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Abstract

Certain spin chains, such as the quantum Ising chain, have free fermion spectra which
can be expressed as the sum of decoupled two-level fermionic systems. Free parafermions
are a generalisation of this idea to ZN -symmetric clock models. In 1989 Baxter discov-
ered a non-Hermitian but PT -symmetric model directly generalising the Ising chain,
which was later described by Fendley as a free parafermion spectrum. By extending the
model’s magnetic field parameter to the complex plane, it is shown that a series of ex-
ceptional points emerges, where the quasienergies defining the free spectrum become
degenerate. An analytic expression for the locations of these points is derived, and var-
ious numerical investigations are performed. These exceptional points also exist in the
Ising chain with a complex transverse field. Although the model is not in general PT -
symmetric at these exceptional points, their proximity can have a profound impact on
the model on the PT -symmetric real line. Furthermore, in certain cases an exceptional
point may appear on the real line (with negative field).
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1 Introduction

The free parafermion model is a quantum spin chain where the spin sites are generalised to
“clocks” with N symmetric states. On a chain of length L with open boundary conditions, it
has the Hamiltonian

H = −
L−1
∑

j=1

Z†
j Z j+1 −λ

L
∑

j=1

X j , (1)

where X and Z are generalisations of the Pauli matrices given by

Z =













1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωN−1













, X =













0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0













. (2)

The parameter λ is a constant assumed to be real and positive in the literature, andω= e2πi/N

is an N th root of unity.

−ε1 − ε2 − ε3 − ε4

−ωε1 − ε2 − ε3 −ωε4

−ω2ε1 − ε2 − ε3 −ω2ε4

ε1

ε2

ε3

ε4

0

Figure 1: A free parafermion spectrum in the complex plane, for N = 3, L = 4.
The black dots are the N L energy eigenstates. The spectrum is built up by starting
at zero and adding each parafermion multiplied by a power of the root of unity ω,
as per Eq. (3). Here the values of ε j are arbitrary and for most realistic values the
paths would overlap each other, but will have the same essential branching structure.
Algebraic expressions are shown for some example states, including the ground state
E0 = −ε1 − ε2 − ε3 − ε4.
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When N = 2, the model reduces to the widely studied transverse field Ising model, with X
and Z reducing to the Pauli matricesσx andσz . For N > 2, the model is non-Hermitian and has
a complex spectrum. The energy spectrum is known exactly for all N , L and λ, taking the form
of free parafermions. This form was first derived by Baxter, who also formulated the model [1,
2], and later explored in detail by Fendley using an algebraic approach with parafermions
defined by the Fradkin-Kadanoff transformation [3]. Some key elements of Fendley’s approach
are described in Section 2.

The free parafermion model is related to the classical τ2 model, in that the transfer ma-
trix of the classical model commutes with the quantum chain’s Hamiltonian. The τ2 model
was essential to the solution of the chiral Potts model [4] and has been further explored by
Baxter [5], and Au-Yang and Perk [6,7].

In his solution, Fendley developed interesting algebraic techniques which were also applied
to multispin free fermion systems [8]. This approach was later adopted and generalised by
Alcaraz and Pimenta to a class of multispin free fermion and free parafermion models [9–11].

Free parafermions are a natural generalisation of the concept of free fermions. In a free
fermion system, the energy eigenvalues are a sum of a set of L quasienergies, each of which
is multiplied by a positive or negative sign, giving 2L combinations which determine the 2L

eigenvalues of the Hamiltonian. For free parafermions, instead of a positive or negative con-
tribution, each quasienergy is multiplied by an N th root of unity, i.e., a power of ω. Thus a
general energy eigenvalue is given by

E = −
L
∑

j=1

ωq jε j , (3)

where ε j are the quasienergies, and q j ∈ {0, . . . , N−1}. Each possible combination of q j values
determines a different eigenvalue, giving all N L states. Figure 1 provides an illustration of such
a spectrum.

