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Abstract

We discuss the codimension-1 defects of (2+1)D bosonic topological phases, where the
defects can support fermionic degrees of freedom. We refer to such defects as fermionic
defects, and introduce a certain subclass of invertible fermionic defects called “gauged
Gu-Wen SPT defects” that can shift self-statistics of anyons. We derive a canonical form
of a general fermionic invertible defect, in terms of the fusion of a gauged Gu-Wen SPT
defect and a bosonic invertible defect decoupled from fermions on the defect. We then
derive the fusion rule of generic invertible fermionic defects. The gauged Gu-Wen SPT de-
fects give rise to interesting logical gates of stabilizer codes in the presence of additional
ancilla fermions. For example, we find a realization of the CZ logical gate on the (2+1)D
Z2 toric code stacked with a (2+1)D ancilla trivial atomic insulator. We also investigate a
gapped fermionic interface between (2+1)D bosonic topological phases realized on the
boundary of the (3+1)D Walker-Wang model. In that case, the gapped interface can shift
the chiral central charge of the (2+1)D phase. Among these fermionic interfaces, we
study an interesting example where the (3+1)D phase has a spatial reflection symmetry,
and the fermionic interface is supported on a reflection plane that interpolates a (2+1)D
surface topological order and its orientation-reversal. We construct a (3+1)D exactly
solvable Hamiltonian realizing this setup, and find that the model generates the Z8 clas-
sification of the (3+1)D invertible phase with spatial reflection symmetry and fermion
parity on the reflection plane. We make contact with an effective field theory, known in
literature as the exotic invertible phase with spacetime higher-group symmetry.
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1 Introduction

Topologically ordered phases of matter are characterized in general by properties of fusion
and braiding of topological defects (excitations). In (2+1) spacetime dimensions, the line op-
erators of anyon excitations are regarded as codimension-2 topological defects of the theory,
and their universal properties are described by modular tensor category [1–8]. Also, (2+1)D
topological phases in general have codimension-1 defects with non-trivial topological proper-
ties, and they all generate the emergent global symmetry of the phases [9–18]. For instance,
when the codimension-1 defect is non-invertible, certain anyons near a line defect can be an-
nihilated or created by a local operator. When the codimension-1 defect is invertible, an anyon
cannot be annihilated on the defect but rather converted to a topologically distinct anyon upon
crossing the defect. In general, these line defects can be thought of as topologically distinct
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classes of gapped interfaces between the given topological order and itself. The combined al-
gebraic structure of codimension-1 and codimension-2 defects in (2+1)D topological phases is
algebraically described by a unitary fusion 2-category [19,20]. In particular, in the case where
codimension-1 defect is invertible and forms a group G under fusion, the algebraic properties
of the defects are developed in the study of symmetry-enriched topological phases in terms of
G-crossed braided tensor categories [21–23].

In general, the symmetry generators of finite Abelian gauge theory are realized as the log-
ical gates on the ground state Hilbert space of a stabilizer code [24–29], where the logical
gate is equivalent to sweeping topological defects inserted in the 2d space across the system.
Therefore, a systematic understanding of emergent symmetry and the corresponding topolog-
ical defects is important for the classification of fault-tolerant logical gates in quantum codes
as well as the classification of topologically ordered phases.

In this paper, we study the codimension-1 defects of (2+1)D topological phases, where the
defect supports fermionic degrees of freedom on it. Such a defect is referred to as a fermionic
defect, where we allow the (2+1)D phase to be either bosonic or fermionic. When the bulk
(2+1)D phase is fermionic, the defects are topological and generally described in the frame-
work of G-crossed category for fermionic topological phases [30,31]. When the (2+1)D phase
is bosonic, the fermions are introduced only at the codimension-1 defect, and the defect is no
longer mobile at the level of lattice models. In general, a fermionic defect of a bosonic topo-
logical phase can shift the self-statistics of the anyons. For instance, the invertible fermionic
defect realized in the (2+1)D Z2 toric code permutes the magnetic particle m to a fermionic
particleψ. Also, the invertible fermionic defect in the (2+1)D double semion model permutes
a semion s to an anti-semion s, again shifting the spin of the anyon by 1/2. We construct
Pauli stabilizer models of twisted or untwisted Z2 gauge theory in (2+1)D with an insertion
of invertible fermionic defect shifting the spins of the anyons as above.

The lattice model of an invertible fermionic defect for Z2 gauge theory is constructed in the
following fashion. We start with a (2+1)D SPT phase with Z2 symmetry, with a location of the
(1+1)D Z2×Z

f
2 Gu-Wen SPT phase [32] on the codimension-1 defect. Note that we introduce

additional fermions on the codimension-1 submanifold to define a fermionic defect on it, so
the Z f

2 symmetry is only defined at the defect. We then gauge the Z2 symmetry of the whole
system, and we obtain the Z2 gauge theory with an insertion of invertible fermionic defect.
Similar constructions of the bosonic defects based on the insertion of lower dimensional SPT
phase are found in [24–26,33].

After introducing the lattice models, we then discuss the general invertible fermionic defect
realized in (2+1)D bosonic topological quantum field theory (TQFT). We introduce a specific
class of invertible fermionic defects referred to as “gauged Gu-Wen SPT defects”, which is
a certain generalization of the fermionic defects in the above lattice models obtained from
(1+1)D Z2×Z

f
2 Gu-Wen SPT phase. The gauged Gu-Wen SPT defect is denoted as Uξ,a, where

ξ denotes the spin structure of the defect, and a is Abelian bosonic particle of TQFT with Z2
fusion rule, i.e., θa = 1, a × a = 1. In general, the gauged Gu-Wen SPT defect is expressed
in terms of a condensation defect of the particle a [34], which is obtained by gauging the Z2
symmetry generated by the Wilson line of a, where the gauging is performed only at the defect.
Such a process of gauging the symmetry restricted to the codimension-1 defect is referred to as
1-gauging in [34]. One can show that the gauged Gu-Wen SPT defect always gives an invertible
defect with Z2 fusion rule, and causes a permutation of anyons shifting their self-statistics.

The benefit of introducing the notion of gauged Gu-Wen SPT defect is that one can obtain
a canonical form of the general invertible fermionic defect realized in (2+1)D bosonic TQFT.
Concretely, we show that any invertible fermionic defect of (2+1)D bosonic TQFT is expressed
in the form of Uξ,a × V , where Uξ,a is a gauged Gu-Wen defect with some choice of the anyon
a, and V is a bosonic invertible defect that induces an automorphism of the TQFT [22]. Based
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on this canonical form, we derive the fusion rule of general fermionic invertible defects.
After discussing the generality of the invertible fermionic defect of (2+1)D bosonic TQFT,

we investigate the application of the fermionic defects to the logical gates of the Pauli stabilizer
models. Roughly speaking, when we introduce the fermions in the whole space instead of
being restricted to the defect, one can sweep the fermionic defect over the whole space, which
acts on the state by emergent global symmetry that corresponds to the defect. At the level of
the lattice models, such an action of the emergent symmetry on the state should be realized
as the logical gate acting on the code space of the stabilizer model.

Associated with the fermionic defects realized in the (2+1)D Z2 toric code, we obtain a
new non-Pauli Clifford logical gate for the (2+1)D Z2 toric code stacked with a (2+1)D ancilla
trivial atomic insulator. This logical gate realizes the C Z gate in the code space of the Z2 toric
code, and implements the permutation of anyons m↔ ψ. We emphasize that this logical
gate shifting the self-statistics of the anyons is made possible by introducing ancilla fermionic
degrees of freedom. We also construct a logical gate for the Pauli stabilizer model of the double
semion theory stacked with an atomic insulator. The logical gate implements the SWAP gate
in the code space, which corresponds to exchange of anyons s↔ s.

Next, we discuss the fermionic gapped interface of the (2+1)D bosonic topological phases,
which is realized on the boundary of (3+1)D Walker-Wang model [35]. Here, an interface
means interpolation of two theories which are not necessarily identical, by a codimension-1
domain wall. Here, the fermionic interface of (2+1)D phase is realized as a termination of the
fermionic interface in the (3+1)D bulk. In this setup, one can realize an “anomalous” gapped
interface of (2+1)D TQFTs which cannot be realized in standalone (2+1)D phases not coupled
with the bulk. Concretely, such a fermionic interface realized on the boundary can shift the
chiral central charge of the (2+1)D phase.

In this paper, we consider an interesting example of such an anomalous interface, where
the (3+1)D phase has a spatial reflection symmetry and the fermionic interface is supported
at the 2d reflection plane. The interface interpolates between (3+1)D Walker-Wang model
based on U(1)2 topological order and its orientation-reversal. On the boundary, we have the
fermionic interface between U(1)2 and U(1)−2 TQFTs at the reflection plane, which shifts the
chiral central charge by −2. We construct an exactly solvable lattice Hamiltonian in (3+1)D
that realizes this fermionic interface. This model turns out to give a (3+1)D invertible topo-
logical phase with the spatial reflection symmetry, together with Z f

2 symmetry localized at the
reflection plane. We show that our (3+1)D lattice model generates the Z8 classification of the
invertible phase with the above combination of global symmetries.

Our (3+1)D lattice model is effectively described by an invertible TQFT which is called
exotic invertible phase in [36,37]. While the Z f

2 fermion parity in the whole spacetime corre-

sponds to the spin structure of spacetime manifold at the level of effective field theory, the Z f
2

symmetry localized at the reflection plane is regarded as a certain spacetime structure which
is a 2-group describing the mixture of Z2 1-form symmetry and spacetime Lorentz symmetry.
We explain the relation between our lattice model and the effective field theory, and describe
the Z8 classification from field theoretical perspective.

This paper is organized as follows. We start with construction of lattice models for
fermionic invertible defects of (2+1)D Z2 gauge theory in Sec. 2.1. We then introduce a
gauged Gu-Wen SPT defects in terms of condensation defects in Sec. 2.2, and derive a canon-
ical form of the invertible fermionic defect and fusion rules in the rest of Sec. 2. In Sec. 3,
we construct the logical gates of stabilizer codes stacked with atomic insulator, including the
C Z gate of the Z2 toric code. In Sec. 4, we study the fermionic interface between (3+1)D
Walker-Wang model, and discuss the connection to exotic invertible phase that follows Z8
classification. Review of concepts used in this paper and detailed calculations are relegated to
appendices.
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2 Fermionic defects of (2+1)D bosonic topological phases

In this section, we consider the codimension-1 fermionic defect of the (2+1)D bosonic topolog-
ical phases, mainly focusing on the invertible defects. After introducing simple lattice models
of the fermionic defects, we describe a generic fermionic invertible defect of (2+1)D bosonic
TQFT. We derive a canonical form of the fermionic invertible defect in terms of a specific con-
densation defect called a gauged Gu-Wen SPT defect, and discuss the fusion rule of fermionic
invertible defects.

2.1 Lattice models for fermionic defects

Here we discuss examples of the lattice models of (2+1)D bosonic topological phases that host
the fermionic defects. We obtain the invertible fermionic defect in the Pauli stabilizer model
of Z2 toric code and the double semion model, both of which shift the self-statistics of the
anyons.

2.1.1 Review: Gauging Z2 symmetry on lattice

We first review the procedure of gauging 0-form Z2 symmetry in (2+1)D lattice systems fol-
lowing [25], which is used to construct the lattice models of Z2 gauge theory in the presence
of defects.

Let us consider a 2d square lattice where the Hilbert space is formed by qubits at ver-
tices. We start with a Hamiltonian respecting a global Z2 symmetry

∏

v X v . The terms in the
Hamiltonian are generated by X v and Zv Zv′ , where v, v′ are neighboring vertices in the lattice.

Then, we reformulate the Z2 symmetric subspace of the full Hilbert space and the symmet-
ric operators in terms of new degrees of freedom, summarized in Fig. 1. Before gauging the
Z2 symmetry (left side of Fig. 1), the symmetric subspace of the full Hilbert space consists of
a tensor product of qubits placed at vertices and a global Z2 symmetry constraint

∏

v X v = 1.
After gauging (right side of Fig. 1), the dual Hilbert space has qubits on the edges and local
gauge constraints

∏

e⊂ f Ze = 1 in addition to one-form symmetry constraints
∏

e⊂γ Ze = 1 for
all closed loops γ ∈ Z1(M ,Z2) (where Z1 denotes 1-cycles). If we start with the trivial insulator
with Z2 symmetry H = −

∑

v X v , the dual Hamiltonian realizes the Z2 toric code model after
gauging Z2 symmetry.1

2.1.2 Z2 toric code

The simplest case of the fermionic codimension-1 defect in (2+1)D topological phase can be
found in the (2+1)D untwisted Z2 gauge theory (toric code). To obtain the defect, we start
with the (2+1)D Z2 symmetric trivial insulator H0 = −

∑

v X v , and replace the Hamiltonian on
the codimension-1 submanifold with a (1+1)D Z2×Z

f
2 Gu-Wen fermionic SPT phase [32] (see

the left side of Fig. 2). Here, we additionally introduce a complex fermion (a pair of Majorana
fermions γ,γ′) on each edge of the defect line to put the (1+1)D fermionic SPT phase on it.
We then gauge the Z2 symmetry and obtain a model for the Z2 gauge theory with a defect.
Before gauging the Z2 symmetry, the Hamiltonian for the Z2 × Z

f
2 Gu-Wen SPT phase on the

1d defect is given by

HGW = −
∑

j

iγ j− 1
2
X jγ
′
j+ 1

2
−
∑

j

iZ j(γ j+ 1
2
γ′

j+ 1
2
)Z j+1 , (1)

1We impose the gauge constraint
∏

e⊂ f Ze = 1 energetically, which realizes the Z-plaquette term in the gauged
Hamiltonian.

