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Abstract

We present an improved theoretical prediction of the positron energy spectrum for the
polarised Michel decay µ+ → e+νeν̄µ. In addition to the full next-to-next-to-leading
order correction of order α2 in the electromagnetic coupling, we include logarithmically
enhanced terms at even higher orders. Logarithms due to collinear emission are included
at next-to-leading accuracy up to order α4. At the endpoint of the Michel spectrum, soft
photon emission results in large logarithms that are resummed up to next-to-next-to-
leading logarithmic accuracy. We apply our results in the context of the MEG II and
Mu3e experiments to estimate the impact of the theory error on the branching ratio
sensitivity for the lepton-flavour-violating decay µ+→ e+X of a muon into an axion-like
particle X .
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1 Introduction

Muon decays are a sensitive probe to test the Standard Model (SM) and search for new physics.
In the SM muons decay exclusively through the charged current interaction mediated by the
W± boson. At low energies this interaction can be described through an effective theory by a
V−A four-fermion contact interaction. The coupling or Wilson coefficient of the correspond-
ing dimension 6 operator, the Fermi constant GF , has been measured with high precision [1]
through the Michel decay µ+ → e+νeν̄µ. Allowing for heavy particles beyond the Standard
Model (BSM), more general contact interactions can be generated. Working with the most
general, local, derivative-free and lepton-flavour-conserving four-fermion interaction leads to
ten Wilson coefficients [2]. A dedicated experimental effort has been carried out to put limits
on the related decay parameters [3,4].

Unless special care is taken, a generic BSM model does not conserve lepton flavour. This
leads to charged lepton-flavour-violating (cLFV) processes. If they are mediated by large-mass
BSM particles, these processes can be described by a generalised effective theory, containing
cLFV four-fermion operators, as well as cLFV dipole interactions [5–7]. Muon decays play
again a dominant role in the search for such effects and the current best limits on µ→ eγ [8],
µ→ eee [9] and µN → eN [10] will be further improved in the coming years [11–14].

In this article we focus on an alternative scenario, whereby cLFV muon decays are triggered
by low-mass (pseudo)scalar BSM particles with small couplings to SM particles. This class of
bosons is generally referred to as axion-like particles (ALPs) [15, 16]. If such a particle X
exists with a mass mX smaller than the muon mass M , a new decay channel µ+ → e+X for
the muon might exist. The detectable final state depends on the lifetime and the dominant
decay mode of X [17,18]. For the prompt decay µ+→ e+X → e+(e+e−), stringent limits have
been obtained by the SINDRUM collaboration [19]. If mX < 2m, where m is the mass of the
electron, or if the coupling to electrons is strongly suppressed, X → γγmight be the dominant
decay mode. The MEG experiment at the Paul Scherrer Institut (PSI) has recently performed
a search for µ+→ e+X → e+(γγ) [20].

But the scenario we are going to investigate is the possibility that X escapes undetected.
From an experimental point of view, this corresponds to a two-body decay µ+→ e++ invisible.
For mX large enough, a limit on the branching ratio can be obtained by looking for a nar-
row peak in the positron energy spectrum. TWIST has searched for such a signal [21] and
has imposed O(10−5) upper limits on the branching ratio for 13MeV < mX < 80MeV. The
same investigation has been performed by PIENU [22], with resulting limits at the level of
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10−4 − 10−5 in the mass range 47.8MeV < mX < 95.1MeV. The forthcoming experiment
PIONEER [23,24] is expected to improve such limits by 1−2 orders of magnitude, in a similar
mass range as PIENU. Furthermore, the Muχe experiment [25] has been proposed to explore
the mass range 86 MeV < mX < 105 MeV with a branching ratio sensitivity of 10−6 − 10−7.

From a theoretical point of view, there is a particularly strong motivation to look for nearly
massless ALPs as they naturally appear as pseudo-Goldstone bosons. Typical examples are the
majoron [26], the familon [27] and the QCD axion [28]. In addition, light ALPs produced in
cLFV transitions can be sufficiently stable to serve as viable dark matter candidates [29]. In the
context of µ+→ e+X , such a signal would no longer show up as a bump, but as a deviation in
the endpoint of the positron energy spectrum. This entails a much more delicate comparison
since both experimental and theoretical uncertainties in this region are much more difficult to
control. A possibility to suppress the SM background is to consider highly polarised µ+, such
as those produced at high-intensity surface muon beams at TRIUMF and PSI. Notably, surface
muons have a polarisation opposite to the momentum. Thus, when they decay at rest, the
rate of Michel positrons is suppressed for cθ ≡ cosθ → 1, where θ is the angle of the positron
momentum with respect to the beam direction. This has been exploited in [30] to obtain
O(10−6) limits on right-handed currents as well as µ+→ e+X decays for nearly massless X .

This process has received considerable interest from the theory community [31–35].
In [36] an analysis has been presented where available and potentially new µ+ → e+ X
searches are compared to other limits for ALPs coupling to leptons. The potential of MEG II
together with a forward detector is also investigated there, as it offers the opportunity to fo-
cus the search on right-handed signals in a low-background regime. Studies for the process
µ+ → e+ X have been made for Mu3e [37–39] and COMET [40] as well. Another process
worth mentioning, considered long ago by Crystal Box [41] and recently for MEG II [42], is
µ+→ eXγ. In [43–45], on the other hand, one finds a more generic analysis of ALP signatures
in cLFV phenomena, where both muonic and tauonic decay modes are entertained. Searches
for τ→ ℓX at Belle II are also expected to play a major part in the ongoing probing of flavour-
violating new physics, either via prompt decays of possibly short-lived ALPs or, in the case of
long-lived ALPs, via displaced vertices or missing energy [46, 47]. These processes are, how-
ever, beyond the scope of the present work. We will also not discuss the many constraints
stemming from astrophysical or cosmological considerations but refer to [36] for an overview.

The purpose of this article is to revisit the search for ALPs in the µ+ → e+X decay. This
will be done in the context of the currently available muon beams at PSI and the underly-
ing low-energy theory [48], but also in view of HIMB [49], the future high-intensity muon
beamline at PSI. Contrary to previous analyses, we do not restrict ourselves to cases where the
impact of the SM background is marginal. Rather, we compute the positron energy spectrum
from Michel decay of polarised µ+ as precisely as possible. To this end, we augment the full
next-to-next-to-leading order (NNLO) QED calculation [50,51] with the inclusion of collinear
logarithms Lz ≡ log(z)≡ log(m/M) and the resummation of soft logarithms. In particular the
latter have a large impact at the endpoint of the spectrum. We extend previous calculations
by the resummation of soft lograrithms at the next-to-next-to-leading logarithmic order. This
background calculation with its conservatively estimated error is contrasted with the signal.
At leading order (LO) the signal is just a delta peak in the energy distribution. We also provide
a more realistic next-to-leading order (NLO) calculation of the signal [52] to prepare for a
more detailed analysis. These theoretical predictions are combined with a realistic estimate
of experimental uncertainties. While this is far from a concrete and detailed experimental
analysis to be done in connection with an actual measurement, it will give a good indication
of the achievable sensitivity, in particular for small mX . Three scenarios will be considered:
in addition to the current MEG II and the Mu3e detector set-up, we also contemplate a hypo-
thetical forward detector. As mentioned above, the latter case is particularly interesting for
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right-handed ALPs, because the signal and background positrons tend to be emitted in opposite
directions.

In order to achieve our goal, we start in Section 2 presenting our new state-of-the-art
computation of the positron energy spectrum for the polarised Michel decay µ+ → e+νeν̄µ.
Section 3.1 contains the NLO calculation of the signal µ+→ e+X for a (pseudo)scalar X with
generic couplings to leptons. The reasons why the corresponding calculation of µ+→ e+V for
a (pseudo)vector V is not performed are discussed in Section 3.2. In Section 4, we estimate the
sensitivity on the branching ratio of µ+→ e+X for our three experimental scenarios, focusing
on the impact of the theory error. Finally, our conclusions are presented in Section 5.

2 Standard Model prediction for Michel decay

The Michel decay of the muon is one of the best studied processes in particle physics and
has been pivotal in shaping our understanding of perturbative higher-order calculations in
quantum field theory. Working in the Fermi theory at leading order in the Fermi coupling
GF and to higher orders in the electromagnetic coupling α, the inclusive decay rate has been
computed at NLO [53] in the very early days of QED. To match the precision of the experiment,
an NNLO computation [54, 55] was required, although the effects of the non-vanishing but
small electron mass m were only added ten years later [56]. Very recently, first steps have
been taken to even go to the three-loop level [57]. While the matching coefficient GF does
not receive higher-order corrections in pure QED, in the full SM there are electroweak effects
which have been computed at the two-loop level [58]. The leading effects beyond the Fermi
operator can be found in [59,60].