The quasienergies ε j are real and positive for real and positive λ. They were determined
in Baxter’s original paper, and in a number of other ways in the literature. Alcaraz et al. [12]
calculate them in terms of a quasimomentum variable k:

εk j
= (1+λN + 2λN/2 cos k j)

1/N , (4)

where k j are the L solutions in the interval (0,π) of

sin ([L + 1]k) = −λ−N/2 sin(Lk) . (5)

This formulation is convenient for the analytic approach used in this work. The quasienergies
are equivalently given by the eigenvalues of matrix [13]

M=















1 g
g 1+ g2 g

g 1+ g2 . . .
. . . . . . g

g 1+ g2















, (6)

where g = λ−N/2. The quasienergies are then ε j = λa1/N
j , where a j is an eigenvalue of M.

Diagonalising M is an efficient way of finding the quasienergies numerically, and is used to
obtain most of the numerical results found in this paper. Alcaraz et al. [12] also determined
other quantities including the critical heat exponent, and the ground state energy in the ther-
modynamic limit:

e∞(λ) = − 2F1

�

−
1
N

,−
1
N

; 1;λN
�

, (7)

3

https://scipost.org
https://scipost.org/SciPostPhys.15.1.016


SciPost Phys. 15, 016 (2023)

where 2F1 is the hypergeometric function.
In Baxter’s and Fendley’s work, more general models with arbitrary real and positive coeffi-

cients on each term in Eq. (1) are considered. These have the effect of changing the quasiener-
gies but do not change the free parafermion character of the spectrum, and cannot lead to the
simple closed forms shown above. Only uniform models are considered in this work.

1.1 Periodic systems and non-Hermitian physics

The free parafermion model exhibits substantially different behaviour under periodic boundary
conditions, which are implemented by adding the boundary term −Z†

L Z1 to Eq. (1). In fact,
the free parafermion solution no longer applies, unlike many free fermion systems where the
system breaks into free fermionic momentum sectors. Surprisingly, the energy of the system
depends on the boundary conditions even in the thermodynamic limit (L → ∞), which is
impossible in a Hermitian system [13]. This is an example of a non-Hermitian skin effect and
has recently been observed in a variety of non-Hermitian systems [14–16].

Recently, there has been extensive activity surrounding non-Hermitian models. In many
cases they have interesting behaviour relating to exceptional points (EPs), which are isolated
points in the parameter space where the Jordan structure of the Hamiltonian changes. In the
physics literature, EPs refer to a non-trivial block forming, i.e., an off-diagonal element in the
normal form. This is associated with degenerate eigenvalues, with the corresponding right
eigenvectors becoming parallel, and the corresponding left eigenvectors becoming orthogonal
to the right eigenvectors. This is only possible for non-Hermitian matrices and is leads to a va-
riety of novel physics, including the non-Hermitian skin effect, generalised geometric phases,
the anomalous bulk-boundary correspondence, and exotic phase transitions. See Bergholtz et
al. [17] for a recent review of these developments, and Ashida et al. [18] for an excellent ex-
tensive review of non-Hermitian physics in general, including thorough introductory material
on Jordan block structure and EPs.

1.2 Symmetries

The free parafermion model has a ZN symmetry generated by the operator
∏L

j=1 X j , which
rotates each clock by one place. It also has parity-time (PT ) symmetry, with the action of the
operators P and T being as follows:

PZ jP = ZL+1− j , PX jP = X L+1− j , (8)

T Z jT = Z†
j , T X jT = X j . (9)

The parity operator P inverts or flips the lattice, and the time-reversal operator T conju-
gates all numbers, including λ. There has been great interest in PT -symmetric non-Hermitian
systems, beginning with the work of Bender and Boettcher [19]. These systems, while not
Hermitian, have real energy spectra when the PT symmetry is unbroken, while PT -broken
energy states appear in complex conjugates. With an appropriate metric they have unitary
time evolution [20, 21], even if the symmetry is broken, and thus most of the physics of a
standard closed quantum system still applies to them. If the PT symmetry is broken, some
eigenvalues appear in conjugate pairs. In the past two decades, non-Hermitian and partic-
ularly PT -symmetric physics has been applied in a large variety of novel experiments and
theoretical work. Many examples of this are covered in the review of Ashida et al. [18].
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2 Fendley’s solution

Fendley’s solution [3] expresses the Hamiltonian in terms of parafermions given by the Fradkin-
Kadanoff transformation:

ψ2 j−1 =

 

j−1
∏

k=1

Xk

!

