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Abstract

Several physically inspired problems have been proven undecidable; examples are the
spectral gap problem and the membership problem for quantum correlations. Most of
these results rely on reductions from a handful of undecidable problems, such as the
halting problem, the tiling problem, the Post correspondence problem or the matrix
mortality problem. All these problems have a common property: they have an NP-hard
bounded version. This work establishes a relation between undecidable unbounded
problems and their bounded NP-hard versions. Specifically, we show that NP-hardness
of a bounded version follows easily from the reduction of the unbounded problems.
This leads to new and simpler proofs of the NP-hardness of bounded version of the Post
correspondence problem, the matrix mortality problem, the positivity of matrix product
operators, the reachability problem, the tiling problem, and the ground state energy
problem. This work sheds light on the intractability of problems in theoretical physics
and on the computational consequences of bounding a parameter.
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1 Introduction

Many problems in quantum information and quantum many-body physics are undecidable.
This includes the spectral gap of physical systems [1,2], membership problems for quantum
correlations [3–7], properties of tensor networks [8–10], measurement occurrence and reacha-
bility problems [11,12], and many more [13–17]. In addition, other problems are believed to
be undecidable, such as detecting quantum capacity [18], distillability of entanglement [12],
or tensor-stable positivity [14].

All these problems have a common theme: They ask for a property that includes an
unbounded parameter. For example, in a quantum correlation scenario, the dimension of
the shared quantum state between the two parties may be unbounded. Also properties of
many-body systems, like the spectral gap, are statements involving arbitrarily large system
sizes.

On the other hand, many problems in science, engineering, and mathematics are NP-
hard [19]. Some examples relevant for physics are finding the ground state energy of an Ising
model [20], the training of variational quantum algorithms [21], or the quantum separability
problem [22,23], and many more.1 These problems typically concern properties where all size
parameters are bounded or even fixed. For example, the ground state energy problem concerns
the minimal energy of Hamiltonians with fixed system size.

This highlights an analogy between certain classes of problems: an unbounded problem
tests a property for an unbounded number of occurrences (which can be generated recursively),
whereas the corresponding bounded version tests the same property for a bounded number of

1There are thousands of NP-complete problems. More than three hundred of them are presented in Ref. [24].
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Problem A Problem B

Bounded version
of Problem A

Bounded version
of Problem B

Reduction

Definition 1Definition 1 Theorem 2

Fig. 1: If Problem B is at least as hard as Problem A (i.e. there is a reduction from A
to B), is the bounded version of Problem B at least as hard as the bounded version of
Problem A? Theorem 2 gives a sufficient condition when this is the case by reusing
the reduction between their unbounded versions.

situations. This includes, for example, testing a certain property of a translational invariant
spin system for all system sizes, or up to a certain size. One common observation in this context
is that bounded versions of undecidable problems are NP-hard. This observation was already
made in [9,10,25] for various examples, as well as in [19, Chapter 3].

Despite this analogy, the techniques used to prove NP-hardness and undecidability often
differ. While proofs of undecidability mainly rely on reductions from the halting problem, the
Post correspondence problem or the Wang tiling problem, NP-hardness proofs mainly rely on
reductions from the satisfiability problem SAT, or from NP-complete graph problems like the
3-coloring problem or MAXCUT.

In this work, we establish a relation between undecidable problems and certain NP-hard
problems. Specifically, we define a bounded version of a problem and a method to leverage the
reduction from unbounded problems to their corresponding bounded problems (see Figure 1).
Then we present two versions of the halting problem whose bounded versions are NP-hard, and
use these, together with our method, to provide simple and unified proofs of the NP-hardness
of the bounded version of the Post correspondence problem, the matrix mortality problem, the
positivity of matrix product operators, the reachability problem, the tiling problem, and the
ground state energy problem.

This work sheds light on the various intractability levels of problems used in theoretical
physics by highlighting the computational consequences of bounding a parameter. More
generally, this work is part of a tradition of studying problems from a computational perspective,
which has proven extremely successful in mathematics and beyond [19]. For example, the
hardness results of the ground state energy problem rule out a tractable solution of the ground
state for a given Hamiltonian, both for unbounded system sizes as well as a fixed system size.

This paper is structured as follows. In Section 2, we present a definition of bounding and a
method to leverage the reduction from unbounded problems to their corresponding bounded
versions. In Section 3, we present the two halting problems which are the root undecidable
problems. In Section 4, we apply our framework to many examples. In Section 5, we conclude
and discuss future directions. The appendix contains basic background on computational
complexity (Appendix A), the hardness proofs of the root undecidable problems (Appendix B)
and more details on the discussed examples (Appendix C).

2 Bounding

In this section, we present a definition of a bounded version of a language (Section 2.1), and a
method to leverage the reduction from unbounded problems to their corresponding bounded
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versions (Section 2.2). For a short introduction to computational complexity, we refer the reader
to Appendix A. To the best of our knowledge, no prior work introduces or studies bounded
versions of problems from a general systematic perspective.

2.1 Definition of bounding

Let Σ be a finite alphabet and Σ∗ the set of all words generated from Σ. A language L ⊆ Σ∗

encodes all the yes-instances of a given problem, i.e. x ∈ L if x is a yes-instance and x /∈ L if x
is a no-instance.

We now define a bounded version LB of L. For this purpose, we add a second parameter
n ∈ N to every yes-instance in L. This parameter acts as an acceptance threshold for every
yes-instance x ∈ L and is encoded in unary, i.e. for 1 ∈ Σ, every element of LB is of the form
〈x , 1n〉, where 1n represents the n-fold concatenation of 1.

Definition 1. Let L ⊆ Σ∗ be a language. A language

LB ⊆
�

〈x , 1n〉 | x ∈ Σ∗, n ∈ N
	

is called a bounded version of L if

(i) x ∈ L ⇐⇒ ∃n ∈ N : 〈x , 1n〉 ∈ LB.

(ii) 〈x , 1n〉 ∈ LB =⇒ 〈x , 1n+1〉 ∈ LB.

We shall often refer to L as the unbounded language of LB.
First, note that the definition of bounded versions relies only on the existence of a parameter

n in the problem that acts accordingly. While most problems we consider in this paper are
RE-complete, Definition 1 applies to languages of arbitrary complexity. Moreover, note that the
bounding parameter can also be encoded differently. For example, if the parameter is encoded
in binary, most of the bounded version would be NEXP-hard instead of NP-hard. Finally, we
remark that the process of bounding a language can be reversed. Given a language LB with
instances of the form 〈x , 1n〉 satisfying only Condition (ii), there is a unique language L, defined
via (i), which is the unbounded language of LB.

Many problems mentioned in the introduction contain a parameter that gives rise to a
bounded version according to Definition 1. This parameter can be the system size for tensor
network and spectral gap problems, or the dimension of the entangled state for quantum
correlation scenarios; we will present many such examples in Section 4.

As an example, let us consider the halting problem HALT with its known bounded version
BHALT. The former takes instances 〈T, x0〉 with a description T of a Turing machine and an
input x0. An instance 〈T, x0〉 is accepted if and only if the Turing machine T halts on x0. The
bounded halting problem takes instances 〈T, x0, 1n〉, which are accepted if and only if the
Turing machine halts on x0 within n computational steps. BHALT is indeed a bounded version
according to Definition 1 since halting of a Turing machine is equivalent to the existence of a
finite halting time, and halting within n steps implies halting within n+ 1 steps.

We remark that in Definition 1 there is some freedom in the choice of the bounding parameter.
For example, for every non-decreasing, unbounded function f : N→ N, the language

BHALT f :=
�

〈T, x0, 1n〉 | T halts on x0 in f (n) steps
	

is also a bounded version of HALT. In this paper, we will focus on the simplest versions setting
f = id in all examples.
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2.2 Leveraging reductions to the bounded case

Given the hardness of the unbounded languages, what can we say about the bounded ones?
We will now give a condition to leverage a reduction of unbounded problems to a reduction
between the corresponding bounded problems. This results in a method to prove hardness
results of many bounded versions of undecidable problems, as we will see in Section 4.

