
SciPost Phys. 15, 015 (2023)

Universal Chern number statistics in random matrix fields

Or Swartzberg1⋆, Michael Wilkinson2† and Omri Gat1‡

1 Racah institute of Physics, Hebrew University, Jerusalem 91904, Israel
2 School of Mathematics and Statistics, The Open University,

Walton Hall, Milton Keynes, MK7 6AA, England

⋆ or.swartzberg@mail.huji.ac.il , † m.wilkinson@open.ac.uk ,
‡ omrigat@mail.huji.ac.il

Abstract

We investigate the probability distribution of Chern numbers (quantum Hall conduc-
tance integers) for a parametric version of the GUE random matrix ensemble, which is a
model for a chaotic or disordered system. The numerically-calculated single-band Chern
number statistics agree well with predictions based on an earlier study [O. Gat and M.
Wilkinson, SciPost Phys., 10, 149, (2021)] of the statistics of the quantum adiabatic cur-
vature, when the parametric correlation length is small. However, contrary to an earlier
conjecture, we find that the gap Chern numbers are correlated, and that the correlation
is weak but slowly-decaying. Also, the statistics of weighted sums of Chern numbers dif-
fers markedly from predictions based upon the hypothesis that gap Chern numbers are
uncorrelated. All our results are consistent with the universality hypothesis described
in the earlier paper, including in the previously unstudied regime of large correlation
length, where the Chern statistics is highly non-Gaussian.
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1 Introduction

The discovery of the quantum Hall effect [1] was followed by an observation that the Hall
conductance integer Nn for systems with a band spectrum can be expressed as a Chern integer
[2, 3]. This is a topological invariant that can be expressed as an integral of a curvature Ωn
over a closed surface S [4]:

Nn =
1

2π

∫

S
dX Ωn(X) . (1)

Here n is an index labelling an isolated band of the spectrum. In the context of studies of
the quantised Hall effect, the curvature is the quantum adiabatic curvature [5, 6] and the
closed surface is a Brillouin zone [2], or a manifold specifying a boundary condition defined
by complex phase factors [3]. The Hall conductance is argued to be equal to e2/h times the
sum of the Chern integers Nn for all of the filled bands. The discovery of the role of Chern
integers has stimulated the identification of other topological invariants describing transport
phenomena, [7,8], which in turn led to a comprehensive theory of energy band topology and
the role of symmetries therein, [9,10]. A key feature of topologically nontrivial energy bands
is the appearance of edge states that are robust under perturbations [11]. Majorana modes
are a class of edge states that has attracted a lot of interest because of possible applications to
quantum computing [12].

It is instructive to assess whether different approaches to understanding a phenomenon
lead to consistent predictions. In the case of the Hall conductance, we can ask whether the
Hall conductance expressed in terms of Chern integers is compatible with estimates that can
be obtained by semiclassical approaches, such as those appearing in traditional texts on solid-
state physics [13]. (These might be based upon the Boltzmann equation, or upon making a
classical estimate for the correlation function appearing in the Kubo formula.) To state this
question more formally, we can consider a limit where the size of the unit cell is increased,
leaving the Fermi energy and other parameters constant. In this limit the number of bands
below the Fermi energy increases. In order to compare the semiclassical estimate with the
Hall conductance which is obtained from the Chern integers, it is necessary to determine the
properties of the integers Nn, and in particular their typical magnitude, when the number of
bands is large. Moreover, if the Hall conductance is estimated by summing the values of the Nn
for the filled bands, correlations between different values of Nn are of interest: if the Nn were
uncorrelated random numbers, this might imply very large values of the Hall conductance.
We might, therefore, anticipate that the there are correlations of the Nn which reduce the
magnitude of their sum.

Building on seminal work by Wigner [14] and Dyson [15], it is now understood that the
spectra of complex quantum systems resemble those of samples from random matrix ensem-
bles [16]. For our purposes, complex quantum systems are defined as those having many
levels and no symmetries, localisation effects, or constants of motion. The Chern integers,
however, are defined for families of Hamiltonians depending upon parameters—Bloch Hamil-
tonians depending on lattice momenta for the quantum Hall conductance. The random matrix
theory approach has been extended to study correlations of energy levels and wave function
of parameter-dependent complex systems [17–23].