Z j ,

ψ2 j =ω
(N−1)/2ψ2 j−1X j .

(10)

The 2L parafermions ψ j satisfy a generalised Clifford algebra, which reduces to Majorana
fermions for N = 2:

(ψa)
N = 1, ψ†

a = (ψa)
N−1 , ψaψb =ωψbψa (a < b) . (11)

The Hamiltonian can then be rewritten as

H =ω(N−1)/2
2L−1
∑

a=1

taψa+1ψ
†
a , (12)

where ta = 1 (a odd), ta = λ (a even) for the uniform case. Fendley re-expresses the Hamil-
tonian in various forms by using the Clifford algebra. For our purposes one of these forms is
sufficient, which makes the generalisation of free fermions clear. The Hamiltonian is expressed
as a sum of decoupled N -level systems:

H = −
L
∑

k=1

Ξk , (13)

where [Ξk,Ξk′ = 0], and each Ξk has N distinct eigenvalues given by εk, ωεk, . . . , ωN−1εk,
where εk are the quasienergies defining the spectrum in Eq. (3). This is a simplified version
of a more general form given by Fendley which also covers a series of higher Hamiltonians,
and is not necessary for the analysis given in this work. Since the Ξk commute, states can be
chosen that are simultaneous eigenstates of each Ξk, and thus a state with any energy of the
form of Eq. (3) may be selected.

The operators Ξk only depend on λ through the quasienergies εk and through a linear
transformation relating them to the basic parafermion operatorsψ j , which is common to all the
Ξk. This means that if two εk were to become degenerate, so would the corresponding Ξk and
therefore many of the eigenvectors of H, producing an exceptional point. Such a degeneracy
does not occur for the positive real couplings considered in the literature. For these values, the
model has N L distinct eigenstates and is always diagonalisable, despite being non-Hermitian.
The essential result of this paper is that such quasienergy degeneracies can occur for isolated
complex values of λ, producing EPs of the full Hamiltonian.

3 Motivation from real λ

In our previous work on correlations in the free parafermion model [22], it was noted that
end-to-end correlation functions of the form 〈〈Z†

1 ZL〉〉 diverge as the system size increases.
This behaviour is characteristic of the presence of an EP, but can be examined more directly by
considering the ground state fidelity. Fidelity has various definitions in the literature, always
relating to the overlap of two quantum states with different parameters. Recently, Tzeng et
al. [23,24] have used a non-Hermitian fidelity to explore EPs, defined by

F(λ) = 〈L(λ)|R(λ+δ)〉〈L(λ+δ)|R(λ)〉 , (14)
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Figure 2: Overlap and fidelity susceptibility for L = 10 (cyan), 15, 20, 25, 30 (pur-
ple). (a) Left-right ground state overlap for N = 3. (b) Fidelity susceptibility for
N = 3. (c) Fidelity susceptibility for N = 2. γ is a rescaled analog of λ, with λ= γ

1−γ .
The critical point is at γ= 0.5.

where δ is a small parameter, 〈L| and |R〉 are the left and right ground states (or any state of
interest), and λ could more generally be replaced by any parameter of the Hamiltonian. The
fidelity susceptibility χ is the second-order expansion coefficient in δ, which is approximately

χ ≈
1−F
δ2

. (15)

The first order coefficient vanishes, i.e., F = 1−χδ2+O(δ3). The key result of Tzeng et al. is
that at a critical point, Re(χ)→ +∞, while at an EP Re(χ)→−∞.