Let LB be a bounded version of L ⊆ Σ∗. For x ∈ Σ∗, we define the threshold parameter

nmin,L[x] := inf{n ∈ N : 〈x , 1n〉 ∈ LB} ,

where we set inf;=∞. In other words, nmin[x] denotes the minimum value of n leading to
an accepting instance of LB. Note that nmin[x]<∞ for every x ∈ L due to (i) of Definition 1
and nmin[x] =∞ if x /∈ L. Moreover, 〈x , 1n〉 ∈ LB if and only if n ≥ nmin[x] due to (ii) of
Definition 1.

Theorem 2. Let L1, L2 ⊆ Σ∗ be two languages and R : L1 → L2 a polynomial-time reduction
from L1 to L2, i.e. L1 ≤poly L2. Furthermore, let LB1 and LB2 be bounded versions of L1 and L2,
respectively.

If there is a strictly increasing polynomial p : N→ N such that

nmin,L2
[R(x)]≤ p
�

nmin,L1
[x]
�

, (1)

for every x ∈ L, then
〈x , 1n〉 7→ 〈R(x), 1p(n)〉 (2)

is a polynomial-time reduction from LB1 to LB2, hence LB1 ≤poly LB2.

Proof. Since R and p are polynomial-time maps, the map in Equation (2) is also polynomial-
time. It remains to show that yes/no-instances are preserved via this map. We have that
〈x , 1n〉 ∈ LB1 if and only if n≥ nmin,L1

[x]. This is equivalent to

p(n)≥ p
�

nmin,L1
[x]
�

≥ nmin,L2
[R(x)] ,

since p is a strictly increasing function. But this is again equivalent to 〈R(x), 1p(n)〉 ∈ LB2.

In words, Condition (1) demands that there is a polynomial that relates thresholds of x
and R(x) for all x . We require that p is strictly increasing instead of mere non-decreasing as
we need the equivalence of the statements n≥ m and p(n)≥ p(m) in the proof.

Many known reductions of undecidable problems implicitly contain such a polynomial p in
their construction. This gives an almost-for-free proof of the NP-hardness of their bounded
problems. However, most of these works do not make this polynomial explicit and therefore do
not obtain the NP-hardness results. While the theorem only assumes that p(nmin,L2

[x]) upper
bounds nmin,L1

[R(x)], in all examples, we have an equality between these expressions. In
Section 4, we will present many examples of this behavior.

Theorem 2 also generalizes to other types of reductions. For example, we obtain an
exponential-time reduction between the bounded versions when R is considered a exponential-
time reduction and p being a strictly increasing function that can be computed in exponential
time.

3 Halting problems as root problems

The result of Theorem 2 gives only relative statements about hardness. Specifically, it allows
to construct a reduction between bounded versions given a reduction between their original
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problems. To prove NP/coNP-hardness of bounded problems, we need root problems with
bounded versions whose complexities are already known. In this section, we review two
fundamental undecidable problems and their bounded versions, namely two variants of the
halting problem.

While HALT and BHALT are the most basic versions of halting problems, we need variations
of the halting problem that take non-deterministic Turing machines as inputs. This is due to the
fact that, while HALT is undecidable, BHALT is in P. Since we want to prove NP/coNP-hardness
of bounded problems, we need root problems with a NP/coNP-hard bounded version to start
the reduction from. Therefore, we introduce two non-deterministic versions of HALT, called
NHALT and NHALTALL, with an NP-hard and a coNP-hard bounded version, respectively.

(a) The problem NHALT checks the halting of a non-deterministic Turing machine on the
empty tape. An instance is given by a description of a non-deterministic Turing machine
T , which is accepted if and only if T halts on the empty tape.2 Its bounded version
BNHALT takes instances 〈T, 1n〉 and accepts if and only if T halts on the empty tape in at
most n steps. The unbounded problem is RE-hard since it contains the (deterministic)
halting problem on the empty tape, which is itself RE-hard. Its bounded version BNHALT

is NP-hard.

(b) The problem NHALTALL takes a description of a non-deterministic Turing machines T
as an instance, which is accepted if and only if T halts on the empty tape along all
computation paths. Its bounded version BNHALTALL is given by instances 〈T, 1n〉 which
are accepted if and only if T halts on the empty tape within n computational steps along
all computation paths. The unbounded problem is RE-hard, and the bounded version is
coNP-hard.

For more details on these problems and their complexity proofs, we refer to Appendix B.
NHALT will be the root problem to prove the hardness of the bounded Post correspondence

problem (Section 4.1) and the bounded matrix mortality problem (Section 4.2). NHALTALL

will be the root problem to prove the hardness of the bounded Tiling problem (Section 4.7).
While reductions for undecidable problems usually stem from the deterministic halting prob-

lem HALT, here we need non-deterministic halting problems in order to prove NP-hardness of
the bounded versions. Canonical extensions of the reductions from HALT to a non-deterministic
halting problem lead to different choices of root problems. For example, the Post correspon-
dence problem has a similar structure as NHALT, while the structure of the tiling problem
relates to NHALTALL. We will elaborate on these structures in the corresponding sections.

We expect that other variants of the halting problem serve as root problems for other
complexity results; see Section 5 for further discussion.

4 A tree of undecidable problems and their bounded versions

In this section, we apply Theorem 2 to several undecidable problems in order to prove the
NP-hardness of the bounded versions. The problems studied in this paper are summarized
in Figure 2, where every edge corresponds to one application of the theorem. For a detailed
treatment of these problems and further examples, we refer to Appendix C.

4.1 The Post Correspondence Problem

The Post correspondence problem (PCP) [26] is an undecidable problem with a particularly
simple and intuitive formulation. For this reason, it is often used to prove undecidable results

2In other words, it accepts if and only if there is a computation path such that T halts along this path.
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RE-hard problems
with NP-hard

bounded version

Sec. 4.1

Sec. 4.2

Sec. 4.2Sec. 4.3

Sec. 4.4Sec. 4.5

Sec. 4.6

NHALT

PCP

ZULC

MM

REACH

MPO

POLYTSP

Sec. 4.7

Sec. 4.8

NHALTALL

TILE

GSE

RE-hard problems
with coNP-hard
bounded version

Fig. 2: The problems and reductions considered in this work. NHALT is the non-
deterministic halting problem, PCP is the Post correspondence problem, REACH is the
reachability problem for resource theories, ZULC is the zero in the upper left corner
problem, MM is the matrix mortality problem, MPO is the positivity of Matrix product
operators problem, TSP is the stability of positive maps problem and POLY is the
polynomial positivity problem. NHALTALL is the non-deterministic halting problem
on all computational paths, TILE is the Wang tiling problem, and GSE is the ground
state energy problem. NHALT and NHALTALL are the root problems, and every arrow
corresponds to a reduction, explained in the referenced subsection.
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Fig. 3: An instance of PCP is a set of dominos (left). This is a yes-instance if they form
a match (right), i.e. the words on the top and the bottom coincide.

in quantum information theory [12], including a version of the matrix product operator
positivity problem [9], threshold-problems for probabilistic and quantum finite automata [15],
or reachability problems in resource theories [16]. It is stated as follows:

Given two finite sets of words, {a1, . . . , ak} and {b1, . . . , bk} ⊆ Σ∗, is there a finite sequence of
indices i1, . . . , iℓ such that

ai1 ai2 . . . aiℓ = bi1 bi2 . . . biℓ ?

This decision problem is known to be RE-complete via a reduction from the halting problem.
Since ai and bi only appear in fixed pairs, this problem has an equivalent formulation in terms
of dominoes

di =
�

ai

bi

�

.

The question is whether there exists a finite arrangement of dominoes that form a match, i.e.
where the upper and lower parts coincide when the words are read across the dominoes (see
Figure 3).

We define a bounded version of PCP that checks for sequences of length at most n:

Given a finite set of dominoes {d1, . . . , dk} and a number n ∈ N in unary, is there a matching
arrangement of dominoes di1 , . . . , diℓ with ℓ≤ n?
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(b)
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(d)

⋆ y0
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(c)

⋆q1 ⋆

y1 ⋆q2 ⋆

(b)

⋆ !

⋆ !⋆

(d)

kth step

· · ·
⋆ y0 ⋆ ... yi ⋆q f ⋆ yi+1... yℓ ⋆ !⋆

⋆ y0

y0 ⋆
· · ·

⋆ yi ⋆q f ⋆ yi+1

q f ⋆

⋆ yi+2

yi+2 ⋆
· · ·

⋆ !

⋆ !⋆

(c) (e) (c) (d)

· · ·
q f ⋆ ⋆ !⋆

⋆q f ⋆ !⋆ !