While these are impressive calculations, the inclusive decay width is of no use in our case.
Instead we need the differential decay rate as a function of the positron energy. Such a calcu-
lation is more involved as it goes beyond using the optical theorem and requires the separate
evaluation of the virtual and real corrections. There are two classes of processes that need to
be considered. First, there is the standard Michel process µ+→ e+νeν̄µ + {γ} where at NnLO
we have to take into account up to n additional photons in the final state. Starting from NNLO
we also need to consider the case µ+→ e+νeν̄µ(e+ e−)+{γ}. We will call these processes open
lepton production. For massless electrons, open lepton production has to be combined with
Michel decay in order to obtain a collinear safe quantity, as e.g. done in the computation of
the decay width [54,55] or the muon decay spin asymmetry at NNLO [61]. As we will discuss
below, however, we will treat the electrons as massive. Therefore, open lepton production is
an independent process that in principle can be separated completely from ordinary Michel
muon decay. Nevertheless, depending on the details of the experimental analysis, these con-
tributions might need to be included. If this is the case, the definition of the positron energy
spectrum has to specify how such events are taken into account. We will include open lepton
production through a fixed-order approach and discuss in Section 2.1 how we treat µ+ decay
events with more than one positron in the final state. For the remaining contributions, it is
sufficient to consider the standard Michel decay.

In the following, we describe in detail the contributions we include in the differential
Michel decay rate of a polarised µ+, which can conveniently be written as

1
Γ0

d2Γ

d x dcθ
= F(x , z)− P cθ G(x , z) . (1)

For a negatively charged µ−, the sign of the second term changes. As is customary we nor-
malise the decay rate by the LO width Γ0 = G2

F M5/(192π3) and split it into an isotropic and
anisotropic part F and G, respectively. The dependence of these functions on the positron
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energy E is often expressed through the dimensionless variable x ≡ 2E/M . For a precise pre-
diction at the energy endpoints 2z ≤ x ≤ (1 + z2) with z ≡ m/M , it is important to keep
the electron-mass effects, i.e. z ̸= 0. The conventions for the polarisation of the muon P
are chosen such that for perfectly polarised surface µ+ entering the target along the z-axis,
we have P = −1. More generally, the polarisation vector for µ+ polarised along the z-axis is
n⃗= (0,0, P).

If we are completely inclusive with respect to the emission of additional photons, the func-
tions F and G contain all the required information to characterise the positron dynamics. They
can be extracted from the decay rate (1) as

F(x , z) =
1
2

1
Γ0

�

dΓ+
d x
+

dΓ−
d x

�

, G(x , z) =
−1
P

1
Γ0

�

dΓ+
d x
−

dΓ−
d x

�

, (2)

with

dΓ+
d x
=

1
∫

0

d2Γ

d x dcθ
dcθ ,

dΓ−
d x
=

0
∫

−1

d2Γ

d x dcθ
dcθ . (3)

The perturbative expansions of F and G in a ≡ (α/π) read

F(x , z) =
∑

n=0

an fn(x , z) , G(x , z) =
∑

n=0

an gn(x , z) . (4)

Since z is small, it is tempting to try to set z = 0. However, starting at order a there are terms
involving Lz . Hence, it is not possible to naively set z = 0. Nevertheless, it is possible to
consider so-called massified results, dropping all terms that vanish in the limit z→ 0 [62–65].
We will use the notation f̃n and g̃n for these results. In our conventions we have

f0 = f̃0 +O
�

z2
�

= x2(3− 2x) +O
�

z2
�

, (5a)

g0 = g̃0 +O
�

z2
�

= x2(1− 2x) +O
�

z2
�

. (5b)

We use the on-shell scheme for the coupling α as well as the masses m and M . Our statements
or equations are often equally valid for F and G. In this case we use the generic notation H
as a placeholder for either F or G. Similarly, we use the lowercase letter hn for either fn and
gn, when referring to the single perturbative terms in (4). We also find it convenient to split
hn into photonic and vacuum polarisation (VP) contribution, as hn = hγn+hvp

n . Since the latter
start only at NNLO, we have hn = hγn for n≤ 1.

The fixed order NNLO contributions h2 will be discussed in Section 2.1. The following
two sections deal with improving the photonic terms beyond NNLO by including additional
logarithmically enhanced terms. First, Section 2.2 is dedicated to the collinear logarithms of
the positron energy spectrum. For each order in a there can be a single power of Lz ≡ log(z),
i.e. hγn ⊃ an Lm

z with m ≤ n. These logarithms cancel for the inclusive result, but have to
be kept under control for the differential decay rate. Second, there are also potentially large
logarithms at the endpoint of the positron energy spectrum, induced by soft photon emission.
They take the form Ls ≡ log(1+ z2 − x) and again, for each order in a there can be a single
power of Ls, i.e. hγn ⊃ an Lm

s with m≤ n. Those will be addressed in Section 2.3. In addition to
hγn, the VP contributions have to be considered. Keeping both fermion masses different from
zero they contain additional logarithms due to the collinear anomaly [65]. For example, hvp

2
has L3

z terms. These terms would cancel for an observable that is inclusive with respect to
the emission of additional electron-positron pairs, but for the positron energy spectrum they
contribute. The VP contributions to the soft logarithms are considered in Section 2.4. Finally,
in Section 2.5 we will present our final result of the positron energy spectrum with an error
estimate. All results presented here are available at the website [66].
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2.1 Fixed-order results

The NLO results h1 with full z dependence can be found in [67]. A first NNLO calculation
of the energy spectrum has been done with a partly numerical approach [68]. Using the
analytic results of the two-loop integrals [69] for the heavy-to-light form factor, the NNLO
virtual corrections have been computed in [65] and combined with the real corrections [50]
in the fully differential Monte Carlo code MCMULE [51]. Using this code we can compute the
distributions defined in (3) at NNLO and, hence, obtain complete results for h2, including all
mass effects.

Starting at O(α2), also VP contributions hvp
n exist. This includes closed electron and muon

loops, but also loops with tau leptons and hadronic contributions. The contribution of the
latter to h2 have been computed in [70] using a dispersive approach. We follow the approach
in [71] and use the hyperspherical integration method [72,73] to compute all VP contributions.
For the hadronic part, hhad

2 , the VP itself is evaluated with alphaQEDc19 [74]. At O(α4) and
beyond, there are also fermion (and hadron) loop contributions other than VP. However, they
play no role in our analysis.

At NNLO and beyond, also open lepton production µ+ → e+νeν̄µ(e+e−) might need to
be considered. This leads to events with two positrons (and an electron). With a perfect
detector, these events can be identified and discarded from the analysis. However, typically the
detectors do not hermetically cover the full solid angle. Hence, to allow for more flexibility in
the analysis we also provide the contribution of open lepton production to the positron energy
spectrum. For this case a precise prescription of how to treat such events with two positrons
in the final state is required. Obviously, the choice is not unique. The important point is that
the computation is adapted to the experimental analysis. Throughout this paper, we follow
the approach to treat all final-state positrons as independent and include both of them in the
decay distribution. Hence, a single such muon decay event can lead to up to two entries in the
positron energy spectrum. The process µ+ → e+νeν̄µ(e+e−) is fully known at NLO, including
all mass effects [75,76]. Hence, its contribution to hn is available for n≤ 3 and is denoted by
hee

n . As we will see though, the numerical impact of hee
n on the analysis as a whole is rather

limited.
For all fixed-order contributions to F and G given in this paper, we use a binning

in the positron energy E with 3688 bins in total. The width of the bins is 26 keV for
520 keV≤ E ≤ 26 MeV, 16 keV for the following 1000 bins, i.e. until E ≤ 42 MeV, 8 keV
for the following 1000 bins, i.e. until E < 50 MeV, and finally 4 keV for the last bins until
E ≤52.832 MeV. The non-uniform binning was chosen to have an accurate and efficient sam-
pling of the endpoint region.

2.2 Collinear logarithms

For each order in α there can be a collinear logarithm Lz = log(z) in the positron energy
distribution. These logarithms arise due to final-state near-collinear emission regularised by
m ̸= 0 and they cancel for the inclusive result. In this subsection we focus on the purely
photonic part hγn and denote its leading (LL) and next-to-leading (NLL) collinear logarithmic
contribution by hcLL

n ∼ an Ln
z and hcNLL

n ∼ an Ln−1
z respectively. The formalism to determine LL

and NLL terms using the fragmentation function approach has been described in [77,78] and
was used to predict f cNLL

2 [78] and gcNLL
2 [79]. In [79] also f cLL

3 and gcLL
3 are given.

Following [77, 78] and focusing on the purely photonic corrections, we write the Lz en-
hanced terms of hγ through a convolution

∫ 1

x

dx ′

x ′
ĥ(x ′,µ f )D

� x
x ′

,µ f , m
�

+O(z) ≡
�

ĥ⊗D
�

(x ,µ f ) , (6)
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where D is the fragmentation function and ĥ is related to the energy distribution of a massless
positron. For hcLL

n (hcNLL
n ) we need both functions at LO (NLO).

