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Abstract

We study two-point correlation functions of a massive free scalar field in de Sitter space
using the heat kernel formalism. Focusing on two operators in conjugate static patches
we derive a geodesic approximation to the two-point correlator valid for large mass and
at late times. This expression involves a sum over two complex conjugate geodesics that
correctly reproduces the large-mass, late-time limit of the exact two-point function in the
Bunch-Davies vacuum. The exponential decay of the late-time correlator is associated to
the timelike part of the complex geodesics. We emphasize that the late-time exponential
decay is in tension with the finite maximal entropy of empty de Sitter space, and we
briefly discuss how non-perturbative corrections might resolve this paradox.
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1 Introduction

In recent years, we have seen remarkable progress in our understanding of the role that non-
perturbative effects play in black hole physics [1–3]. Most prominently, new saddles to the
Euclidean gravitational path integral have been found that contribute to the entropy of Hawk-
ing radiation [4,5]. When included, these saddles cap off the growth of the entropy of Hawking
radiation, thereby showing behavior consistent with unitarity.1 These results highlight the im-
portance of non-perturbative effects in gravitational backgrounds. In addition, such effects
have been investigated in the context of cosmological spacetimes, although there is debate
about the existence and nature of the corrections to the entropy of the Gibbons-Hawking radi-
ation in de Sitter space [7–13]. Therefore, the implications of unitary evolution are less clear
in cosmology.

Understanding the role that non-perturbative effects play in asymptotically de Sitter space
is an especially pressing question, given its direct relevance to our own universe. Although
some progress in this direction has been made by studying the behavior of entropy in simpli-
fied two-dimensional models of cosmology, ideally one would like to consider more relevant
objects, like correlators, in realistic higher-dimensional cosmological spacetimes.

In this paper, we take a modest step in this direction by considering the late-time behavior
of certain correlation functions, which is expected to be in conflict with the finite entropy of de
Sitter space. In [14] Maldacena argued in the context of AdS/CFT that two-point correlation
functions in the thermofield double state of two maximally entangled CFTs show quasi-periodic
behavior as a direct consequence of the discrete spectrum of energy eigenstates. Instead, when
computing the same correlator in the dual eternal black hole geometry one finds that it ex-
ponentially decays. Maldacena suggested that this tension can be resolved by realizing that
the duality between the CFT thermofield double state and the bulk geometry prepared by a
Euclidean path integral involves a sum over bulk geometries. Typically, the eternal black hole
is the dominant saddle point of this path integral, giving rise to exponentially decaying cor-
relation functions, but at late times other saddles, for instance thermal AdS, might become
relevant. Although later work [15] showed that thermal AdS cannot completely resolve this
tension, it does emphasize the importance of non-perturbative effects, and more recent devel-
opments have suggested that (replica) wormholes could resolve this tension.

The motivation for this work is that an analogous tension, between exponentially decaying
bulk correlation functions and finite entropy, arises in de Sitter space. The static patch of
de Sitter space has a cosmological horizon with an associated entropy proportional to the
horizon area in Planck units, A/4 [16]. Moreover, it also appears that vacuum de Sitter space
corresponds to the maximum entropy state, i.e. any additional energy lowers the entropy.
Although the microscopic nature of the de Sitter entropy is still very much mysterious, this
does suggest that the Hilbert space of quantum gravity in de Sitter space, and consequently

1See [6] for an accessible review of these developments.
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its holographically dual description, is finite-dimensional [17–21]. Of course, the absence of
a well-understood holographic dual to de Sitter space obstructs a direct comparison between
correlation functions in the bulk and its dual. Still, assuming the underlying microscopic theory
has a discrete energy spectrum, correlation functions in de Sitter space are expected to display
quasi-periodic behavior. In lowest order, however, we find that correlation functions with
operators in conjugate static patches of de Sitter space decay exponentially at late times.

Specifically, in this paper we consider bulk two-point correlation functions of massive scalar
fields, and we compute them by making use of heat-kernel methods. By exploiting an expan-
sion of the heat kernel valid for heavy fields, we derive an expression for the correlator on
a generic curved background that involves a sum over geodesics between the two operators.
Specifying to de Sitter space and focusing on correlation functions with operators in conjugate
static patches, we show that even in the absence of real geodesics connecting these operators,
a sum over complex geodesics correctly reproduces the late-time, large mass behavior of the
correlator in general dimensions. It was previously observed in [22] that the two-point func-
tion in (2+1)-dimensional de Sitter space can be expressed as a sum over complex geodesics,
but we generalize that result to higher dimensions. We also verify that the sum of the two
complex conjugate geodesics indeed shows exponential decay at late times, governed by the
real (timelike) part of the complex geodesic. Finally, we discuss the important difference with
respect to the AdS eternal black hole and speculate how non-perturbative corrections due to
other saddle geometries might modify this result in a manner consistent with finite entropy.

The rest of this article is organized as follows. In Section 2 we set up notation and discuss
geodesics in de Sitter space. We use the Schwinger-deWitt formalism to derive a geodesic ap-
proximation for the Feynman propagator in a general background. In Section 3 we restrict to
propagators in de Sitter space and show how they can be reproduced by employing a geodesic
approximation that sums over geodesics. We conclude in Section 4 with a discussion of our
results and their relevance for the information paradox in de Sitter space.