Figure 2 shows fidelity susceptibility data for the free parafermion model obtained using
the density matrix renormalisation group method, with δ = 10−5. The N = 2 Hermitian Ising
case (c) shows the characteristic behaviour of a critical point: as L increases, Reχ →∞. The
critical point is not reached for any finite L as the gap does not close, so Reχ remains finite.
For N = 3, Reχ →−∞ instead, and the overlap of the left and right states approaches zero.
This is characteristic of the presence of an EP. However, while Reχ grows rapidly, it remains
finite, indicating that the system is not precisely at the EP for any value of λ. Unlike a critical
point which exists only in the limit L →∞, EPs typically exist even for finite L. This lead us
to the idea that an EP could be somewhere in the complex λ plane such that it approaches the
critical point as L→∞.

4 Complex λ and exceptional points

In previous works, the parameter λ is assumed to be real and positive. Many existing results,
including the free parafermion spectrum, extend directly to any complex value of λ. This has
interesting consequences: the quasienergies ε j also become complex, and it becomes possible
for two of these quasienergies to coincide, producing an EP. The analysis of Baxter, Fendley,
and Alcaraz et al. [12] which leads to Eqs. (5) and (7) remains valid for complex λ. Figure 3
provides numerical confirmation of this, and demonstrates the basic effect of complex λ on
the spectrum and quasienergies. Complex values of λ are parametrised with an angle φ as
follows:

λ= |λ|e2πiφ/N . (16)

Due to the model’s ZN symmetry, a rotation of ω has the same spectrum as zero rotation,
corresponding to φ = 1. This rotation still permutes the states. More generally, a rotation
with φ > 1 has the same spectrum as φ (mod 1). All possible spectra can be seen in the
interval φ ∈ [0, 1).
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-5.00 -1.09 2.82

Re(E)

-4.42

-0.00

4.42

Im
(E
)

φ = 0.000

-4.92 -0.76 3.40

Re(E)

-4.01

0.34

4.70

Im
(E
)

φ = 0.100

-3.94 0.21 4.37

Re(E)

-3.88

-0.00

3.88

Im
(E
)

φ = 0.500

-0.08 0.76 1.60

Re(ε)

-0.08

0.00

0.08

Im
(ε
)

φ = 0.000

-0.08 0.75 1.58

Re(ε)

-0.08

0.12

0.31

Im
(ε
)

φ = 0.100

-0.05 0.50 1.04

Re(ε)

-0.65

-0.00

0.65

Im
(ε
)

φ = 0.500

Figure 3: Energy spectra (left) and quasienergies (right) for the free parafermion
model with N = 3, L = 4, λ = 1 and various values of φ. The energies (left) show
values obtained from the quasienergies (blue dots), and values obtained from exact
diagonalisation of the full Hamiltonian (red crosses).
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The ZN symmetry also implies that any particular quasienergy could be multiplied byω to
produce an identical spectrum. This is also reflected in the fact that Eq. (4) has N solutions for
a given k j . In the real positive λ case the quasienergies are taken as real, but could equivalently
be be proportional to powers of ω. For complex λ, we generalise this convention by taking
the quasienergies to have arguments in the interval (−π/N ,π/N], i.e., the choice with the
smallest complex argument is taken.

4.1 Complex rotations and PT antisymmetry

Throughout this paper, complex values of λ are introduced directly into Eq. (1). However,
the complex rotation could also be applied to the Z term of H, or partially to each term. The
difference between these choices is an overall rotation in the complex plane, which has no
effect on the location of the EPs and other physics discussed in this work.

For most values of φ, H is no longer PT -symmetric, which is reflected in the spectrum
losing its reflection symmetry across the real axis, so the eigenvalues no longer appear as
conjugate pairs (or real). The case φ = 0.5 is special, as the quasienergies appear in conjugate
pairs and the symmetry of the spectrum is restored. This can be seen in Figure 3 (bottom
row). Interestingly, this is not PT symmetry, as applying PT interchanges the conjugate pairs
of quasienergies, but is symmetric in (PT )2, which may be interpreted as PT antisymmetry.
This special case is not the focus of this work but may warrant further investigation.