5

https://scipost.org
https://scipost.org/SciPostPhys.15.1.028


SciPost Phys. 15, 028 (2023)

𝑍

𝑍

𝑋
𝑋

𝑍

𝑍

𝑋
𝑋

𝑋

𝑍

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋

= 1 𝑍

𝑍

𝑍

𝑍 = 1
𝑍

Figure 1: Gauging Z2 symmetry [25]. Left: each dot represents a qubit on a vertex.
We consider the symmetric sector of the Hilbert space:

∏

v X v = 1. Symmetric op-
erators are generated by the single X v and the product of adjacent Zv . Right: The
Hilbert space contains qubits at all edges, with the gauge constraint

∏

e⊂ f Ze = 1 for
each face f . For non-simply connected manifolds, there are additional constraints
that the product of Ze along any cycle equals +1.

Figure 2: Gauging Z2 symmetry in the presence of the (1+1)D Gu-Wen SPT phase to
obtain a fermionic defect of a Z2 toric code in (2+1)D.

where we label the vertices on the 1d defect by integer j ∈ Z. The Hamiltonian after gauging
Z2 symmetry is described in the right side of Fig. 2. The Hamiltonian is given by the standard
Z2 toric code away from the 1d defect, while the star term −

∏

v⊂e X e on a vertex v is modified
on the 1d defect as −iγ j− 1

2
γ′

j+ 1
2

∏

v j⊂e X e, and we have an additional term −iγeγ
′
eZe on each

edge of the defect.
One can see that this 1d defect realizes the permutation of anyons m↔ψ, while leaving

e invariant. Indeed, the line operator for the e particle (product of Z operators along the
line) can freely pass through the defect, so the defect leaves e invariant. Meanwhile, the line
operator for the m particle violates the −iγeγ

′
eZe term on the defect, and the line operator

across the defect gets associated with the additional e line as described in Fig. 3, so that the
line operator commutes with the Hamiltonian on the defect. The defect hence realizes the
permutation m→ψ.

2.1.3 Double semion model

Let us consider one more example of a codimension-1 fermionic defect in the (2+1)D double
semion model, which realizes the (2+1)D Z2 gauge theory twisted by a non-trivial element
of group cohomology H3(BZ2,U(1)). A fermionic defect of the double semion model can also
be constructed by a decoration of the Gu-Wen SPT phase on the codimension-1 defect. To
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Figure 3: The line operator of a m particle across the defect. One can see that the e
particle emanates from the intersection between the m line and the defect, realizing
the permutation action of the defect m→ m×ψ.

describe a lattice Hamiltonian model, we follow the construction of the double semion model
given in [38], where they obtained a double semion model starting with the Z4 toric code
with anyons {m jek} with j, k ∈ Z4, and then condensing a boson m2e2. After condensing
m2e2, the resulting topological order is given by a double semion model with a semion me and
anti-semion me3.

Following their construction, we firstly consider the Z4 toric code, in the presence of the
1d defect that induces the permutation of anyons given by

m jek→ m jek+2 j , j, k ∈ Z4 . (2)

The above defect of the Z4 toric code is obtained by a decoration of the Z4 ×Z
f
2 Gu-Wen SPT

phase for the Z4 symmetric trivial insulator, and then gauging Z4 symmetry. The process of
gauging Z4 symmetry on the lattice is done by a straightforward generalization of Fig. 1 for
gauging Z2 symmetry. Concretely, we start with a square lattice with a four-dimensional qudit
on each vertex, characterized by generalized Z4 Pauli operators Z , X obeying the Z4 clock and
shift algebra

Z4 = X 4 = 1 , ZX = iX Z . (3)

Before gauging, we have a Hamiltonian for a trivial insulator H = −
∑

v(X v + X †
v) with Z4

symmetry U =
∏

v X v . To introduce a defect, we additionally put a complex fermion (a pair
of Majorana fermions γ,γ′) on each edge of the 1d defect. We then replace the Hamiltonian
on the 1d defect line with the (1+1)D Gu-Wen SPT with Z4 ×Z

f
2 symmetry,

HGW = −

 

∑

j

iγ j− 1
2
X jγ
′
j+ 1

2
+ h.c.

!

−
∑

j

iZ2
j (γ j+ 1

2
γ′

j+ 1
2
)Z2

j+1 . (4)

After gauging the Z4 symmetry, we get a Hamiltonian for the Z4 toric code with the star term
modified as described in the right side of Fig. 4, and also with the term −iγeγ

′
eZ2

e introduced
on each edge of the 1d defect. One can see that the defect realizes the permutation of anyons
Eq. (2).

Next, we obtain the double semion model by condensing the boson m2e2 of the Z4 toric
code in the presence of the defect. The condensation of e2m2 is performed on the lattice model
by adding terms Ce to the Hamiltonian that correspond to hopping of the anyon e2m2. See
Fig. 5 for the definition of Ce on a horizontal or vertical edge of the square lattice, which is
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Figure 4: Gauging Z2 symmetry in the presence of the (1+1)D Gu-Wen SPT phase to
obtain a fermionic defect of a Z2 toric code in (2+1)D.

Figure 5: The Hamiltonian for the double semion model in the presence of the
fermionic defect.

regarded as a short open Wilson line operator for the anyon e2m2 along an edge e. The Hamil-
tonian is then constructed by picking up the stabilizers of the Z4 toric code that commutes
with all the hopping terms {Ce}. That is, we sum over all the generators for the subgroup of
the stabilizer group that commutes with {Ce}. The Hamiltonian after condensation of e2m2 is
then given by

H = −
∑

v∈vertex

Av −
∑

p∈plaquette

Bp −
∑

e∈edge

Ce , (5)

which is valid away from the defect, see Fig. 5 for definitions of Av , Bp. The Hamiltonian on
the defect is modified and coupled with the fermions at the defect, as shown in Fig. 5. Note
that the vertex term Av is dressed with fermion operators iγ j− 1

2
γ′

j+ 1
2
, and we also have a term

−iZ2
e γeγ

′
e on each edge e of the defect.

One can see that the defect obtained after condensing m2e2 realizes the permutation of
anyons s→ s. This can be seen by considering a line operator of the semion passing through the
defect, as shown in Fig. 6. In order to make the line operator commute with the Hamiltonian
on the defect, the line operator for Z2 that corresponds to a boson ss must emit from the
intersection between the line operator for a semion and the defect.

2.2 Gauged Gu-Wen SPT defect in (2+1)D bosonic topological phases

In the above discussions, we have seen that the fermionic defect of (2+1)D Z2 gauge theory
can be obtained by the (1+1)D Z2 ×Z

f
2 Gu-Wen SPT phase with support on a codimension-1
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Figure 6: The line operator for a semion passing through the defect.

defect of (2+1)D spacetime. We note that while the Z2 symmetry of Z2×Z
f
2 Gu-Wen phase is

gauged and identified as Z2 gauge group in the bulk, the Z f
2 symmetry is not gauged and only

defined on the defect. We refer to such a defect obtained by the (1+1)D Z2×Z
f
2 Gu-Wen SPT

phase as a gauged Gu-Wen SPT defect.
In this subsection, we give the expression of the gauged Gu-Wen SPT defect in terms of

a condensation defect [34]. Here, condensation defect means a codimension-1 defect which
is obtained by gauging the global symmetry generated by Wilson lines of anyons, where the
gauging is performed only on the defect. We demonstrate that the gauged Gu-Wen SPT defect
can in general be obtained by gauging the symmetry generated by an Wilson line of a certain
Abelian anyon. Using the expression as a condensation defect, we show that the gauged Gu-
Wen SPT defect can be defined for a generic (2+1)D bosonic topological phase, if the bosonic
topological phase has an Abelian boson that obeys the Z2 fusion rule.

2.2.1 Gauged Gu-Wen SPT defect of Z2 toric code as a condensation defect

Let us consider the simplest example of the gauged Gu-Wen SPT defect of the (2+1)D Z2 toric
code, where the lattice model was discussed in Sec. 2.1. The (2+1)D Z2 toric code is effectively
described in terms of Z2 gauge theory with the action

π

∫

M3

δa ∪ b , (6)

with a, b ∈ C1(M3,Z2) the Z2 gauge fields. The equation of motion for b yields δa = 0. This
theory has the Z2 ×Z2 1-form symmetry generated by

W (γ) = exp

�

iπ

∫

γ

a

�

, V (γ′) = exp

�

iπ

∫

γ′
b

�

. (7)

Also, the gauged Gu-Wen SPT defect for this theory is described by the partition function of
(1+1)D Gu-Wen SPT phase on the 2d defect,

Uξ(Σ) = exp

�

iπ

∫

Σ

qξ(a)

�

, (8)

where Σ is an oriented 2d surface supporting the defect, and ξ is a spin structure of Σ that
reflects the Z f

2 symmetry on the defect. The integral of qξ(a) is an action for the Z2 ×Z
f
2 Gu-

Wen SPT phase [39], which is known to be a Z2-valued quadratic function of a ∈ H1(Σ,Z2),
∫

Σ

qξ(a+ a′) =

∫

Σ

qξ(a) + qξ(a
′) + a ∪ a′ . (9)
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The above defect Uξ(Σ) can be regarded as a condensation defect, by introducing dynamical
gauge fields Γ , Γ ′ ∈ Z1(Σ,Z2) which are defined on the 2d defect Σ. One can then rewrite the
expression of the defect as

Uξ(Σ) =
1

|H1(Σ,Z2)|

∑

Γ ,Γ ′∈H1(Σ,Z2)

exp

�

iπ

∫

Σ

a ∪ Γ ′ + Γ ∪ Γ ′ + qξ(Γ )

�

=
1

|H1(Σ,Z2)|

∑

Γ ,Γ ′∈H1(Σ,Z2)

W (γ′)exp

�

iπ

∫

Σ

qξ(Γ + Γ
′) + qξ(Γ

′)

�

=
1

p

|H1(Σ,Z2)|
Arf(ξ)

∑

Γ ′∈H1(Σ,Z2)

W (γ′)exp

�

iπ

∫

Σ

qξ(Γ
′)

�

,

(10)

where γ′ ∈ H1(Σ,Z2) is the Poincaré dual of Γ ′ ∈ H1(Σ,Z2), and Arf(ξ) is the Arf invariant of
the quadratic form

∫

qξ(Γ ) defined as

Arf(ξ) =
1

p

|H1(Σ,Z2)|

∑

Γ∈H1(Σ,Z2)

exp

�

iπ

∫

Σ

qξ(Γ )

�

, (11)

which is regarded as a partition function of a Kitaev chain in (1+1)D [40]. The sum over gauge
fields Γ ′ in Eq. (10) is regarded as gauging the symmetry generated by W (γ′) on the defect Σ,
in the presence of the discrete torsion term exp

�

iπ
∫

qξ(Γ ′)
�

. This gives the expression of the
defect Uξ(Σ) as a condensation defect obtained by gauging the symmetry W (γ′).

2.2.2 Gauged Gu-Wen SPT defect for general bosonic topological phase

As a natural generalization, one can also consider the above condensation defect Uξ(Σ) for
a general (2+1)D bosonic topological phase. Suppose that the bosonic phase has an Abelian
anyon a following the Z2 fusion rule, a× a = 1. Let us write the Wilson line operator for the
anyon a as Wa(γ).

If we want to obtain the condensation defect Uξ(Σ) by gauging the symmetry generated
by the Wilson line Wa(γ) on the defect Σ, the symmetry Wa(γ) restricted to the defect Σ must
be free of ’t Hooft anomaly. The line operator Wa(γ) generates a 0-form symmetry on the 2d
defect, and the ’t Hooft anomaly for this 0-form symmetry is present when the spin of the
anyon a is given by θa = ±i, and absent when θa = ±1 [34]. When the anyon has the spin
θa = ±1, i.e., a is a boson or fermion, one can obtain the condensation defect Uξ,a(Σ) for
Wa(γ) as

Uξ,a(Σ) =
1

p

|H1(Σ,Z2)|
Arf(ξ)

∑

Γ∈H1(Σ,Z2)

Wa(γ)exp

�

iπ

∫

Σ

qξ(Γ )

�

, (12)

where γ ∈ H1(Σ,Z2) is the Poincaré dual of Γ . The fusion rule of the condensation defect
Uξ(Σ) depends on the statistics of the anyon a, which is summarized as follows.

• When a is a boson, the defect Uξ,a(Σ) is invertible and obeys the Z2 fusion rule,
Uξ,a × Uξ,a = 1. The defect Uξ,a(Σ) induces the permutation of anyons given by

¨

p→ p , if Mp,a = 1 ,

p→ p× a , if Mp,a = −1 ,
(13)

where p is an arbitrary anyon of the bosonic topological phase, and Mp,a = ±1 is mutual
braiding between anyons p, a. The derivation for the symmetry action on anyons in
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Eq. (13) is given in Appendix A. Note that the symmetry action shifts the spin of the
anyon p by 1/2 when Mp,a = −1, since θp×a = θpθaMp,a = −θp. This is regarded as
a generalization of the gauged Gu-Wen SPT defect in Z2 gauge theory considered in
Sec. 2.1.

• When a is a fermion, the defect Uξ,a(Σ) is non-invertible and obeys a fusion rule

Uξ,a(Σ)× Uξ,a(Σ) =
1

p

|H1(Σ,Z2)|
Arf(ξ)Uξ,a(Σ) , (14)

Uξ,a(Σ)×Wa(γ) = exp

�

iπ

∫

Σ

qξ(Γ )

�

Uξ,a(Σ) , (15)

where the second fusion rule is defined by pushing a closed loop γ to a surface Σ, and Γ
is the Poincaré dual of γ.2 The fusion rule Eq. (15) implies that the Wilson line operator
for the fermion a gets absorbed by the defect Uξ,a(Σ). This means that the fermion a is
condensed and can terminate at the defect Σ. Physically, the defect Uξ,a(Σ) corresponds
to condensing a composite boson formed by the fermion a and the local fermion at the
defect. This defect is an analogue of the Cheshire string [41, 42] for condensation of a
fermionic particle.