Starting with the fragmentation function, it is understood that in (6) the factorisation scale
is set to µ f = M . Then all large logarithms Lz are contained inD. They are obtained by starting
from the initial condition [78,80] at µ0 = m

D(x ,µ0, m) = δ(1− x) +
ᾱ(µ0)

2π
d1(x ,µ0, m) +O(ᾱ2) ,

d1(x ,µ0, m) =
�

1+ x2

1− x

�

log
µ2

0

m2
− 2 log(1− x)− 1

�

�

+
,

(7)

and solving the DGLAP equation

dD(x ,µ f , m)

d logµ2
f

=

∫ 1

x

dx ′

x ′
Pee

�

x ′, ᾱ(µ f )
�

D
� x

x ′
,µ f , m

�

. (8)

Note that the evolution equations are expressed in terms of the MS coupling ᾱ(µ). For cNLL
accuracy we need the splitting kernels Pee(x) up to ᾱ2

Pee

�

x , ᾱ(µ f )
�

=
ᾱ(µ f )

2π
P(0)ee (x) +

�

ᾱ(µ f )

2π

�2

P(1)ee (x) +O(ᾱ3) . (9)

Expressed in terms of harmonic polylogarithms [81,82] they read

P(0)ee (x) =
�

1+ x2

1− x

�

+
, (10)

P(1)ee (x) = δ(1− x)
�3

8
− 3ζ2 + 6ζ3

�

−
1+ x2

1− x

�

4H0,0(x) + 2H0,1(x) + 4H1,0(x) + 2ζ2

�

+ (1+ x)H0,0(x) + 2xH0(x)− 3x + 2 . (11)

Ignoring VP contributions, the solution of the DGLAP equation at NLL can be written as

D(x , M , m) = δ(1− x) +
a
2

d1(x , M , m) +
∑

n=1

�

− aLz

�n 1
n!

�

P(0)ee

�⊗n
(x)

+
∑

n=1

a
2

�

− aLz

�n
§

1
n!

�

d1 ⊗
�

P(0)ee

�⊗n�
(x) +

1
(n− 1)!

�

�

P(0)ee

�⊗(n−1) ⊗ P(1)ee

�

(x)
ª

, (12)

where p⊗n refers to the n-fold convolution p⊗ · · · ⊗ p.
We now turn to the determination of the input function ĥ. This is done by requiring that (6)

reproduces the correct fixed-order massified result h̃. To get ĥ at NLO, we need h̃ at NLO. To
obtain the latter we expand the full NLO result h1 from [67] in z. Writing the result in terms
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of harmonic polylogarithms we find

f̃1 = f̃0
�

−H0,1(x)− 4H0,0(x)− 3H1,0(x)− 2ζ2

�

−
1
3

�

11x − 10x2 + 5x3
�

+
�

5
6
+ 2x −

5
2

x2 +
2
3

x3
�

H0(x)

+
�

3x + x2 − 2x3
�

H1(x)

+
�

�

−
5
6
− 2x + 4x2 −

8
3

x3
�

+ 2 f̃0
�

H0(x) +H1(x)
�

�

Lz ,

(13)

g̃1 = g̃0

�

−H0,1(x)− 4H0,0(x)− 3H1,0(x)− 2ζ2

�

−
1
6

�

3− 10x − 13x2 + 8x3
�

−
�

1
6
+

7
2

x2 −
2
3

x3
�

H0(x)

+
�

2
3x
− 2+ 3x −

5
3

x2 − 2x3
�

H1(x)

+
��

1
6
+ 4x2 −

8
3

x3
�

+ 2 g̃0

�

H0(x) +H1(x)
�

�

Lz ,

(14)

with h̃0 given in (5). With this input we can deduce from (6) the functions ĥ as

ĥ0(x) = h̃0 , (15)

ĥ1(x ,µ f ) = h̃1 +
1
2

�

log
µ2

0

µ2
f

P(0)ee (x)− d1(x ,µ0, m)

�

⊗ h̃0 , (16)

where the explicit factor 1/2 in (16) appears since hn is expanded in a = α/π and not α/(2π).
The dependence on the scale µ0 cancels between the two terms in parenthesis in (16), as
expected. The resulting log(m2/µ2

f ) combines with the Lz terms of h̃1 to logarithms of the

form log(M2/µ2
f ). Hence, ĥ does not contain large logarithms. The results obtained by (16)

agree with those given in [78] for f̂1 and in [79] for ĝ1.
With these results and using the Mathematica package MT [83], we can calculate the purely

photonic cLL and cNLL contributions, in principle to any order in α. In practice, we have
stopped at n= 4. The results for hcLL

n and hcNLL
n for n≤ 4 are attached in a ancillary file.

2.3 Soft logarithms

In addition to the collinear logarithms mentioned above, at the endpoint x → (1+z2), there are
also soft logarithms Ls = ln(1+z2− x). Again, for each order of α there can be a single power
of Ls. The leading logarithms (a Ls)n have been considered before [79]. For our purpose, this
is not sufficient. We extend these results by including next-to-leading a (a Ls)n and next-to-
next-to-leading a2 (a Ls)n soft logarithms.

In QED, multiple soft emission follows the Yennie-Frautschi-Suura (YFS) exponentia-
tion [84] which allows for the resummation of leading terms. The corresponding result can
be written as

hγ,s
[0+] = h0 exp

�

a cs Ls

�

= h0

�

1+ z2 − x
�a cs . (17)

We generally use the subscript n+ to denote a contribution that contains terms of order n
and higher. Since these contributions are not proportional to a fixed power of a we include
the coupling in hγ,s

[n+]. The meaning of the square brackets in the subscript will be explained
after (18). In (17) the coefficient cs can be obtained as the coefficient of the Ls term of f1
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or g1 after taking the limit x → (1+ z2). Alternatively, the fragmentation function approach
can be considered in the soft limit. In this limit it is possible to solve the evolution equations
analytically [85–87]. For the leading soft logarithms, i.e. for hγ,s

[0+] the two approaches yield
the same results, as required, namely

cs = 2
1− z2 + (1+ z2)Lz

(z2 − 1)
≃ −2(1+ Lz) . (18)

The nature of the soft logarithms is different from the collinear logarithms in that they are
not simply large but actually divergent. Indeed, each perturbative power in (17) is ill defined
at the endpoint x = (1 + z2) and only after integrating over (arbitrarily small) bin sizes in
the energy (or in x) a finite result is obtained. On the other hand, after resummation the
expression is mathematically well defined even at the endpoint, since cs ≥ 0. To indicate that
hs
[0+] is pointwise finite we use brackets in the subscript. In fact, the functions h[n+] are not

only pointwise finite but also tend to 0 at the endpoint, albeit often very sharply.
Beyond NLO there are also further suppressed soft logarithms an hn ⊃ an L j

s with j < n. To
obtain them, we use

hγ,s
[1+] = h0 a kγ1

�

1+ z2 − x
�a cs , (19a)

hγ,s
[2+] = h0 a2 kγ2

�

1+ z2 − x
�a cs , (19b)

hγ,s
[3+] = h0 a3 kγ3

�

1+ z2 − x
�a cs , (19c)

where again we consider only purely photonic corrections. As before, hγ,s
[n+] contains not only

terms an but also higher powers of a. To determine the coefficients kγi we take the limit
x → 1+ z2 of the analytic result for f γi / f0 or gγi /g0. Neglecting terms suppressed by z for kγ1
this yields

hγ1
h0
→−2−

3
2

Lz − 2(1+ Lz)Ls =⇒ kγ1 = −2−
3
2

Lz . (20)

The Ls term in (20) is reproduced through (17) and (18), while the terms involving kγ1 of (19a)
are of the form an Ln−1

s and correspond to the next-to-leading soft logarithms. Proceeding
along the same way for hγ2 we can determine kγ2 that is required for the next-to-next-to-leading
soft logarithms of the form an Ln−2

s . However, since the analytic result for hγ2 is not known, we
use the cNLL approximation to hγ2 to obtain the analytic form of the Lz terms and use a fit to
the numerical result hγ2 for the constant term. Thus, we find

kγ2 = L2
z

�9
8
− 2ζ2

�

+ Lz

�45
16
−

5
2
ζ2 − 3ζ3

�

+ kγ2,0 , (21)

with kγ2,0 = −6± 1. Since the impact of the rather large error in the extraction of kγ2,0 has no
adverse effect on the analysis as a whole, no particular effort has been made to improve the
precision. Again, the coefficients in (21) also contain terms suppressed by z but their numerical
impact is tiny. Combining (20) and (21) with (19a) and (19b), respectively, reproduces all
next-to-leading an Ln−1

s and next-to-next-to-leading an Ln−2
s soft logarithms in hγn. Similarly

we can use hcLL
3 and hcNLL

3 to obtain

kγ3 = L3
z

�

−
9

16
+ 3ζ2 −

8
3
ζ3

�

+ L2
z

�

−
63
32
+

31
4
ζ2 −

7
2
ζ3

�

+ . . . , (22)

where terms ∼ Lz and terms without Lz are not known. Using (22) in (19c) reproduces all
terms an Ln−3

s Ln
z and an Ln−3

s Ln−1
z in an hγn but misses terms an Ln−3

s Lm
z with m≤ n−2. We have
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verified that the soft logarithms Ls produced through (19) are consistent with the log(1− x)
terms of hcLL

4 and hcNLL
4 .

Since the soft logarithms Ls are included in (17) and (19), we can subtract them from the
fixed-order results hγn and their collinear approximations hcLL

n and hcNLL
n . We will denote these

subtracted results by additional brackets in the subscript to indicate they are pointwise finite.
Formally, we write

hγ[n] ≡ hγn −

 

∑

j≤n

hγ,s
[ j+]

!�

�

�

�

�

an coeff.

= hγn − h0

n
∑

i=0

kγn−i

c i
s L i

s

i!
. (23)

Note hγ[0] = 0, since the full tree-level result is contained in hγ,s
[0+]. Since we also include the

term j = n or i = 0 on the r.h.s. of (23), the functions hγ[n] are equal to zero at the endpoint.

Similarly, we define hcLL
[n] and hcNLL

[n] . In this case only the leading or next-to-leading Lz terms
are subtracted. Also, we adapt the subtraction terms by setting z = 0 in the coefficients and
in Ls.