4.2 Quasienergy degeneracies

For real positive λ, the quasienergies ε j are always positive and distinct. For complex λ, the
quasienergies are complex, and a pair of them may become equal at certain values of λ, which
depend on L and N . This was initially observed using numerical data such as can been seen in
Fig. 4. As described in Section 2, such quasienergy degeneracies necessarily lead to exceptional
points of the full Hamiltonian. As such, we will from now on refer to quasienergy degeneracies
simply as EPs.

The locations of the EPs can be determined analytically by finding repeated roots of Eq. (5),
meaning that both it and its derivative are satisfied:

sin ([L + 1]k) +λ−N/2 sin(Lk) = 0 , (17)

and
(L + 1) cos ([L + 1]k) + Lλ−N/2 cos(Lk) = 0 . (18)

The EPs occur at pairs of values kEP and λEP which satisfy these equations simultaneously. In
other words, the EPs occur only at particular values of λ, and at those values they appear as
a repeated root kEP of Eq. (5), which gives two degenerate quasienergies. Eliminating λEP
determines kEP as the solution to

(L + 1) sin(LkEP) cos([L + 1]kEP)− L sin([L + 1]kEP) cos(LkEP) = 0 , (19)

which may be simplified somewhat to

sin([2L + 1]kEP)− (2L + 1) sin(kEP) = 0 , (20)

with the corresponding value of λEP given by

λN =
�− sin([L + 1]kEP)

sin(LkEP)

�2

. (21)
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In fact, all N complex values of λ that solve Eq. (21) for a given kEP are EPs. These different
values occur at rotations of exp (2πi/N) relative to each other, and have identical spectra.
Figures 4 and 5 demonstrate how solutions of Eq. (19) appear in the complex plane, and how
they correspond to quasienergy degeneracies (and hence EPs). The four complex quadrants of
k produce identical values of λEP (and identical quasienergies), so only one quadrant needs
to be considered. There are in general L − 1 solutions to Eq. (19), giving N(L − 1) EPs. The
figures show the relative difference between the smallest quasienergy and the second smallest,
defined as

∆ε12 =
L

min
j=2

|ε1 − ε j|
|ε1 + ε j|

, (22)

where ε1 is the smallest quasienergy in absolute value. An obvious alternative would be the
smallest difference between any two quasienergies. The above ∆ε12 is used because the EPs
are observed numerically to always occur between the two smallest magnitude quasienergies.
Taking the smallest difference between any two quasienergies gives the same roots in the
complex plane, but makes their appearance much less distinct (in, e.g., Figure 4) because the
gaps between higher quasienergies can be smaller than the gap between the near-degenerate
EP quasienergies even quite close to the EP.

4.3 EPs with PT symmetry

If N is odd and L is even, one of the EPs appears on the real line with a negative value of λ.
This is of some interest as for real λ the system remains PT -symmetric and can be endowed
with unitary time evolution. This could serve as an interesting toy model of the passage of
a PT -symmetric system through an EP. If N is even and L is odd, or if N is divisible by 4,
there will also be an EP on the apparently PT -antisymmetric line φ = 0.5 described above.
Examples of these negative-λ EPs can be seen in Figures 5 and 6.

4.4 The case k = nπ

Equation (5) always has the solution k = nπ where k ∈ Z. This solution is not included in
the analysis of Alcaraz et al. [12] or the work of Lieb et al. [25] on the XY model. It does
not correspond to a quasienergy and does not contribute to the spectrum. However, there are
values of λ proportional to the N th roots of unity where a second root at k = nπ appears.
At this point, one of the quasimomenta k j takes the value π, and changes from being real to
complex. This was identified by Alcaraz et al. and earlier by Lieb et al., and occurs at the
values

λN =
�

L
L + 1

�1/2

. (23)

The corresponding quasienergy approaches 0 as L→∞ for λ < 1, implementing spontaneous
breaking of the ZN symmetry. Since the root is repeated, this point satisfies the quasienergy
degeneracy condition Eq. (19). However, since one root is trivial and does not correspond to a
quasienergy, this solution is in a sense spurious and does not produce a quasienergy degeneracy
or EP. It is still of physical interest for the reason stated above.