Note added: We coordinated submission on arXiv with the work [23], which also uses complex
geodesics in de Sitter space to compute correlation functions. Our methods are complimentary,
since they use a saddle point approximation of a path integral, whereas we employ heat kernel
expansion methods.

2 Geodesic approximation to correlators in de Sitter space

We start with a review of geodesics in de Sitter space, after which we introduce the Schwinger-
deWitt formalism to compute Feynman propagators.

2.1 Preliminaries on geodesics in de Sitter space

It is convenient to study geodesics in de Sitter space using the embedding formalism. De Sitter
space can be described by the embedding equation (see e.g. [24])

ηABX AX B = ℓ2 , (1)

where X A with A= 0, . . . , d +1 are the embedding coordinates, ηAB is the (d +2)-dimensional
Minkowski metric with signature (−+ · · ·+) and ℓ is a length scale called the de Sitter radius.
Given two points (x , y) the (square of the) de Sitter invariant distance measured in de Sitter
units is given by

Z(x , y) =
1
ℓ2
ηABX A(x)X B(y) . (2)

3

https://scipost.org
https://scipost.org/SciPostPhys.15.1.031


SciPost Phys. 15, 031 (2023)

N
or

th
Po

le

So
ut

h
Po

le

Z
=

1

Z
=
−1Z =

0

Z =
0

x

x̄

Z > 1 Z < −1

Z > −1

Z < 1

Figure 1: Penrose diagram of de Sitter space with the value of the (dimensionless)
de Sitter invariant distance Z(x , y) depicted, where the point x is located in the
lower left corner of the Penrose diagram. Further, x̄ denotes the antipodal point. For
instance, Z(x , y)> 1 if the point y lies in the Northern static patch.

Let x̄ denote the antipodal point of x . The invariant distance Z(x , y) changes sign under an
antipodal transformation

Z(x , ȳ) = −Z(x , y) . (3)

From the definition (2) it is also clear that Z(x , y) = Z(y, x). The value of the invariant
distance depends on the nature of the two points in the Z ≥ 0 region, i.e.

• Z(x , y) = 0 when x is halfway between y and ȳ ,

• Z(x , y)> 1 when x and y are timelike separated,

• Z(x , y) = 1 when x and y are null separated,

• Z(x , y)< 1 when x and y are spacelike separated.

By applying the antipodal transformation on y the value of Z changes to

• Z(x , y)> −1 when x and ȳ are spacelike separated,

• Z(x , y) = −1 when x and ȳ are null separated,

• Z(x , y)< −1 when x and ȳ are timelike separated.

In Figure 1 we denote the value of Z(x , y) in the Penrose diagram of de Sitter space when one
of the points lies at the lower left corner. Z is positive in the lower half and negative in the
upper half of the Penrose diagram, where we define upper and lower by the horizon at Z = 0
that runs from the left upper corner to the right lower corner. The geodesic distance D(x , y)
between two points is related to Z(x , y) by

cos (D(x , y)/ℓ) = Z(x , y) . (4)

This equation shows that the geodesic distance is only real when |Z(x , y)| ≤ 1 and, in general,
complex. We use the convention that D(x , y) can refer to both spacelike and timelike separated
points. The former corresponds to real and the latter to imaginary distance. Later on, we will
separately discuss spacelike and timelike trajectories, for which we use a different symbol.
The fact that D(x , y) can be imaginary has important consequences when we want to connect
a pair of points (x , y) by a geodesic. By taking the point x to lie at the intersection of the
Northern pole and the (past) cosmological horizon, as indicated in Figure 1, we see that for
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any point y in the South Pole static patch there is no real geodesic connecting the two points
except at Z(x , y) = −1. This corresponds to antipodal points.

From the embedding metric ds2 = ηABdX AdX B one can derive the following global de
Sitter metric in d + 1 spacetime dimensions

ds2 = −dτ2 + ℓ2 cosh2(τ/ℓ)dΩ2
d . (5)

The topology of Lorentzian de Sitter spacetime is R× Sd . Another useful solution to the em-
bedding equation is de Sitter space in static coordinates, for which the metric reads

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
d−1 , (6)

where
f (r) = 1− r2/ℓ2 . (7)

Finally, let us consider the explicit expression in Kruskal coordinates, which also give a global
cover of de Sitter space. These are related to the static coordinates (in a particular static patch)
by

x± = ±ℓe±t/ℓ

√

√ℓ− r
ℓ+ r

. (8)

Taking this patch to be centered at the South Pole (right quarter of the Penrose diagram),
where time flows upwards, we can define static coordinates in the other quarters of the di-
agram (Milne patches and Northern static patch) by sending t → t + iε, where ε = −πℓ
covers the Northern static patch and ε = ±π2 ℓ covers the bottom and top Milne patch, re-
spectively [25]. For (d + 1)-dimensional de Sitter space these coordinates are related to the
embedding coordinates as follows

X 0 = ℓ2
�

x+ + x−

ℓ2 − x+x−

�

,

X d = ℓ2
�

x+ − x−

ℓ2 − x+x−

�

,

X i = ℓ

�

ℓ2 + x+x−

ℓ2 − x+x−

�

ωi .