!

(f)

Halting
procedure

Fig. 4: (Top) In the reduction NHALT→ PCP, domino (a) contains the initial configu-
ration of the TM, i.e. an empty tape with head at position zero. Each computation
step is simulated by copying the lower string to the upper part in green. This is done
by applying a transition domino (b), reproducing the tape (c), and adding a new
empty tape slot (d). This generates a new string on the bottom, showing the new in-
stantaneous description (white). Repeating the procedure simulates the computation.
(Bottom) The halting of the Turing machine is mapped to the following match of tiles.
When the Turing machine reaches the final state q f , the instantaneous description
is successively removed by dominoes (e). Adding a final domino (f) guarantees the
match.

This problem, denoted BPCP, is a bounded version of PCP according to Definition 1. It is known
to be NP-complete (see [9,24,27] for the ideas of the reductions). The basic idea of the reduction
is analogous to Theorem 2, i.e. using the reduction of the (unbounded) undecidable problems
to relate the bounding parameters via a polynomial-time map. Yet, the usual reductions do not
directly give rise to a polynomial relation between the bounding parameters, contrary to what
is claimed in [9]. We will now provide a reduction NHALT→ PCP leading to such a relation
(and refer to Appendix C.1 for further details). Our approach is similar to that of [28].

We define a map R mapping a description of a Turing machine to a set of dominoes,
R(T ) := 〈d1, . . . , dk〉. This map mimics the description of T (see Figure 4). For example, d1 is
a domino whose lower string is given by

! ⋆ q0 ⋆ ⋆ ! ⋆ ,

where ! and ⋆ are separator symbols, and q0 and indicate that the Turing machine head is
initially in state q0 acting on an empty tape.

The map R is a polynomial-time map; in particular, the number of dominoes k is polynomial
in the description size of T . From the construction of R it follows that T halts on the empty tape
if and only if there exists a match of dominoes d1, . . . , dk. This implies that R is a polynomial-
time reduction from the non-deterministic halting problem, which implies that PCP is RE-hard.

Refining this argument and using Theorem 2, we obtain that R can be used as a reduction
from BNHALT to BPCP. Each computation step of T on the empty tape is simulated by attaching
dominoes, as shown in Figure 4. This procedure guarantees that T halts within n steps if and
only if d1, . . . , dk form a match within

p(n) := (n+ 1) · (n+ 2)

steps. Hence, the halting time of T is polynomially related to the length of a minimal match of
R(T ). This proves that BPCP is NP-hard by Theorem 2.
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Moreover, PCP is RE-complete and BPCP is NP-complete, by taking matching domino
arrangements as certificates, and a polynomial-time verifier that checks arrangements.

4.2 The Zero in the upper left corner and Matrix Mortality problem

We now present the Matrix mortality problem (MM) and the zero in the upper left corner
problem (ZULC) with their bounded versions. Both problems are undecidable and have been
applied to prove the undecidability of quantum information problems such as the positivity of
Matrix product operators [8] (see Section 4.3), the reachability problem [12] (see Section 4.6),
or the measurement occurrence problem [11].

The matrix mortality problem is the following:

Given A1, . . . , Ak ∈Md(Q), is there a finite sequence i1, . . . , iℓ ∈ {1, . . . , k} such that

Ai1 · Ai2 · · ·Aiℓ = 0 ?

Here, 0 denotes the zero matrix, and Md(Q) the set of d × d matrices over Q. ZULC is almost
identical to MM, the only difference is that only the upper left corner of the product Ai1 ·Ai2 · · ·Aiℓ
is asked to be zero. We define the bounded matrix mortality problem (BMM) and the bounded
zero in the upper left corner problem (BZULC) by adding a parameter n ∈ N to every instance,
and asking whether the desired zeros can be realized within n matrix multiplications.

The undecidability of MM was first proven by Paterson [29]. Since then, many tighter
bounds on the number and size of matrices for both problems have been found (see [30] and
references therein). It is also known that BMM is NP-hard [25]. However, the proof relies on
a reduction from the NP-complete problem SAT and is therefore independent of the original
reduction proving undecidability. To the best of our knowledge, the following is the first proof
of the NP-hardness of these bounded matrix problems using the same reductions as their
unbounded versions.

We briefly sketch the reductions and refer to Appendix C.3 for details. Following [31], there
exist polynomial-time reductions R : PCP → ZULC and Q : ZULC → MM with the following
properties:

(i) The dominoes d := 〈d1, . . . , dk〉 form a match of length n if and only if the matrices

〈N1, . . . , Nk′〉 :=R(d)

multiply to a matrix with a zero in the upper left corner within n matrix multiplications.

(ii) The matrices N := 〈N1, . . . , Nℓ〉 form a zero in the upper left corner using n matrix
multiplications if and only if the matrices

〈M1, . . . , Mℓ′〉 :=Q(N)

multiply to a zero matrix within n+ 2 matrix multiplications.

Together with Theorem 2, these observations show that

〈x , 1n〉 7→ 〈R(x), 1n〉

is a polynomial-time reduction from BPCP to BZULC, and

〈x , 1n〉 7→ 〈Q(x), 1n+2〉

is a polynomial-time reduction from BZULC to BMM. This proves that BZULC and BMM are
NP-hard.

Moreover, MM and ZULC are RE-complete, and their bounded versions, BMM and BZULC,
are NP-complete by taking matching matrix arrangements as certificates and a polynomial-time
verifier checking the statements.
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ρn(B) := B B B B B

n

Fig. 5: Tensor network representation of the MPO ρn(B). The MPO problem asks:
Given a tensor B, is ρn(B) positive semidefinite for all n?

4.3 The matrix product operator (MPO) positivity problem

A matrix product operator (MPO) representation is a decomposition of a multipartite operator
into local tensors according to a one-dimensional structure [32,33]. A local tensor B defines a
diagonal operator ρn(B) for every system size n (see Figure 5). More precisely, given a family
of D× D matrices (Bi) for i ∈ {1, . . . , d}, the diagonal (translationally invariant) MPO of size n
is given by

ρn(B) :=
d
∑

i1,...,in=1

tr
�

Bi1 · · ·Bin

�

|i1 . . . in〉 〈i1 . . . in| .

If these MPO should represent density matrices, then B should be such that ρn(B) is positive
semidefinite for every n. This property cannot be decided algorithmically, not even for classical
states. In other words, the following MPO problem is undecidable:

Given B1, . . . , Bk ∈MD(Q), is there n ∈ N such that ρn(B)� 0?

Note that an MPO is usually defined more generally; instead of restricting to families of
diagonal (classical) matrices Bi, a general matrix product operator is defined via families of
D × D matrices (B j

i ) for i, j = 1, . . . , d, addressing also non-diagonal entries of the matrix.
However, as diagonal MPOs are contained in this definition, the undecidability of MPO as
we defined it implies that the same problem for arbitrary matrix product operators is also
undecidable.

Similar to previous bounded versions, we define BMPO by bounding the system size n:

Given B1, . . . , Bk and n ∈ N, is there an ℓ≤ n such that ρℓ(B)� 0?

Note that MPO is usually stated in the negated way; yet, we use this definition for consistency
with the definition of bounding.

Let us now sketch the proof that BMPO is NP-hard by using Theorem 2 together with the
undecidability proof of [8]. For details, we refer to Appendix C.4. Following [8], every instance
〈A1, . . . , Ak〉 of ZULC is mapped to k + 1 matrices B1, . . . , Bk+1 ∈MD(Z). These matrices are
constructed such that (Bi1 · · ·Biℓ)11 = 0 if and only if ∃ j1, . . . , jℓ+1 ∈ [k+ 1] such that

tr
�

B j1 · · ·B jℓ · B jℓ+1

�

< 0 .

This implies that the family A1, . . . , Ak generates a zero in the upper left corner using n matrix
multiplications if and only if ρn+1(B)� 0. Setting p(n) = n+ 1 proves that BMPO is NP-hard
by Theorem 2.

Moreover, MPO is RE-complete and BMPO is NP-complete by defining negative diagonal
entries as certificates.

