = (b⃗1, b⃗2, a⃗1, . . . , a⃗n, a⃗0)
with b⃗1,2 connecting the three convex vertices. Their affine coordinates form a 2×(n+3)-matrix
Q with vanishing sum of columns (the polygon is closed). By GL+(2,R)-transformations one
can bring Q into the canonical form

Q =

�

−1 0 u1 u2 . . . un 1−
∑

ui
0 −1 v1 v2 . . . vn 1−

∑

vi

�

, (7)

with one of the convex vertices at the origin. Let q i j denote the determinant of a 2× 2 minor
of Q built from columns i and j. Then the sum |Q|=

∑

i< j q i j is equal to twice the area of the
swallowtail A. |Q| depends on Q modulo cyclic permutations of the columns.

The configuration space Vn can also be understood as a subset in the oriented Grassman-
nian fGr(2, n), with q i j being the corresponding Plücker’s coordinates [49]. It is not a positive
one [50,51], but the signs of q i j are fixed.

5

https://scipost.org
https://scipost.org/SciPostPhys.14.6.162


SciPost Phys. 14, 162 (2023)

c j

a c0cn cn−1c∗ b c1c2 c3c4

T T0

c0

a b c1 c2 cn

Figure 2: A generic tree T on the left and the only tree T0 contributing to (11) on
the right. The counterclockwise arrow orders the arguments and i of ci on the left
panel corresponds to its position on T0 as obtained via flips and shifts.

2.4 A∞-maps/Vertices

Now we are ready to construct the (higher) products mn(α1, . . . ,αn) for αi ∈ A. As mentioned
above they are given by poly-differential operators

mn(p0, p1, . . . , pn)α1(y1) · · ·αn(yn)
�

�

�

yi=0
, (8)

where p0 ≡ y and pi ≡ ∂yi
. The products respect Sp(2)-symmetry and are functions of the

Sp(2)-invariant scalar products pi j ≡ −εAB pA
i pB

j such that exp[p0i] f (yi) = f (y + yi) is the
shift operator. In particular, the pairing between elements a ∈ Aλ and c ∈ A∗

λ
is defined as

〈a|c〉= −〈c|a〉= ep12 a(y1)c(y2)|yi=0 . (9)

Thanks to the cyclicity of the A∞-structure onAmany products are related to each other. At
order n one has 1+[ n−1

2 ] independent products. By dimensional considerations, each product
mn may have either one or two arguments of A1. By cyclicity, the products with one argument
are expressed through the products with two arguments. Therefore, we describe only those
products mn+2 that have two arguments a, b of A1 and the other n arguments c1, . . . , cn, of A0.
Such products are represented by sums over all planar rooted trees with exactly two branches,
see Fig. 2. Each branch ends by one of the two arguments a, b. The other leaves are decorated
by the arguments ci . It is also convenient to decorate the root of the tree with an additional
argument c0, which corresponds to the scalar 〈mn+2(c1, . . . , a, . . . , b, . . . , cn)|c0〉.

Let us start with the simplest tree T0, see the right panel in Fig. 2. With each ci and c0
we associate two vectors: a⃗i = (ui , vi), i = 1, . . . , n, and a⃗0 = (1 −

∑

i ui , 1 −
∑

i vi), so that
∑

i a⃗i = 0; r⃗i = (pa,i , pb,i), i = 1, . . . , n, and r⃗0 = (p0,a , p0,b). This notation corresponds to the
symbol of an operator that acts on

a(ya)b(yb)c1(y1) · · · cn(yn)|y•=0 . (10)

We also need an auxiliary matrix P = (0⃗, 0⃗, r⃗1, . . . , r⃗n, r⃗0) and recall that Q = (−e⃗1,−e⃗2, a⃗1, . . . , a⃗n, a⃗0).
The tree T0 describes a single contribution to the product mn+2(a, b, c1, . . . , cn)with a,b∈A1

and ci ∈ A0. The corresponding symbol reads

mn+2 = (pa,b)
n

∫

Vn

exp
�

tr[PQt] +λ |Q| pa,b

�

, (11)

see also (15). It generates many other structure maps via cyclicity. All other trees that con-
tribute to mn+2 give similar expressions. We just need to adjust Q and P in accordance with the
topology of a given tree. Every tree T can be obtained from T0 by two operations: (1) flipping
some ci from right to left on the right branch; (2) shifting the string of c1, . . . , cn, c0 by one unit
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along the cord connecting b to a. After these operations ci still remember their vectors a⃗i and
r⃗i from T0, e.g. ci of T in Fig. 2 has a⃗i and r⃗i associated with it. They also remember their
arguments, e.g. ci ≡ ci(yi) as it was for T0. The arguments of the symbol that corresponds to
T should be read off from left to right. Therefore, the labeling of ci ≡ ci(yi), which is inherited
from T0, does not correspond to the natural labeling c1(y1), . . . , a(ya), . . . , b(yb), . . . , cn(yn).
This will be compensated by a permutation σT that reshuffles the labels on the ci ’s and pi j ’s.
It also permutes the arguments yi of ci . The symbol associated with T consists of the sign,
prefactor, principal term, and cosmological term (the last two are in the exponent). They are
computed as follows.