(9)

Here, ωi with i = (1, . . . , d) are the coordinates for a unit (d − 1)-sphere. Let us now assume
that two points x and y are each in a conjugate static patch at their respective poles, i.e.
x+x− = y+ y− = −ℓ2. We then find

Z(x , y) =
x2
+ + y2

+

2x+ y+
. (10)

For x at the origin of the Northern static patch and y at the origin of the Southern static patch
we have

x+ = −ℓetx/ℓ , y+ = ℓet y/ℓ , (11)

such that

Z(x , y) = − cosh
� t x − t y

ℓ

�

. (12)

Thus, for the endpoints located at the origin of conjugate static patches, which we refer to as
podal points, we find that Z(x , y) ≤ −1 and the only real geodesic connecting the two points
satisfies t x = t y , for which the geodesic distance takes the value

D(t x − t y = 0) = πℓ . (13)
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Figure 2: We can use the de Sitter time-translation invariance to map two points on
the poles of the spatial sphere to a global equal time slice with t x = −t and t y = t.
There are no real geodesics between these two points unless t = 0.

This answer was to be expected since it is just half the circumference of a sphere. The fact
that all endpoints with t x − t y = 0 have the same geodesic distance reflects the invariance of
global de Sitter space under a simultaneous time translation in both static patches (upwards
in the Southern patch and downwards in the Northern patch).

For more general podal points, we note that without loss of generality we can always
define one of the points to lie at t = 0. We then find it convenient to use the time-translation
invariance to map the points to the symmetric situation where they are located at the same
global time slice, see Figure 2. We conclude this section by noting that in general, unless the
two points are antipodal, i.e. t = 0, no (real) geodesic exists.2

2.2 Schwinger-deWitt formalism

Now that we have reviewed some essentials of geodesics in de Sitter space, we are ready to
compute two-point correlation functions of a massive scalar field using a geodesic approxi-
mation scheme. Employing the Schwinger-deWitt proper time formalism, we will obtain an
expression valid for massive fields in general dimensions that involves a geodesic between the
location of the field operators. A similar derivation can be found in [27,28].

The starting point is the action for a minimally-coupled real scalar field in d+1 dimensions

I = −
1
2

∫

dd+1 x
p

−g
�

(∂ φ)2 +m2φ2
�

. (14)

The equation of motion for the scalar field is the Klein-Gordon equation
�

□−m2
�

φ = 0 . (15)

By supplying the appropriate boundary conditions we can construct the different correlation
functions or propagators. The time-ordered Green’s function, or Feynman propagator, G(x , y)
of the Klein-Gordon operator satisfies

�

□−m2
�

G(x , y) = −
δd+1(x − y)
p

−g(x)
. (16)

To write down a useful expression for G(x , y), we view it as the expectation value of an oper-
ator Ĝ in some Hilbert space

G(x , y) := 〈x | Ĝ |y〉 . (17)

2The same result was found in [26], with the difference that they took the static time to flow upwards in both
North and South pole, which flips the sign of one of the time coordinates.
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This Hilbert space obeys a completeness relation
∫

dd+1 x
Æ

−g(x) |x〉 〈x |= 1 , (18)

and orthonormality

〈x |y〉=
δd+1(x − y)
p

−g(x)
. (19)

Writing the Klein-Gordon operator as

Ĥ = −□+m2 , (20)

it obeys
Ĥ Ĝ = 1 , (21)

from which (16) can be derived by taking an expectation value. In the proper time formalism,
we can now write a formal expression for this propagator as

G(x , y) = i

∫ ∞

0

ds 〈x | e−isĤ |y〉 . (22)

Convergence of this integral requires the imaginary part of Ĥ to be negative, so we should
deform Ĥ → Ĥ − iε and take ε→ 0+ after evaluating. With this choice the Green’s function
represents the Feynman propagator [27]. From this expression, one can view Ĥ as a Hamilto-
nian that generates time evolution with s. Thus, writing

|x , s〉= eisĤ |x〉 , (23)

we see that a general state |ψ〉 can be expressed in terms of a wave function

ψ(x , s) = 〈x , s|ψ〉= e−isH 〈x |ψ〉 , (24)

which therefore obeys the time-dependent Schrödinger equation

i∂sψ(x , s) = Hψ(x , s) . (25)

We thus reformulated solving (16) as the problem of solving for the motion of a non-relativistic
quantum particle on a curved background. In particular, we are interested in computing

K(x , y; s) := 〈x | e−isĤ |y〉 , (26)

which obeys the Schrödinger equation, subject to the boundary condition

lim
s→0

K(x , y; s) =
δd+1(x − y)
p

−g(x)
, (27)

and yields G(x , y) via (22)

G(x , y) = i

∫ ∞

0

ds K(x , y; s) . (28)

The quantity K(x , y; s) is known as the heat kernel and its evaluation on a generic background
is typically complicated. One can use several techniques to evaluate the kernel.

One approach is to write K(x , y; s) as a path integral describing the different paths con-
necting the endpoints of (x , y) [27]. The path integral can then be evaluated using a saddle
point approximation along geodesic paths. This approach was used in [23] to compute cor-
relation functions in de Sitter space. Another approach is to expand for small s in a so-called
heat kernel expansion. The coefficients at different orders in this expansion are known as
Seeley-deWitt coefficients, which have been computed up to high order and for a variety of
fields (see [29] for a detailed review). Exact results for the heat kernel are known for back-
grounds with a large degree of symmetry. We follow the second approach and determine the
heat kernel to leading order in the s-expansion, which will turn out to be sufficient.
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2.3 Heat kernel expansion