While MPO precisely characterizes psd matrix product operators, in practice, algorithms
distinguishing MPOs that are sufficiently positive or that violate positivity by at least an error
ϵ > 0 are often acceptable. This is the idea behind weak membership problems. Along these
lines, we define the approximate MPO problem MPOϵ as follows:
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Given C1, . . . , Ck ∈MD(Q) with tr(ρℓ(C))≤ 1 for every ℓ ∈ N and a family of errors (ϵℓ)ℓ∈N
with 0< ϵℓ ≤ 1/exp(ℓ). Decide the following:

(a) Accept if ∃n ∈ N : ρn(C)� −ϵn1.

(b) Reject if ∀n ∈ N : ρn(C)⩾ ϵn1.

MPOϵ is undecidable using the same reduction as above and the fact that tr(ρn(C)) increases
exponentially in n in the above reduction. Following the usual bounding process, we define
BMPOϵ by bounding n:

Given C1, . . . , Ck ∈MD(Q) with tr(ρℓ(C)) ≤ 1 for every ℓ ∈ N, a family of errors (ϵℓ)ℓ∈N
with 0< ϵℓ ≤ 1/exp(ℓ) and n ∈ N. Decide the following:

(a) Accept if ∃ℓ≤ n : ρℓ(C)� −ϵn1.

(b) Reject if ∀ℓ≤ n : ρℓ(C)⩾ ϵn1.

It follows that BMPOϵ is a bounded version of MPOϵ according to Definition 1. Moreover,
Theorem 2 implies that BMPOϵ is also NP-hard.

We remark that Kliesch et al. [9] present a similar idea, by constructing a reduction from
PCP to an alternative version of MPO and bounding both problems.

4.4 The polynomial positivity problem

The undecidability of MPO leads to the undecidability of other positivity problems. One of them
concerns deciding the positivity of a certain class of polynomials [13]:

Given a family of polynomials qα,β(x) for α,β ∈ {1, . . . , D} with integer coefficients, is there
an n ∈ N such that the polynomial

pn(x1, . . . , xn) :=
D
∑

α1,...,αn=1

qα1,α2
(x1) · · ·qαn,α1

(xn) (3)

is not nonnegative (i.e. pn(a)< 0 for some a ∈ Rd·n)?

Here x i denotes a d-tuple of variables, for every i. We define this problem as POLY and its
bounded version (by restricting to checking nonnegativity of pk for k ≤ n) by BPOLY.

Following the proof of [13], POLY is RE-hard since there exists a polynomial-time map

R(〈B1, . . . , Bk〉) :=



qα,β : α,β = 1, . . . , D
�

,

such that
ρn(B)⩾ 0 if and only if pn is nonnegative.

This implies that 〈B, 1n〉 7→ 〈R(B), 1n〉 defines a reduction from BMPO to BPOLY. It follows that
BPOLY is NP-hard. We refer to Appendix C.5 for further details.

4.5 Stability of positive maps

Another undecidable problem related to positivity concerns tensor products of positive maps. A
map

P : Md(C)→Md(C)

is called positive if it maps positive semidefinite matrices to positive semidefinite matrices. Such
a map is called n-tensor-stable positive if P⊗n is a positive map, and tensor-stable positive if it is
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n-tensor-stable positive for all n ∈ N. The existence of non-trivial tensor-stable positive maps
relates to the existence of NPT bound-entangled states [34].

Let us define the n-fold Matrix Multiplication tensor as

|χn〉 :=
s
∑

i1,...,in=1

|i1, i2〉 ⊗ |i2, i3〉 ⊗ · · · ⊗ |in, i1〉 ,

and denote the projection to this vector by

χn := |χn〉 〈χn| . (4)

The following problem is undecidable [14]:

Given a positive map P : Md(C)→Md(C), is P⊗n(χn) not positive semidefinite for some
n ∈ N?

We denote this problem by TSP. Its bounded version, BTSP takes instances 〈P , 1n〉 and asks the
same question for k-fold tensor products with k ≤ n.

From the proof of [14] it follows that there is a polynomial-time map 〈B1, . . . , Bk〉 7→ P
such that the resulting P satisfies that P⊗n(χn) = ρn(B). This shows that TSP is RE-hard by a
reduction from MPO. Moreover, since

ρn(B)⩾ 0 if and only if P⊗n(χn)⩾ 0 ,

it follows BTSP is NP-hard by applying Theorem 2 together with the fact that BMPO is NP-hard.
We refer to Appendix C.6 for more details on the reduction.

4.6 The reachability problem in quantum information

The reachability problem in quantum information concerns the question whether a resource
state ρ (given as a density matrix) can be converted to another state σ by using only free
resource operations from a fixed set F := {Φ1, . . . ,Φk}. More precisely, we define REACH as
follows:

Given density matrices ρ, σ ∈Md(C) and a set F of free operations Md(C)→Md(C), is
there a map

Φ := Φin ◦Φin−1
◦ · · · ◦Φi1

in the free semigroup F∗ such that σ = Φ(ρ)?

The free semigroup F∗ of F consists of all maps generated by finite compositions of maps in
F . We denote by Fn the set of all operations arising from at most n compositions of maps in
F , and define the bounded version BREACH by replacing F∗ with Fn in the above problem
statement.

REACH is undecidable via a reduction from PCP [16]. We now prove that the bounded version
BREACH is NP-hard. We rely on Scandi and Surace’s work [16], who provide a polynomial-time
reduction R mapping dominoes di to two types of resource maps Hλi , Gλi for λ ∈ (0, 1). The set
of free resource operations is then specified by

F =
�

1, Hλi , Gλi : i = 1, . . . , r and λ ∈ (0,1)
	

.

For a state ρ ∈M4(C), it is shown that

σ := λρ + (1−λ)
1

4
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Instance Valid tiling

Fig. 6: An instance of TILE is a set of tiles (left). A set of tiles is a yes-instance if there
exists a valid tiling of the plane. Part of a potentially valid tiling is shown on the right.
In a valid tiling, the colors of adjacent tiles must coincide and the tiles cannot be
rotated.

is reachable via operations in F∗ if and only if there exists a match of the corresponding
dominoes in PCP. This shows that REACH is RE-hard. More specifically, there exists a match of
length n if and only if

σ = Gλn
in
◦ · · · ◦ Gλ1

i1
◦Hλ1

i1
◦ · · · ◦Hλn

in
(ρ) ,

for a choice λ1, . . . ,λn ∈ (0, 1). In other words, a threshold parameter n in BPCP is mapped to
a threshold 2n in BREACH. This proves that BREACH is NP-hard by applying Theorem 2.

4.7 The tiling problem

Let us now consider the Wang tiling problem. This problem has been used to prove undecid-
ability in many physics-related problems, like the spectral gap problem in 2D [1], 2D PEPS
problems [10], or the universality of translational invariant, classical spin Hamiltonians in
2D [35].

A tile is given by a square with different colors on each side of the tile (see Figure 7). Given
a finite set of tiles, a valid tiling is an arrangement of tiles whose adjacent edges coincide.
Moreover, all tiles have a fixed orientation, i.e. they cannot rotate. We study the following
variant:

Given a set of tiles T = {t1, . . . , tk}, is it impossible to tile the plane when t1 is in the origin?

Note that this problem is usually stated in the negated form, but this formulation is more
convenient for our purposes. The constraint on the fixed tile in the origin can also be removed
[36, 37]; we stick to this version for simplicity. The corresponding bounded version is the
following:

Given a set of tiles T = {t1, . . . , tk} and n ∈ N, is it impossible to tile Z2
n when t1 is in the

origin?

Here we denote by Z2
n := {−n, . . . , 0, . . . , n}2 the square grid of size (2n+ 1)× (2n+ 1) around

the origin.
Let us now sketch the proof that TILE is RE-hard and that BTILE is coNP-hard. This will

imply that the tiling problem in its usual formulation (“can the plane be tiled?”) is coRE-hard
and its bounded version is NP-hard. We refer to Appendix C.7 for details.