2.4 Vacuum polarisation contributions

As mentioned in Section 2.1 at NNLO also VP terms hvp
2 are included in h2. Electron loops

are by far the dominant VP contributions and they also cause the collinear anomaly that is an
additional source of logarithms of the form ln

�

mM/(2M E)
�

= ln(z/x) [65]. For large x they
have the same form as collinear logarithms. Thus, in order to take into account the dominant
effect of electron loops beyond NNLO, we consider their contribution analogous to (19) and
define

hvp,s
[2+] = h0 a2kvp

2

�

1+ z2 − x)a cs . (24)

The coefficient kvp
2 can be computed analytically by considering the limit x → 1 + z2 of the

two-loop contribution with an electron (and muon) loop. We find

kvp
2 = ne

�

535
108

+
11
18
ζ2 +

1
3
ζ3 +

�

397
108

+
2
3
ζ2

�

Lz +
25
18

L2
z +

2
9

L3
z

�

+ nµ

�

12991
1296

−
53
9
ζ2 −

1
3
ζ3

�

,

(25)

where we have labelled the contribution of the electron and muon through the bookkeeping
parameters ne = 1 and nµ = 1, respectively. The hadronic and tau-loop contributions are
neglected in kvp

2 . In contrast to the collinear logarithms discussed in Section 2.2, here we get
up to three powers of Lz at order α2. This triple logarithm is cancelled by the open lepton
production in inclusive quantities. The appearance of a triple logarithm in the real NNLO
contribution can be understood by noting that the mass of the electron does not only regularise
the collinear singularities, but also prevents the intermediate photon to become soft. This is
consistent with the observation that integration over the phase space of γ∗ → qq̄q′q̄′ yields
poles 1/ε3 in the double-real part for two-jet production [88,89].

In analogy to (23) we define

hvp
[2] ≡ hvp

2 − hvp,s
[2+]

�

�

�

a2 coeff.
= hvp

2 − a2 h0 kvp
2 , (26)

as all VP terms of order α2 that are not included in (24). This is a slight abuse of our notation,
as hvp

2 is already pointwise finite. On the other hand, hvp
[2] is not only finite but actually vanishes

at the end point x → 1+ z2. We stress that in hvp
[2] hadronic and tau loops are included even

though their numerical impact is limited.
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2.5 Final result and theory error

With all these results at hand, we define our best prediction for the positron energy spectrum
as

H = hs
[0+] +

�

hγ,s
[1+] + a hγ[1]

�

+
�

hγ,s
[2+] + a2 hγ[2]

�

+
�

hvp,s
[2+] + a2 hvp

[2]

�

+ a3
�

hcLL
[3] + hcNLL

[3]

�

+ a2 hee
2 .

(27)

The first term, hs
[0+], contains all tree-level terms as well as the leading soft logarithms at all

orders in a. The second term, hγ,s
[1+]+a hγ[1], contains all terms at order a, except the leading soft

logarithm to avoid double counting. In addition, it includes the next-to-leading soft logarithms
at all orders in a. Similarly, hγ,s

[2+]+a2 hγ[2] has all terms at order a2 except those already included

in hγ,s
[n+] with n≤ 1, but augmented by the next-to-next-to-leading soft logarithms at all orders

in a. The leading and next-to-leading collinear logarithms at order a3 that are not part of hγ,s
[n+]

with n ≤ 2 are included in hcLL
[3] and hcNLL

[3] , respectively. We recall that neither hcLL
[3] , hcNLL

[3] nor

hγ,s
[n+] and hγ[n] contain VP contributions. The latter are taken into account separately in hvp,s

[2+]
and hvp

[2]. In (27) the contribution from open lepton production, hee
2 , is listed separately, as it

might or might not be included.
Our final result for F according to (27), omitting f ee

2 , is shown in the top panel of Figure 1
(orange) compared to the tree-level result f0 (green). The individual contributions of (27) are
depicted in the various sub-panels. We note a nice convergence in that the successive terms
f x
[n] are suppressed by 10−2n with respect to f0. As indicated in the lowest two panels, this

also holds for f cLL
[4] and f cNLL

[4] as well as the approximate f γ,s
[3+] and f γ[3] which are not included

in (27). The open lepton contribution f ee
2 shown in the middle panel has a relative effect

smaller than 10−5 on the distribution for energies larger than ∼ 40 MeV.
The picture is similar for G, depicted in Figure 2. One notable difference is that the collinear

logarithms are numerically more important near the endpoint of the spectrum. This will affect
the theoretical error to which we turn now.

The error is evaluated as

δH = δhMC ⊕δhee ⊕
p

2 max
¦

δhc,δhs,δhhad
2 ,δhvp,δhEW

©

, (28)

where ⊕ indicates we add the errors in quadrature. The first term, δhMC is the numerical
error of the Monte Carlo. The second term, δhee, is the error induced through open lepton
production, assuming these events are included according to the prescription described in
Section 2.1. Finally, the various terms in the curly brackets correspond to theoretical errors
due to imperfect calculations of the Michel decay. As we will see, there is typically a single
dominant term. Hence, there is little difference in whether we take the maximum, or add
these errors linearly or in quadrature. We have decided to take the maximum, but multiplied
by a factor

p
2 to have a conservative estimate also in the case when there are two error

contributions of similar size. The individual terms of (28) are depicted in Figure 3 for F and
G, respectively and will be discussed in what follows.

Starting with δhMC, the numerical error of the Monte Carlo, we note that it is completely
dominated by the numerical error of the NNLO corrections. Hence, we set δhMC = δhMC

2 . In
principle this error can be reduced by increasing the statistics. However, for the binning we
have chosen in practice it is difficult (and not necessary) to obtain an error much smaller than
δhMC

2 = 5× 10−7 h0 for E < 49 MeV and δhMC
2 = 3× 10−6 h0 for E ≥ 49 MeV.

Turning to δhee, we are in the comfortable position that open lepton production is a rather
small effect anyway and the NLO corrections which contribute at α3 to hee are known [75].
The additional suppression by a factor of a renders hee

3 very small and we can afford to take
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Figure 1: The best theory prediction for F according to (27). The top most panel
contains f0 (green) and F (orange). In the next panels we show the most important
individual contributions listed in (27), as well as f cLL

[4] , f cNLL
[4] , f γ,s

[3+], and f γ[3] which are
used for the error estimate.

12

https://scipost.org
https://scipost.org/SciPostPhys.15.1.021


SciPost Phys. 15, 021 (2023)

McMule−1.00

−0.75

−0.50

−0.25

0.00

G

LO McMule

−1.0

−0.5

0.0

10
2
×
g
(n

=
1
)

gγ,s
[n+]

gγ[n]

−0.6

−0.4

−0.2

0.0

10
4
×
g

−gvp,s

[2+]
−gvp

[2] gee2

−10

0

10

1
06
×
g
(n

=
3)

gcLL
[n] gcNLL

[n]

0.0 0.2 0.4 0.6 0.8 1.0

x = 2E/M

0

5

10
6
×
g

5× gγ,s
[3+]

gγ[3]

−3

−2

−1

0

−
10

4
×
g
(n

=
2)

−20

0

20
1
08
×
g
(n

=
4)

0 10 20 30 40 50

E /MeV

Figure 2: The best theory prediction for G according to (27). The top most panel
contains g0 (green) and G (orange). In the next panels, we show the most important
individual contributions listed in (27), as well as gcLL

[4] , gcNLL
[4] , gγ,s

[3+], and gγ[3] which
are used for the error estimate.
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this last known correction δhee = hee
3 as a conservative error estimate. The smallness of δhee

also implies that the details of how to treat decays with more than one positron in the final
state do not affect the main conclusions.

This leaves us with the most delicate case, a reliable error estimate due to missing correc-
tions in the Michel decay. As discussed in the previous subsections, this includes an error δhc

due missing collinear logarithms, an error δhs due to missing terms in the soft logarithms, and
errors δhhad

2 and δhvp due to imperfect knowledge of vacuum polarisation contributions. For
completeness, we also include an error δhEW due to our neglect of electroweak terms beyond
the Fermi theory. Our general strategy to estimate the error due to missing higher-order terms
is to take the last term in the perturbative expansion that can be reliably computed.

As mentioned above, all terms up to O(α2) are taken into account in (27). Considering
the collinear logarithms beyond this order, their contributions to G are not converging quite
as well as the other higher-order in α terms. Hence, we take the very conservative approach
to assign an error corresponding to the last term that is included in the final result. Con-
cretely, we associate an error that is equal to the collinear logarithms of order α3, i.e we set
δhc = |hcLL

[3] + hcNLL
[3] |. From the fourth panel of Figure 1 and Figure 2 we see that even higher

order collinear logarithms hcLL
[4] and hcNLL

[4] are considerably smaller.
Moving to the soft logarithms, two components contribute to

the error δhs = |hγ,s
[3+]| + |δhγ,s

[2+]|. The first term hγ,s
[3+] is evaluated using (19c) and (22). It

corresponds to those soft logarithms beyond next-to-next-to-leading logarithmic accuracy that
are enhanced by the maximal and next- to-maximal power of Lz . Hence, this is a reliable esti-
mate for the neglect of terms beyond δhγ,s

[2+] in (27). The second term δhγ,s
[2+] has a numerical

origin and is induced by the error of the fitted coefficient kγ2,0 = −6± 1.