Let us introduce the heat kernel expansion by first studying K(x , y; s) in flat space and sub-
sequently generalizing it to an arbitrary curved spacetime. It is well known that in flat space,
the solution to the differential equation

i∂sKflat(x , y; s) = HKflat(x , y; s) , (29)

subject to the boundary condition (27) is

Kflat(x , y; s) = −i
�

1
4πis

�
d+1

2

e−im2s+ i
2sσ(x ,y) , (30)

as can be checked by direct substitution. Hereσ(x , y) is defined as one half times the geodesic
distance L(x , y) squared, σ(x , y) := 1

2 L2(x , y). For a geodesic parametrized by s the geodesic
distance L(x , y) is given by

L(x , y) =

∫ s(y)

s(x)
ds′
√

√

gab
d xa

ds′
d x b

ds′
. (31)

Instead of working with (31) it is more convenient to define a geodesic path as an extremum
of the integral

E(x , y) =
1
2

∫ s(y)

s(x)
ds′
�

gab
d xa

ds′
d x b

ds′

�

. (32)

Evaluated on extremal paths (geodesics) these two integrals are related by L2 = 2sE, so we
see that σ(x , y) = sE(x , y). From this definition we note that positive σ(x , y) corresponds
to spacelike separated points and negative σ(x , y) to timelike separated points. When we are
considering purely spacelike or timelike trajectories we will denote

Spacelike: σ = +
1
2
D2 ,

Timelike: σ = −
1
2
T 2 .

(33)

These quantities are related to Z(x , y) as

Spacelike: Z = cos(D/ℓ) ,
Timelike: Z = cosh(T /ℓ) .

(34)

Here D and T correspond to the real proper distance and proper time, respectively, for points
that are connected by a real geodesic. Later on, when we consider complex geodesics with,
for example, complex proper time we will indicate this with a subscript as Tc .

In a general curved background, the heat kernel is modified even at lowest order in the
s-expansion [29]. In this case, we can write the following ansatz

K(x , y; s) = −i
�

1
4πis

�
d+1

2

e−im2s+ i
2sσ(x ,y)∆(x , y)1/2F(x , y; s) . (35)

Here, ∆(x , y) is the s-independent Van Vleck-Morette determinant, defined as

∆(x , y) :=
Det
�

− ∂
2σ(x ,y)
∂ xa∂ y b

�

p

g(x)g(y)
, (36)
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where g(x) is the determinant of the metric at the point x . Sometimes the quantity∆ is called
the Van Vleck-Morette biscalar, see e.g. [27], but for simplicity we will refer to it as the Van
Vleck-Morette determinant. The interpretation of the Van Vleck-Morette determinant can be
understood as follows. We can also represent the heat kernel as a path integral describing the
propagation of a massive (quantum-mechanical) point particle on a curved background. To
solve this path integral we can use a saddle-point approximation and the one-loop quantum
determinant, understood as the path integral over the Gaussian fluctuations around the saddle,
is in fact directly related to∆(x , y). So the Van Vleck-Morette determinant effectively captures
the leading corrections in the quantum mechanical point particle description.

Now F(x , y; s) can be solved for using an iterative procedure, in an expansion in small s,
by plugging the ansatz for the heat kernel into the Schrödinger equation [29,30]. This yields
a power-law expansion of the form

F(x , y; s) =
∞
∑

n=0

sn f2n(x , y) . (37)

Since s parametrizes the geodesic in the quantum-mechanical description, the small s expan-
sion is valid for points (x , y) that are close to each other [27]. Further because the Van Vleck
determinant is equal to one in flat space, comparing (35) with the known heat kernel in flat
space (30) fixes the leading coefficient f0 in the heat kernel expansion. The fact that this co-
efficient does not change in curved space is a consequence of the boundary condition (27).3

We can therefore write [29]

K(x , y; s) = −i
�

1
4πis

�
d+1

2

e−im2s+ i
2sσ(x ,y)∆(x , y)1/2 (1+O(s)) . (38)

The above expression implicitly assumes that there is only a single geodesic that connects
the two points, as is the case in Minkowksi space. However, for a general curved spacetime
there can be multiple geodesics. In particular, because the spatial slices of de Sitter space
are compact, the assumption of just one geodesic saddle contributing to the path integral is
almost certainly incorrect. For instance, if we consider two antipodal points at t = 0 there are
multiple ways of “going around the sphere” to connect the two points. Nonetheless, for points
that are sufficiently close to each other, the path with longer geodesic length is expected to be
subdominant since those will yield a larger s. As we will see, there is a case of specific interest
where multiple geodesics become important.

3 Late-time correlators in de Sitter and complex geodesics

We now use the derived heat kernel expansion of the Feynman propagator and specify to de
Sitter space to obtain a simple expression for the de Sitter propagator that depends on the
geodesic distance. For points that are either timelike separated or connected by a spacelike
geodesic we show that gives a good approximation to the exact result for large mass. We then
propose a generalization of this result for points that lie in conjugate static patches. Although
there are no real geodesics connecting these points, we show that in the late-time limit a sum
over complex geodesics exactly reproduces the propagator.

3By matching onto the flat space result, we are imposing that the heat kernel has the same short-distance
singularity as for the flat space vacuum. In de Sitter space, this selects the Bunch-Davies vacuum.
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3.1 Single geodesic

Using the expression for the heat kernel at leading order in s, we perform the integral of (28)
to obtain the propagator.4

GS(x , y)≃ Nd m
d−1

2

Æ

∆(σ)σ
d−1

4 K d−1
2
(m
p

2σ) , (39)

where
Nd = −2−

1+3d
4 π−

d+1
2 i . (40)

Here Ka(z) denotes the modified Bessel function of the second kind and we explicitly intro-
duced the subscript S on the propagator to indicate that we are considering a single geodesic.
We stress that this expression is general and the dependence on the background only appears
through the determinant∆(σ) and the precise expression for the geodesic distance. However,
to obtain (39) we neglected higher-order terms in s in the heat kernel, which give extra con-
tributions on the right-hand side proportional to the associated heat kernel coefficients at that
order.