A good starting point to understand the Chern numbers in complex systems is therefore
to analyse the Chern numbers for parameter-dependent random matrix models. The goal of
the present work is to examine the scaling, correlations, and universality of Chern numbers
in parametric Gaussian Unitary Ensemble (GUE) models using Monte-Carlo calculations. Our
work builds upon some earlier investigations which have applied parametric random matrix
theory to the quantum adiabatic curvature and Chern integers. In particular, [24] addressed
the statistics of Chern integers by calculating the statistics of degeneracies in a three-parameter
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parametric random matrix model: the results are consistent with the more refined investiga-
tion presented here. The single-point probability distribution of the curvature was obtained
for a parametric random matrix model in [25]. The curvature in complex systems has also
been studied using semiclassical approximations in [26,27].

A recent paper, [28], by two of the present authors, referred to as paper I in the following,
studied the statistics of the curvature, Ωn(X), for parametric GUE models, and the results were
used to propose expressions for the variance and the correlations of the Chern numbers. The
comparison with the formulae proposed in paper I is informative: the prediction of the variance
of the Chern integers proved to be very accurate, but there are significant deviations from
the expression which was proposed for the correlations of weighted sums of Chern integers
of different bands. Namely, the prediction of paper I regarding multiband Chern number
correlations was based on the hypothesis that the gap Chern numbers (that is, cumulative
sums of band Chern numbers) are statistically independent. Our first main result is to show
that this hypothesis is false: the correlations between the gap Chern numbers are small, but
they decay slowly as a power law for increasing the spectral separation.

Our second main results concerns the band Chern number statistics when the paramet-
ric correlation length, equal to the inverse of the product of the density of states and the
parametric sensitivity of the random matrix elements [28], is not small. When the parametric
correlation length is taken to zero, the Chern number probability distribution is approximately
Gaussian, and its variance tends to a constant limit when properly scaled. When the corre-
lation length is not small, on the other hand, the distribution is far from Gaussian, and its
moments depend in a complicated way on the correlation length. Nevertheless, we find this
dependence becomes universal as the matrix size increases.

The paper is organised as follows. Section 2 defines the parametric GUE model to be stud-
ied. Section 3 reviews the results and hypotheses regarding the statistics of the Chern integers
which were developed in paper I. Section 4 presents our results for the statistics of the Chern
number of a single band. In section 5 we analyze the correlations of gap Chern numbers and
their dependence on the spectral separation between the two gaps. In section 6 we study the
correlations of weighted sums of band Chern numbers, and their deviation from the predic-
tions based on the results of paper I (arising from multi-level Chern number correlations).
Section 7 offers our conclusions from this work.

2 Parametric GUE models

To study the statistics of the Chern numbers, we used a model for fields of random matrices
constructed using an approach considered in [18, 23]. We define an ensemble of fields of
random matrices H(p) over a parameter space S. The ensemble is statistically homogeneous
and isotropic in the parameter space, and it exhibits the following properties:

1. For any p ∈ S, the matrix H(p) is a representative of the Gaussian Unitary Ensemble
(GUE) of complex Hermitean random matrices, as defined in [15,16]. The matrices have
dimension M . The elements are independently Gaussian distributed, with zero mean,
and their magnitude has unit variance.

2. The matrix element correlations are

〈Hi j(p1)
∗Hi j(p2)〉= c(|p1 − p2|) , (2)

for some correlation function c satisfying c(0) = 1 and positivity, and different matrix
elements (other than those related by Hermiticty) are uncorrelated at different points in
the parameter space.
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In our work we took the manifold S to be the unit sphere embedded in three-space, and the
distance between points p1, p2 on the sphere is taken as the Euclidean distance. Our numerical
investigations included three different one-parameter families of correlation functions:

1. A Gaussian correlation function: c(|p1 − p2|) = exp(|p1 − p2|2/(2r2)).

2. A Lorenzian correlation function: c(|p1 − p2|) = 1/(1+ (|p1 − p2|/l)2).

3. A four-matrix model of the form

H(r ) = cosαH0 + sinα r ·Hr , (3)

where H0 is a GUE matrix, Hr is a vector of three GUE matrices and r is a unit vector
on the sphere, implying that

c(|r 1 − r 2|) = cos(α)2 + sin(α)2
2− |r 1 − r 2|2

2
. (4)

According to the principles discussed in [17–19], the universal properties of this parametric
random matrix model depend upon the density of states, ρ, and upon a tensor describing the
sensitivity of the energy levels En to displacements in the parameter space. For an isotropic
model, this tensor is a represented by a diagonal matrix, and the parametric sensitivity is
described by a single parameter, σ2, which is the variance of first derivative of the levels:

σ2 = var
�

∂ En

∂ p

�

= −
1
2

d2c
dp2

�

�

�

�

p=0
. (5)

The parametric sensitivity can be any positive number in the Gaussian and Lorentzian families,
and is between zero and one-half in the four-matrix model. In paper I there is a discussion
of how a linear transformation of the parameter space of this model can be used to model
systems in which the parameter space is not isotropic.

The spectral correlations of the parametric GUE model (2) were previously studied in [23].
Here we study the Chern number statistics numerically by sampling matrices of the parametric
GUE distribution on the vertices of a triangulation of the two-sphere. For each such realisation
we calculated the Chern number using the algorithm of [29], refining the triangulation until
convergence was obtained. In this manner we calculate the distribution of the Chern numbers
for the three families of matrix-element correlations listed above, with different matrix sizes
and correlation lengths. The details of the numerical method are described in appendix A.

3 Theoretical background

The correlation function of the curvature field Ωn(p) was studied in [28]. It was argued that
when the matrix size is large this correlation function may be expressed in the scaling form

〈Ωn(p1)Ωn(p2)〉= (ρσ)4 f (ρσ|p1 − p2|) , (6)

where f (x) is a universal function, which approaches zero rapidly for large |x |. Equation (6)
implies that the curvatures at points in parameter separated by a distance much larger than
1/(ρσ) are uncorrelated. It follows, by taking the square of (1) and averaging, that when
ρσ≫ 1

〈N2
n 〉=

1
2π

Aσ2ρ2I , (7)

4

https://scipost.org
https://scipost.org/SciPostPhys.15.1.015


SciPost Phys. 15, 015 (2023)

where A is the area of the surface S and I ≈ 1.69 is a universal constant obtained by inte-
grating the function f . We note that f (x) diverges as 1/x when x tends to zero because the
curvature distribution has infinite variance [25], but the integral of f over the two-dimensional
parameter space is finite.

Reference [28] also discussed statistics of a weighted average of Ωn(p), defined by

Ω̄ε(E, p) =
∑

n

Ωn(p)δε(E − En) ,

δε(E) =
1
p

2πε
exp(−E2/2ε2) . (8)

The correlation function

Cε(∆E,∆p)≡ 〈Ω̄ε(E +∆E, p +∆p)Ω̄ε(E, p)〉 , (9)

was found in paper I to take the scaling form

Cε(∆E,∆p) =
π3/2

6
σ4ρ3

ε3
g(ρσ|∆p|,∆E/ε) , (10)

in the limit M →∞, with g a universal function of two variables, which was calculated exactly
in the case where ∆p = 0.

The fact that Cε(∆E,∆p) approaches zero rapidly as ε increases indicates a high degree of
cancellation of the values of Ωn(X) associated with different bands. In paper I it was argued
that the fact that Cε ∼ ε−3 is consistent with the Chern integers having a two-point correlation
of the form

〈NnNm〉 − 〈Nn〉〈Nm〉=
1
2

var(Nn)
�

2δnm −δn,m+1 −δn,m−1

�

. (11)

We can describe this relation more succinctly with the help of the gap Chern numbers Gn,
defined by

Gn =
n
∑

i=1

Ni , 0≤ n≤ N , (12)

so that Nn = Gn−Gn−1, and therefore (11) is consistent with the hypothesis that the gap Chern
numbers are uncorrelated:

〈GnGm〉= 2 var(Nn)δnm . (13)