In contrast to the previous examples, we now construct a reduction from NHALTALL instead
of NHALT. While to check whether {d1, . . . , dk} is a yes-instance of BPCP, one needs to find a
single matching arrangement, to verify whether {t1, . . . , tk} is a yes-instance of BTILE one has
to check (for a fixed size n) whether all arrangements of tiles in Z2

n are invalid. This structure
is similar to NHALTALL, where for a fixed computation time n, one needs to check whether a
given Turing machine T halts on all computation steps. More precisely, there is a polynomial
relation between the bounding parameters of BTILE and BNHALTALL, as needed for Theorem 2.
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q0

si

q j

q j

qk

qksℓ qr

Instantaneous description
of the computation

Ti
m

e

Fig. 7: In the reduction NHALTALL→ TILE, the instantaneous description of the Turing
machine is mapped to a horizontal configuration of tiles, and every computational
step is mapped to a valid tiling of the horizontal line above. The green tile is fixed
at the origin, while the orange tiles realize the computation. The rest of the plane
is filled with trivial tiles, such as the empty tiles (bottom) or tiles copying the tape
information (left and right). A Turing machine halts along every path within n steps
if and only if the corresponding tiling terminates after n horizontal lines.

We build a polynomial-time reduction from NHALTALL to TILE following [37]. The reduction
maps a description of a Turing machine T to a set of tiles representing either a slot in the
tape or a computational step. The (infinite) starting tape is mapped to the fixed origin tile
representing the empty tape with head position at zero. Filling up a new line corresponds to
one computational step. This reduction also applies to non-deterministic Turing machines.

The reduction is such that the tiling cannot be continued after filling up n lines if and only
if T halts on all computation paths after at most n computational steps. We refer to Figure 7
and Appendix C.7 for further details on the reduction. This proves that TILE is undecidable.
By Theorem 2, we obtain that BTILE is coNP-hard, since the maximal halting time n on every
computation path is mapped to the termination size n+ 1.

In addition, TILE is RE-complete by taking a system size where all tilings terminate as
a certificate and an exponential-time verifier checking all tilings of this size. BTILE is coNP-
complete by choosing tilings as a certificate and a polynomial-time verifier checking the validity
of the tiling. This highlights that when proving completeness, not every construction in the
unbounded case trivially translates to the bounded version.

4.8 Ground State Energy problem

We now study a version of the ground state energy problem. For this purpose, we consider a
spin system on a 2D grid. We assume that every spin takes values in a set S. Given coupling
functions hx , hy : S ×S → N and a local field hloc : S → N, we define the Hamiltonian

Hn(s) = hloc(s00) +
∑

〈a,b〉x

hx(sa, sb) +
∑

〈a,b〉y

hy(sa, sb) ,

where s = (si j)i, j∈{−n,...,0,...,n} is a given spin configuration on the grid Z2
n taking values in S and

sa, sb denote the elements with coordinates a and b in this array. Moreover, 〈a,b〉x/y denotes
all neighbors in x/y-direction on Z2

n where the a has a smaller x/y-coordinate than b. Hence,
Hn is translational invariant except for the local field on the spin in the origin.
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(a) t i = ( , , , )

(b)

t1 t1 t3 t2

t3 t4 t4 t3

t1 t4 t2 t4

t4 t4 t4 t1

Fig. 8: In the reduction TILE→ GSE, (a) every tile t i is mapped to a spin state si . (b)
Every (valid and invalid) tiling maps to a spin configuration. A tiling of size n is valid
iff the corresponding spin configuration is the ground state of Hn with energy 0.

We start by defining the bounded version of this problem, namely the bounded ground
state energy problem BGSE:

Given system size n ∈ N, non-negative functions hx , hy , hloc and energy E ∈Q, is the ground
state energy Emin(Hn)> E?

A function h is non-negative if it is non-negative on its whole domain. Note that BGSE is indeed
a bounded version, as Emin(Hn+1)≥ Emin(Hn)> E since all couplings are non-negative. Further
note that BGSE is usually formulated in the negated way, i.e. the question is if there exists a
spin configuration whose energy is below the threshold E.

We now extend BGSE to an unbounded ground state energy problem GSE:

Given non-negative functions hx , hy , hloc and an energy E ∈ Q, is there an n ∈ N such that
Emin(Hn)> E?

Note that BGSE is the bounded version of GSE according to Definition 1.
Let us show that GSE is RE-hard and BGSE is coNP-hard by a reduction R : TILE → GSE

(see Figure 8). Given a set of tiles T = {t1, . . . , tk}, we define the set of spin states as the set of
tiles S := T . Since each tile is specified by four colors in a color space C , it can be represented
as a 4-tuple

t i =
�

tN
i , tE

i , tS
i , tW

i

�

,

where the entries represent the colors on the top, right, bottom, and left of the tile. We define
the coupling function so that a valid tiling with t1 in the origin maps to a spin configuration of
energy 0, and every inconsistent color pairing in an invalid tiling gives an additional energy
penalty of 1. More precisely,

hx(s, ŝ) := 1−δ(sE , ŝW ) and hy(s, ŝ) := 1−δ(sN , ŝS) ,

where s, ŝ ∈ S. According the definition of Hn, the first component of hx addresses the spin on
the left and the second the spin on the right while the first component of hy addresses the spin
on the bottom and the second the spin on the top. Moreover, we define

hloc(s) := 1−δ(s, t1) .

Note that Hn has a ground state of energy zero if and only if there exists a valid tiling of Z2
n

with tile t1 at the origin. That is, Emin(Hn)> 0 if and only if there is no valid tiling of size n.
This guarantees that R is a reduction. Additionally, we obtain a reduction from BTILE to BGSE

since the bounding parameters are identical. Similar to the tiling problem, one can show that
GSE is RE-complete and BGSE is coNP-complete.
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Note that non-translational invariant versions of BGSE are known to be coNP-hard since
their negated versions are NP-hard. In particular, the ground state energy problem for 2D Ising
models with fields is NP-complete [20].

5 Conclusions and Outlook

In this work, we have shown a relation between the hardness of an (unbounded) problem and
the hardness of its bounded version. In particular, we have defined a bounded version of a
language (Definition 1) and given a condition under which a reduction between the unbounded
problems translates to a reduction between their bounded versions (Theorem 2). We have
also applied this result to two classes of examples (Section 4): First, we showed that RE-hard
problems like PCP, MPO, or REACH have an NP-hard bounded version; Second, we showed that
RE-hard problems like TILE and GSE have a coNP-hard bounded version.

It would be interesting to extend this work to problems in quantum physics such as the
spectral gap problem [1,2] or membership problems for quantum correlations [3–7]. A bounded
version of the latter uses the dimension of the entangled state as the bounding parameter.

Another open question is whether the undecidability of Diophantine equations [38] and
the NP-hardness of its bounded version [39] fits into our framework.3 In this context, the
unbounded problem is as follows:

Given a Diophantine equation p(x,y) = 0 with 2k variables, and a k-tuple of integers a ∈ Zk,
does there exist b ∈ Zk such that p(a,b) = 0?

Note that here k is fixed. The bounded version would restrict to values b ∈ {−n, . . . , n}k, where
n acts as the bounding parameter.

Are there also hard bounded versions with other types of complexity, such as QMA-hard [40]
bounded versions? While we only considered the scenario of RE-hard problems with either NP-
hard or coNP-hard bounded versions, there might be “root problems” whose bounded version
is neither NP-hard or coNP-hard. Natural candidates for QMA-hard bounded version are the
bounded/unbounded satisfiability problems of quantum circuits [41], which concerns Turing
machines generating polynomial-size quantum circuits. The results of this work would imply
that certain QMA-hard problems, like the ground state energy problem for k-local quantum
Hamiltonians [42], relate to unbounded problems which are undecidable.

Finally, is it possible to prove the converse direction of Theorem 2? Since bounded languages
give rise to a unique unbounded language, can every reduction between bounded versions be
transferred to a reduction between the corresponding unbounded problems? If the bounded
reduction is of the special form

Rb : 〈x , n〉 7→ 〈R(x), p(n)〉 ,

with p being a strictly increasing polynomial, then R is automatically a reduction between the
unbounded problems. Yet, the question is open for general Rb.
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A Background on computational complexity

In the following, we summarize the basic notions in computational complexity that are relevant
for this paper. For an introduction to the topic, we refer to standard textbooks such as [28,43].

A.1 Deterministic and non-deterministic Turing machines

A (deterministic) Turing machine is a model of computation consisting of a head, with an internal
state, which operates on an infinitely long tape. In words, it works as follows. The input of a
Turing machine is initially written on the tape. In each computation step, the head reads off
one entry of the tape, it changes its internal state according to the symbol on the tape and its
current state, it overwrites the symbol on the tape, and moves one cell left or right. The Turing
machine repeats this procedure until it reaches a final state.