In this paper, we mainly focus on the case that the anyon a is a boson, where Uξ,a(Σ)
generates an invertible Z2 symmetry. We refer to the defect Uξ in such a setup, i.e, with the
Abelian boson a with the Z2 fusion rule a× a = 1, as the gauged Gu-Wen SPT defect.

2.2.3 Bosonization of gauged Gu-Wen SPT defects

The gauged Gu-Wen SPT defect is not quite topological, since it depends on the spin structure
of the defect which is not defined globally on the spacetime. One can obtain a topological
defect of the (2+1)D bosonic topological phase by gauging Z f

2 symmetry of the gauged Gu-
Wen defect, which yields a bosonic defect independent of the spin structure. These topological
defects are given by summing over spin structures of Uξ,a(Σ),

eUa(Σ) :=
1

|H1(Σ,Z2)|

∑

ξ

Uξ,a(Σ) , (17)

where we sum over the |H1(Σ,Z2)| distinct spin structures of the defect Σ. This sum is explic-
itly performed in Appendix A, and eUa(Σ) can be simply expressed as

eUa(Σ) =
1

p

|H1(Σ,Z2)|

∑

Γ∈H1(Σ,Z2)

Wa(γ) , (18)

which is the condensation defect obtained by gauging the symmetry generated by the Wilson
line operator Wa(γ) on the defect Σ [34]. The properties of this condensation defect was
studied in [34], which is summarized as follows.

2The above fusion rules are derived by using the fusion rule of line operators which is valid when a is a fermion,

Wa(γ)Wa(γ
′) =Wa(γ+ γ

′)(−1)♯int(γ,γ′) , (16)

where γ,γ′ are closed loops embedded in Σ, and ♯int(γ,γ′) is the intersection number of γ,γ′ evaluated in Σ.
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• When a is a boson, the defect eUa(Σ) is non-invertible and obeys a fusion rule

eUa(Σ)× eUa(Σ) =
1

p

|H1(Σ,Z2)|
eUa(Σ) , (19)

eUa(Σ)×Wa(γ) = eUa(Σ) . (20)

The defect eUa(Σ) is understood as the Cheshire string obtained by condensing the boson
a at the defect.

• When a is a fermion, the defect eUa(Σ) is invertible and generates the Z2 global symmetry
eUa × eUa = 1. The Z2 symmetry generated by eUa(Σ) induces the permutation of anyons
given by

¨

p→ p , if Mp,a = 1 ,

p→ p× a , if Mp,a = −1 ,
(21)

where p is an arbitrary anyon of the bosonic topological phase. Note that this symmetry
action preserves the self-statistics of the anyon; θp×a = θpθaMp,a = θp when Mp,a = −1.

Note that the bosonic defect eUa becomes non-invertible when a is a boson while invertible
when a is a fermion, which is in contrast to the fermionic defect Uξ,a. The condensation of an
anyon with the physical fermion for Uξ,a gives rise to a completely different fusion rule from
the case without the physical fermion.

2.3 All fermionic invertible defects are generated by gauged Gu-Wen SPT defects
and bosonic invertible defects

In the above discussions, we have seen that the gauged Gu-Wen SPT defect Uξ,a gives an
example of invertible fermionic defects of (2+1)D bosonic topological phase. Here, we derive
the canonical form of a fermionic invertible symmetry defect in the (2+1)D topological phase
using the gauged Gu-Wen SPT defect. That is, we show that all the codimension-1 fermionic
invertible symmetry defects are expressed as a fusion Uξ,a(Σ) × V (Σ), where Uξ,a(Σ) is a
gauged Gu-Wen SPT defect for some Abelian Z2 boson a, and V (Σ) is some bosonic invertible
defect that induces an automorphism of modular tensor category [22].3

This allows us to classify the fermionic invertible symmetry defects of the (2+1)D topolog-
ical phase described by a modular tensor category C, in terms of a pair

(a,ρb) ∈A0 ×Aut(C) , (22)

where A0 is a set of Abelian bosons with Z2 fusion rule, and Aut(C) is a set of automorphisms
of C.

2.3.1 Derivation for the canonical form of the fermionic invertible defect

Let us now derive the canonical form of the fermionic invertible defect described above. First,
suppose that a given fermionic invertible defect U induces a permutation action of anyons
denoted as ρ. The permutation action ρ does not give an automorphism of modular tensor
category C in general, since it can shift the self-statistics of the anyons.

3Note that this statement is up to stacking a (1+1)D spin invertible phase to the defect, whose partition function
is given by Arf(ξ) with ξ the spin structure of the defect.
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Figure 7: Bordism between disks with anyon insertions that correspond to the fusion
of anyons.

While U gives a gapped interface between (2+1)D topological phase C and itself, it is
convenient to regard U as a fermionic gapped boundary of the bosonic phase C ⊠ C, which
is obtained by folding a theory C along the interface. On this gapped boundary of the folded
theory C ⊠ C, the anyons in the form of {a,ρ(a)} for a ∈ C are condensed. In general, for
a fermionic gapped boundary of the bosonic topological phase, either a boson or fermion
can be condensed on the boundary. See Appendix B for a general discussion for fermionic
gapped boundary of (2+1)D bosonic TQFT in terms of the Lagrangian algebra. As described
in Appendix B, when the condensed anyon is a fermion (resp. boson), the Wilson line of the
condensed anyon terminates on the boundary leaving the fermion parity odd (resp. even) state
on the boundary.

For each anyon a ∈ C, one can consider a Hilbert space of the bosonic theory C ⊠ C on
the disk, where an anyon (a,ρ(a)) is located in the bulk of the disk, and the boundary of the
disk supports a fermionic gapped boundary of C ⊠ C obtained from U by folding. This disk
Hilbert space is one-dimensional, and let us write the state as |D2, a〉. The fermion parity of
the state is given by θa/θρ(a) ∈ {±1}. Then, let us consider anyons a, b, c ∈ C with non-empty
fusion vertex N c

a,b > 0. One can then take a bordism interpolating between the two disks

with (a,ρ(a)), (b,ρ(b)) insertions and a single disk with (c,ρ(c)) insertion, see Fig. 7. This
bordism is regarded as a unitary operator between disk Hilbert spaces |D2, a〉 ⊗ |D2, b〉 and
|D2, c〉 which must preserve the fermion parity (i.e., preserves Z2 grading of spin theory). So,
equating the fermion parity of the two states, we get

θa

θρ(a)

θb

θρ(b)
=

θc

θρ(c)
, when N c

a,b > 0 . (23)

Physically, this equation tells that the fermion parity is invariant under fusion of the condensed
anyons in the bulk. This implies that the phase θa/θρ(a) ∈ {±1} for a generic anyon a ∈ C can
be expressed as the mutual braiding between a specific Abelian anyon v,

θa

θρ(a)
= Mv,a . (24)

This Abelian anyon v satisfies the Z2 fusion rule v2 = 1, since v2 is a transparent particle in
a modular tensor category Mv2,a = (Mv,a)2 = 1, and must be a trivial particle. The above
transformation ρ between anyons satisfying Eq. (24) was studied in the context of duality of
(2+1)D topological phases in [43].

Next, we show that the Abelian anyon v must be a boson. To see this, we recall that the
chiral central charge (framing anomaly) of the (2+1)D bosonic topological phase is given by
the formula

e
2πi
8 c− =

1
D

∑

a∈C
d2

aθa . (25)
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where the sum is over all anyons a ∈ C. By the action of the fermionic defect U on the modular
tensor category C, the chiral central charge is transformed to [43]

e
2πi
8 c− =

1
D

∑

a∈C
d2
ρ(a)θρ(a) =

1
D

∑

a∈C
d2

aθaMv,a =
1
D

∑

a∈C
d2

v×a
θv×a

θv
=

1
θv
·

1
D

∑

a∈C
d2

aθa , (26)

so the chiral central charge e
2πi
8 c− is shifted by (θv)−1 by the action of U . Since the defect U

must preserve e
2πi
8 c− to serve as the gapped interface of the bosonic topological phase C, we

have to require θv = 1, i.e., v must be a boson.
Now, one can consider the gauged Gu-Wen SPT defect Uξ,v out of the Abelian boson v,

where ξ is the spin structure of the fermionic defect. Then, let us consider a composite defect
V = Uξ,v × U obtained by fusing U and the gauged Gu-Wen SPT defect. Let us write the
permutation action on anyons induced by V as ρb. Since the gauged Gu-Wen SPT defect shifts
the spins of the anyon a ∈ C by Mv,a, one can see that the permutation action ρb preserves the
spins of the anyons, θρb(a) = θa for a ∈ C.

In Appendix B, we show that V defines a bosonic gapped interface that does not depend
on spin structure of the interface. We hence get the desired expression U = Uξ,v × V in terms
of the bosonic invertible defect V and the gauged Gu-Wen SPT defect Uξ,v .

2.4 Fusion rule of fermionic invertible defects

Here we describe the fusion rule of the fermionic invertible defects of the bosonic topological
phases, based on the canonical form (a,ρb) ∈A0 ×Aut(C) of the fermionic invertible defects
discussed above.

We start with considering the fusion rule among the gauged Gu-Wen SPT defects. As we
described earlier, two identical gauged Gu-Wen defects fuse into a trivial defect, Uξ,a×Uξ,a = 1.
In the following, we summarize the fusion outcome for Uξ,a × Uξ,a′ with a ̸= a′. The detailed
computations of the fusion rules are relegated to Appendix A.

• When the mutual braiding between a, a′ is trivial Ma,a′ = 1, the fusion rule is given by

Uξ,a × Uξ,a′ = Uξ,a×a′ × Va,a′ , (27)

where Va,a′ is a bosonic invertible defect with the Z2 fusion rule, defined as

Va,a′(Σ) =
1

|H1(Σ,Z2)|

∑

Γ ,Γ ′∈H1(Σ,Z2)

Wa(γ)Wa′(γ
′)exp

�

iπ

∫

Σ

Γ ∪ Γ ′
�

, (28)

with γ,γ′ ∈ H1(Σ,Z2) the Poincaré dual of Γ , Γ ′ respectively. For example, let us consider
the (2+1)D Z2 ×Z2 toric code and suppose that a, a′ are electric particles e, e′ for each
Z2 gauge field respectively. Then, the defect Va,a′ corresponds to an invertible defect
given by an insertion of the topological action for the (1+1)D Z2 ×Z2 SPT phase along
the defect [33]. In that case, the defect Ve,e′ acts on the anyons of Z2 ×Z2 toric code as
m→ me′, m′→ m′e, while leaving e, e′ invariant.

• When the mutual braiding between a, a′ is non-trivial Ma,a′ = −1, the fusion rule is
given by

Uξ,a × Uξ,a′ = Uξ,a′ × Va×a′ ×Arf(ξ) , (29)

where Va×a′ is a bosonic invertible defect with the Z2 fusion rule, defined as

Va×a′(Σ) =
1

p

|H1(Σ,Z2)|

∑

Γ∈H1(Σ,Z2)

Wa×a′(γ) , (30)
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with γ ∈ H1(Σ,Z2) the Poincaré dual of Γ . For example, let us consider the (2+1)D Z2
toric code and suppose that a, a′ are electric and magnetic particle of the Z2 toric code
respectively. Then, the Va×a′ is an invertible defect that induces e ↔ m permutation
action of anyons [33,34].

Then, one can immediately obtain the fusion rule for the generic fermionic invertible defects
expressed as the canonical form (a,ρb). Let us write the defect that corresponds to the form
(a,ρb) as Uξ,a × V (ρb), where V (ρb) is a bosonic defect that induces the automorphism ρb.
Then, the fusion of defects (a,ρb), (a′,ρ′b) is computed as

Uξ,a × V (ρb)× Uξ,a′ × V (ρ′b) = (Uξ,a × Uξ,ρb(a′))× V (ρb ◦ρ′b) . (31)

Since the fusion between the gauged Gu-Wen defects can be computed following Eq. (28),
Eq. (29), one can obtain the fusion outcome in the canonical form as

Uξ,a × V (ρb)× Uξ,a′ × V (ρ′b) =

¨

Uξ,a×ρb(a′) × Va,a′ × V (ρb ◦ρ′b) , when Ma,ρb(a′) = 1 ,

Uξ,ρb(a′) × Va×a′ × V (ρb ◦ρ′b)×Arf(ξ) , when Ma,ρb(a′) = −1 .
(32)

2.5 Invertible symmetry defects of a (2+1)D bosonic topological phase stacked
with an atomic insulator

So far, we studied the non-topological defect of the (2+1)D bosonic topological phase where
the physical fermions are introduced solely at the defect. Here we describe invertible topolog-
ical defects of the (2+1)D fermionic topological phase, obtained by stacking the trivial atomic
insulator with the (2+1)D bosonic topological phase. Such a fermionic topological phase is
described by a super-modular category C ⊠ {1,ψ}, where C is a modular tensor category for
the bosonic phase, and the category {1,ψ} with a physical fermion ψ represents the trivial
atomic insulator (i.e., trivial fermionic invertible phase).

Similar to the case of the invertible fermionic defects of the bosonic theory, one can again
show that the generic invertible topological defect of the theory C ⊠ {1,ψ} can be expressed
as the fusion Uξ,a × V (ρb), where Uξ,a is the gauged Gu-Wen defect with a ∈ C, and the spin
structure ξ induced from the spin structure of the whole spacetime. ρb ∈ Aut(C) denotes the
invertible symmetry defect of the bosonic theory C. This implies that the invertible symmetry
of the theory C ⊠ {1,ψ} also has the canonical form in terms of a pair

(a,ρb) ∈A0 ×Aut(C) , (33)

where A0 is a set of Abelian bosons with Z2 fusion rule.
The derivation of the canonical form can be done in parallel with the discussion in Sec. 2.3.