The error δhhad
2 is induced by imperfect knowledge of the hadronic VP. Taking a very con-

servative approach and assuming a flat (independent of the kinematics) 5% uncertainty, we
assign an error δhhad

2 = 0.05 · |hhad
2 |.

The error δhvp associated with the VP contribution also consists of two parts. First, we
estimate the effect of missing multiple insertions of electron loop effects by the difference from
using the on-shell coupling and the MS coupling. This yields δhvp

[2+] = 2/3 aLz hvp
[2+] ≃ aLz hvp

[2+].
Second, we estimate the effect of missing higher-order corrections in the VP itself. To this end,
we insert the two-loop result of the electron VP, which can be extracted from [90], in the
computation of the positron energy spectrum. Denoting this result by δhvp

3 , the total VP error
is then taken to be δhvp = |δhvp

[2+]|+ |δhvp
3 |.

Turning to δhEW, the leading corrections beyond the Fermi theory are
hEW = h0 3M2/(5M2

W ). Their relative numerical impact is of the order of 10−6 and sufficiently
small to allow us to take δhEW = hEW.

There are further tiny contributions that have not been considered in (27) and (28), such
as z suppressed effects beyond NNLO. However, they can be safely ignored.

To summarise, for the individual contributions in (28) we choose

δhee = hee
3 ,

δhc = |hcLL
[3] + hcNLL

[3] | ,

δhs = |hγ,s
[3+]|+ |δhγ,s

[2+]| ,

δhhad = 5%× hhad
2 ,

δhvp = a|Lz hvp
[2+]|+ |δhvp

3 | ,

δhEW = hEW .

(29)

The total relative error δH/H and its individual contributions are depicted in Figure 3.
In the region we are interested in, the dominant errors are from the missing soft logarithms
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Figure 3: The errors δF/F (top panel) and δG/G (lower panel) as defined in (28).
The downward spikes in δhc (orange curves) appear due to zeros in the numerator.
For x ≃ 0.5 the denominator G is zero, resulting in an artificial enhancement. This
region is indicated by a grey band. Not shown is the Monte Carlo error δhMC/H
which increases to 3× 10−6 for large x .
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and in the case of G also from the missing collinear logarithms. The downward peaks of some
contributions are due to zero crossings. Since δG/G formally diverges at the zero crossing of
G, the energy range 20 MeV < E < 30 MeV is shown behind a grey band in Figure 3.

To conclude, we note that near the endpoint of the positron energy spectrum, the relative
precision is δF/F ≲ 5 × 10−6 and the dominant error is from the missing terms in the soft
resummation. The purely numerical error from the Monte Carlo integration is of a similar size
as is the contribution from open lepton production. For G we have δG/G ≲ 10−5 and the
missing collinear logarithms are roughly as important as the missing soft logarithms.

3 LFV muon decay in simplified models

In this section we discuss the calculation of the signal µ → eX . At tree-level we have two
particles with fixed energy in the final state. A more realistic description of the final state
is obtained by including QED corrections at NLO, which have the main effect of adding a
radiative tail to the peak. This will be done in Section 3.1 for a generic scalar particle X .
Some remarks regarding a vector particle are made in Section 3.2, where we also argue that
a separate analysis is not required.

3.1 LFV scalar particles

The coupling of ALPs to leptons is often written as a dimension 5 operator with a derivative
coupling, divided by a large scale Λ. The Lagrangian reads

LX =
1
Λ

�

∂µX
�

ψ̄ j

�

g jl
V γ

µ + g jl
A γ

µγ5
�

ψl , (30)

where the family indices 1 ≤ j, l ≤ 3. For ALPs that are pseudo-Goldstone bosons, Λ cor-
responds to the scale of spontaneous symmetry breaking and the vector coupling gV = 0.
Assuming anomaly-free vector and axial currents, the derivative coupling can be expressed via
integration by parts in terms of the Yukawa-like couplings [91]

LX = −
i
Λ

X ψ̄ j

�

g jl
V (m j −ml) + g jl

A (m j +ml)γ
5
�

ψl . (31)

Here, we take a bottom-up approach and simply investigate a scalar particle X of mass mX
that couples to leptons through

LX = X ψ̄ j

�

C jl
L PL + C jl

R PR

�

ψl , (32)

without further specifying the nature of X . The operators PL = (1−γ5)/2 and PR = (1+ γ5)/2
are used to project on the left- and right-handed parts. The coupling matrices satisfy C†

L = CR.
Since we are dealing with the decay µ+→ e+X we set the family indices to j = 2 and l = 1 and
use a short-hand notation CL ≡ C21

L and CR ≡ C21
R . These couplings are related to gV ≡ g21

V
and gA ≡ g21

A of (30) as

CL = gV
i(m−M)
Λ

+ gA
i(M +m)
Λ

, CR = gV
i(m−M)
Λ

− gA
i(M +m)
Λ

. (33)

For gV = gA we obtain a right-handed V+A coupling, while for gV = −gA we get a left-handed
V−A coupling. If gA = 0 the ALP is purely scalar (V ), while it is pseudoscalar (A) if gV = 0. In
the following we will usually refer to these four typical chiral structures.
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Figure 4: Conversion plot between the LO branching ratio Γ X
0 /Γ0 and the cou-

plings CL,R.

At LO, in the rest frame of the muon, the decay µ+→ e+ X results in a back-to-back e+-X
pair with momentum |q⃗| =

p
λ/(2M) expressed through the usual Källén function

λ≡ λ(M2, m2, m2
X ). This results in positrons of energy

EX =
M2 +m2 −m2

X

2M
, (34)

and a partial decay rate [34]

Γ X
0 ≡ Γ0(µ→ eX ) =

|q⃗|
16π

�

(1+ z2 − r2)
�

|CL|2 + |CR|2
�

+ 4 z Re
�

CRC∗L
�

�

, (35)

where we have defined r ≡ mX/M . Since MEG II can detect positrons with E ≳ 45 MeV, the
experiment is sensitive to signals with mX ≲ 40 MeV. Similarly, Mu3e can detect positrons with
E ≳ 10 MeV and therefore it is sensitive to signals with mX ≲ 95 MeV.

The LO branching ratio for the decay µ → eX can be read off from Figure 4, assum-
ing one of the two couplings CL,R ̸= 0. We will be dealing with couplings in the range
10−12 ≲ |CL,R| ≲ 10−9. Following (33), the smallness of these couplings can be related to
a large scale Λ in the range of 105 − 108 TeV. This leads to branching ratios of the order
B ∼ 10−4 − 10−9 potentially compatible with observation at high-intensity muon facilities.
As summarised in [36], this sensitivity can be competitive with other constraints on the cou-
plings CL,R.

Regarding the positron energy spectrum, according to (34) the LO contribution results in
a delta peak for a fixed value of E. As we are dealing with small mX , this peak is very close
to the endpoint of the Michel spectrum. A more realistic description of the modification of
the endpoint spectrum in the presence of µ→ eX can be obtained by a calculation at NLO in
a ≡ (α/π). This leads to a radiative tail in the energy spectrum of the signal events, due to
the emission of one soft photon. Hence, while a LO calculation is sufficient for the simplified
analysis we will present in Section 4, we also provide a NLO calculation to prepare the theory
input required for a more complete experimental analysis [92].

The NLO calculation can be done with standard techniques. The single genuine loop dia-
gram, the vertex diagram, has infrared and ultraviolet singularities which show up as poles in
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ε = (4− d)/2. The infrared singularities are pure soft singularities and they cancel as usual
when combining the virtual and real corrections. The ultraviolet singularities are absorbed
by the on-shell fermion wave-function renormalisation factors and the renormalisation of the
couplings CL and CR. For the latter we use the MS-scheme and we write the corresponding
renormalised couplings at the scale µr as

C L/R(µr) = µ
−2ε
r Z−1

C CL/R , (36)

in terms of the bare couplings and the renormalisation factor ZC . In what follows, a numer-
ical value for the coupling always refers to C L/R(M). Since we use the on-shell scheme for
mass renormalisation and there are no internal fermion lines at tree level, no explicit mass
counterterm diagrams are required.

The calculation is performed in conventional dimensional regularisation (CDR) and the
four-dimensional helicity scheme (FDH) [93]. Using an anticommuting γ5 automatically leads
to the same renormalisation for CL and CR with

ZC = 1− a
3+ nε/2

4ε
, (37)

where in CDR nε = 0 and in FDH nε = 2ε. The ubiquitous factors of log(4π) and γE associated
with the pole 1/ε are understood. Alternatively, the computation was also performed with
the Breitenlohner-Maison (BM) [94] treatment of γ5. Within the four-dimensional formula-
tion (FDF) of FDH [95], this is a more natural choice [96]. In this case an additional finite
renormalisation

ZBM
5 = 1− a , (38)

for the γ5 term is required. Taking this into account together with the scheme dependence of
the wave-function renormalisation a result is found that does not depend on the scheme used
nor on the treatment of γ5. As before, all analytic results are attached as an ancillary file to
this submission.

While this process is simple enough to allow for an analytic calculation of the energy spec-
trum, we have implemented the amplitudes in MCMULE and work with numerical results. This
will simplify a future full experimental analysis that may entail more involved cuts. As with
the SM results, the relevant data can be obtained at the website [66].