Specifying now to de Sitter space, the Van Vleck-Morette determinant takes the form5

∆(σ) =

�√

√2σ
ℓ2

csc

�√

√2σ
ℓ2

��d

. (41)

We note that (41) contains singularities at

σ =
�

πkℓ
p

2

�2

(k ∈N) . (42)

Clearly, the approximations used to derive (39) must break down at these points and in terms
of the de Sitter invariant distance, we find that they correspond to

Z(x , y) = cos(πk) . (43)

The first singularity at k = 1 yields Z(x , y) = −1, which corresponds to a geodesic distance of
D = πℓ. This is precisely the location where the two geodesics around the de Sitter sphere give
an equal contribution to the propagator such that the single geodesic assumption is no longer
valid. We come back to this point later and for now explore the validity of the single-geodesic
approximation away from the singular points.

Let us now distinguish points that are either spacelike or timelike separated. As discussed,
for large mass equation (39) should give a good approximation to the exact Green’s function as
long as a single geodesic gives the dominant contribution. We now confirm this by comparing
the approximated result with the known exact propagator. To do so, we first consider the
Wightman function defined as

W (x , y) := 〈φ(x)φ(y)〉 . (44)

In the Bunch-Davies vacuum it is given by (see e.g. [32,33])6

W (x , y) =
Γ (∆+) Γ (∆−)

ℓd−1(4π)
d+1

2 Γ
� d+1

2

� 2F1

�

∆+,∆−,
d + 1

2
;

1+ Z(x , y)
2

�

, (45)

4Neglecting higher powers in s is valid for large mass, because the s expansion corresponds to a large mass
expansion in the propagator [29].

5This can be obtained from analytic continuation on an AdS background [31].
6We do not consider more general de Sitter invariant vacua such as α-vacua [34, 35] in which the Wightman

function contains an additional hypergeometric function that can be obtained by sending Z →−Z .
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Im(W(T))

Im( GS(T))
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Figure 3: Comparison of the exact (45) and approximated (39) expression for the
Green function for points that are timelike separated. We took mℓ = 10, ℓ = 1 and
d = 3.

where 2F1(a, b, c; z) is the Gaussian hypergeometric function with

∆± =
d
2
± iν , and ν =

√

√

m2ℓ2 −
d2

4
. (46)

We can introduce the scaling dimension ∆ via (see e.g. [36])

m2ℓ2 =∆(d −∆) , (47)

which is solved by ∆±. There are two distinct representations:

1. Complementary series: 0<∆< d
2 (0< mℓ < d

2 ),

2. Principal series: ∆= d
2 + iν (mℓ≥ d

2 ).

We are mostly interested in heavy scalars and therefore focus on the principal series. The
Wightman function is analytic except along the branch cuts at |Z | ≥ 1. We need to specify
how to approach the branch cut. The Feynman propagator is given by taking Z → Z + iε with
ε > 0 such that we have the relation

iG(x , y) =W (x , y) , (48)

with the prescription Z → Z + iε understood in the Wightman function [37].
We can compare this exact result with the approximation (39). In Figure 3 and 4 we

compare the two expressions for both timelike and spacelike separation respectively, finding
excellent agreement away from the singularity at D = πℓ.

Next, we also consider the behavior of correlators that receive contributions from multi-
ple geodesics. For this purpose, it is convenient to consider the limit of large proper time:
T /ℓ≫ 1. By expanding GS(x , y) for large proper time we obtain

Timelike: GS(x , y)≃ −i

√

√ md−2

4πdℓd
e−iπ d

4−
d
2
T
ℓ e−imT (T /ℓ≫ 1) . (49)

We also plot the difference between the approximated and exact Green’s function in Ap-
pendix B.

3.2 Multiple geodesics

Let us now discuss the case where multiple geodesics can give a contribution to the propagator.
It is natural to expect that the approximation in (39), which only includes a single geodesic,
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Figure 4: Comparison of the exact (45) and approximated (39) expression for the
Green function for points that are spacelike separated. We took mℓ = 10, ℓ = 1 and
d = 3. The approximated Green function has a singularity at D = πℓ, where the
single geodesic approximation breaks down.

should be generalized in that case by taking a sum over geodesics. This is relatively easy to
see when we want to connect two antipodal points, for example located at t = 0 in static
coordinates. In this case, there are two real geodesics of equal length corresponding to going
clockwise or counter clockwise around the sphere.7

When there are multiple geodesics connecting two points, it makes sense to consider
additional solutions to the Schrödinger equation governing the heat kernel. Because the
Schrödinger equation is linear, a linear combination of solutions is also a solution. As we
will see, it is necessary to include a sum over solutions to reproduce the propagator. This
picture aligns well with a saddle-point approximation in a path integral representation of the
heat kernel. If there are multiple geodesics with a large separation of lengths one will give the
dominant contribution. Instead, when multiple geodesics have similar lengths they should be
summed over.