Firstly, by folding the theory along the defect, we regard the defect as a gapped boundary of the
fermionic theory C⊠C⊠ {1,ψ}, where {1,ψ} is again understood as a trivial atomic insulator.
On this gapped boundary, the anyons in the form of a×ρ(a) is condensed for all a ∈ C, where
ρ denotes the action of the defect on the label of the anyons, ρ(a) ∈ C ⊠ {1,ψ}.

Let us define σ(a) ∈ Z2 such that one can write ρ(a) = a′ ×ψσ(a) for some a′ ∈ C. This
Z2 number σ(a) denotes the fermion parity of the disk Hilbert space of the fermionic theory
C ⊠ C ⊠ {1,ψ} with insertion of a single anyon a × ρ(a) in its bulk, where its boundary is
realized by the gapped boundary. According to the same logic as Sec. 2.3, the fermion parity
of the disk Hilbert space can again be expressed as

(−1)σ(a) = Mv,a , (34)

where v ∈ C is an Abelian anyon with the Z2 fusion rule, v2 = 1.
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One can further show that v must be a boson, by utilizing the algebraic description of the
fermionic gapped boundary in terms of the Lagrangian algebra described in [44].4 Then, one
can define a gauged Gu-Wen defect Uξ,v that acts on the anyons a ∈ C as

Uξ,v : a→ a× (v ×ψ)σ(a) . (35)

For a given defect V (ρ) of the fermionic theory C ⊠ {1,ψ} with the action ρ(a) = a′ ×ψσ(a)

(where a′ ∈ C), the composite defect V (ρb) := Uξ,v × V (ρ) induces the action
ρb : a → a′ × vσ(a) that defines an element of Aut(C). This shows the canonical form of
the invertible defect of the fermionic theory C ⊠ {1,ψ}. The fusion rule of these defects are
exactly the same as Sec. 2.4.

3 Logical gate of Pauli stabilizer code stacked with an atomic in-
sulator

In Sec. 2.5, we studied the invertible symmetry of the (2+1)D bosonic topological phase
stacked with a trivial atomic insulator. Here, we discuss the application of these symmetry
defects to the logical gates of the Pauli stabilizer models with physical fermions.

Concretely, we explicitly construct a non-Pauli Clifford logical gate for the (2+1)D Z2 toric
code and double semion model stacked with a (2+1)D ancilla trivial atomic insulator. This
logical gate corresponds to the action of the gauged Gu-Wen SPT defect discussed in Sec. 2.5,
and induces the permutation of anyons that cannot be realized without the physical fermions,
which leads to non-trivial action on the Pauli logical gate. For example, our logical gate in the
Z2 toric code acts as a C Z gate on the code space.

3.1 CZ logical gate of Z2 toric code

We consider a 2d square lattice on a torusΣ, with a qubit and a complex fermion on each edge.
We express a single complex fermion on an edge e in terms of a pair of Majorana fermions
γe,γ

′
e. For convenience, we put one Majorana fermion on the left side of the edge and the

other on the right, as described in Fig. 8. The Hamiltonian is given by a simple stacking of
(2+1)D Z2 toric code and a trivial atomic insulator,

H = −
∑

v

�

∏

v⊂e

X e

�

−
∑

p

�

∏

p⊃e

Ze

�

−
∑

e

iγeγ
′
e . (36)

The ground state of the Z2 toric code on a torus stores two logical qubits, where the Pauli
logical gates are given by

Z1 =
∏

e⊂Cx

Ze , X 1 =
∏

e⊂C ′y

X e , Z2 =
∏

e⊂Cy

Ze , X 2 =
∏

e⊂C ′x

X e . (37)

where the product of Z in Z1 is taken over edges supported on a closed loop Cx of the lattice
extended in x direction, while the product of X in X 2 is over the edges cutting a closed loop C ′x

4This can be seen by noting that (v, 1, m) ∈ C⊠C⊠D(Z2) has trivial mutual braiding with all condensed anyons
in the NS (anti-periodic) sector in the form of a × ρ(a), hence is the condensed anyon in the R (periodic) sector
of the Lagrangian algebra [44]. Here, m is the magnetic particle of the untwisted Z2 gauge theory D(Z2), which
is physically regarded as a vortex of Z f

2 symmetry. This implies that the composite anyon (v, 1, m) is a boson,
therefore θv = 1.
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Figure 8: A pair of Majorana fermions γe,γ
′
e assigned on each edge of the 2d square

lattice.

of the dual lattice. The product for X 1, Z2 is also taken analogously. We will define a logical
gate which transforms the Pauli gates as

X 1→ X 1Z2 , X 2→ X 2Z1 , Z1→ Z1 , Z2→ Z2 , (38)

i.e., it acts as the C Z gate on the code space of the (2+1)D Z2 toric code. The above logical
gate generates the global symmetry that induces the permutation of anyons m→ ψ, e→ e of
the Z2 gauge theory. While such a symmetry action shifting self-statistics is impossible with
the bosonic unitary operators, it becomes possible when we stack the toric code with an ancilla
atomic insulator, and consider the logical gate U involving fermions.

The logical gate U is given by

U = V × Z1Z2 , V =
∏

e

(γeγ
′
e)

1−Ze
2 ×

∏

p=(0123)

�

γ
1−Z01

2
01 γ

1−Z12
2

12 γ
′ 1−Z23

2
23 γ

′ 1−Z30
2

30

�

, (39)

where the vertices of a plaquette p = (0123) is labeled by numbers as shown in Fig. 8. One

can notice that each Majorana fermion operator γ
1−Ze

2
e appears twice in the expression of V ,

once in the first product over edges, and also once in the second product over plaquettes. The

same also holds for γ
′ 1−Ze

2
e . So, after reordering the Majorana fermions in the expression of V ,

it becomes an almost trivial operator given by ±1 sign, which does not have fermions in its
expression. However, this sign depends on the eigenvalues of Z on edges, so the operator V
can give a non-trivial logical gate acting on the code space of the toric code.

Let us study the action of V on the eigenstates of Z operators. For simplicity, we write the
eigenvalue of each (1− Ze)/2 operator as αe ∈ {0,1}, and label the eigenstate as |{αe}〉. One
can regard α as a Z2-valued cocycle α ∈ Z1(Σ,Z2) in the code space where δα= 0 is satisfied
on each plaquette. As we discussed earlier, the operator V acts as a sign ±1 on each eigenstate,

V |{αe}〉= σ(α) |{αe}〉 , σ(α) ∈ {±1} . (40)

In fact, this sign σ(α) is expressed in terms of the Grassmann integral, where the Grassmann
variables are assigned on edges of the square lattice. Concretely, suppose that we introduce
a pair of Grassmann variables θe,θ

′
e on each edge, where the position of each Grassmann

variable θe,θ
′
e are identified as that of γe,γ

′
e respectively. Then, the above sign σ(α) can be

written in terms of the Grassmann integral as

σ(α) =
∏

e

(dθedθ ′e)
αe ×

∏

p=(0123)

�

θ
α01
01 θ

α12
12 θ

′α23
23 θ

′α30
30

�

. (41)

This Grassmann integral is called the Gu-Wen Grassmann integral [39, 45, 46], which is used
to describe a partition function of the (1+1)D fermionic Gu-Wen SPT phase. As we will review
in Appendix D, the Grassmann integral has the quadratic property that

σ(α)σ(α′) = σ(α+α′)(−1)
∫

Σ
α∪α′ , (42)
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within the subspace with zero flux where δα = δα′ = 0 is satisfied. Also, when α is given by
a coboundary α = δbv where bv ∈ C0(Σ,Z2) is a 0-cochain which is nonzero only on a single
vertex v, one can check that [46]

σ(δbv) = 1 . (43)

This property ensures that the operator U commutes with the star operator
∏

v⊂e X e of the
Hamiltonian within the subspace with zero flux δα= 0. This can be seen by

U

�

∏

v⊂e

X e

�

U

�

∏

v⊂e

X e

�

|{αe}〉= σ(α)σ(α+δbv) |{αe}〉= σ(δbv) |{αe}〉= |{αe}〉 . (44)

Also, U obviously commutes with the plaquette operator of the toric code, as well as the
fermionic terms for the Hamiltonian of the atomic insulator. So, U indeed gives the logical
gate.

Using the above quadratic property, one can compute the commutation relation between
U and Pauli logical gates. U obviously commutes with Z1, Z2 gates, and the commutation
relation between X gates within the code space are given by

UX 1UX 1 |{αe}〉= −σ(α)σ(α+ bC ′y) |{αe}〉

= (−1)1+
∫

Σ
α∪bC ′y ×σ(bC ′y) |{αe}〉

= (−1)
1+
∫

Cy
α ×σ(bC ′y) |{αe}〉

= −Z2 ×σ(bC ′y) |{αe}〉

= Z2 |{αe}〉 ,

(45)

where bC ′y ∈ Z1(Σ,Z2) is a 1-cocycle which is nonzero on the edges cutting the loop C ′y . In
the last equation we used σ(Cy) = −1, which can be checked by explicit computation of the
Grassmann integral. By similar computation, we also get

UX 2UX 2 |{αe}〉= Z1 |{αe}〉 . (46)

This shows the action of U as the C Z gate in Eq. (38).

3.2 SWAP logical gate of double semion model

Using the same method as the case of Z2 toric code, one can also obtain the logical gate of the
double semion model that corresponds to the permutation of anyons s↔ s. To describe the
double semion model, we utilize the same lattice model as presented in Sec. 2.1. That is, we
have a four-dimensional qudit on each edge of the square lattice, characterized by generalized
Z4 Pauli operators Z , X satisfying Z4 = X 4 = 1, ZX = iX Z . In order to implement the logical
gate, we also introduce an additional complex fermion on each edge. The Hamiltonian is then
given by

H = −
∑

v

Av −
∑

p

Bp −
∑

e

Ce −
∑

e

iγeγ
′
e , (47)

where the definitions of each term is described in Fig. 5. The ground state of the Z2 toric code
on a torus stores two logical qubits, where the Pauli logical gates are given by

Z1 =Ws(Cx) , X 1 =Ws(Cy) , Z2 =Ws(Cx) , X 2 =Ws(Cy) , (48)

where Ws, Ws are the line operators for a semion and anti-semion respectively, which are given
by the string operators for em, em3 particles of Z4 toric code as shown in Fig. 6. The logical
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gate is then given by

U = V × Z1Z2X 1X 2 , V =
∏

e

(γeγ
′
e)

1−Z2
e

2 ×
∏

p=(0123)

�

γ
1−Z2

01
2

01 γ
1−Z2

12
2

12 γ
′

1−Z2
23

2
23 γ

′
1−Z2

30
2

30

�

. (49)

One can compute the action of this logical gate on the eigenstate of Z2 operators on edges.
We write the eigenvalue of each (1− Z2

e )/2 operator as αe ∈ {0, 1}, and write some eigenstate
with the eigenvalues {αe} as |{αe}〉. One can regard α as flat Z2 gauge field α ∈ Z1(Σ,Z2).
The operator V again acts on |{αe}〉 by a phase σ(α). The commutation relations between the
Pauli logical gate within the code space is given by

UX 1UX 1 |{αe}〉= −σ(α)σ(α+ bC ′y) |{αe}〉

= (−1)1+
∫

Σ
α∪bC ′y ×σ(bC ′y) |{αe}〉

= (−1)
1+
∫

Cy
α ×σ(bC ′y) |{αe}〉

= −X 1X 2 ×σ(bC ′y) |{αe}〉

= X 1X 2 |{αe}〉 ,

(50)

where we note that the Wilson line for α along y direction is given by the product of Z2

operator which represents the composite particle ss, so it can be expressed as X 1X 2. Based on
the similar computations, we obtain

UX 2UX 2 = X 1X 2 , U Z1U Z1 = Z1Z2 , U Z2U Z2 = Z1Z2 , (51)

which means that U acts as the logical SWAP gate on the code space. Note that the above
action on the Pauli operators corresponds to the exchange of anyons s↔ s.

4 Time-reversal symmetry defect with fermions: Inflow of exotic
invertible phase

Here, we consider invertible fermionic interface between two (2+1)D topological phases C
and C′, in the case where the (2+1)D phases are defined on the boundary of a (3+1)D bosonic
invertible topological phase in the bulk. We note that we do not require C = C′, while in Sec. 2
we studied the defect that interpolates a (2+1)D phase C and itself. When the fermionic
interface is realized as a termination of the bulk interface on the boundary, one can have an
anomalous action of the fermionic interface which cannot be realized in a stand-alone (2+1)D
system not coupled with the bulk.

The anomalous action of the fermionic interface can be understood as follows. First, even
when the interface is realized as the termination on the boundary, the relation Eq. (23) is
still valid for the invertible map ρ from the anyons of C to those of C′ induced by the gapped
interface. Hence, we can again write the shift of the self-statistics of anyons as the mutual
braiding,

θa

θρ(a)
= Mv,a , (52)

with v an Abelian anyon with Z2 fusion rule, and a ∈ C,ρ(a) ∈ C′. As we have seen in
Sec. 2.3, such a map ρ between anyons shifts chiral central charge exp(2πic−/8) by (θv)−1,
so the interface of a purely (2+1)D phase not coupled with the bulk must have θv = 1, i.e.,
v must be a boson. In that case, one can fuse the gauged Gu-Wen SPT defect Uξ,v with the
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fermionic gapped interface to define a bosonic interface V between C and C′. Noting that V
is invertible, V must induce an automorphism between C and C′, so actually we have C = C′
up to automorphism. Hence, the invertible fermionic interface of a purely (2+1)D phase is
always realized as an invertible fermionic defect of C, which has been studied in Sec. 2.