In Figure 5 we show the functions F and G for the signal for various values of mX , defined
as in (1). In the case of a V +A coupling, F and G at LO are identical delta functions. Due
to NLO corrections, there are small differences, in particular F is slightly greater than G for
small E. For a V−A coupling G is the same but with opposite sign, while for a pure vector or
axial-vector coupling G = 0 (isotropic distribution).

The polarisation P has an important impact on the search strategy. The background
positron from polarised Michel decay has an angular dependence, as depicted in Figure 6.
Depending on the nature of the ALP couplings (33) the signal has either no dependence on
the angle θ (for a V or A coupling), a dependence similar to the background (for a V−A cou-
pling), or a dependence that is basically orthogonal to the background (for a V+A coupling).
In the left panel of Figure 6 we show these three extreme cases for two values of the polarisa-
tion, a realistic value of P = −0.85 (solid line) and a perfectly polarised muon beam (dashed
lines). The ALP mass is not specified because the positron angular distribution is independent
on it.

These results have been obtained by including positrons of all energies. While this does
not have a significant effect on the signal, the dependence of the angular distribution of the
Michel decay positron on a possible cut on the positron energy is shown in the right panel
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Figure 5: The functions F and G for µ→ eX at NLO for different masses mX . While
F is independent of the coupling structure, G is depicted for a V+A coupling.

of Figure 6, again for two values of polarisation. When constraining E to ever higher values,
the SM distribution approaches the V −A signal distribution. This is due to the kinematic
configuration of the Michel decay at the endpoint. More specifically, E is maximised when the
two neutrinos are emitted in parallel and the positron in the opposite direction. Since two
neutrinos with parallel momentum assume opposite spins, the Michel decay at the endpoint
resembles a two-body decay into a positron and a scalar particle, i.e. the signal.

How the muon polarisation can be exploited to increase the signal sensitivity can be easily
read from Figure 6. The search for signals with V , A and V +A coupling is enhanced in the
forward region cθ > 0, especially in the latter case. The backward region cθ < 0 is instead
convenient for a V−A signal, especially for higher ALP masses, since the background positrons
are less polarised at lower energies. Finally, it is important to obtain the highest possible
muon polarisation, to further increase the angular separation between signal and background
positrons.

3.2 LFV vector particles

It is tempting to extend the considerations to a simplified model with a light LFV vector boson,
V . A naive approach as e.g. done in [97] leads to an apparent enhancement for small masses
mV . However, as we will now argue, a proper treatment of the mV → 0 limit does not have
such an enhancement and, in fact, is not independent from considering scalar ALPs.

A naive simplified Lagrangian for a vector boson V

LV = Vµ ψ̄ jγ
µ
�

C jl
L PL + C jl

R PR

�

ψl , (39)
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background as a function of the cut on the positron energy E.

leads to a decay width

Γ V
0 ≡ Γ0(µ→ eV ) =

|q⃗ |
16π

�

�(1− z2)2

r2
+ 1+ z2 − 2r2

�

�

|CL|2 + |CR|2
�

− 12z Re
�

CRC∗L
�

�

. (40)

This expression is divergent for r = mV/M → 0. From a technical point of view this apparent
singularity appears due to the terms pµpν/m

2
V in the polarisation sum of the vector boson

with momentum p and, more generically, is related to the difficulty of working with simplified
models with massive vector bosons. As pointed out in [98], a more careful consideration
reveals that in more complete models, Γ V

0 is finite for mV → 0.
One possibility is to let V be the gauge boson of an extra U(1) gauge symmetry with

coupling gV to fermions. Then, in the limit gV → 0, the mass mV → 0 as well as the couplings
CR,L → 0, rendering Γ V

0 finite. An alternative scenario is to consider a renormalisable model
where the µ→ e V decay does not enter at tree-level, but at the loop level. In this case form
factors take the place of the flavour-violating couplings in the formula for the decay rate. As
shown in [98], in this situation the naively problematic 1/r terms always appear multiplied by
form factors proportional to m2

V , thus making the total of these contributions non-divergent
and invariably yielding a finite rate for µ→ e V in the limit mV → 0.

Moreover, as in the case of high-energy processes with highly-boosted W bosons in final
states, these 1/mV factors arise from the emission of the longitudinal polarisation. As is well
known from the case of W±, in the massless limit one may invoke the Goldstone boson equiv-
alence theorem [99–102], according to which the longitudinally enhanced interactions of a
massive on-shell vector V can equivalently be computed by replacing it with ∂µX/mV , with X
being its corresponding Goldstone field. Hence, one can turn the generic Lagrangian (39) into
an equally generic

LV −→
∂µX

Λ
ψ̄ jγµ

�

Λ

mV
C jl

L PL +
Λ

mV
C jl

R PR

�

ψl =
∂µX

Λ
ψ̄ jγµ

�

g jl
L PL + g jl

R PR

�

ψl , (41)

which takes the form of (30). Therefore, for finite gL,R∝ CL,R/mV in the mV → 0 regime we
are interested in this work, the basically massless vector behaves as the massless pseudoscalar.
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Thus we refrain from performing the analysis for the former, as the conclusions taken in the
previous section would require a mere translation to the parameters defined in (39).

4 Experimental sensitivity

In this section we estimate the expected sensitivity on the branching ratio of µ+→ e+X , focus-
ing on the impact of the theory error. We will consider three different experimental scenarios:
MEG II, Mu3e, and a hypothetical forward detector. In the first two cases, we define a simpli-
fied model of the positron spectrometers of both experiments, based on their nominal geom-
etry and expected performances. For the hypothetical forward detector, we assume different
potential configurations.

Our results of this section are not to be understood as a definite answer on what limits can
be obtained through a full experimental analysis. We also stress that they are not validated by
the involved experimental collaborations. They are a first attempt to point out the importance
of the theoretical errors and contrast them with the expected experimental errors. Even though
we will show limits for a rather large range of mX , we are primarily interested in the region
mX → 0. In this region, i.e. at the endpoint of the positron energy spectrum, it is not possible
to extract limits simply by comparing event rates in a certain signal window to event rates in
the vicinity, since the background spectrum falls sharply.

In all three cases, the expected positron energy spectrum Ps for the signal µ+→ e+X and
Pb for the background µ+→ e+νeν̄µ can be obtained from the theoretical spectrum Hs/b as

Ps/b (E) =

∫

dE′
�

Hs/b (E
′)×A (E′)×S (E, E′)

�

≡
�

Hs/b ×A
�

⊗S , (42)

where A denotes the energy acceptance function and S the detector response function. If the
expected spectrum Ps/b is normalised, we obtain the probability density function (PDF) of the
positron energy, for which we use the notation




Ps/b

�

.
The theoretical spectrum of the background or the signal can be obtained by integrating the

corresponding decay rate, written as in (1), over the geometrical acceptance of the detector for
a given muon polarisation P. Taking into account a detector geometry defined by the angular
regions cm ≤ cθ ≤ cM and φm ≤ φ ≤ φM , we get

Hs/b(E) =
φM −φm

2π

�

(cM − cm) Fs/b(E)−
1
2

P
�

c2
M − c2

m

�

Gs/b(E)
�

, (43)

where Fb = F and Gb = G have been evaluated in Section 2 for the background, and Fs = F
and Gs = G have been evaluated in Section 3 for the signal. The Gs/b contribution vanishes for
symmetric geometries cM = −cm, but becomes important for forward and backward regions.

For both MEG II and Mu3e the acceptance function A is reasonably well described by a
Gaussian cumulative distribution, given by

A(E) = 1

σA
p

2π

∫ E

−∞
exp

�

−
1
2

�

t − Ec

σA

�2
�

d t =
1
2

�

1+ erf
�

E − Ecp
2σA

�

�

, (44)

where erf(x) is the Gauss error function. Thus, Ec corresponds to the positron energy where
the acceptance is 1/2, while σA parameterises how quickly the acceptance grows from 0 to 1
for increasing E. The explicit values of these parameters for the three cases will be given below.
For the hypothetical forward detector, we will only consider the endpoint region E > 50 MeV,
in which we assume a constant acceptance A = 1. In all three cases, the function A must be
understood as the relative acceptance without overall factors, so that maxA= 1.
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Figure 7: Comparison between signal (orange), background (blue), and com-
bined (green) for our MEG II (left) and Mu3e (right) scenario. The branching ratio
B = 5×10−3 has been chosen unnaturally large to be clearly visible, with mX = 1 MeV
(top) or mX = 5 MeV (bottom). All distributions are normalised so that the maximum
of the background spectrum is 1.

In all three experimental scenarios, we parameterise the detector response function S with
a Gaussian distribution with mean zero and a standard deviationσS , representing the positron
energy resolution. Explicitly, we have

S(E, E′) =
1

σS(E′)
p

2π
exp

�

−
1
2

�

E − E′

σS(E′)

�2
�

. (45)

A better description of the tails can be obtained with the sum of more Gaussian distributions,
but this is beyond the scope of our analysis. Again, the explicit values of σS for the three cases
will be given below.