In paper I this hypothesis was applied to the statistics of the weighted sum of Chern numbers
in an energy window of width ε,

N̄ε(E) =
∑

n

Nnδε(E − 〈En〉) . (14)

where 〈En〉 is an average of En(p) over the parameter space. We choose εmuch larger than the
mean level spacing, but small enough that the density of states does not change appreciably
inside the energy window. A direct estimate of the variance of (14) involves integrating the
correlation function (10) over ∆p, and leads to the prediction that 〈N̄2

ε 〉 ∼ ε
−3. However, the

function g(∆X ,∆E) was not sufficiently well characterised in paper I to allow this integral to
be estimated reliably. An alternative approach estimates 〈N̄2

ε 〉 using (7) and the independent
gap Chern number hypothesis, (11) yielding,

〈N̄2
ε 〉 ∼
〈N2〉
2πε2

F(X ) , (15)
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Figure 1: Double logarithmic plot of the variance of Chern numbers of the bands in
the bulk of the spectrum of random matrix field models, with different sizes from 4×4
to 50×50, and matrix element correlation functions, calculated in Monte-Carlo simu-
lation as a function of the inverse parametric correlation lengthρσ. The scaled Chern
number variance 〈Ñ2

n 〉≡2π〈N2
n 〉/ρ

2σ2A approaches the universal constant I ≈ 1.67
when ρσ is large. Symbol shapes correspond to Gaussian (circles), Lorentzian (tri-
angles) and four-matrix (square) matrix-element correlations, and colours to matrix
dimensions M according to the key: purple — 60 > M ≥ 40; blue — 40 > M ≥ 30;
green — 30 > M ≥ 20; red — 20 > M . . The data collapse shows that band Chern
number variance is a universal function of ρσ, even when this variable takes small
values, due to the scale factor (r or l in the Gaussian and Lorentzian random-matrix
models respectively) being large.

where X = 1/(2ε2ρ2), and

F(X ) =
∞
∑

n=−∞
exp(−X n2)[exp(−X n2)− exp(−X (n+ 1)2)/2− exp(−X (n− 1)2)/2] . (16)

As explained in paper I, the expressions (15), (16) can be further simplified when ερ≫ 1 to
obtain

〈N̄2
ε 〉 ≈

3I
128
p
π

Aρσ2

ε3
, (17)

exhibiting the the same ε−3 as in (10). Our numerical results are consistent with the prediction
〈N̄2
ε 〉 ∼ ε

−3, over a small range of ε. However, it is found that the coefficient multiplying ε−3

in (17) is not correct.

4 Band Chern number statistics

We calculated the variance of Chern number for a large number of realisations of the random-
matrix fields on the two-sphere, with dimensions between M = 4 and M = 50, with elements
correlated according to the three families listed in section 2, and with several choices of scale
factors, r or l. Figure 1 shows the scaled variance of the Chern integers,

〈Ñ2
n 〉=

2π〈N2
n 〉

ρ2σ2A
, (18)
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Figure 2: Double logarithmic plot of the (excess) kurtosis κ = 〈N4
n 〉/〈N

2
n 〉

2 − 3 of
the Chern number distributions whose variance is shown in figure 1, as a function of
ρσ. The statistical uncertainty in the data is about 0.1, so that κ values for ρσ ≳ 0.7
are consistent with zero, consistent with a Gaussian Chern number distribution in
this regime. Note that a constant shift of 0.01 has been added to all values of κ to
improve the clarity of the graph. The positive κ values obtained for ρσ ≲ 0.7 show
that the Chern number distribution is non-Gaussian in this regime, while the data
collapse further supports the hypothesis that the distribution is universal for all ρσ.
The straight line is a power law fit κ∼ (ℓκρσ)−α, α= 3.66± 0.05, ℓκ = 2.49± 0.05
for ρσ ≤ 0.7.

plotted as a function of ρσ. As expected, when ρσ≫ 1, 〈Ñ2
n 〉 approaches an asymptotic uni-

versal constant value I ≈ 1.67, irrespective of the shape of the correlation function, consistent
with (7) and the estimate of I ≈ 1.69 based on the results of [28]. We note however that the
asymptotic regime of ‘large’ ρσ—small correlation length—starts already in when ρσ ≳ 0.7,
so that the estimate that the parametric correlation length ∼ 1/(ρσ) involves a small propor-
tionality factor. This conclusion is also consistent with the finding of [28] that x f (x), where
f (x) is the scaling function of (6), drops to half its maximal value already for x ≈ 0.15.