Meanwhile, the shift of chiral central charge by the interface is possible when the (2+1)D
phase is defined on the boundary of the (3+1)D Walker-Wang model. In that case, it is realized
as a gapped interface that connects the Walker-Wang models with distinct surface topological
order. Such a fermionic interface shifting the chiral central charge is referred to as being
anomalous.

In this section, we study a curious example of the anomalous fermionic interface, where
the interface is associated with an orientation-reversal of spacetime, i.e., the interface lies
between C and its orientation-reversal C. We will see that such an interface can be realized
by an exactly solvable Hamiltonian model in (3+1)D with spatial reflection symmetry along
the plane. We take the Walker-Wang model with surface topological order C = U(1)2, and
the reflection plane works as interpolating between the Walker-Wang model with C = U(1)2
and that with orientation-reversal C = U(1)−2. The reflection plane supports the fermionic
interface shifting chiral central charge c− by −2. The global symmetry of the model is the
spatial reflection symmetry together with Z f

2 fermion parity defined on the reflection plane.
Interestingly, the bulk of this system is regarded as a non-trivial (3+1)D invertible topo-

logical phase based on the above global symmetry. We will see that the model generates the
Z8 classification of the (3+1)D invertible phase, by showing that the (2+1)D boundary for
eight copies of this model becomes a trivial gapped phase by the interactions on the boundary
respecting the global symmetry.

This model is described by effective invertible TQFT referred to as an exotic invertible
phase in [36,37], and we discuss the relation between our model and the effective field theory
later in this section.

4.1 Exotic invertible phase with reflection symmetry: Lattice model

Here, we construct an exactly solvable model for the fermionic interface of the Walker-Wang
model with spatial reflection symmetry. The spatial reflection plane supports the fermionic
interface in the model, which interpolates the U(1)2 topological order and its orientation re-
versal on the boundary. The schematic figure for the (3+1)D phase realized in our model is
described in Fig. 9. Since the reflection plane supports fermions, the global symmetry of the
(3+1)D phase is the reflection symmetry and the “subsystem” fermion parity Z f

2 localized on
the reflection plane. As we will see later, the (3+1)D phase in our model realizes a non-trivial
invertible topological phase protected by the combination of the global symmetries, and it
generates the Z8 classification of the invertible topological phase.

4.1.1 Review: Construction of U(1)2 Walker-Wang model in (3+1)D

Our model utilizes a Hamiltonian model for U(1)2 Walker-Wang model constructed in [47],
so let us review the construction here. To describe a U(1)2 Walker-Wang model, we start with
a Walker-Wang model based on Z[1]4 TQFT. Here, Z[1]4 TQFT is a (2+1)D Abelian TQFT with
fusion group Z4 generated by a semion s with trivial F symbol. This theory is not modular since
the anyon s2 is transparent, and the Walker-Wang model based on Z[1]4 has a bulk topological
order given by (3+1)D Z2 gauge theory. We define a Hamiltonian on a 3d cubic lattice with
a four-dimensional qudit on each edge of the lattice, characterized by generalized Z4 Pauli
operators Z , X obeying the Z4 clock and shift algebra

Z4 = X 4 = 1 , ZX = iX Z . (53)
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Figure 9: Schematic figure for the (3+1)D state realized in our model. The state has
a spatial reflection symmetry and a subsystem Z f

2 symmetry that acts on fermions
localized on the reflection plane.

The Hamiltonian of Z[1]4 Walker-Wang model takes the form of

eH = −
∑

v

Av −
∑

p

eBp + h.c. , (54)

where Av is defined on each vertex of a cubic lattice, and eBp is on each plaquette. The definition
of these terms are given in Fig. 10. As shown in [47], the Hamiltonian eH has a (3+1)D topo-
logical order given by Z2 gauge theory. The electric particle is generated by string operators
Ce defined on edges as Fig. 11. These string operators satisfy

eB2
p =

∏

e∈p

Ce , C2
e = 1 . (55)

Also, the string operators satisfy the commutation relation between the Hamiltonian

CeAv =

¨

−AvCe , if v ∈ e ,

+AvCe , if v /∈ e ,
[Ce, eBp] = [Ce, Ce′] = 0 , (56)

which means that the operator Ce on e = 〈vv′〉 creates a pair of electric particles on vertices v
and v′, characterized by Av = Av′ = −1.

Starting with the Z[1]4 Walker-Wang Hamiltonian eH, one can obtain a lattice model for the
(3+1)D invertible phase by condensing the electric particle. The condensed Hamiltonian has
the form of

HU(1)2 =
∑

p

eBp + h.c.−
∑

e

Ce (57)

which is obtained by adding the hopping terms Ce of the electric particle to eH, and picking
the terms of eH that commute with the hopping terms. The Hamiltonian HU(1)2 does not host
topological order in the bulk, but it turns out that the (2+1)D boundary of the (3+1)D bulk
hosts a chiral topological order realized by U(1)2, where a semion becomes a deconfined anyon
excitation on the boundary.

Let us now describe the bulk-boundary Hamiltonian for HU(1)2 . For simplicity, we consider
a “half-infinite” geometry where the model is defined on the region z ≤ 0 in the 3d Euclidean
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Figure 10: The Hamiltonian for Z[1]4 Walker-Wang model.

space, and the boundary is supported on the 2d plane z = 0. The bulk-boundary Hamiltonian
is then given by the same form as the case without boundary,

HU(1)2 =
∑

p

eBp + h.c.−
∑

e

Ce (58)

where we simply define the boundary Hamiltonian as the truncation of the terms in the bulk.
To see the topological order on the (2+1)D boundary at z = 0, we explicitly describe the
operators that creates a pair of semions on the boundary. Let us consider an operator Xe for
each edge e = 〈vv′〉, which works on the boundary as a hopping term for a semion that creates
a pair of anyons at the adjacent vertices v, v′. This operator Xe is defined in both bulk and
boundary, and depends on the direction of the edge e = 〈vv′〉, satisfying X〈vv′〉 = X †

〈v′v〉 = Xe.
Xe is given by Fig. 11 in the bulk, and Xe on the boundary is defined by truncation. Xe satisfies
the following properties,

ZeXe = iXeZe , ZeXe′ = Xe′Ze , (59)

eBp = X12X23X34X41Z2
O , (60)

X 2
e = Ce , (61)

where O labels an edge determined relatively by the configuration of the plaquette p as de-
scribed in Fig. 11. Note that due to the truncation on the boundary, the operators Xe on the
boundary z = 0 satisfies

eBp = X12X23X34X41 , (62)

which means that a closed line operator for Xe on the boundary commutes with the Hamilto-
nian, while it does not in the bulk. This line operator for Xe is identified as an Wilson line of
the semion s on the boundary. Due to the relation X 2

e = Ce, fusing two semions gives a trivial
anyon condensed on both bulk and boundary.

4.1.2 Hamiltonian for the exotic invertible phase

Now we obtain a reflection symmetric model starting with a U(1)2 Walker-Wang Hamiltonian
HU(1)2 . We prepare our model on the cubic lattice of a 3d Euclidean space with a reflection
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Figure 11: The operators that correspond to short string operators for anyons.

plane at x = 0. Since the reflection plane supports a fermionic defect, we introduce a complex
fermion on each vertex v on the reflection plane x = 0. A complex fermion on a vertex v is
represented by a pair of Majorana fermions γv ,γ′v . Also, at the reflection plane x = 0, we
introduce a pair of Z4 qudits {X e;l , Ze;l}, {X e;r , Ze;r} for each edge e. The reflection symmetry
acts trivially on operators as

R(γv) = γv , R(γ′v) = γ
′
v , R(X e) = XR(e) , R(Ze) = ZR(e) , (63)

where we define R(X e;l) := X e;r , R(Ze;l) := Ze;r .
The reflection symmetric Hamiltonian can be obtained by preparing the Hamiltonian

HU(1)2;l on the left region x ≤ 0 with boundary at x = 0 and its reflection partner HU(1)−2;r
on the right x ≥ 0, and then gluing them along the reflection plane x = 0. The Hamil-
tonian HU(1)2;l is simply given by the truncation of HU(1)2 for the boundary Hamiltonian
near x = 0, and the boundary qudits of HU(1)2;l are given by {X e;l , Ze;l}. We then define
HU(1)−2;r := R(HU(1)2;l) for the Hamiltonian at x ≥ 0.

We glue the Hamiltonians at x = 0 by condensing the pair of semions from each bound-
ary on the left and the right, combined with a local fermion on the reflection plane. This
condensation is done by adding a term on the reflection plane x = 0 in the form of

∑

e=〈vv′〉
∈{x=0}

iγvγv′Xe;lXe;r , (64)

which is a hopping term of a pair of semions together with a Majorana fermion on the reflection
plane. One can check that the operators in the form of iγvγv′Xe;lXe;r commutes with each
other, since Xe satisfies the commutation relation

XeXe′ =

¨

±iXe′Xe , if e, e′ share a single vertex,

Xe′Xe , if e, e′ don’t share a vertex, or e = e′ ,
(65)

where the sign of ±i depends on the detail of the position of e, e′ but not important for the
discussion here.

We note that simply adding the term iγvγv′Xe;lXe;r to the reflection plane does not give a
commuting Hamiltonian, since iγvγv′Xe;lXe;r is not commuting with the eBp, Ce terms on the
boundary of HU(1)2;l , HU(1)−2;r . So, we have to modify the Hamiltonians HU(1)2;l , HU(1)−2;r near
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Figure 12: The plaquette terms eBp on the left region touching the reflection plane.
The blue dots denote the fermion parity operator (−1)Nv = iγvγ

′
v supported on the

reflection plane. The Hamiltonians on the right are defined as the reflection partners
of them.

the boundary so that they commute with iγvγv′Xe;lXe;r . The Ce operators of HU(1)2;l , HU(1)−2;r
are modified to C ′e for e = 〈vv′〉 given by

C ′e = CePv Pv′ , (66)

where Pv is defined as
¨

Pv = 1 if v is not on the reflection plane x = 0

Pv = (−1)Nv if v is on the reflection plane x = 0
(67)

Also, the eBp are also modified near the reflection plane as shown in Fig. 12. Let us denote
the modified Hamiltonians as H ′U(1)2;l , H ′U(1)−2;r . One can see that these Hamiltonians are now
commutative with each term in the form of iγvγv′Xe;lXe;r . Then, the Hamiltonian for the
exotic invertible topological phase on the 3d Euclidean space is expressed as

H = H ′U(1)2;l +H ′U(1)−2;r −









∑

e=〈vv′〉
∈{x=0}

iγvγv′Xe;lXe;r + h.c.









. (68)

One can see that the reflection plane does not carry ground state degeneracy if the reflection
plane is supported on a torus, so the reflection plane does not host topological order. This
implies that the bulk of this (3+1)D model is invertible. The detailed discussion is relegated
to Appendix C.

4.1.3 Surface topological order of exotic invertible phase

Let us now consider the (2+1)D boundary of the exotic invertible phase by constructing a
bulk-boundary system. As reviewed in Sec. 4.1.1, we put the (3+1)D bulk on a region z ≤ 0,
and the boundary is supported on a 2d plane z = 0. The bulk-boundary Hamiltonian is then
simply defined by truncating the terms near the boundary,

H = H ′U(1)2;l +H ′U(1)−2;r −









∑

e=〈vv′〉
∈{x=0}

iγvγv′Xe;lXe;r + h.c.









. (69)
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Figure 13: The Wilson line operator of the surface U(1)2 topological order crossing
the 1d domain domain wall. When the line operator crosses through the domain
wall, the intersection supports a Majorana fermion (white dot).

The (2+1)D boundary of this system realizes a fermionic gapped domain wall separating U(1)2
and U(1)−2 topological order as schematically shown in Fig. 9. The domain wall transforms
the semion of U(1)2 to an anti-semion of U(1)−2, which is regarded as the time-reversal action
T : U(1)2→ U(1)−2. To find this action of the domain wall on the anyon, we explicitly describe
a line operator of the semion crossing through the domain wall on the reflection plane.

For this purpose, we recall that the plaquette operator eBp on the boundary is regarded as
a small loop of the Wilson line for the semion, as shown in Eq. (62). So, one can obtain the
form of the line operator surrounding a closed region by multiplying the eBp operators inside
the region. Then, let us pick a disk region D on the 2d boundary, where D is separated by the
reflection plane into two regions Dl , Dr . Let us denote the interval for the 1d domain wall W
contained in the region D. If we take the product of eBp operators inside D, we then have

∏

p⊂D

eBp =
∏

e⊂∂ Dl
anti-clockwise

Xe

∏

e⊂∂ Dr
clockwise

Xe =







∏

e⊂∂ D∩∂ Dl
anti-clockwise

Xe

∏

e⊂∂ D∩∂ Dr
clockwise

Xe






·
∏

e∈W

Xe;lXe;r . (70)

Here, the term inside the parenthesis is supported on ∂ D and regarded as a line operator of
an anyon, while the last term is the unwanted contribution on the domain wall. See Fig. 13
for the configuration of operators. Note that one can eliminate the terms on the domain walls
by multiplying the terms of the Hamiltonian with the form iγvγv′Xe;lXe;r on the domain wall.
Then we obtain the closed line operator on ∂ D as

∏

p⊂D

eBp ·
∏

e∈W

iγvγv′Xe;lXe;r∝







∏

e⊂∂ D∩∂ Dl
anti-clockwise

Xe

∏

e⊂∂ D∩∂ Dr
clockwise

Xe






· γvd

γvu
, (71)

where vd , vu are two vertices located at the intersection between ∂ D and the domain wall. This
means that a pair of semions from U(1)2, U(1)−2 can terminate at the domain wall, leaving a
Majorana fermion γ at the termination. In other words, the fermionic domain wall transforms
the anyons according to the action T : U(1)2→ U(1)−2, shifting the spin of the anyon by 1/2
on the fermionic domain wall.