It is however less clear how we should interpret the geodesic approximation when we
consider the propagator between points in conjugate static patches away from t = 0. As
discussed, in that case there are no real geodesics connecting these two points. Still, we will
show that it is possible to reproduce the heavy-mass and late-time limit of the propagator by
summing over complex geodesics that are each others complex conjugate.

To do so, we will employ an expansion of the exact propagator in the limit of large de Sitter
invariant distance. Using the asymptotic expression for the hypergeometric function given in
Appendix A, we find that the Wightman function naturally splits into two parts in the limit
|z| →∞, where we defined z := (1+ Z)/2. Due to the relation Z = cos(D/ℓ), we note that
this limit can only be satisfied when D has a non-zero imaginary piece. In that case, we can
write

lim
|z|→∞

W (x , y) =W(∆+,∆−; z(x , y)) +W(∆−,∆+; z(x , y)) , (50)

where

W(∆+,∆−; z(x , y)) =
Γ (∆+)Γ (∆− −∆+)

(4π)
d+1

2 ℓd+1Γ
� d+1

2 −∆+
�
(−z)∆+ . (51)

This asymptotic form has an interesting interpretation in the dS/CFT correspondence. This is
most transparent in planar coordinates, in terms of which the de Sitter metric takes the form

ds2 =
ℓ2

η2

�

−dη2 + d x⃗2
d

�

. (52)

7Strictly speaking there are more geodesics, but those can be related by an isometry.
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Figure 5: Comparison of the exact (45) and approximated (57) expression for the
Wightman function. We took mℓ= 20, ℓ= 1 and d = 3.

For operators at the origin of their respective static patches we have z = η/ℓ at late times. We
then see that the Wightman function schematically splits up as follows.

lim
η→0

W (x , y) = (. . . )
�

−
η

ℓ

�∆+
+ (. . . )
�

−
η

ℓ

�∆−
. (53)

Interpreted in terms of a CFT living at I+, this two-point function receives a contribution from
two CFT operators with conformal dimensions ∆± [38].

Next, we note that for scalars in the principal series representation (∆+)∗ =∆−, where the
star denotes complex conjugation. This implies that when arg(z) = π the two terms are each
others complex conjugate. Using the relation between z and Z we notice from Figure 1 that
this occurs when two points are located in conjugate static patches in such a way that (x , ȳ)
are timelike separated. Thus, for these correlators we can write

W (x , y) =W(∆+,∆−; z(x , y)) + (W(∆+,∆−; z(x , y)))∗ (ν ∈R, arg(z) = π) . (54)

As we will see, these two terms should be interpreted as two complex geodesics that are each
others complex conjugate. To compare this with our expression for the single geodesic, given
by (49), we expand for mℓ ≫ 1. It will then be useful to express z(x , y) in terms of proper
time. To do so, let us first consider two timelike separated points in the same static patch.
At late times, this corresponds to z = +eT /ℓ. From the antipodal map Z(x , y) = −Z(x , ȳ),
we then see that for two points in conjugate static patches this leads to z = −eT /ℓ, which has
arg(z) = π. This effectively corresponds to evaluating at complex proper time Tc = −iπℓ+T .
We therefore find

W(∆+,∆−;Tc) =

√

√ md−2

4πdℓd
eiπ d

4−mℓπe−
d
2
T
ℓ e−imT . (55)

The similarity of W(∆+,∆−;Tc) to the expression for a single geodesic given by (49) is strik-
ing. The two expressions differ only by a constant and a factor of exp(−mℓπ). Constructing
the total Wightman function by adding the complex conjugate we find

W (x , y) =W(∆+,∆−;Tc)+ (W(∆+,∆−;Tc))
∗ =

√

√md−2

πdℓd
e−mℓπe−

d
2
T
ℓ cos
�

dπ
4
−mT
�

. (56)

Similar expressions for the two-point function have been considered in [22,39,40], but instead
by considering a large-mass expansion. Remarkably, using the relation W (x , y) = iG(x , y) be-
tween the Wightman function and the propagator, we see that we can reproduce the late-time
and heavy-mass limit of the Wightman function by taking the expression for a single complex
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Figure 6: The two complex conjugate paths that connect the points at x and y . The
Euclidean time tE = Im(Tc) has periodicity tE ∼ tE +2πℓ. The solid arc corresponds
to Im(Tc) = +πℓ and the dashed arc to Im(T ∗c ) = −πℓ. Moving along the arc corre-
sponds to evolution along the Euclidean time by either tE = ±πℓ.

geodesic evaluated at proper time Tc = −iπℓ + T and adding to it its complex conjugate.
Concretely, we find

W (x , y) = iGS(Tc)− i (GS(Tc))
∗ . (57)

The expression for a single geodesic was given in (49). Importantly, this results holds for all
dimensions and for two scalar fields located at arbitrary points in conjugate causal patches,
so when z≪−1.8 We also observe that, previously, in the single geodesic approximation the
Van Vleck-Morette determinant contained singularities, signaling a breakdown of the single-
geodesic approximation. The divergences can be removed by adding the second geodesic,
hence the expression (57) does not contain singularities. On top of this analytical result, we
numerically show the agreement between the approximated and exact Wightman function at
late times in Figure 5. The difference between the exact and approximated Wightman function
is given in Appendix B.