More formally, a Turing machine consists of the following: A tape alphabet Σ with blank
symbol ∈ Σ, a state set Q with an initial state q0 and final states F ⊆ Q, and a transition
function

δ : (Q \ F)×Σ→Q×Σ× {L, R} ,

which maps combinations of tape symbol and internal state to a new tape symbol and internal
state, together with the instruction to move left or right.

A non-deterministic Turing machine is defined similarly, with the only difference that δ
can be a multivalued function, i.e. a tuple (x , q) can map to multiple state-symbol-direction
triples. For this reason, a non-deterministic Turing machine has multiple computation paths. A
non-deterministic Turing machine halts (within k steps) if there is at least one computation
path where it halts (within k steps).

In this work, we often consider Turing machines with empty inputs. This means that every
entry on the tape is initially given by the blank symbol .

A.2 Decision problems and languages

Decision problems are given by a set of instances together with a question that splits the instance
set into yes- and no-instances. A language L ⊆ Σ∗ of the problem is defined by encoding the set
of instances using an alphabet Σ and then collecting all yes-instances as elements in L. In this
work, we address problems and their languages interchangeably via terms like NHALT, PCP, TILE,
etc.

A.3 Complexity classes and reductions

Complexity classes are used to characterize the hardness of decision problems. A language L is
decidable if there exists a Turing machine T which decides membership in finite time, i.e. if
x ∈ L then T accepts x in finite time, and if x /∈ L then T rejects it in finite time.

A language L is recursively enumerable (written L ∈ RE) if and only if there exists a Turing
machine T such that for every yes-instance x ∈ L, there exists a finite certificate y ∈ Σ∗ for
verification, i.e. 〈x , y〉 is accepted by T in finite time. This means that there exists an algorithm
that verifies x ∈ L in finite time; yet, x /∈ L may not be rejected in finite time (since the class
decidable is different from RE).
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The complexity classes P and NP are defined similarly to decidable and RE, respectively,
with the only difference that we ask for efficient (i.e. in polynomial time) solution or verification.
Specifically, a problem L is in P if it can be decided by a polynomial-time deterministic Turing
machine, i.e. a Turing machine that halts on input x within p(|x |) steps, where p is a fixed
polynomial and |x | the length of the input string. A problem L is in NP if and only if there is a
polynomial-time Turing machine T such that

x ∈ L ⇐⇒ ∃y ∈ Σp(|x |) : T accepts 〈x , y〉 . (5)

A language L is in coNP if and only if its complement Lc = Σ∗ \ L is in NP. Specifically, L is in
coNP if and only if there exists a polynomial-time Turing machine T ′ such that

x ∈ L ⇐⇒ ∀y ∈ Σp(|x |) : T ′ accepts 〈x , y〉 . (6)

Given a polynomial-time Turing machine T verifying Lc, T ′ accepts if and only if T rejects,
which proves the statement.

In this work, we are mainly interested in hardness results. For a given complexity class C, a
problem is C-hard if it is (in a formal way) at least as hard as any problem in C. The problem is
C-complete if it is C-hard and in C.

To formalize these concepts, we need the notion of a reduction between languages. A
reduction from L′ to L is a Turing-computable function R : Σ∗→ Σ∗ which satisfies

x ∈ L′ ⇐⇒ R(x) ∈ L .

By abuse of notation, we write R : L′ → L to highlight the source and target language. If
there exists a polynomial-time reduction from L′ to L, we write L′ ≤poly L. Now we can define
RE-hardness: A problem L is RE-hard if there exists a reduction L′ → L for every problem
L′ ∈ RE. L is RE-complete if L is RE-hard and L ∈ RE. RE-complete problems are in a formal
sense the hardest problems in RE. Similarly, a problem L is NP-hard if for every problem
L′ ∈ NP there exists a polynomial-time reduction R : L′→ L. L is NP-complete if it is NP-hard
and L ∈ NP. One defines coNP-hardness analogously.

B Complexity of (bounded) halting problems

In this appendix, we provide a detailed analysis of the two halting problems NHALT and
NHALTALL together with their bounded versions which act as root problems in the main text
(see Section 3). We start with the unbounded problems and their undecidability, and continue
with their bounded versions and their complexity.

We start by noting that the input of NHALT and NHALTALL is just a Turing machine T , as
we ask whether T halts on the empty tape.

Definition 3. Let T be a description of a non-deterministic Turing machine.

T ∈ NHALT :⇐⇒ T halts on the empty tape.

T ∈ NHALTALL :⇐⇒
T halts on the empty tape
along all paths.

Both problems are undecidable, as the following reduction from the halting problem HALT

shows.

Theorem 4. NHALT and NHALTALL are RE-complete.
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Proof. We prove RE-hardness only for NHALT, as the same argument applies to NHALTALL. To
this end, we provide a reduction from HALT. Recall that HALT takes 〈T, x0〉 as input (where T is
a description of a deterministic Turing machine T ,4 and x0 is an input) and accepts if and only
if T halts on x0. The reduction transforms instance 〈T, x0〉 to a Turing machine T ′ =R(〈T, x0〉)
which first writes x0 on the tape, and then does the same computation as T on the given input.
By construction, 〈T, x〉 ∈ HALT if and only if T ′ ∈ NHALT, i.e. R is a valid reduction.

That NHALT ∈ RE follows by taking the halting computation path as a certificate, and a
verifier that verifies the computation along the path. That NHALTALL ∈ RE follows by taking
the halting time as a certificate, and a verifier that verifies that the computation halts along all
paths within this halting time.

Let us now consider the bounded versions BNHALT and BNHALTALL. Since these problems
have different complexity we will treat them separately.

Definition 5. Let T be a description of a non-deterministic Turing machine, and n ∈ N.

〈T, 1n〉 ∈ BNHALT :⇐⇒
T halts on the empty tape
in n steps.

Theorem 6. BNHALT is NP-complete.

Proof. To show that BNHALT is NP-hard, we prove that every NP-language L has a polynomial-
time reduction to BNHALT. Since L is in NP, there exists a non-deterministic polynomial-time
Turing machine M which accepts x within time p(|x |) if and only if x ∈ L. We construct
a non-deterministic Turing machine PM ,x that (i) writes x on the tape, (ii) does the same
computation as M on the tape with input x , and (iii) if M accepts x along a path, PM ,x halts
along this path, and if M rejects x along a path, PM ,x loops along this path. Since step (i) needs
a polynomial number q(|x |) steps, and step (iii) needs a constant number k of steps, we have
that x ∈ L if and only if 〈PM ,x , 1q(|x |)+k+p(|x |)〉 ∈ BNHALT. Completeness follows from Equation
(5) by choosing the halting computation path as a certificate, and a polynomial-time verifier
which verifies the computation along this path.

Similarly, we define the problem BNHALTALL as the language accepting the instance 〈T, 1n〉
if and only if T halts on the empty tape along all computation paths in at most n steps.

Definition 7. Let T be a description of a non-deterministic Turing machine T , and n ∈ N.

〈T, 1n〉 ∈ BNHALTALL :⇐⇒ T halts on the empty tape along all paths in n steps.

Theorem 8. BNHALTALL is coNP-complete.

Proof. The hardness proof is very similar to Theorem 6. Namely, we prove that every coNP-
language L has a polynomial-time reduction to BNHALTALL. Since L is in coNP, there exists a
non-deterministic polynomial-time Turing machine M which accepts x along every computation
path of length at most p(|x |) if and only if x ∈ L. We construct the non-deterministic Turing
machine PM ,x which (i) writes x on the tape, (ii) does the same computation as M on the
tape with input x , and (iii) if M accepts x along a path, PM ,x halts along this path. If M
rejects x along a path, PM ,x loops along this path. Since (i) needs a polynomial number
q(|x |) steps and (iii) needs a constant number k of steps, we have that x ∈ L if and only if
〈PM ,x , 1q(|x |)+k+p(|x |)〉 ∈ BNHALTALL. Completeness again follows from Equation (6) by choosing
computation paths as a certificate, and a polynomial-time verifier that verifies the computation
along the given path.

4Note that a deterministic Turing machine is a special case of a non-deterministic Turing machine only having
one computational path.
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C More details on undecidable problems and their bounded ver-
sions

In this appendix we provide more details on the undecidable problems and their bounded
versions considered in the main text. Specifically, we consider the PCP problem (Appendix C.1),
the zero in the upper left corner (Appendix C.2), the matrix mortality problem (Appendix C.3)
the MPO positivity problem (Appendix C.4), the polynomial positivity problem (Appendix C.5),
the stability of positive maps (Appendix C.6), and the tiling problem (Appendix C.7).