In the regime of large ρσ we furthermore expect that the Chern-number distribution is
Gaussian because when the parametric correlation length is small, the integral in (1) can
be viewed as a sum of many nearly independent random variables, obtained by dividing the
surface S into patches whose size is large compared to the parametric correlation length,
1/ρσ, but small compared to the entire surface.

We studied the convergence of the Chern-number distributions to Gaussian by calculating
the (excess) kurtosis

κ=
〈N4

n 〉
〈N2

n 〉2
− 3 (19)

of the randomly generated Chern-number populations; we use the definition which makes
κ= 0 in Gaussian distributions.

Our Monte-Carlo calculations of the kurtosis are shown on a double-logarithmic plot in
figure 2. As expected, κ becomes small as ρσ increases toward the small correlation length
regime ρσ ≳ 0.7. We note that the statistical uncertainty of our Monte-Carlo results is about
±0.1, so that values of κ smaller than 0.1 are not statistically distinguishable from zero. On
the other hand, very small positive values and slightly negative values of κ can be randomly
obtained, which cannot be conveniently plotted on a log-log graph. For this reason, figure 2
actually shows κ+ 0.01, allowing it to keep most of the data points inside the viewing range.
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Figure 3: Plot of the covariance matrix 〈GnGm〉 of the gap Chern numbers of 50×50
matrix fields with a Gaussian matrix-element correlation function with correlation
length r = 1, with values coloured according to the legend on the right. It is evi-
dent that the diagonal elements of the covariance matrix are much larger than the
off-diagonal, but the main diagonal is surrounded by a thick diagonal band of posi-
tive correlations, beyond which the measured correlations are comparable with the
statistical uncertainty, and are therefore consistent with zero.

Thus, for ρσ ≳ 0.7, our numerical results agree with the prediction that the Chern number
distribution is Gaussian, and its variance is given by (7).

As expected these predictions are not valid when ρσ is small (in practice, when ρσ ≲ 0.7):
Figures 1 and 2 show that in this regime the scaled Chern variance 〈Ñ2

n 〉 is an increasing func-
tion of ρσ, and κ is positive. Nevertheless, the data collapse seen in these figures is consistent
with extended universality, where 〈Ñ2

n 〉, κ, and plausibly the entire Chern number distribution
depends on ρσ, but not on any other detail of the random matrix element distribution. We
conjecture that the universal distribution is an exact asymptotic for matrix size M →∞, but
the numerical calculation indicate that it is a good approximation already for moderate M .

As a last observation on single-band Chern number statistics, we note that while the de-
pendence of the scaled Chern number variance on ρσ has no apparent structure for ρσ ≲ 0.7,
the kurtosis follows the power law

κ∼ (ℓκρσ)−α , (20)

where α= 3.66± 0.05, ℓκ = 2.49± 0.05 are universal constants.

5 Gap Chern number correlations

In paper I it was argued that (11) is a plausible expression for correlations between Chern
integers. It was shown that (11) is compatible with the ε−3 scaling of (10), and this expression
appears to be the simplest hypothesis which is compatible with (10). However, we find that
the numerical calculated correlation of the curvature of neighbouring bands has a small but
statistically significant violation of (11). The assumption (11) is consistent with the hypothesis
that the gap Chern numbers are statistically independent.

Here we further test this hypothesis by calculating the gap Chern number correlations
directly. Figure 3 shows a colormap of the covariance 〈GnGm〉 in a population of 50 × 50

8
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Figure 4: The off-diagonal correlation coefficient gn,k, calculated from the gap Chern
number distributions of all random matrix sizes and matrix-element correlations in
the short correlations regime ρσ ≥ 0.7, and all base levels n, shown as a function of
the offset k. The centres and error bars of each point show the mean and standard
deviation (respectively) of the population of gn,k samples obtained in this way; the
smallness of the standard deviations supports the hypothesis that the gn,k are uni-
versal coefficients independent of n. The universal function is well described by the
power law fit gn,k ∼

g1
kγ with g1 = 0.18± 0.01, γ= 0.62± 0.01.

matrix fields. Evidently, the covariance is positive in a thick diagonal band, even though the
off-diagonal terms are much smaller than the diagonal terms of the covariance matrix.