4.2 Eight copies of exotic invertible phases: Z8 classification

Here, we argue that our model generates the Z8 classification of the (3+1)D invertible phase
with spatial reflection and Z f

2 fermion parity on the reflection plane. We demonstrate the Z8
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classification by explicitly taking eight copies of our models, and describing a way of anyon
condensation on (2+1)D boundary respecting the symmetry that turns the boundary theory
into a trivial gapped state. The argument is in a similar spirit to the seminal work by Fidkowski
and Kitaev [48], which showed that the boundary of eight copies of Majorana chains is turned
into a trivial gapped state by quartic interactions of fermions on boundary preserving time-
reversal symmetry.

On the left of the reflection plane, (2+1)D boundary of eight copies of exotic invertible
phases is given by (U(1)2)8 topological order, which has eight semions s j for j = 1, . . . , 8. The
topological order can be transformed into a trivial gapped phase by condensing the following
anyons of the Lagrangian subgroup GFK generated by 5

{1, s1s2s3s4, s5s6s7s8, s1s2s5s6,

s3s4s7s8, s2s3s6s7, s1s4s5s8, s1s3s5s7,

s3s4s5s6, s1s2s7s8, s2s3s5s8, s1s4s6s7,

s2s4s6s8, s1s3s6s8, s2s4s5s7, s1s2s3s4s5s6s7s8} .

(72)

These anyons are obviously bosons since a quartet of semions has topological twist i4 = 1.
This group is (Z2)4, generated by four anyons

s1s2s3s4, s5s6s7s8, s1s2s5s6, s1s3s5s7 . (73)

Since these four bosons mutually braid trivially with each other, these anyons generate La-
grangian subgroup by fusion. Though one can suppress the topological order by condensing
anyons (72) away from the reflection plane, it is still non-trivial whether one can trivially gap
out the whole system in the presence of a fermionic gapped interface on the reflection plane.

To see what happens near the reflection plane, let us consider the eight copies of
(2+1)D boundary folded at the reflection plane, see Fig. 14. The folded theory is given by
(U(1)2)8 × (U(1)2)8, where each (U(1)2)8 represents the left or right of the reflection plane.
Let us write the semions of each (U(1)2)8 as {s j} and {s′j} for 1 ≤ j ≤ 8. The reflection plane

is then regarded as a fermionic gapped boundary of (U(1)2)8× (U(1)2)8, given by condensing
fermions {s js

′
j} for each j on the boundary. In our lattice model, the line operator of a fermion

s js
′
j terminates at the boundary with a Majorana fermion γ j . Let us denote this fermionic

boundary condition of (U(1)2)8 × (U(1)2)8 as B f .
Meanwhile, we can condense the bosons listed in Eq. (72) away from the reflection plane

for each (U(1)2)8. One can perform this anyon condensation away from the reflection plane,
making a bosonic gapped boundary of (U(1)2)8 × (U(1)2)8 characterized by Lagrangian sub-
group GFK×GFK. This process obviously respects the spatial reflection symmetry. Let us denote
this bosonic boundary condition as BFK. Then, the folded system is given by a thin slab of
(U(1)2)8 × (U(1)2)8 sandwiched by the boundary conditions BFK and B f , see Fig. 14.

It turns out that this thin slab carries the nontrivial ground state degeneracy, and we need
to further turn on interaction terms on the slab to obtain a trivial gapped state. To count the
ground state degeneracy of the slab, suppose that the slab is prepared on a space S1×I with I an
interval.6 The slab S1× I is regarded as a sphere S2 with two punctures. By shrinking the punc-
tures into points, the spatial geometry reduces to S2 with insertions of two Lagrangian algebra
anyons LFK = LFK and L f which correspond to each boundary condition on two boundary
circles respectively [44, 49]. Hence, the dimension of the Hilbert space on the slab is given

5Here the subscript refers to Fidkowski-Kitaev, since the quartet of semions represented here has the exactly
same form of the interaction terms of eight Majorana fermions introduced in [48].

6Since we introduce fermions on one boundary of the slab, we need to introduce spin structure on the boundary
S1. For simplicity, let us assume that S1 on one boundary of the slab is equipped with NS spin structure.
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Figure 14: For eight copies of boundaries of exotic invertible phases, we fold the
system at the reflection plane and consider (U(1)2)8× (U(1)2)8 topological order. By
performing anyon condensation of GFK×GFK away from the reflection plane, one ob-
tains a thin slab of (U(1)2)8×(U(1)2)8 bounded by two distinct bosonic and fermionic
gapped boundary conditions.

by the number of anyons in the group LFK ∩ L f . Writing ψ j := s js
′
j , the group LFK ∩ L f is

generated by the anyons

ψ1ψ2ψ3ψ4,ψ5ψ6ψ7ψ8,ψ1ψ2ψ5ψ6,ψ1ψ3ψ5ψ7 , (74)

and has order 24 = 16. The slab hence carries the 16-fold ground state degeneracy, and each
ground state is characterized by the eigenvalue of small line operators of anyons LFK ∩ L f
extended along the interval I terminating on the boundaries. The degeneracy can be lifted
by further condensing the sixteen particles of LFK ∩ L f for both bulk and boundary of the
slab. When the width of the slab is taken thin enough, the anyon condensation of the above
particles is performed locally, and this process respects the reflection symmetry since the above
anyons in Eq. (74) is reflection invariant. Physically, the condensation of anyons (74) amounts
to turning on quartic interaction term of Majorana fermions on the fermionic interface which
is the same as the one introduced in [48], since ψ terminates at the interface leaving the
Majorana fermion operator γ. It shows that the boundary for eight copies of the (3+1)D phase
can be brought to a trivial gapped phase by anyon condensation on the boundary respecting
the global symmetries.

4.3 Effective field theory of exotic invertible phase

Here we review the effective field theory for the exotic invertible phase developed in [36,37],
and then make contact with our lattice Hamiltonian model. Roughly speaking, the effective
field theory for the exotic invertible phase is given by the (3+1)D Crane-Yetter-Walker-Wang
TQFT [35, 50] with U(1)2 topological order on its boundary, in the presence of spacetime
orientation-reversing (i.e., time-reversal) defects.

The Crane-Yetter-Walker-Wang model with U(1)2 on its boundary is described by a Z2
gauge theory with the 2-form dynamical Z2 gauge field b ∈ Z2(M4,Z2), with the action [51,
52]

exp

�

2πi
4

∫

M4

P(b)
�

, (75)

where P(b) = b∪ b− b∪1δb is the Pontryagin square, which gives an element of H4(M4,Z4).
Let us consider the time-reversal defect of this theory. Since the time-reversal conjugates

the action, the theory is obviously non-invariant under the time-reversal. This can be under-
stood as the time-reversal anomaly of the action given by a (4+1)D theory

exp

�

πi

∫

5D

w1 ∪ b ∪ b

�

, (76)
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where w1 is the first Stiefel-Whitney class of the spacetime manifold that represents the
Poincaré dual of time-reversal defect. Though this anomaly obstructs from making b dynam-
ical while respecting time-reversal symmetry, one can cancel out this anomaly by introducing
an additional fermionic theory on the time-reversal defect. To see this, let us rewrite the above
(4+1)D action for the anomaly as

exp

�

πi

∫

W
b ∪ b

�

, (77)

where W is an oriented 4-manifold given by the Poincaré dual of w1. Due to the Wu for-
mula [53], w2(TW )∪ b+ b∪ b is exact as an element of H4(W,Z2). So, when the time-reversal
defect W is equipped with spin structure ξ satisfying δξ = w2(TW ), one can trivialize the
above anomaly by coupling the theory with spin structure of W . Indeed, it turns out that one
can explicitly construct a local action for (2+1)D fermionic theory living on the time-reversal
defect W 3 of M4, which has exactly the same anomaly as Eq. (77) [39]. We write the action
for the fermionic theory as

exp

�

πi

∫

W 3

qξ(b)

�

, (78)

whose partition function is given by ±1 for any closed manifold W 3. After all, the combined
action

exp

�

2πi
4

∫

M4

P(b) +πi

∫

W 3

qξ(b)

�

, (79)

preserves the time-reversal symmetry. In [37], it is shown that this Z2 gauge theory defines
a (3+1)D invertible phase with time-reversal symmetry and spin structure (Z f

2 symmetry) on
the time-reversal defect.

Note that our lattice Hamiltonian model simulates the (3+1)D topological action described
above. In our model, the orientation-reversing defect is realized as a spatial reflection plane
that interpolates the domain of U(1)2 Walker-Wang model and its reflection partner. Then,
the fermionic wave function supported on it is regarded as a theory exp

�

πi
∫

W 3 qξ(b)
�

in the

action, which is based on “subsystem” Z f
2 symmetry that corresponds to the spin structure ξ

of the defect.
While we have shown that our lattice model generates the Z8 classification of the invertible

phase with spatial reflection and subsystem Z f
2 symmetry, one can also obtain the Z8 classifica-

tion of the invertible phase at the level of effective field theory. This can be seen by evaluating
the above path integral Eq. (79) on a closed 4-manifold equipped with the spin structure on the
orientation-reversing defect, and checking that it is always given by exp(2πiν/8) with ν ∈ Z8,
see [37] for the detailed discussions. For example, it is known that the partition function of
the above theory evaluated on an oriented manifold is given by exp(2πiσ(M4)/8)withσ(M4)
the signature of the manifold, so the partition function on e.g., CP2 is given by exp(2πi/8).

While our theory requires the spin structure ξ of the orientation-reversing defect W 3, ξ can
also be regarded as a certain geometric structure of the whole spacetime manifold. The spin
structure ξ on the orientation-reversing defect satisfies δξ = w2(TW 3), and w2(TW 3) can
be represented by some 1-cycle of the orientation-reversing defect W 3. It was shown in [37]
that when we regard this 1-cycle as an element of Z1(M4,Z2) by embedding in the whole
spacetime M4, this 1-cycle represents the class (w1w2)(T M4). Hence, the choice of ξ in tern
specifies the trivialization of the third cohomology class δξ′ = w1w2(T M4). This spacetime
structure characterized by δξ′ = w1w2(T M4) is called Wu structure, which is regarded as a 2-
group which is the mixture between Z2 1-form symmetry and the spacetime Lorentz symmetry,
where the third Postnikov class is given by w1w2(T M4) [36]. The above effective field theory
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Eq. (79) is regarded as the invertible TQFT that depends on Wu structure of a spacetime
manifold.

4.4 Discussions: Relation to non-trivial QCA and topological superconductor

Here, let us make a comment on the unitary operator that disentangles our 3d lattice model.
When a gapped state with spatial reflection symmetry is short-range entangled, one can think
of applying finite-depth local unitary (FDLU) in a reflection symmetric fashion to disentan-
gle the bulk of the state, which obviously respects the reflection symmetry of the state. After
performing the FDLU, the original state reduces to the state localized in the vicinity of the
reflection plane, since the state away from the reflection plane is decoupled. This process is
indeed useful for classifying the SPT phase with spatial reflection symmetry, since it reduces
the original state with spatial symmetry to the lower-dimensional state localized at the reflec-
tion plane, where the reflection symmetry now acts internally. This idea is called dimensional
reduction [54], and used to classify a large class of SPT phases with generic crystalline symme-
try. For example, the (3+1)D bosonic invertible phase with reflection symmetry is classified by
Z2×Z2 [55,56], and one of generators for Z2 reduces to the (2+1)D SPT phase with internal
Z2 symmetry by dimension reduction, which is also classified by H3(BZ2, U(1)) = Z2.

Meanwhile, the bulk of our 3d lattice model cannot be disentangled by the FDLU,7 hence
one cannot carry out the dimension reduction to reduce the state to the lower-dimensional
(2+1)D fermionic phase. This statement is based on a conjecture that the unitary that disen-
tangles the Walker-Wang model with chiral surface topological order gives a non-trivial quan-
tum cellular automata (QCA) [57]. Here, non-trivial QCA means a locality-preserving unitary
that cannot be prepared by FDLU. An explicit construction of QCA that disentagles the U(1)2
Walker-Wang model utilized in our model is given in [47], so we instead have to apply this
QCA for disentangling the bulk of the exotic invertible phase.

Let us also comment on the relation between our model and the (3+1)D fermionic in-
vertible phase with reflection symmetry. While our 3d model has fermions localized at the
2d reflection plane, one can introduce additional complex fermions away from the reflection
plane, and make them simply define a trivial atomic insulator. Then, we can obtain a model
for the (3+1)D fermionic invertible phase with reflection symmetry (acting as R2 = 1). The
(3+1)D fermionic invertible phase with reflection is classified by Z16 [40, 54]. The resulting
phase after introducing additional fermions to our model gives the ν = 2 phase in the Z16
classification. It should be noted that this ν = 2 phase is also realized by an isolated location
of (2+1)D Z2×Z

f
2 SPT phase classified by Z8 [58] at the reflection plane, with a trivial atomic

insulator elsewhere [54]. The reflection symmetry acts as internal Z2 symmetry at the reflec-
tion plane, and this picture of ν = 2 phase seems to imply that one can perform dimension
reduction of our exotic invertible phase in the presence of additional fermions. It is likely that
the bulk of the exotic invertible phase can be turned to a trivial bosonic product state with
trivial atomic insulator by fermionic FDLU.