C.1 The PCP problem

We now provide the reduction NHALT→ PCP in greater detail. The following reduction modifies
that of Ref. [28], so that the bounding parameters of both problems are polynomially related.

We consider a Turing machine given by a tape alphabet Σ with blank symbol ∈ Σ, a state
set Q with an initial state q0, final states F ⊆Q, and a transition function

δ : Σ× (Q \ F)→ Σ×Q× {L, R} .

Without loss of generality, we consider here only semi-infinite tape Turing machines, i.e. having
a tape with a left end but no right end. This is no restriction for the complexity since semi-infinite
tape Turing machines are equivalent to standard Turing machines [43, Claim 1.4].

This Turing machine is mapped to the following set of dominoes D:

(i) An initial domino
!

!⋆q0 ⋆ ⋆ !⋆

(ii) For every x ∈ Σ, a copy domino
⋆ x

x ⋆

(iii) Transitions (q, x) 7→ (q̂, y, L)
⋆ x ⋆q

q̂ ⋆ y ⋆

(iv) Transitions (q, x) 7→ (q̂, y, R)
⋆q ⋆ x

y ⋆ q̂ ⋆

(v) A tape expander
⋆ !

⋆ !⋆

(vi) For every q f ∈ F , y1, y2 ∈ Σ
⋆ y1 ⋆q f ⋆ y2

q f ⋆

(vii) For every q f ∈ F , y1, y2 ∈ Σ
⋆q f ⋆ y1 ⋆ y2

q f ⋆

(viii) A final domino
⋆q f ⋆ ⋆ !⋆ !

!
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Note that the domino set D can be constructed in polynomial time from T , and that |D| is
polynomial in |Q| and |Σ|.

Let us now apply this reduction to a non-deterministic Turing machine, as the bounded
version needs the latter. First note that the exclamation marks serve as a separator between
the instantaneous descriptions of different computation steps, while the grey star separates
every symbol in the string. The lower part of the initial domino (i) represents the initial tape
configuration of the Turing machine together with its current head state and position. Since
the initial domino (i) is the only domino whose first upper and lower symbols coincide, every
match has to start with the initial domino. A computation step along some computation path is
simulated by applying copy-dominoes (ii), transition dominoes (iii), (iv), and tape expanders
(v), according to Figure 4. If a computation reaches a final state q f , the final instantaneous
description is successively removed by applying dominoes (ii), (vi), (vii), and (v) according to
Figure 4. Finally, a match is obtained by adding (viii).

This implies that T halts on the empty tape along a computation path if and only if D forms
a match. Hence, R: NHALT→ PCP is a reduction. It follows that PCP is RE-hard.

Note that simulating the kth computation step by a domino arrangement requires precisely
k+ 1 dominoes. When T reaches the final state after n computation steps, the post-simulation
procedure requires another n+ 1 repetitions, where each procedure needs precisely m= n+ 1
arrangements with length starting with m and decreasing by 1. So T halts after n computation
steps on the empty tape if and only if the corresponding domino set forms a match in at most

q(n) := 1+
n
∑

k=1

(k+ 1) +
n+1
∑

k=1

k = (n+ 1) · (n+ 2)

steps, where the first sum represents the computation procedure and the second sum the
post-simulation procedure. Since R is a polynomial-time reduction, using Theorem 2, this
implies that

〈T, 1n〉 7→ 〈R(T ), 1(n+1)·(n+2)〉

is a polynomial-time reduction from BNHALT to BPCP, which shows that BPCP is NP-hard.

C.2 The Zero in the upper left corner problem

We now present the reduction R : PCP→ ZULC based on the ideas of [31]. For this purpose,
we consider PCP using strings encoded in the alphabet Σ= {0,1,2}. We define the bijection
σ : Σ∗→ N that assigns a representation in base 3 to every natural number, i.e.

σ(c1, . . . , cn) :=
n
∑

i=1

ci · 3n−i .

Moreover, we define a function γ : Σ∗ ×Σ∗→ N3×3 via

γ(w1, w2) :=





3|w1| 0 0
0 3|w2| 0

σ(w1) σ(w2) 1



 .

The function γ is injective and a morphism, i.e. γ(w1u1, w2u2) = γ(w1, w2) ·γ(u1, u2) where
composition on Σ∗ is given by concatenation of words. Let

d1 =
�

a1

b1

�

, . . . , dk =
�

ak

bk

�
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be an instance of PCP where ai , bi ∈ Σ∗. For i ∈ {1, . . . , k}, we define the matrices

Ai = X · γ(ai , bi) · X−1 Bi = X · γ(ai , 0bi) · X−1 ,

with

X =





1 0 1
1 1 0
0 0 1



 .

We have that
di1 di2 · · · din

is a matching domino if and only if

(Mi1 ·Mi2 · · ·Min)11 = 0 ,

where Mi j
∈ {Ai j

, Bi j
}. We refer to [31] for details. This shows that R : PCP→ ZULC with

R
�

〈d1, . . . , dk〉
�

:= 〈A1, . . . , Ak, B1, . . . , Bk〉

is a polynomial-time reduction. This implies that ZULC is RE-hard.
Since matches of length n are mapped to matrix multiplications of length n with a zero in

the upper left corner, this shows that Rb : BPCP→ BZULC with

Rb

�

〈d1, . . . , dk, 1n〉
�

:= 〈A1, . . . , Ak, B1, . . . , Bk, 1n〉

is a polynomial-time reduction. This implies that BZULC is NP-hard.
Note that the matrices in A1, . . . , Ak, B1, . . . , Bk are invertible, from which it follows that

ZULC and BZULC remain RE-hard and NP-hard, respectively, when restricting the instances to
invertible matrices.

C.3 The Matrix mortality problem

We now construct the reduction Q : ZULC → MM following the ideas of [31]. Since ZULC

remains hard when restricting the instances to invertible matrices, we construct Q only for
invertible matrices. So let 〈A1, . . . , Ak〉 be an instance of invertible matrices in ZULC. We define

Q(〈A1, . . . , Ak〉) := 〈A1, . . . , Ak, B〉 ,

with

B =





1 0 0
0 0 0
0 0 0



 .

We claim that A1, . . . , Ak forms a zero in the upper left corner if and only if A1, . . . , Ak, B
multiplies to a zero matrix. This proves that MM is RE-hard. Moreover, we show that

nmin,MM[〈A, B〉] = nmin,ZULC[〈A〉] + 2 , (7)

where A represents the list A1, . . . , Ak.
To prove the claim, first note that if

(Ai1 · Ai2 · · ·Ain)11 = 0 ,

then
B · Ai1 · Ai2 · · ·Ain · B = (Ai1 · Ai2 · · ·Ain)11 = 0 .
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In other words, a yes-instance of ZULC with parameter n is mapped to a yes-instance in MM

with parameter n+ 2. This proves the inequality “≤” of Equation (7).
Conversely, assume that there exists a sequence of n matrices in {A1, . . . Ak, B} that multiplies

to 0. Since A1, . . . , Ak are invertible and B has rank 1, this sequence must contain B at least
twice. The product is of the form

M1BM2BM3B · · ·BMr = 0 ,

where Mi is a multiplication of ℓi matrices in {A1, . . . , Ak} for some ℓi .
5 Since B is idempotent,

we have that

0=
�

M1BM2BM3B · · ·BMr

�

11

=
�

BM1B2M2B2M3B2 · · ·B2Mr B
�

11

=
�

M1

�

11 · · ·
�

Mr

�

11 .

This implies that at least one of the matrices Mi has a zero in the upper left corner, which shows
that A1, . . . , Ak form a zero in the upper left corner with a word of length n. Specifically, any
minimal sequence of matrices realizing 0 must be of the form

B · Ai1 · Ai2 · · ·Ain · B = 0 .

Note that a shorter such product cannot exist because it would violate the proven inequality
“≤” of Equation (7). This representation proves the inequality “≥” of Equation (7), since

(Ai1 · Ai2 · · ·Ain)11 = 0 .