We would like to stress that, although knowing the exact answer for the Wightman function
allowed us to easily identify the geodesics that need to be summed over, this is strictly speaking
not required. As discussed before, another way of solving the heat equation is to write the heat
kernel in terms of a path integral. Solving this path integral using a saddle point approximation
then naturally specifies the geodesics that need to be summed over. In fact, this complementary
approach was taken in [23]. The expression (57) can therefore be generalized to situations
where the exact Wightman function is unknown.

Finally, let us comment on the interpretation of this relation in terms of complex geodesics.
For ease of presentation, we find it useful to consider points at the poles of the conjugate
static patches (podal points), although we stress that (49) holds more generally. In static
coordinates, this corresponds to r = 0. As before, without loss of generality we can use the de
Sitter isometries to move the operators to a global equal time slice, corresponding to −1

2 t at
the North pole and +1

2 t at the South pole, see Figure 6. Remember that the time coordinate
flows in opposite directions at the two poles. For these points, the de Sitter invariant distance
is given by Z = − cosh(t/ℓ), which for large t/ℓ translates to a complex geodesic invariant
length (proper time) of

T ∗c = −iπℓ+ t . (58)

Evolving in both real (Lorentzian) time t and imaginary (Euclidean) time tE, this can be inter-
preted as a trajectory where we start out at the South pole, flow downwards to t = 0, move

8Note that any two points taken to the future spacelike infinity boundary of de Sitter space will be causally
disconnected and should therefore fall into this category, as clearly reflected by the identified behavior of the
Wightman function in the limit of vanishing conformal time, cf. (53).
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θE

=DE

=D∗E
x

y

Figure 7: Two points on the Euclidean de Sitter sphere, which are connected by
two geodesics indicated by the solid and dashed red lines with length DE and D∗E ,
respectively. The direction along the red circle is the angle θE . We choose the point
x to be located at π and the point y at some angle θE .

halfway along the Euclidean circle (with tE = −πℓ) to the North pole and finally evolve down-
wards again in Lorentzian time. The full correlator now involves the sum of this geodesic and
its complex conjugate, see Figure 6.

3.3 Euclidean interpretation

The above result can also be derived from a fully Euclidean perspective. Euclidean de Sitter
space can be obtained from an analytic continuation of Lorentzian global de Sitter space by
sending τ → iτE , where the Euclidean time is taken to be periodic τE ∼ τE + 2πℓ. The
Euclidean de Sitter metric is hence

ds2 = dτ2
E + ℓ

2 cos2(τE/ℓ)dΩ
2
d , (59)

which turns into the standard metric on a round sphere Sd+1 by sending τE/ℓ → θE − π/2.
The same geometry follows from performing an analytic continuation of the static metric. The
advantage of working with Euclidean de Sitter space is that there now exist real geodesics
between any two points on the sphere. We can then use the geodesic approximation for real
geodesics and sum over the different contributions.

For example, consider two points on the sphere that are separated by some angle θE , as
indicated in Figure 7. The solid and dashed geodesics have geodesic distance, respectively,

DE = (π− θE)ℓ , D∗E = (π+ θE)ℓ . (60)

If we now continue this back to Lorentzian signature by analytically continuing the distance
Tc = iDE and identifying θE = i t as evolution in real Lorentzian time we obtain two complex
geodesics with proper time

Tc = iπℓ+ t , and T ∗c = −iπℓ+ t , (61)

corresponding to the two conjugate geodesics that we summed over in the Lorentzian analysis.
When one geodesic is much longer than the other in the Euclidean geometry it is suppressed,
but both geodesics need to be taken into account in Lorentzian signature since they have the
same real part. This shows that the same result can be derived by starting from Euclidean de
Sitter and defining the two-point correlator there [23]. After an appropriate continuation to
Lorentzian signature this then produces the correct expression for the correlator.
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4 Discussion: Correlators and the information paradox in de Sit-
ter space

The main result of this work was to show that a two-point correlation function of massive
scalar fields in de Sitter space can be computed using a geodesic approximation. This gen-
eralizes similar approximation schemes studied in AdS/CFT [41–43] to the cosmological, de
Sitter, context. We demonstrated that the geodesic approximation in de Sitter space, for large
masses and late times, involves complex geodesics, generalizing earlier work [22] to higher
dimensions.9 Looking at the final result for the correlator (56) we note that it is exponentially
decaying in time, corresponding to the timelike part of the complex geodesic.

Having established this result, let us briefly discuss its potential relevance in the context
of a version of the information paradox in de Sitter space, which was the main motivation for
this work. But first let us comment on the subtle role of observables in de Sitter. In contrast
to anti-de Sitter space, where the boundary CFT correlation functions are well-defined objects
in quantum gravity, the absence of asymptotic regions (where gravity decouples) in de Sitter
space implies that a correlation function is not a gauge-invariant observable, since it transforms
non-trivially under diffeomorphisms. That means that, strictly speaking, correlation functions
in de Sitter space are only sensible quantities in the limit ℓp/ℓ≪ 1. Assuming we are working
in this limit, we then only need to impose invariance under the isometries preserved by the
background, which act as gauge constraints in gravity. As recently pointed out by [45] however,
to define a sensible algebra of observables in a de Sitter static patch, one needs to take into
account the role of an observer minimally equipped with a clock, effectively breaking the time-
translation invariance of the de Sitter background. In this regard we believe the correlators
considered in this work can be viewed as sensible physical observables. Indeed, assuming
a limit of weak gravity, these correlators evaluate heavy field operators at late (global) times
inserted at (the center of) conjugate static patches, which break the time translation symmetry
because we evolve both operators forward, i.e. towards future infinity.