So, after introducing additional fermions to the bulk, we expect that the bosonic QCA
that disentangles the U(1)2 Walker-Wang model is regarded as fermionic FDLU, i.e., trivial as
a “fermionic QCA” which should be defined as the locality-preserving unitary of fermionic
Fock space respecting Z f

2 symmetry. Meanwhile, the fermionic surface topological order
U(1)2 × U(1)−1 does not admit a fermionic gapped boundary, though it does not carry chi-
ral central charge.8 It seems incompatible with the above statement that U(1)2 Walker-Wang

7Here, by FDLU we mean the unitary circuit which is exactly local, where we do not allow the circuit to have
exponentially decaying tails.

8It can be checked as follows. When the fermionic theory admits a gapped boundary, one of its bosonic modular
extensions must have a bosonic gapped interface with untwisted Z2 gauge theory D(Z2) [44]. Meanwhile, the
bosonic modular extension of U(1)2×U(1)−1 with c− = 0 mod 8 is given by U(1)2×U(1)−4, which does not admit
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model with local fermions can be disentagled by the fermionic FDLU, since such a FDLU would
make it possible to define a commuting projector Hamiltonian for the U(1)2×U(1)−1 topologi-
cal order, starting with the U(1)2 Walker-Wang model and disentangling the bulk by fermionic
FDLU. It contradicts with the widely held belief that the topological order that does not admit
gapped boundary cannot have a realization by a commuting projector Hamiltonian model. It
would be interesting to resolve this problem by developing the understanding for fermionic
analogue of QCA.
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A Detailed analysis of the gauged Gu-Wen SPT defects

In this appendix, we perform explicit computations to derive the algebraic properties of gauged
Gu-Wen SPT defect

Uξ,a(Σ) =
1

p

|H1(Σ,Z2)|
Arf(ξ)

∑

Γ∈H1(Σ,Z2)

Wa(γ)exp

�

iπ

∫

Σ

qξ(Γ )

�

, (A.1)

with an Abelian boson a with Z2 fusion rule, where γ ∈ H1(Σ,Z2) is the Poincaré dual of Γ .

A.1 Fusion rules

Here we compute the fusion rules described in the main text. First, let us derive the Z2 fusion
rule of Uξ,a. It can be computed as

Uξ,a(Σ)× Uξ,a(Σ) =
1

|H1(Σ,Z2)|

∑

Γ ,Γ ′∈H1(Σ,Z2)

Wa(γ+ γ
′)exp

�

iπ

∫

Σ

qξ(Γ + Γ
′) + Γ ∪ Γ ′

�

=
1

|H1(Σ,Z2)|

∑

Γ ,Γ ′∈H1(Σ,Z2)

Wa(γ
′)exp

�

iπ

∫

Σ

qξ(Γ
′) + Γ ∪ Γ ′

�

=
∑

Γ ′∈H1(Σ,Z2)

Wa(γ
′)exp

�

iπ

∫

Σ

qξ(Γ
′)

�

δ(Γ ′)

= 1 . (A.2)

Next, let us compute the fusion rule Uξ,a × Uξ,a′ when a ̸= a′. As we have seen in the main
text, the fusion outcome depends on the mutual braiding Ma,a′ = ±1. We show the following
fusion rule,

• When the mutual braiding between a, a′ is trivial Ma,a′ = 1, the fusion rule is given by

Uξ,a × Uξ,a′ = Uξ,a×a′ × Va,a′ , (A.3)

a gapped interface with D(Z2).
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where Va,a′ is a bosonic invertible defect with the Z2 fusion rule, defined as

Va,a′(Σ) =
1

|H1(Σ,Z2)|

∑

Γ ,Γ ′∈H1(Σ,Z2)

Wa(γ)Wa′(γ
′)exp

�

iπ

∫

Σ

Γ ∪ Γ ′
�

, (A.4)

with γ,γ′ ∈ H1(Σ,Z2) the Poincaré dual of Γ , Γ ′ respectively.

• When the mutual braiding between a, a′ is non-trivial Ma,a′ = −1, the fusion rule is
given by

Uξ,a × Uξ,a′ = Uξ,a′ × Va×a′ ×Arf(ξ) , (A.5)

where Va×a′ is a bosonic invertible defect with the Z2 fusion rule, defined as

Va×a′(Σ) =
1

p

|H1(Σ,Z2)|

∑

Γ∈H1(Σ,Z2)

Wa×a′(γ) , (A.6)

with γ ∈ H1(Σ,Z2) the Poincaré dual of Γ .

To show Eq. (A.3), we compute the right hand side as

Uξ,a×a′(Σ)× Va,a′(Σ) =
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ

Wa(γ)Wa′(γ)exp

�

iπ

∫

Σ

qξ(Γ )

�

×
∑

Γ ′,Γ ′′
Wa(γ

′)Wa′(γ
′′)exp

�

iπ

∫

Σ

qξ(Γ
′) + qξ(Γ

′′) + qξ(Γ
′ + Γ ′′)

�

=
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,Γ ′′
Wa(γ+ γ

′)Wa′(γ+ γ
′′)

× exp

�

iπ

∫

Σ

qξ(Γ + Γ
′) + qξ(Γ

′′) + qξ(Γ
′ + Γ ′′) + Γ ∪ Γ ′

�

=
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,Γ ′′
Wa(γ+ γ

′)Wa′(γ+ γ
′′)

× exp

�

iπ

∫

Σ

qξ(Γ + Γ
′) + qξ(Γ + Γ

′′) + qξ(Γ + Γ
′ + Γ ′′)

�

=
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,Γ ′′
Wa(γ)Wa′(γ

′)exp

�

iπ

∫

Σ

qξ(Γ ) + qξ(Γ
′) + qξ(Γ

′′)

�

=Uξ,a(Σ)× Uξ,a′(Σ) . (A.7)
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To show Eq. (A.5), we compute Uξ,a′ × Uξ,a × Uξ,a′ as

(Uξ,a′ × Uξ,a × Uξ,a′)(Σ) =

=
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,Γ ′′
Wa(γ)Wa′(γ

′)Wa(γ
′′)exp

�

iπ

∫

Σ

qξ(Γ ) + qξ(Γ
′) + qξ(Γ

′′)

�

=
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,Γ ′′
Wa(γ+ γ

′′)Wa′(γ
′)exp

�

iπ

∫

Σ

qξ(Γ ) + qξ(Γ
′) + qξ(Γ

′′) + Γ ′ ∪ Γ ′′
�

=
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,Γ ′′
Wa(γ+ γ

′′)Wa′(γ
′)exp

�

iπ

∫

Σ

qξ(Γ + Γ
′ + Γ ′′) + Γ ∪ (Γ ′ + Γ ′′)

�

=
Arf(ξ)

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,Γ ′′
Wa(γ)Wa′(γ

′)exp

�

iπ

∫

Σ

qξ(Γ + Γ
′) + Γ ∪ Γ ′ + (Γ + Γ ′)∪ Γ ′′

�

=
Arf(ξ)

|H1(Σ,Z2)|
1
2

∑

Γ ,Γ ′
Wa(γ)Wa′(γ

′)exp

�

iπ

∫

Σ

qξ(Γ + Γ
′) + Γ ∪ Γ ′

�

δ(Γ + Γ ′)

= Va×a′(Σ)×Arf(ξ) . (A.8)

A.2 Permutation action on anyons

Here we derive the permutation action of the gauged Gu-Wen defect Uξ,a on anyons a ∈ C
given by

¨

p→ p , if Mp,a = 1 ,

p→ p× a , if Mp,a = −1 .
(A.9)

The permutation action can be evaluated by computing the fusion outcome of
Uξ,a(Σ) ×Wp(γ) × Uξ,a(Σ), where Wp(γ) is the Wilson line operator for an anyon p on the
curve γ embedded in Σ.

When Mp,a = 1, the operators Wp and Uξ,a simply commute with each other, so we have
Uξ,a(Σ) ×Wp(γ) × Uξ,a(Σ) = Wp(γ) and p is invariant under the symmetry action. When
Mp,a = −1, we have

Uξ,a(Σ)×Wp(γ)× Uξ,a(Σ) =

=
1

|H1(Σ,Z2)|

∑

Γ ′,Γ ′′
Wa(γ

′)Wp(γ)Wa(γ
′′)exp

�

iπ

∫

Σ

qξ(Γ
′) + qξ(Γ

′′)

�

=
1

|H1(Σ,Z2)|

∑

Γ ′,Γ ′′
Wp(γ)Wa(γ

′ + γ′′)exp

�

iπ

∫

Σ

qξ(Γ
′ + Γ ′′) + Γ ∪ Γ ′ + Γ ′ ∪ Γ ′′

�

=
1

|H1(Σ,Z2)|

∑

Γ ′,Γ ′′
Wp(γ)Wa(γ

′)exp

�

iπ

∫

Σ

qξ(Γ
′) + Γ ∪ (Γ ′ + Γ ′′) + Γ ′ ∪ Γ ′′

�

=
∑

Γ ′

Wp(γ)Wa(γ
′)exp

�

iπ

∫

Σ

qξ(Γ
′) + Γ ∪ Γ ′

�

δ(Γ + Γ ′)

=Wp×a(γ)× exp

�

iπ

∫

Σ

qξ(Γ )

�

, (A.10)

which shows that the anyon p is permuted to p× a, and the line operator is dressed with the
(0+1)D spin invertible phase with the action qξ(Γ ) along the curve γ.
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A.3 Summing over spin structures

Here we perform the explicit computation of gauging Z f
2 fermion parity symmetry of the

gauged Gu-Wen defect Uξ,a(Σ) to obtain a bosonic topological defect eUa(Σ),

eUa(Σ) :=
1

|H1(Σ,Z2)|

∑

ξ

Uξ,a(Σ) . (A.11)

The sum over the spin structures can be done by

eUa(Σ) =
1

|H1(Σ,Z2)|
3
2

∑

Γ ′,ξ

exp

�

iπ

∫

Σ

qξ(Γ
′)

�

∑

Γ

Wa(γ)exp

�

iπ

∫

Σ

qξ(Γ )

�

=
1

|H1(Σ,Z2)|
3
2

∑

Γ ,Γ ′,ξ

Wa(γ)exp

�

iπ

∫

Σ

qξ(Γ + Γ
′) + Γ ∪ Γ ′

�

=
1

p

|H1(Σ,Z2)|

∑

Γ ,Γ ′
Wa(γ)exp

�

iπ

∫

Σ

Γ ∪ Γ ′
�

δ(Γ + Γ ′)

=
1

p

|H1(Σ,Z2)|

∑

Γ∈H1(Σ,Z2)

Wa(γ) .

(A.12)

So, the topological defect eUa(Σ) is the condensation defect obtained by gauging the symmetry
generated by the Wilson line operator Wa(γ) on the defect Σ [34].

B Gapped domain wall and Lagrangian algebra

B.1 Review: Lagrangian algebra anyons

We begin with a brief review for some properties of gapped boundary of a bosonic topological
phase without global symmetry. See [49] for detailed descriptions.

Gapped boundary of a (2+1)D bosonic topological quantum field theory (TQFT) is alge-
braically described by an object called a Lagrangian algebra anyon [49, 59–61]. The idea is
that when a TQFT admits a topological gapped boundary condition, we consider cutting out
a solid cylinder from a spacetime 3-manifold. We introduce a gapped boundary condition on
the boundary of the resulting manifold, getting a cylinder of gapped boundary. We shrink the
radius of the cylinder of a gapped boundary, then it eventually becomes a topological line op-
erator of a TQFT, see Fig. 15. So, the tube of the gapped boundary after shrinking is expressed
as a sum of simple anyons in a modular tensor category C,

L=
⊕

a∈C
Z0aa , (B.1)

with non-negative integers Z0a. This object L is called a Lagrangian algebra anyon. Since one
can cap off the tube on the top of it and introduce gapped boundary on the cap, the tube of a
gapped boundary can end at a point. It means that Hom(L, 1) is not empty, and hence Z00 > 0.
See Fig. 15. In general, the Lagrangian algebra anyon with Z00 > 1 is known to decompose
into the sum of those with Z00 = 1. The simple gapped boundary condition is hence described
by the Lagrangian algebra anyon satisfying Z00 = 1.

When Z0a > 0 for some anyon a ∈ C, Hom(L × a,L) is not empty since Z00 > 0. This
implies that the Wilson line of a can end on the tube of gapped boundary, meaning that a
is condensed on the boundary. So, anyons with Z0a > 0 is physically regarded as a set of
condensed anyons.

33

https://scipost.org
https://scipost.org/SciPostPhys.15.1.028


SciPost Phys. 15, 028 (2023)

Figure 15: One can prepare a cylinder of a gapped boundary, then shrinking it results
in a line operator. One can cap off the cylinder by a gapped boundary, so the line
operator can end at a point, which means that Hom(L, 1) is not empty.

L satisfies nice properties under modular S, T transformations. The vector {Z0a} turns out
to be an eigenvector of modular S and T matrices:

∑

b∈C
SabZ0b = Z0a ,

∑

b∈C
TabZ0b = Z0a . (B.2)

Since S and T of modular tensor category (ST )3 = e
2πi
8 c−S2, the existence of the Lagrangian

algebra anyon with (B.2) implies c− = 0 mod 8.
We can consider a fusion space of the Lagrangian algebra anyon VLL

L by taking a junction
of three tubes of gapped boundary. We can then talk about the F - and R-move of tubes with
junctions, which turn out to be trivial:

(FLLL
L )L,L · |µ〉 ⊗ |µ〉= |µ〉 ⊗ |µ〉 , (B.3)

RLL
L |µ〉= |µ〉 . (B.4)

B.2 Fermionic gapped interface of the bosonic topological phases

Here let us provide algebraic description for the fermionic gapped interface U of the bosonic
topological phase represented by a modular tensor category C. Along with this, we complete
the derivation in Sec. 2.3 that the fermionic gapped interface U can in general be expressed
as fusion of the gauged Gu-Wen SPT defect Uξ,a and a bosonic invertible gapped interface V .