4.5 The thermodynamic limit

The positions of the EPs can be determined in the thermodynamic limit L→∞ by examining
the large-L behaviour of Eq. (19). Following Alcaraz et al. [12] and Lieb et al. [25], k j can be
expanded as

k j =
π j
L
−
πa
L
+O

�

1
L2

�

, (24)
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Figure 4: (Top left) Equation (19) evaluated for L = 5. The zeros are marked with
white crosses. Also shown is the relative difference between the smallest and second-
smallest quasienergies ∆ε12 for N = 2 (top right), N = 3 (bottom left) and N = 4
(bottom right). The zeros from the left subfigure are transformed using Eq. (21)
and marked with white crosses in each subfigure. They correspond to actual zeros of
∆ε12 to numerical precision. There are additional zeros in (a) at k = nπ, n ∈ Z, but
these do not correspond to a degeneracy as detailed in Section 4.4.

where j ∈ {1, . . . , L}, and a is determined by inserting the expansion into Eq. (17) (applying
trigonometric sum formulae and discarding vanishing terms):

cot (πa) =
λ−N/2 + cos (π j/L)

sin (π j/L)
. (25)

Note that in Eq. (24), the term π j/L is of order zero in L since j is of order L. The EPs are
given by values of λEP and kEP which satisfy both Eq. (17) and its derivative Eq. (18), which
gives a second equation for a at the EPs:

tan (πa) = −
L

L+1λ
−N/2 + cos (π j/L)

sin (π j/L)
. (26)
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Figure 5: The absolute distance ∆ε12 between the smallest two quasienergies for
L = 30, N = 3. The exceptional points found by minimising Eq. (19) are marked
with white crosses. Subfigures show different parameter ranges.

Combining the two and setting L/(L + 1)≈ 1 gives

− sin (π j/L)
cos (π j/L) +λN/2

=
cos (π j/L) +λN/2

sin (π j/L)
, (27)

which by eliminating a reduces to

0= 1+ 2λN/2 cos
�

π j
L

�

+λN . (28)

This has solutions

λN/2 = − cos
�

π j
L

�

± i sin
�

π j
L

�

, (29)

which squares to (using double-angle formulae)

λN = cos
�

2π j
L

�

± i sin
�

2π j
L

�

, (30)
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where j ∈ {1, . . . , L} as defined above. These are precisely the Lth roots of unity, with j = L
giving unity, and with each root appearing twice. This repetition results from the fact that for
any k defining an EP, or generally a quasienergy satisfying Eq. (17), the conjugate k∗ will give
the same energy. Taking all solutions for λ, this gives all the (N L)th roots of unity. However,
N of these correspond to k = 0 and don’t produce EPs, as described in Section 4.4. Thus the
limiting case is the set of (N L)th roots of unity, with the N th roots of unity excluded, for a
total of N(L − 1) EPs. Figure 5 shows numerical data for L = 30 which closely reflects this.

4.6 Other degeneracies of H

As per Section 2, quasienergy degeneracies are the only way that EPs of H can appear. How-
ever H may have other degeneracies, where the eigenvalues but not the eigenvectors become
degenerate, and H is still diagonalisable. In Fig. 6 the minimal relative distance between any
two eigenvalues of H, ∆E, is plotted, defined as

∆E =min
i, j

�

�

�

�

Ei − E j

Ei + E j

�

�

�

�

, (31)

where Ei are the eigenvalues of H, and i and j range over all N L eigenvalues. This function
has many zeros even for the small value of L = 4. Subfigures (b), (c), and (d) show various
quantities along the real negative λ line, which includes an EP at around λ= −0.75. Although
there are many degeneracies of H along this line (seen in subfigures (a) and (b)), only the de-
generacy at the EP gives rise to orthogonal left and right eigenvectors, as seen in subfigure (d).
Similar numerical tests have been performed for other small values of L and N and show the
same behaviour, providing some numerical confirmation of the reasoning given in Section 2.