In summary, Q: ZULC→MM is a reduction, which proves that MM is RE-hard. Moreover,
Qb : BZULC→ BMM with

Qb : 〈A1, . . . , Ak, 1n〉 7→ 〈A1, . . . , Ak, B, 1n+2〉

is a polynomial-time reduction too, which proves that BMM is NP-hard.

C.4 The MPO positivity problem

Here we present a reduction R : ZULC→MPO, slightly different than [8]. The MPO problem
has as input a fixed number of D × D integer matrices 〈Bi : i ∈ {1, . . . , k}〉 and asks whether
there exists a natural number n ∈ N such that

ρn(B) :=
k
∑

i1,...,in=1

tr
�

Bi1 · · ·Bin

�

|i1 . . . in〉 〈i1 . . . in|

is not positive semidefinite. We define

R(〈A1, . . . , Ak〉) = 〈B1, . . . , Bk, Bk+1〉 ,

where for i ∈ {1, . . . , k}

Bi :=

�

Ai ⊗ Ai 0
0 1

�

,

and

Bk+1 :=

�

E11 0
0 −1

�

,

5If it is an empty multiplication (i.e. ℓi = 0), then we define Mi as the identity matrix.
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where E11 := e1et
1 with e1 = (1, 0, . . . , 0)t of length D.

We now prove that the threshold parameter n in BZULC maps to the threshold parameter
n+ 1 in BMPO. Let Ai1 , . . . , Ain be the minimal sequence such that

�

Ai1 · Ai2 · · ·Ain

�

11 = 0 .

Then,
tr(Bi1 · · ·Bin · Bk+1) =

�

Ai1 · Ai2 · · ·Ain

�2
11 − 1< 0 .

Conversely, let Bi1 , . . . , Bin+1
be a minimal sequence such that

tr(Bi1 · Bi2 · · ·Bin+1
)< 0 .

The indices i1, . . . , in+1 cannot be chosen exclusively from {1, . . . , k}, since in that case

tr(Bi1 · Bi2 · · ·Bin+1
) =
�

tr(Ai1 · · ·Ain+1
)
�2
+ 1≥ 0 .

Hence, there is at least one index iℓ = k+ 1. Assume that there is precisely one index k+ 1.
Without loss of generality, we assume in+1 = k+ 1 due to cyclicity of the trace. This leads to

0> tr(Bi1 · Bi2 · · ·Bin+1
) =
� �

Ai1 · Ai2 · · ·Ain

�

11

�2 − 1 ,

which implies that
�

Ai1 · Ai2 · · ·Ain

�

11 = 0 because the entries are integer. This shows that a
threshold parameter n+ 1 in BMPO maps to a threshold parameter of a most n in BZULC. Note
that having multiple indices with k+ 1 leads to a smaller threshold parameter in BZULC which
contradicts the minimality assumption of Bi1 , . . . , Bin+1

. This proves the statement.
This reduction can easily be extended to matrices with rational numbers.
In summary, R: ZULC→MPO is a reduction, which proves that MPO is RE-hard. Moreover,

by Theorem 2, Rb : BZULC→ BMPO with

Rb : 〈A1, . . . , Ak, 1n〉 7→ 〈B1, . . . , Bk, Bk+1, 1n+1〉

is a polynomial-time reduction too, which proves that BZULC is NP-hard.

C.5 The Polynomial positivity problem

Let us now review the reduction R : MPO→ POLY from [13]. We define

R(〈B1, . . . , Bk〉) :=



qα,β(x) : α,β = 1, . . . , D
�

,

with

qα,β(x) :=
k
∑

j=1

�

B j

�

α,β x2
j ,

where x is a k-tuple of variables. It is clear that R is a polynomial-time function. We now
prove that R is a reduction.

If there exists a sequence of matrices such that

tr(Bi1 · Bi2 · · ·Bin)< 0 ,

then
pn(ei1 , . . . ,ein) = tr(Bi1 · Bi2 · · ·Bin)< 0 ,

where pn is defined in (3) and eℓ is the ℓth standard vector. This implies that pn is not a
nonnegative function. Conversely, if

tr(Bi1 · Bi2 · · ·Bin)≥ 0 ,
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for all indices i1, . . . , in, then pn is a sum-of squares which is also nonnegative.
This proves that the threshold n for BMPO is mapped to the threshold n for BPOLY. It follows

that BPOLY is NP-hard. Moreover, POLY is RE-complete and BPOLY is NP-complete by taking an
arrangement of the matrices leading to a negative value as a certificate, and a polynomial-time
verification procedure of this statement as a verifier.

C.6 Stability of positive maps

Let us now review the reduction R : MPO→ TSP of [14], which proves that TSP is RE-hard.
The same reduction also yields that BTSP is NP-hard.

We map an instance

〈B1, . . . , Bk〉 ∈MD2(Q)∼=MD(Q)⊗MD(Q)

of MPO to a linear map

P : MD(Q)⊗MD(Q) → Mk(Q) ,

X 7→
k
∑

i=1

|i〉 〈i| tr(CiX ) ,

where
(Ci)(α1,α2),(β1,β2) := (Bi)(α1,β1),(α2,β2) ,

with α1,α2,β1,β2 ∈ {1, . . . , D}. Then, we have that

tr
�

Ci1 ⊗ · · · ⊗ Cinχn

�

= tr(Bi1 · · ·Bin) ,

where χn is defined in (4). By construction, this implies that

P⊗n(χn) = ρn(B) .

In summary, 〈B1, . . . , Bk〉 ∈MPO if and only if exists n ∈ N such that P⊗n(χn)� 0. Further
the threshold parameters in both problems coincide for this reduction. It follows that BTSP is
NP-hard.

C.7 The tiling problem

We now review the reduction R : HALT→ TILE from [37]. A Turing machine, consisting of a
tape alphabet Σ with blank symbol ∈ Σ, a state set Q with an initial state q0 and final states
F ⊆Q, and a transition function

δ : Σ× (Q \ F)→ Σ×Q× {L, R}
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is mapped to the following set of tiles:

(i) Initial tile
q0

(ii) Empty tape extension and

(iii) Empty tile

(iv) Transitions (x , q) 7→ (x ′, q̂, R)
qx

x ′

q̂

(v) Transitions (x , q) 7→ (x ′, q̂, L)
qx

x ′

q̂

(vi) State merge
y

q̂ y

q̂ and
y

q̂ y

q̂

(vii) Copy tile for x ∈ Σ
x

x

Note that (vi), State merge, is defined for every y ∈ Σ and q̂ ∈ Q, whereas (iv) and (v),
Transitions, are defined for every such tuple in δ.

This set of tiles captures the computation of a Turing machine on the empty tape when
placing the initial tile to the origin (see Figure 7). The initial tile can only be extended to the
left and to the right with (ii) Empty tape extensions. We can also trivially tile the whole lower
half of the plane by applying the empty tile. The generated string

. . . q0 . . .

at the top of the first line represents the instantaneous description of the Turing machine at
time 0, namely an empty tape with the head at position 0 and state q0. Simulating one step of
the Turing machine corresponds to filling up the line above of the current one. Specifically, on
the top of the initial tile, we need to place a Transition tile ((iv) or (v)) (q0, ) 7→ (q̂, x , L/R).
Then we need to place a (vi) State merge tile on the left/right of the transition tile. This reflects
the movement of the head to the left or right. The rest of the line is filled with (vii) Copy tiles.

Again, the string at the top of the second line represents the initial description after one
computation step. The same procedure applies to every computation step. As soon as we apply
a transition tile (q, x) 7→ (q f , y, L/R) for some final state q f ∈ F , there is no tile to continue the
tiling procedure. In other words, every tiling procedure terminates in line n if and only if T
halts on the empty tape.

The same reduction applies to non-deterministic Turing machines. In this situation, every
tiling procedure terminates in n lines if and only if the Turing machine halts on the empty tape
along every computation path in at most n steps. In other words, a Turing machine T halts
on every path in at most n steps if and only if Zn+1 ×Zn+1 cannot be tiled. This proves that
R : NHALTALL→ TILE is a reduction. It follows that TILE is RE-hard.

Moreover, R is a polynomial-time map. Since the map between the threshold parameters
of NHALTALL and TILE is given by n 7→ n+ 1,

〈x , 1n〉 7→ 〈R(x), 1n+1〉
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is a reduction from BNHALTALL to BTILE. This implies that BTILE is coNP-hard.
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