Assuming the finite entropy of de Sitter space implies that the microscopic quantum gravity
description involves a discrete spetrum of energy eigenstates, that are presumably most effec-
tively captured by a holographic theory,10 one expects on general grounds that the late-time
behavior of correlation functions should be quasi-periodic. This is analogous to Maldacena’s
original observation in the context of the AdS eternal black hole [14], and also closely related
to the inconsistency between finite de Sitter entropy and the absence of a finite-dimensional
representation of the de Sitter isometry group [19]. Using a geodesic approximation we have
seen that the two-point function (56), besides an oscillating part, is exponentially suppressed
at late times, due to the timelike part of the complex geodesic. This is strikingly different from
the situation in the AdS eternal black hole, where at least for dimensions smaller than 4 the de-
cay can be traced back to the exponential growth of the spacelike geodesic probing the interior
of the black hole [43,48]. For de Sitter space the exponential decay is instead generated by the
timelike contribution, which is not probing the region beyond the de Sitter horizon. This dif-
ference might be important to keep in mind when considering non-perturbative gravitational
corrections that can produce late-time quasi-periodic behavior.

In the case of the AdS eternal black hole in two dimensions, it was shown in [49] that the
contribution of Euclidean wormholes in JT gravity provides the required shortcuts, circum-
venting (or opening up) the black hole interior, reproducing the expected ramping and plateau
behavior of the correlator at late times. More generally, holographic considerations seem to

9Complex (null) geodesics also play a role in AdS/CFT where they capture the quasi-normal mode spectrum of
black holes [44].

10Recently, some properties of such a holographically dual description have been investigated by considering a
de Sitter version of the Ryu-Takayanagi formula [46,47].
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x y

Figure 8: Penrose diagram of Schwarzschild-de Sitter spacetime. The left and right
vertical lines are identified. Two points located in conjugate static patches can be
connected by a real geodesic through the black hole horizon (solid line) or by a
complex geodesic across the cosmological horizon (dashed line).

suggest that non-perturbative gravitational corrections can be sufficient to alter the correlator
at late times to be in agreement with finite entropy characteristics. In the case of de Sitter,
one example of a non-perturbative (topology changing and de Sitter symmetry breaking [50])
correction to the correlator is the (one-parameter family of) Euclidean Schwarzschild-de Sit-
ter black hole geometries, whose effects can be included using constrained instanton meth-
ods [51, 52]. It would clearly be of interest to study the corrections due to these Euclidean
de Sitter black holes in terms of the geodesic approximation, which is expected to introduce
contributions from additional (complex) geodesics connecting the two points in the different
causal patches, see Figure 8 for an example. Naively, it is hard to imagine how these correc-
tions could affect the exponential decay of the correlator, as they do not appear to behave
as wormhole (or baby universe) ’shortcuts’ in the de Sitter geometry. However, one might
speculate that once the effect of de Sitter black hole instantons is understood, more standard
’shortcut’ Euclidean wormholes, on top of the Euclidean de Sitter black holes, corresponding
to higher order topological transitions, can perhaps be studied (in less than four dimensions)
and might halt the exponential decay. We hope this work is a modest first step to start putting
these ideas on a firmer footing.
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A Expansion of hypergeometric function

Here we consider a useful expansion for the Gaussian hypergeometric function. First we use
an identify that transforms the argument from z→ 1/z, see e.g. [53]

2F1(a, b, c; z) =
Γ (c)Γ (b− a)
Γ (b)Γ (c − a)

(−z)−a
2F1

�

a, a− c + 1, a− b+ 1,
1
z

�

+
Γ (c)Γ (a− b)
Γ (a)Γ (c − b)

(−z)−b
2F1

�

b, b− c + 1, b− a+ 1,
1
z

�

.
(A.1)

We now note the following limit

lim
|z|→∞

2F1(a, b, c; 1/z) = 1 , (A.2)

such that for |z| →∞ we obtain the expansion

2F1(a, b, c, z)≃
Γ (c)Γ (b− a)
Γ (b)Γ (c − a)

(−z)−a +
Γ (c)Γ (a− b)
Γ (a)Γ (c − b)

(−z)−b . (A.3)

B Validity of approximated Green’s function

In addition to our analytical derivations in the main body, here we also plot the difference
between the approximated and exact Green’s function for a single geodesic. For spacelike
separated points we show that the approximation becomes better for larger mass, see Figure
9. For timelike separated points, in addition, the approximation becomes better for large
timelike separation as we demonstrate in Figure 10. Finally, we also consider the difference
between the exact and approximated Wightman function for points in conjugate static patches.
This approximation becomes better for larger (Lorentzian) timelike separation, see Figure 11.
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Figure 9: The difference between the exact (45) and approximated (39) expression
for the Green’s function for spacelike separated points as a function of the proper
distance D. The color coding indicates the different values of mℓ. The approximation
becomes better for heavier mass. In the single-geodesic approximation there is a
singularity for antipodal points at D = πℓ.
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Figure 10: The difference between the exact (45) and approximated (39) expression
for the Green’s function for timelike separated points as a function of the proper time
T . The approximation becomes better for larger timelike separation.
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Figure 11: The difference between the exact (45) and approximated (57) expression
for the Wightman function as a function of proper time T . We took mℓ = 20, ℓ = 1
and d = 3. The difference asymptotes to zero for large T /ℓ.
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