More generally, if the quasienergies are distinct then a degeneracy of H will occur if some
combination of the quasienergies sums to zero when multiplied by appropriate powers of ω,
as is clear from the form of the spectrum in Eq. (3), i.e.,

ωk1ε j1 +ω
k2ε j2 + · · ·+ω

kmε jm = 0 , (32)

for some m ≤ L. This is much more general than the quasienergy degeneracy condition
εi − ε j = 0. The simplest case of Eq. (32) is one involving only two quasienergies:

ωkεi + ε j = 0 , (33)

for some i, j, and k, where the second power of ω has been divided out. It may be possible
to evaluate simple conditions like Eq. (33) to find degeneracies analytically, however they will
not satisfy the condition of repeated roots in Eq. (18) which easily allowed the determination
of the EPs. This is a topic for further investigation, although these degeneracies do not have
the same physical significance as the EPs.

5 Conclusion

The main result of this work is the identification of a series of N(L−1) exceptional points in the
complex-λ plane of the free parafermion model, the locations of which are given by Eq. (19).
As L→∞, these EPs approach the (N L)th roots of unity, with the N th roots excluded, i.e., they
approach a uniform distribution on the unit circle. For complex values of λ, the PT symmetry
of the model is destroyed. However, for odd N and even L, one of the EPs exists at a negative
real value of λ.
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Figure 6: For N = 3, L = 4, (a) Smallest relative difference between any two eigen-
values of the Hamiltonian ∆E. The EPs obtained from Eq. (21) are marked with
white crosses. Although not clearly visible, these quasienergy EPs correspond to ze-
ros of ∆E. (b) ∆E for negative real values of λ, i.e., a line segment in subfigure
a. (c) Smallest relative difference between the two smallest quasienergies ∆ε12 for
negative real λ. (d) Overlaps of the left and right eigenvectors of the Hamiltonian
for negative real λ. Each colour shows a different left-right overlap.

In Fig. 2, the fidelity susceptibility of the ground state was observed to diverge with in-
creasing system size for real positive λ near the critical point λ = 1. This is characteristic of
the system approaching an EP but could not be explained given real positive λ since there was
no way to achieve a quasienergy degeneracy. The large-L limit of the complex-λ EPs provides
a clear mechanism for this behaviour, since as L increases, infinitely many EPs approach the
real axis at λ= 1.

Each of these EPs is a degeneracy of two of the quasienergies which define the free
parafermion spectrum Eq. (3). This means that at each EP, any pair of energy levels that
differ only by swapping the two degenerate quasienergies becomes degenerate. Thus each
quasienergy degeneracy is in fact a set of N L − N L−1 2-fold degeneracies, or 1

2(N
L − N L−1)

coincident two-level EPs. Such coincident EPs have recently appeared in the literature and
are termed confluent EPs [26, 27]. In particular, the passage of a system through such an EP
has interesting physical properties. The free parafermion model may serve as a toy model for
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such a passage, particularly in the PT -symmetric case where unitary time evolution can be
defined.

The EPs also exist in the familiar Ising spin chain, which is the limiting case N = 2 of the
free parafermion model. They do not produce unusual behaviour on the real axis in this case,
as the model is Hermitian for real λ. However the existence of these points appears to be
unexplored in the literature, despite the fact that the Ising chain has been studied extensively.
There are examples of non-Hermitian extensions of the Ising model such as a complex longitu-
dinal field [28], but not to our knowledge of the direct extension of the transverse field λ (or
equivalent) to the complex plane. The behaviour of the EPs resembles Lee-Yang zeros [29],
in that they appear on the unit circle, they appear as a consequence of making the model
parameter complex, and they approach the critical point as L→∞.
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