In order to illustrate the interplay between background and signal, in Figure 7 we con-
sider an unnaturally large branching ratio B = 5× 10−3 for µ→ eX , showing how it impacts
the positron energy distribution near the endpoint. The parameters we use for the response
function (45) and the acceptance (44) are given in Section 4.1 for MEG II (left) and Sec-
tion 4.2 for Mu3e (right). For the signal events (orange) we report two values of mass, namely
mX = 1 MeV (top) and mX = 5 MeV (bottom). The combined positron spectrum (green) is
typically simply shifted with respect to the background (blue) near the endpoint. Only for
sufficiently large mX and small σS a peak starts to form.

The experimental sensitivity on the branching ratio B of µ+ → e+X can be estimated by
following the cut-and-count approach described in [37, 52, 103, 104]. Although a detailed
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analysis will rely on more sophisticated techniques, this method gives a good indication of the
role of theoretical and experimental uncertainties, particularly for small mX .

As a first step, we define a signal bin. For a given value of the ALP mass mX , the bin is cen-
tred at the energy EX given by (34). The bin width is ∆(EX ) = z90σS(EX ), where z90 = 1.645
is a numerical factor depending on the choice of the confidence level (CL) and σS(EX ) is
the detector resolution at the bin centre. For a 90% CL the factor z90 satisfies the equation
erf(z90/

p
2) = 0.9.

The expected number of background events in this signal bin is given by

nrb = Nb Ib ≡ Nb

∫ EX+∆

EX−∆
〈Pb(E)〉 dE , (46)

where Nb is the total number of collected background events. It is related to the number
of decaying muons Nµ through the background efficiency Eb as Nb = Eb Nµ, where we have
approximated the Michel decay branching ratio as 1. We define the efficiency for signal and
background as the number of signal/background positrons emitted in the detector acceptance
divided by the total number of signal/background positrons produced at the target, i.e.

Es/b =

∫

Ps/b(E) dE
∫

Fs/b(E) dE
, (47)

with Gs/b(E) not being included in the denominator because its contribution vanishes when
considering the total solid angle. We also define the relative signal versus background effi-
ciency as E = Es/Eb. Since overall contributions to the detector acceptance, such as quantum
and tracking efficiency, are substantially cancelled out in the ratio E , it is not necessary to
include them in (47) or in our description of the acceptance function A.

The expected number of signal events in the signal bin depends on theµ+→ e+X branching
ratio B as nrs = BNµEs Is = BNbE Is, where Is is defined in analogy to (46). Using the LO
approximation Hs(E′)∝ δ(E′ − EX ), we have Is = erf(z90/

p
2) = 0.9. At NLO the value of Is

is reduced by about 1–5%, with the exact value depending on mX andσS . Since this correction
is not required for our target precision, we use the LO approximation in our analysis.

As we will consider Nb = 107−1015, we can approximate the bin content distribution by a
Gaussian. Hence, the upper limit on the branching ratio at 90% of CL is obtained by requiring
nrs ≥ z90

p
nrb and results in

Bstat =
z90

Is

p

Nb Ib

Nb E
. (48)

The procedure can be repeated for any hypothesis of mX . A first important correction to
the previous evaluation is given by the inclusion of the theoretical error on the background.
Using the error estimate of Section 2.5 we obtain the error∆Hb(E) on Hb, given in (43). The
errors on F = Fb and G = Gb are not independent. Near the endpoint we have Fb ≃ −Gb.
Hence, when combining Fb and Gb to Hb(E)±∆Hb(E) we treat the errors on Fb and Gb as
completely anti-correlated. The error ∆Hb(E) induces an error ∆Pb(E) on the background
energy spectrum through (42). In our simplified approach, we determine the average theo-
retical error δX

th within the energy bin under consideration. This corresponds to an additional
nrb δ

X
th events in the bin and results in

Bth =
Ib

Is E
δX

th ≡
Ib

Is E
1

2∆

∫ EX+∆

EX−∆

|∆Pb(E)|
Pb(E)

dE , (49)
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which is the theoretical error on the branching ratio. Intuitively, in order to avoid signal biases,
the number of signal events nrs in the energy bin must exceed the number of events nrb δ

X
th

that could be due to a higher-order contribution not included in the background prediction. In
order to consider the corresponding worsening of sensitivity, the theoretical error Bth is added
in quadrature to the statistical contribution Bstat. The error on Fs and Gs is negligible, being
suppressed by the signal branching ratio. We also note that Bth is the best sensitivity that an
experiment can achieve in the limit Nb→∞ with the current status of the theory.

In addition to the statistical and theoretical contributions, we need to consider the pres-
ence of systematic errors in the positron reconstruction. As can be noted from Figure 7, the
background spectrum with a global offset on the positron energy has the same shape of the
original background with a signal at the endpoint. This results in a potential signal bias, which
limits the search for small ALP masses. To include this effect on the sensitivity, we repeat the
cut-and-count procedure for different PDFs by introducing an offset Pb(E)→ Pb(E ± δE) in
the positron energy. The maximal variation of signal bin content, with respect to the null offset
hypothesis,

Bsys =
1

Is E

∫ EX+∆

EX−∆

�

�

� 〈Pb(E)〉 − 〈Pb(E ±δE)〉
�

�

� dE (50)

is then added in quadrature to the statistical and theoretical contributions. We mention that the
main sources of systematical error, both for MEG II [103] and Mu3e [37], are the knowledge
of magnetic field and muon beam polarisation, the correct alignment of sub-detectors, and the
positron energy deposit in the muon target.

4.1 MEG II scenario

In our first toy analysis, we consider a situation inspired by the MEG II positron spectrome-
ter [11], whose nominal angular acceptance is |cθ | ≤ 0.35 and |φ| < π/3. The muons are
assumed to decay at rest at the centre of the spectrometer with an initial-state polarisation
of P = −0.85, in agreement with [105]. The parameters characterising the energy accep-
tance (44) are chosen as σA = 2.5 MeV and Ec = 47 MeV [52]. As shown in the middle panel
of Figure 8, this means that only positrons near the endpoint are detected. For the energy
resolution in (45), we assume the constant σS = 0.1 MeV [106]. In the analysis the allowed
range of cθ is adapted to the nature of the ALP coupling, in order to increase the corresponding
signal-to-background ratio. As shown in Figure 6 for P = −0.85, the SM positrons are prefer-
ably emitted in the backward region cθ < 0, due to the V−A structure of Michel decay. Thus, as
discussed in Section 3.1, for a V−A coupling we limit the analysis to the region−0.35≤ cθ ≤ 0,
whereas for a V+A, V or A coupling we choose the opposite direction 0≤ cθ ≤ 0.35.

Starting with the statistical contribution, in the left panel of Figure 9 we show the corre-
sponding upper limit (48) as a function of mX for Nb = 107 (blue), Nb = 108 (orange), and
Nb = 109 (green), which is the range of positrons events that can be collected by MEG II. The
size of Nb is limited by the trigger selections for the µ+ → e+γ search, especially the require-
ment of a photon coincidence in the LXe calorimeter. Since the majority of positron-photon
coincidences are accidental and not due to a prompt µ+ → e+νeν̄µγ decay [11], the Michel
spectrum acquired by MEG II can be considered totally inclusive with respect to photon emis-
sion. Nevertheless, the effect of prompt radiative decays on the positron spectrum can be taken
into account by implementing the trigger cuts in MCMULE. In principle, a higher number of
events can be collected by relaxing the trigger conditions on the positron or even performing
a dedicated run.

From a statistical point of view, we obtain better sensitivities for low ALP masses. Due to
the finite resolution, the background is smaller close to the spectrum endpoint, while the signal
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Figure 8: Expected positron energy spectrum of µ → eνν̄ for MEG II (upper
panel) with our assumption of experimental acceptance (middle panel) and reso-
lution (lower panel) for |cθ | < 0.35. The theoretical spectrum Hb is normalised so
that its maximum is 1.

acceptance is maximal. On the other hand, the sensitivity gets worse as the ALP mass increases,
due to the lower acceptance of the spectrometer for low-energy positrons. For a given Nb, the
limits are strongest for a V+A interaction (solid lines), intermediate for V or A (dashed lines)
and weakest for a V−A interaction (dotted lines), due to the decreasing difference between the
signal and background angular distributions. We note that MEG II can also search for signals
with mX > 40MeV by lowering the intensity of its magnetic field, with the effect of increasing
the positron energy acceptance. This possibility is currently being investigated [107].

The impact of the theoretical uncertainty (49) is shown in the right panel of Figure 9. Fo-
cusing on the V+A case, we show the combined limit for two different errors. The effect of
including our theory error (28) is shown as dashed line. Since these lines are hardly distin-
guishable from the solid line, representing the statistical contribution only, we refrain from
including the latter in the right panel. On the other hand, if we had a NLO background predic-
tion only, the theoretical error would make it impossible to improve the limit beyond B ∼ 10−5,
regardless of the statistics. This is illustrated by the dotted lines that show the combined limit
using the NNLO corrections h2 as theory error. The corrections beyond NLO are particularly
important at the endpoint and, hence, their inclusion strongly affects the possibility to improve
the limits for small mX .