The gap Chern number correlations was studied systematically using the Pearson correla-
tion

gn,k =
〈GnGn−k〉
q

〈G2
n〉〈G

2
n−k〉

. (21)

Our numerical results indicate that the correlation coefficients are independent of n (except
at the edges of the spectrum), in accord with the homogeneous structure of random matrix
spectra. We find that the correlation coefficient has a universal power law dependence

gn,k ∼
g1

kγ
, (22)

with g1 = 0.18 ± 0.01, γ = 0.62 ± 0.01, for all gap Chern number in the short-correlations
regime ρσ ≳ 0.7 (see Figure 4).

6 Weighted Chern number variance

We computed the variance of the weighted Chern number statistic, as defined in equation (14).
We considered a range of values of ε, taking E = 0 and using the largest matrices (dimension
M = 50), in both the Gaussian and four-matrix models. Figure 5 shows the dependence of
〈N̄2
ε 〉 on ε, using a double-log scale for the Gaussian and four-matrix models, compared with

values for these variances predicted by (15) and (16), and with the asymptotic formula (17),
on the basis of the independent gap Chern number hypothesis (13).

Since the density of states is large in our calculations, the values based on (15) and (16) are
well-approximated by (17). However, these predictions, based on the independent gap Chern
number hypothesis, are not in agreement with the Monte-Carlo results. While (17) gives the
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Figure 5: Double logarithmic plot of the weighted Chern number variance 〈N̄2
ε 〉 ver-

sus the product of the density of states ρ and the width ε of the energy window. The
purple + symbols show 〈N̄2

ε 〉 calculated from Monte-Carlo simulation of the random
matrix model, with energy window centred at E = 0. The green × and blue ∗ sym-
bols show the values of 〈N̄2

ε 〉 expected on the basis of independent gap Chern number
hypothesis, formula (15), and its asymptotic approximation (17), respectively. When
ερ is large, (15) agrees with (17) as expected, but both are significantly smaller than
the numerical results.

correct order of magnitude of the weighted Chern number variance, the numerically evaluated
results are greater by a factor as large as three: figure 6 shows the ratio of the numerically
obtained 〈N̄2

ε 〉 divided by the prediction based on (15), (16), for both the Gaussian and the
four-matrix models. While we do not have a theoretical explanation for the behaviour of the
ratio, the close agreement between the two models supports the universality hypothesis for
the weighted Chern statistic as well.

It is interesting that while the gap Chern number correlations studied in section 5 are
small, the deviations from (15) and (16) are quite significant. This may be an indication that
there are non-trivial multi-level correlations between Chern numbers, but further study of this
question is beyond the present scope.

7 Conclusions

The present numerical study of the Chern numbers of parametric random matrix models ex-
amined three types of statistics: moments of the single-band Chern number distribution, corre-
lations of the gap Chern numbers, and the variance of weighted sums of band Chern numbers.

The single-band statistics confirmed that when the parametric correlation length is small,
the band Chern number distribution approaches a Gaussian, and that the proportionality factor
is universal, consistent with the results of paper I [28]. It showed furthermore that the distri-
bution is non-Gaussian but universal in the previously unexplored long correlations regime,
and that the kurtosis of the distribution depends as a power law on the correlation length in
this regime, for which we have no theoretical explanation at this point. Note also that in the
limit where the correlation length tends to infinity, the probability that the Chern number is
nonzero tends to zero, and then the kurtosis can be estimated on the basis of this probability.
However, the correlation lengths that we study here are not large enough to make this estimate
valid.