Sign. For a given tree T the sign sT is equal to (−1)m, where m is the total number of c’s in
between a and b. Note that this number is cyclic invariant, which is necessary for the cyclicity
to work.

Prefactor. The prefactor is given by (pa,b)n where n is the number of c’s; it acts on a and b.
Principal term. To construct PT for a given tree T one can just use the cyclicity applied

to T0. Explicitly, PT = (0⃗, 0⃗, r⃗1, . . . ,−r j , . . . , r⃗n,−r⃗0), where j is the c j at the root of T . The
principal term is tr[PTQt].

Cosmological term. We associate the first two vectors−e1, −e2 of Q (7) with a and b. Recall
that vectors a⃗i are associated with ci , including c0. In order to construct QT for a given tree
T we fill in the columns of QT starting from a and then following the tree counterclockwise.
The coefficient of λ is |QT | pa,b; it acts on a and b.

Now we combine all the ingredients together and apply the permutation σT to bring the
labeling inherited from T0 into the natural one. Thus, each tree T makes the following contri-
bution to mn+2:

sT σT (pa,b)
n

∫

Vn

exp
�

tr[PTQt] +λ |QT | pa,b

�

. (12)

One needs to sum over all trees T to construct all mn+2. We claim9 that the products con-
structed in such a way do satisfy the defining relations of an A∞-algebra. Combining these
products with the associative product in B, we can write the r.h.s. of equation (6) as

ln(Φ, . . . ,Φ) = mn(Φ, . . . ,Φ) , (13)

for the form field Φ with values in Â= A⊗B. When restricted to the Φ-diagonal, symmetriza-
tion is automatically performed, turning the A∞-algebra products into the multi-brackets ln
of the L∞-algebra L.

An important property of the poly-differential operators mn is that the corresponding sym-
bols do not involve pi j ’s that connect ci with c j . This translates into the locality of the vertices in
the field theory language. Another important property is that the flat space vertices smoothly
deform to (A)dS4. In other words, the flat space limit is nonsingular.

2.5 Low order products

By way of illustrations let us present some low order products of A. For m2 the configuration
space V0 is zero-dimensional and the corresponding swallowtail occupies half of the square
(area= 1/2). The associated symbol

m2(a, b) = exp[p0,a + p0,b +λ pa,b] (14)

9This fact can be proven by extracting the A∞ products via homological perturbation theory of [29,34]. How-
ever, the products obtained this way are very complicated and do not immediately reveal neither the relation to
convex geometry nor to pre-Calabi–Yau algebras. The details of the derivation will be given elsewhere [88].
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1

1

0v1

u1a⃗1

a⃗0

A
B

V1

1

v1+v2 v1

u1

u1+u2

0

a⃗1
a⃗2

a⃗0

A

B

V2

Figure 3: Configuration spaces V1 and V2.

is just the Moyal–Weyl ⋆-product with parameter λ. Cyclicity implies

〈m2(a, b)|c〉= 〈a|m2(b, c)〉= −〈b|m2(c, a)〉 ,

which just gives the bimodule structure on A∗
λ
, as designed. These vertices along reproduce

most of the cubic amplitudes (1), (3) of Chiral HiSGRA [52].
For m3 the space V1 is two-dimensional: one can place a point (u, v) anywhere below the

diagonal, the volume of V1 is 1/2 and the area of A is 1
2(1+ u− v), see Fig. 3. The duality

determines 6 maps via just 2:

〈m3(a, b, c1)|c2〉= 〈m3(c2, a, b)|c1〉 ,
〈m3(a, b, c1)|c2〉= 〈a|m3(b, c1, c2)〉 ,
〈m3(c1, a, b)|c2〉= 〈m3(c2, c1, a)|b〉 ,
〈m3(a, c1, b)|c2〉= 〈a|m3(c1, b, c2)〉 .

The two basis products can be chosen as m3(a, b, c) and m3(a, c, b), see (16).
For m4 the space V2 is four-dimensional and its volume is equal to 1/24. There are two

independent products: one resulting from (15) for n = 2 and another one given by the sum
(17) over three trees.

3 Conclusions and Discussion

The main results of this letter are (i) an explicit construction of all covariant interactions ver-
tices of Chiral HiSGRA both in flat and (A)dS4 spaces; (ii) a remarkable relation between the
vertices and convex polygons; (iii) a rich class of 2-pre-Calabi–Yau algebras Â that are param-
eterized by an associative algebra with trace. This gives the first example of a well-defined,
local, manifestly covariant HiSGRA with propagating massless fields.10 The results open up
many obvious directions: (a) calculation of holographic correlation functions; (b) constructing
exact solutions; (c) looking for an action [53] that would covariantize the light-cone results
and extend them to (A)dS4. Eventually, one expects Chiral HiSGRA to be integrable and UV
finite, which is still to be proved.