Unfortunately, also a systematic bias in the positron energy reconstruction has a major
impact on the obtainable limits on the branching ratio, in particular for small mX . This is
exemplified in Figure 10, where we depict our result for Nb = 109 and various choices of mis-
construction. In particular, we contrast a perfect reconstruction δE = 0 (blue curve) with two
reasonable energy shifts, namely δE = 2 keV (orange) and δE = 10 keV (green). The effect
of δE is computed as described in (50). The left panel corresponds to a V−A signal, while the
right panel reports the V+A case. The effect of the best theoretical error is included, even if
negligible compared to the statistical and systematic contributions. For comparison, the limits
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with the best theory error (dashed line) is hardly distinguishable from the statistical
contribution only. If only a NLO background prediction was available, the sensitivity
(dotted lines) would be limited by theory, not statistics.

obtained by TWIST [21] are shown as a black dashed line. Since a global offset on the positron
energy scale results in a false signal close to the spectrum endpoint, the systematic contribution
is dramatically enhanced for small ALP masses. A rigorous control of the systematic effects on
the positron energy reconstruction is therefore essential for a competitive and reliable investi-
gation in the region mX < 10 MeV. In this regard, the development of new calibration tools for
the MEG II spectrometer is ongoing. One of the proposed ideas is based on the Mott scattering
between a mono-energetic positron beam and the MEG II muon target [108,109].

4.2 Mu3e scenario

Our second toy analysis is related to the Mu3e positron spectrometer. In this case, we chose
an energy resolution depending on the positron energy as σS = 0.05 E and we specify the
acceptance through σA = 2.5 MeV and Ec = 15 MeV [12]. Compared to the MEG II scenario,
this leads to a better acceptance for lower positron energies, but to a worse resolution, as
shown in Figure 11. More specifically, our assumption is based on the Mu3e online track
reconstruction [110, 111], which is not affected by trigger selections for the µ+ → e+e−e+

search. This allows us to consider a much larger sample of events than MEG II, albeit at
the expense of the single-event reconstruction accuracy. Again, we assume the muons to be
polarised with P = −0.85 and consider a cθ range dependent on the ALP interaction. In the
case of a V −A coupling we consider −0.8 ≤ cθ ≤ 0, whereas in all other cases we have
0≤ cθ ≤ 0.8. Contrary to MEG II, there is no restriction on the azimuthal angle, i.e. |φ|< π.

The obtainable limits on the branching ratio are shown in Figure 12. In the left panel
only the statistical contribution is included, whereby we consider the cases Nb = 109 (blue),
Nb = 1012 (orange), and Nb = 1015 (green), which is the range of positron events that can
be collected by Mu3e. The sensitivity is roughly constant for mX < 85 MeV, from where it
starts to deteriorate due to the lowering of the spectrometer acceptance. Again, the best limits
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Figure 10: Sensitivity in our MEG II scenario for a V −A (left panel) and a V +A
(right panel) signal for Nb = 109, including also a bias δE in the positron energy
reconstruction. The achievable sensitivity is strongly dependent on the systematic
error, especially for mX < 10MeV.

are obtained for a V+A interaction. As shown in the right panel of Figure 6, the background
positrons become less polarised as their energy decreases. Hence, the background resembles
a left-handed signal near the endpoint and an isotropic signal at low energy (E < 30 MeV).
For this reason, the sensitivity for a V or A coupling becomes better than the sensitivity for a
V−A signal from mX > 60MeV.

In the right panel of Figure 12, we focus on the V +A case and also include the theory
error. For Nb ≲ 1012 the improved theoretical error (dashed lines) is essential to fully exploit
the statistics. Indeed, with an NLO background calculation only, the theoretical error (dotted
lines) would make it pointless to increase the statistics beyond Nb = 109, as it would not lead
to an improvement on the limit on the branching ratio. With our current best description of the
background, the statistical and theoretical errors are about the same for Nb = 1012. Increasing
the statistics further requires further improvements in the theory description of the Michel
background. Nonetheless, as already mentioned, far from the endpoint the signal appears just
as a bump and the impact of the theoretical error can be reduced by comparing the number
of events in different points of the spectrum. Yet, this is not possible near the endpoint, where
the background spectrum falls sharply and the signal appears as a modification of the endpoint
position.

As for MEG II, the calibration of the positron energy scale at the endpoint with the needed
accuracy is a challenge to be specifically addressed. As discussed in [37–39], the systematic
errors can be notably reduced through dedicated calibrations, based on the spectrum fit or
external processes, such as Bhabha and Mott scattering.

The offline reconstruction would improve the single-event resolution toσS = 0.1−0.6MeV,
depending on the positron energy [12]. In this way, the branching ratio sensitivity can be
improved by up to one order of magnitude, although the effects due to potential trigger biases
and the reduced number of events must be properly studied. Another possibility is to set the
Mu3e filter farm specifically for this search, in order to increase the accuracy of the online
reconstruction without sacrificing the statistics.
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4.3 Forward detector scenario

The final scenario is a hypothetical forward detector, placed in the direction opposite to the
muon polarisation. As shown in Figure 13, the Michel spectrum is suppressed towards the
endpoint as the cut on the angular acceptance becomes more stringent, especially for a higher
polarisation. Hence, this configuration is particularly well adapted to search for V+A signals
with mX → 0. Choosing an acceptance in the limit cθ → 1 enhances the signal-to-background
ratio, but reduces the collectable statistics in a fixed beamtime. To balance these two effects,
we chose cθ > 0.9 and |φ| < π as a test case. In this way, assuming a rate of 1010µ+/s,
as expected at HIMB [49], a sample of 1015 positrons can be collected in approximately one
month of beamtime.

For our analysis, we assume a perfect polarisation P = −1. Although surface muons are
produced fully polarised, several depolarisation effects occur during the beam production,
transport, and deceleration [105]. However, it is possible to suppress the depolarisation ef-
fects by using a dedicated magnetic field to re-align the muon spin along the beam axis, as
already done in [30] for this kind of search. For simplicity, we assume a constant acceptance
A = 1 for E > 50 MeV without doing any consideration for lower energies. Finally, for the
energy resolution, we consider the hypotheses σS = 0.02E, σS = 0.01E, and σS = 0.005E,
corresponding to the accuracy of typical detectors for low-energy positrons, both trackers and
calorimeters.

Repeating the same analysis, we show in the left panel of Figure 14 the obtainable lim-
its on the branching ratio including the statistical contribution only. We show the results for
Nb = 109 (blue), Nb = 1012 (orange), and Nb = 1015 (green) withσS = 2% (dotted),σS = 1%
(dashed), and σS = 0.5% (solid). As in the previous scenarios, also for the forward detector
the theoretical error can be very important. To illustrate this, in the right panel of Figure 14
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contribution only (solid lines) and a NLO background prediction (dotted lines). For
Nb = 109 the solid and dashed lines nearly coincide.

we compare the achievable limits for σS = 0.005E in the pure statistical case (solid lines) and
when the theory error is included (dashed lines). The situation is similar to the Mu3e sce-
nario. For Nb = 109 the theory error does not affect the limit. For Nb = 1012 the theory error
is about as large as the statistical contribution, implying that further increasing the statistics to
Nb = 1015 does not lead to a substantial improvement. If only an NLO calculation was avail-
able, the theory error would limit the branching ratio to ∼ 6× 10−5. Thus, the corresponding
curves (shown as dotted lines in Figures 9 and 12) are outside the range of Figure 14.

An appealing possibility is to use a forward detector in conjunction with the standard
MEG II or Mu3e set-up, since the forward region of both experiments is not covered. A suitable
detector to exploit this opportunity could be the compact calorimeter discussed in [104, 112,
113].

5 Conclusions

The search for a lepton-flavour-violating ALP through the modification of the Michel spectrum
via µ+ → e+X is a classic case of high-intensity and high-precision frontier. Several exper-
iments looking at rare muon decays that are ongoing or will start to take data in the near
future can also consider this decay. With the forthcoming increase in the beam intensity at PSI
with the HIMB project, the prospects are even better. However, to fully exploit the large statis-
tics and the high accuracy in the measurements, the theoretical description of the background
and the signal has to be known with sufficient precision. Since small mX values are the natu-
ral choice for ALPs, the endpoint of the spectrum is of special importance. This was the main
motivation to reconsider the Michel decay and improve the precision in the positron energy
spectrum, especially close to the endpoint. Reducing the theory error to about 5 ppm opens
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up the possibility to achieve limits on the branching ratio for µ+→ e+X of about B < 10−6 in
a MEG II or Mu3e environment or even B < 10−8 in a dedicated experiment with a forward
detector. A less careful theoretical input, using an NLO calculation only, will lead to limits that
are at least two orders of magnitude worse.

The control of the systematic effects in the experiment has to match the progress in the
theoretical description. In particular, a potential bias in the positron energy measurement has
to be controlled very well, for example by developing dedicated calibration methods. This re-
quires an exhaustive experimental analysis, which is beyond the scope of this paper. Nonethe-
less, the first steps in this direction have been taken [92], using the theoretical predictions
presented in this paper to implement an improved positron event generator in the MEG II
analysis software, both for µ+→ e+νeν̄µ and µ+→ e+X .

There are other cases where the Michel decay plays an important role. In addition to be-
ing a very common background in experiments with muons, the positron spectrum endpoint
is often used to calibrate low-energy detectors. Since this is one of the most basic processes
in particle physics, it has served and will continue to serve as a laboratory for further progress
in computational techniques. The inclusion of collinear logarithms at NNLL will become es-
sential to further improve the theoretical prediction. Another natural next step is a full N3LO
calculation of the positron energy spectrum. This would also pave the way to resum the soft
logarithms at N3LL. While the presence of two different non-vanishing fermion masses poses
serious difficulties, it is not inconceivable that such a calculation can be done in the coming
years.
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