We restrict ourselves to the case that the interface U is invertible, where the interface in-
duces an invertible map between anyons ρ. By folding the picture along the interface, the
interface reduces to the gapped boundary of the folded theory C ⊠ C, with the fermions intro-
duced on the gapped boundary. In the folded picture, the anyon in the form of (a,ρ(a)) in
C ⊠ C is condensed on the boundary.

We study the algebraic description for the fermionic gapped boundary of the theory C ⊠ C
in terms of the Lagrangian algebra. To construct the Lagrangian algebra anyon for a given
fermionic gapped boundary, we again carve out the solid cylinder from a spacetime 3-manifold.
The boundary of the carved 3-manifold then becomes a cylinder, where we introduce the
fermionic gapped boundary condition. Since we introduce fermions on the boundary, the
cylinder on the boundary is equipped with spin structure. By shrinking the cylinder, it becomes
a topological line operator of a TQFT. The operator obtained by shrinking the cylinder is again
expressed as a sum of simple anyons in C⊠C, but note that the shrunk object generally depends
on the spin structure along the meridian of the cylinder, see Fig. 16. For each spin structure,
it is expressed as

LNS =
⊕

x∈C⊠C

ZNS
x x , LR =

⊕

x∈C⊠C

ZR
x x . (B.5)
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Figure 16: One can shrink the tube of gapped boundary into a line, and the resulting
object depends on spin structure along the meridian.

We call the non-simple anyon LNS,LR listed above the fermionic Lagrangian algebra anyon.
For the cylinder with the NS spin structure along the meridian, one can “cap off” the

cylinder by a disk as shown in Fig. 15, since the spin structure extends to the disk on the top.
This means that Hom(LNS, 1) is not empty, i.e., ZNS

00 > 0. Also, the condensed anyons on the

boundary have the form of (a,ρ(a)), the line operators for anyons can terminate at the top of
the capped cylinder iff they are expressed as (a,ρ(a)). This means Hom(LNS, x) is not empty
iff x = (a,ρ(a)) for some a ∈ C, i.e., ZNS

0x > 0 iff x = (a,ρ(a)).
To study the properties of the Lagrangian algebra anyons, it is convenient to consider a

boundary state |Lµ,λ〉 on a space T2 given by considering a spacetime T2 × [0,1], and then
equipping the spin structure (µ,λ) for µ,λ ∈ {NS, R} on one side of the boundary T2 × {1}.
After introducing the fermionic gapped boundary on T2 × {1}, one defines a state |Lµ,λ〉 on
T2 × {0}. Equivalently, one can also regard the geometry as a solid torus D2 × S1, with a thin
solid torus cut out at the center of D2. So, the boundary state is thought of as an insertion of a
line operator in D2 × S1 along S1 obtained by a thin tube of gapped boundary. The boundary
state with the spin structure {µ,λ}= {NS, NS} is given by

|LNS,NS〉=
∑

a∈C
ZNS
(a,ρ(a))

|(a,ρ(a))〉 . (B.6)

The boundary state has an important property under the modular S, T transformations. That
is, once we assume that the boundary is gapped and topological, the diffeomorphism acting
on the gapped boundary at T2

µ,λ × {1} must not change the boundary state |Lµ,λ〉. Since the
torus is equipped with spin structure, the diffeomorphism here means the mapping class group
of T2

µ,λ leaving spin structure invariant. For the case of µ = NS, the Dehn twist T along the

meridian exchanges the spin structure as T2
NS,NS↔ T2

NS,R, so we have T2 |LNS,NS〉 = |LNS,NS〉.
This implies that an anyon with ZNS

0x > 0 must be either a boson or a fermion, since Dehn twist
acts on Wilson lines as |x〉 → θx |x〉. We then have θa/θρ(a) ∈ {±1} for each a ∈ C.

As we discussed in Sec. 2.3, for a given fermionic interface, one can explicitly construct a
gauged Gu-Wen SPT defect Uξ,v with the Abelian boson v that satisfies Mv,a = θa/θρ(a), where
the action of the composite interface V := Uξ,v × U induces a map ρb that leaves the spins of
anyons invariant, θρb(a) = θa for all a ∈ C.

From now, let us study the properties of the redefined interface V , and show that V is a
bosonic interface that does not depend on the spin structure of the interface. Again, let us
consider a gapped boundary of the folded theory C ⊠ C by folding the geometry along the
interface V . The anyons in the form of (a,ρb(a)) is condensed on this gapped boundary. Let
us denote the Lagrangian algebra anyon for this gapped boundary as L′NS,L′R. The boundary
state for this boundary condition |L′NS,NS〉 is given in the form of

|L′NS,NS〉=
∑

a∈C
Z
′NS
(a,ρb(a))

|(a,ρb(a))〉 . (B.7)
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Since ρb leaves the spins of anyons invariant, the anyons (a,ρb(a)) are bosons. This implies
that the above boundary state is invariant under the modular T transformation along the
meridian,

|L′NS,R〉= T |L′NS,NS〉= |L
′
NS,NS〉 . (B.8)

By studying the S modular transformation of the boundary states |L′NS,NS〉, |L
′
NS,R〉, one can

see that [44]
∑

y∈C⊠C

Sx y Z
′NS
y = Z

′NS
x ,

∑

y∈C⊠C

Sx y Z
′NS
y = Z

′R
x , for x ∈ C ⊠ C . (B.9)

Then, we obviously have Z
′NS
x = Z

′R
x for all x ∈ C⊠C. This means that the fermionic Lagrangian

algebra anyon for the interface V is independent of the choice of the spin structure, so let us
simply write L′ := L′NS = L′R, Z ′x := Z

′NS
x = Z

′R
x . The insensitivity of the fermionic Lagrangian

algebra anyon to the spin structure implies that the gapped boundary is in fact bosonic rather
than fermionic. Actually, by using that the gapped boundary is topological, one can see that L′
satisfies all the properties of the Lagrangian algebra anyon Eq. (B.2), (B.3), (B.4) for a bosonic
gapped boundary reviewed in Appendix B.2. For example, (B.3) can be derived by regarding
the fusion vertex of the Lagrangian algebra anyons as a trivalent junction of tubes of gapped
boundary, then noting that F -move can be realized by continuous deformation of the manifold
that supports gapped boundary [49]. This shows that V defines a bosonic gapped interface,
and all the invertible fermionic gapped interface U is expressed as the fusion U(1)ξ,v × V .

C Detailed description of the exotic invertible phase

In this appendix, we describe the detailed calculations about the lattice model of the exotic
invertible phase constructed in Sec. 4.

C.1 Reflection plane does not carry topological order

The lattice model for the exotic invertible phase has a reflection plane with a fermion. Here
we argue that the reflection plane does not carry topological order, and hence defines the
invertible domain wall between the U(1)2 and U(1)−2 Walker-Wang models. To see this, we
consider the geometry of a 3d space where the reflection plane is located on the yz plane at
x = 0 in the 3d Euclidean space, and we take the periodic boundary condition in the y , z
directions so that the reflection plane is defined on a torus T2. We take the x direction as an
interval −M ≤ x ≤ M , i.e., there are M lattice spacings in the x direction on both left and
right side of the reflection plane.

We count the ground state degeneracy of the lattice model of the exotic topological phase
in this geometry, and show that the degeneracy is carried entirely by the topological order on
the (2+1)D boundary at x = −M , M instead of the reflection plane. The Hamiltonian is given
by Eq. (68), with a technical modification on the boundary

H = H ′U(1)2;l +H ′U(1)−2;r −









∑

e=〈vv′〉
∈{x=0}

iγvγv′Xe;lXe;r + h.c.









−
∑

v∈{x=−M}

A2
v −

∑

v∈{x=M}

A2
v , (C.1)

where the last two terms are additionally introduced in order to make the boundary support
U(1)±2 topological order.
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Suppose that there are N vertices on the yz plane. The degrees of freedom are
the N complex fermions on the reflection plane, and (3M + 2)N qudits on each (left or
right) side of the reflection plane. The dimension of the total Hilbert space is given by
dimH = 2N ·4(3M+2)N ·4(3M+2)N . To count the ground state degeneracy, we list the constraints
of the stabilizers in the Hamiltonian. They are given as follows.

• There are 2(3M + 2)N C ′e terms in the Hamiltonian H ′U(1)2;l + H ′U(1)−2;r . Each of them

gives an order two constraint C ′e = 1.

• There are 2(3M + 1)N eBp terms in the Hamiltonian H ′U(1)2;l + H ′U(1)−2;r . Due to
eB2

p =
∏

e∈p C ′e, each eBp = 1 gives an order two constraint after restricting the Hilbert
space to the subspace satisfying C ′e = 1.

• There are 2N iγvγv′Xe;lXe;r terms in the Hamiltonian. Due to (iγvγv′Xe;lXe;r)
2 = C ′e;l C

′
e;r ,

each of them gives an order two constraint after restricting the Hilbert space to the
subspace satisfying C ′e = 1.

• There are 2N A2
v terms in the last two terms of the Hamiltonian. Each of them gives an

order two constraint.

Note that some of the constraints listed above are redundant, since taking the product of
certain stabilizers gives the identity operator. The redundancy comes from the following (N+2)
relations among the stabilizers,

• For each plaquette p on the reflection plane x = 0, we have
∏

e∈p

(iγvγv′Xe;lXe;r) · eBl
p
eBr

p = 1 . (C.2)

Since there are N plaquettes on the reflection plane, there are N such equations which
are independent with each other.

• At the left (2+1)D boundary on x = −M , multiplying the terms A2
v , eBp is given by

∏

v∈{x=−M}

A2
v

∏

p∈{x=−M}

eBp = 1 . (C.3)

The similar equation also holds for the right boundary x = M . They give the two equa-
tions where the product of the stabilizers becomes the identity.

So, the ground state degeneracy of the Hamiltonian is given by

GSD= dimH · 1
22(3M+2)N · 22(3M+1)N · 22N · 22N

· 2N+2 = 4 . (C.4)

This four-fold degeneracy originates from the U(1)2 topological order for each T2 on the left
and right boundary. On the left boundary x = −M , the small Wilson line operator for the
semion along the plaquette p is given by A2

v1
Bp, where the location of the vertex labeled by 1

relative to the plaquette p can be found in Fig. 11. Multiplying this plaquette operator on a
closed disk gives the extended Wilson line for the semion. Let us write the extended Wilson
line operator in y, z direction on the left boundary as Wy;l , Wz,l respectively. Reflecting the
fusion rule and mutual braiding of the semion, in the ground state Hilbert space we have

W 2
y;l =W 2

z;l = 1 , Wy;lWz;l = −Wz;lWy;l , (C.5)
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where the first equation uses that Ce = 1 for the ground states. The operators {Wz,l , Wz,r}
hence behave as the Pauli x , z operators whose representation spans the 2d Hilbert space, so
the left boundary carries the two-fold ground state degeneracy. The similar logic also holds
for the right boundary, so the four-fold ground state degeneracy is totally carried by the U(1)2
topological order on the left and right boundary. This implies that the reflection plane does
not support the topological order.

D Property of the Grassmann integral

Here we review a quadratic property of the Grassmann integral on a square lattice introduced
in the main text,

σ(α) =
∏

e

(dθedθ ′e)
αe ×

∏

p=(0123)

(θα01
01 θ

α12
12 θ

′α23
23 θ

′α30
30 ) , (D.1)

with α ∈ Z1(Σ,Z2) with Σ a torus supporting a square lattice. We will show the quadratic
property

σ(α)σ(β) = σ(α+ β)(−1)
∫

Σ
α∪β , (D.2)

with α,β ∈ Z1(Σ,Z2). The quadratic property of the Grassmann integral on the square lattice
was derived in [46]. This can be shown by reordering the Grassmann variables in each term
of σ(α+ β). Firstly, the term on each plaquette is reordered as

θ
α(01)+β(01)
01 θ

α(12)+β(12)
12 θ

α(23)+β(23)
23 θ

α(30)+β(30)
30 =

= (−1)β(23)α(30)+β(12)(α(23)+α(30))+β(01)(α(12)+α(23)+α(30))

× θα(01)
01 θ

α(12)
12 θ

α(23)
23 θ

α(30)
30 θ

β(01)
01 θ

β(12)
12 θ

β(23)
23 θ

β(30)
30

= (−1)β(23)α(30)+β(12)(α(01)+α(12))+β(01)α(01)θ
α(01)
01 θ

α(12)
12 θ

α(23)
23 θ

α(30)
30 θ

β(01)
01 θ

β(12)
12 θ

β(23)
23 θ

β(30)
30

= (−1)α∪β(0123)+β(12)α(12)+β(01)α(01)θ
α(01)
01 θ

α(12)
12 θ

α(23)
23 θ

α(30)
30 θ

β(01)
01 θ

β(12)
12 θ

β(23)
23 θ

β(30)
30 , (D.3)

where cup product α∪β on a single plaquette (0123) is evaluated as α(01)β(12)+α(30)β(23).
Then, the integrand on each edge is reordered as

dθα(e)+β(e)e dθα(e)+β(e)e = (−1)β(e)α(e)dθα(e)e dθα(e)e dθβ(e)e dθβ(e)e . (D.4)

Combining the above two effects of reordering the Grassmann variables, one can see that the
sign factor in the form of (−1)β(e)α(e) on each edge cancels out. Hence, the reordering effect
is solely expressed in terms of cup product after all, which shows Eq. (D.2).
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