We found that the gap Chern numbers are correlated, refuting an earlier hypothesis. The
gap Chern number correlations are weak, but decay slowly as a power law when the spectral
separation between the gaps increases. Unlike the band Chern numbers that are strongly
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Figure 6: Values of 〈N̄2
ε 〉 numerically calculated for the four-matrix model (purple +

symbols) and Gaussian correlations model (green ×) divided by the prediction based
on formula (15) and (16), shown as a function of ln(ρε). The significant deviation
of this quotient from one is a consequence of the failure of the independent gap
Chern number hypothesis, which spoils the strong cancellation in (15) and (16).
The close agreement between the ratios obtained for the two random matrix models
is consistent with the Chern-number-statistics universality hypothesis.

anticorrelated, there is no compelling reason for correlations between the gap Chern numbers.
Since the gap Chern numbers on the sphere can be expressed as the signed number of band
intersections in the sphere’s interior, an analysis of the correlation between the intersections
should be able to elucidate the cause of the gap Chern correlations.

When we looked at the variance of a weighted sum of Chern numbers, however, we found
that there was a very significant difference from the predictions based upon assuming inde-
pendent gap Chern numbers. One of the motivations for looking at statistics of Chern numbers
was the hypothesis that there are cancellation effects, which reduce the variance of a sum of
Chern numbers. We found that the variance of the weighted sum was larger than the prediction
in paper I, indicating that the cancellation effects are weaker than anticipated.

We were motivated to perform this study by the success of random matrix models as exem-
plars of universal properties of complex quantum systems. Our results do show how random
matrix models for Chern integers can be successfully quantified within the framework of a
‘universality’ hypothesis. However, it is not clear to what extent these random matrix mod-
els are representative of the quantised Hall effect in physically realistic models. In particular,
when the dimension of the random matrix is large, then the sum of the band Chern numbers
may be a very large number. While we have shown that there is significant anti-correlation
between the Chern integers of adjacent levels, we have not been able to show that the sums of
Chern numbers for these random matrix models are compatible with predictions from semi-
classical theories. One possibility is that the sums of Chern numbers for physical systems show
a greater degree of cancellation than those of random matrix models. Another possibility is
that the bands of generic complex systems overlap, so that the Fermi energy cannot lie in a
gap. In this latter case, the argument that the Hall conductance can be expressed as a sum of
Chern integers fails. It is, therefore, desirable to complement this present work with studies
of Chern numbers in physically realisable models for complex quantum systems.
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A Monte Carlo simulation of Chern numbers

Our numerical calculation of the Chern number distribution is based on Monte-Carlo sampling
of the parametric GUE random field on the two-sphere. Each matrix element field realisation
is defined by a set of random spherical harmonics amplitudes a jk,lm

H jk(p) =
∑

jk,lm

a jk,lmYlm(p) , (23)

Y being standard spherical harmonics. The amplitudes a jk,lm, a j′k′,l ′m′ are statistically inde-
pendent unless j = j′, k = k′ or j = k′, k = j′, and l = l ′, m= m′ and their variance is

〈|a jk,lm|2〉= cl , (24)

where cl are the coefficients of the expansion of the matrix-element correlation function in
Legendre polynomials.

The Chern number of a given matrix field realization is calculated using the algorithm of
Fukui et al. [29] adapted to a triangulation of the two-sphere. The matrices (23) are calculated
at the vertices of the triangulation, diagonalised, and the eigenvectors are used to estimate
the the flux of the adiabatic curvature through each triangle, as explained in [29]. The Chern
number is then estimated by the sum of the adiabatic curvature flux of the entire triangulation.

Even though the Chern number obtained by this algorithm is guaranteed to be an integer,
as shown in [29], avoided crossings may cause it to produce an erroneous result if the trian-
gulation is too coarse. For this reason we used an adaptive mesh algorithm, where starting
from an octahedral triangulation, each triangle was subdivided into four congruent equilat-
eral triangles; the total curvature flux of the four sub-triangles was compared to that of the
original triangle, and the result was accepted if the difference between the two flux calcu-
lation was smaller than a numerical tolerance parameter. Otherwise, the triangulation was
further refined until convergence was achieved. The nonuniform triangulations produced by
this method were essential for numerical tractability of the calculation.

The numerical codes are available at:
https://github.com/orswartzberg/Numerical-calculation-of-Chern-numbers.
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