In the regard to item (iii) a lot needs to be understood. It is clear that the field theory
underlying Chiral HiSGRA is low dimensional since the functional dimension of Aλ is two and

10Having well-defined vertices explicitly is very important. For example, [89] gives another type of homological
perturbation theory in the same HiSGRA context, but the original recipe [89] to extract interactions leads to ill-
defined vertices [90] (e.g. generic holographic correlation functions are infinite). From the field theory point of
view [89] is not a concrete theory, but a general ansatz for interactions. It is not clear how to solve this problem
since the duals of vector models are too nonlocal [7–11] to be treated by the standard tools. There are successful
attempts to fix the first few local vertices (see [91,92] and refs therein) which, however, do not address the nonlocal
ones where the actual problem resides.
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the extra associative factor B in Â = A ⊗ B is a passive spectator. This should be related to
an important result of [42] that in the light-cone gauge the equations of motion can be cast
into the form of the principal chiral model. Among other ideas, A can be used to construct
field theories in 2d and 3d. One can also construct a plenty of theories as a double-copy, just
tensoring A with any A∞-algebra, e.g. A⊗A.

Chiral HiSGRA is a local field theory in AdS4 and it can be treated by the standard
AdS4/C F T3-tools to give correlation functions of higher spin currents on the CFT side. They
should cover a closed subsector of (Chern–Simons) vector models, which is yet to be iden-
tified. Nevertheless, the very existence of such a closed subsector supports [28, 54] the 3d
bosonization duality [15,55–59].

There is also a distant relation to tensionless string theory on AdS4×CP3, which is via the
ABJ triality [30]. One needs N = 6 supersymmetric Chiral HiSGRA, which is easily achieved
via the right B-factor of Clifford algebra [60]. Again, the very existence of Chiral HiSGRA
implies that there should also exist a closed subsector of this tensionless string theory.

It is worth stressing that the ‘formality’ underlying the construction of Chiral HiSGRA is not
yet known. The cubic product m3 is equivalent [61,62] to one that follows from the Shoikhet–
Tsygan–Kontsevich formality [47, 48]. Higher structure maps are related to the deformation
quantization of the Poisson orbifold R2/Z2 [62]. However, these relations can be seen at the
formal A∞-level and do not give the specific vertices of the present paper. There should exist
a topological field theory behind our construction [63], which the appearance of a pre-Calabi–
Yau algebra also suggests [35].

The products of the A∞-algebra A underlying Chiral HiSGRA are fine-tuned to represent a
local field theory. Indeed, a generic A∞-automorphism would lead to a non-local field redef-
inition for the vertices of sigma-model (6), thereby violating the equivalence theorem. This
leads us to conclude that A∞/L∞-algebras representing actual field theories must have pre-
ferred bases where the vertices are maximally local. It would be interesting to reformulate the
property of ‘maximal locality’ in a pure algebraic form.

Lastly, it is worth mentioning other interesting examples of HiSGRA: 3d topological [64–
70]; 4d (and all even dimensions) conformal HiSGRA [71–73]; twistor constructions [53,74–
76]; IKKT-based [76–78]; holographic reconstruction [79,80]. The last two examples relax the
locality assumption in a controllable way and are not, strictly speaking, field theories. It seems
even necessary to go beyond the field theory approach to construct HiSGRA’s with massless
fields that extend and complete Chiral HiSGRA.

mn+2(a, b, c1, . . . , cn) = (pa,b)
n

∫

Vn

exp

��

1−
∑

i

ui

�

p0,a +

�

1−
∑

i

vi

�

p0,b +
∑

i

ui pa,i

+
∑

i

vi pb,i +λ

 

1+
∑

i

(ui − vi) +
∑

i, j

ui v j sign( j − i)

!

pa,b



 .

(15)

m3(a, b, c) = +pa,b

∫

V1

exp[(1− u) p0,a + (1− v) p0,b + upa,1 + vpb,1 +λ(1+ u− v)pa,b] ,

m3(a, c, b) = −pa,b

∫

V1

exp[up0,a + vp0,b + (1− u)pa,1 −λpa,b(1− u− v)− (1− v)pb,1]

− pa,b

∫

V1

exp[vp0,a + up0,b + (1− v)pa,1 −λpa,b(1− u− v)− (1− u)pb,1] .

(16)
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m4(a, c1, b, c2)

= −p2
a,b

∫

V2

exp[(1− u1 − u2) p0,a + (1− v1 − v2) p0,b + u2pa,1 +λA1pa,b + u1pa,2 − v2p1,b + v1pb,2]

−p2
a,b

∫

V2

exp[(1− u1 − u2) p0,a + (1− v1 − v2) p0,b + u1pa,1 +λA2pa,b + u2p12 − v1p1,b + v2pb,2]

−p2
a,b

∫

V2

exp[u2p0,a + v2p0,b + (1− u1 − u2) pa,1 −λA3pa,b + u1pa,2 − (1− v1 − v2) p1,b + v1pb,2] ,

A1 = 1− u1v2 + u2v1 + u1 − u2 − v1 − v2 , A2 = 2(1− v1 − v2)− A1 , A3 = A1 − 2u1 .
(17)
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