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Three-dimensional sculpting of laser beams
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Abstract

We demonstrate three-dimensional sculpting of laser beams using two-dimensional holo-
grams. Without relying on initial guesses of the analytic properties or the Fourier trans-
form of the desired light field, we show that an improved numerical phase retrieval
algorithm can produce continuous three-dimensional intensity distributions of arbitrary
shapes. We benchmark our algorithm against optical bottle beams and double-helix
beams and then show the extension to complex optical structures.
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1 Introduction

Holographic beam shaping has developed into a powerful technique wherever laser light needs
to be tailored to the special requirements of its respective application. The ability to engineer
the spatial intensity profile of a light field has empowered novel and sophisticated methods of
microscopy, optical trapping and optical manipulation. For example, absorptive microparticles
have been confined in single-beam optical bottles [1] or colloidal spheres have been steered
along curved trajectories with Airy beams [2]. Equally, beam shaping has served to achieve
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single-beam, three-dimensional imaging utilizing engineered point spread functions in super-
resolution microscopy [3,4].

However, the creation of advanced light fields with arbitrary three-dimensional intensity
distribution remains a challenging problem. Commonly they are created from analytic so-
lutions or closed-form expressions for the electric field (rather than the intensity), thereby
restricting the set of realizable beams. For instance, the abruptly autofocussing beams derived
from the Airy solution [5] can form three-dimensional structures [6] or even single-beam op-
tical bottles [7]. These approaches have in common that either the exact desired optical field
or its Fourier transform have to be known, which is much more restrictive than specifying the
intensity distribution. Often this requires simplifying assumptions such as cylindrical symme-
try [8, 9] or an analytic mode basis [3]. Therefore, the properties of beams created with the
aforementioned approaches are intrinsically limited.

Numerical approaches using iterative projection algorithms have already established arbi-
trary two-dimensional beam shaping with remarkable capabilities [10]. Extending the beam
shaping to a finite volume requires three-dimensional beam sampling and constraint appli-
cation. Sampling the volume on a three-dimensional grid allows to retrieve complex struc-
tures [11,12] but extensive volumetric sampling comes along with a high computational load.
Sampling only at multiple axially shifted target planes helps to reduce the problems complex-
ity still allowing for highly versatile beam shaping [13]. Decreasing the axial sampling rate
can result in an uncontrolled intra-plane beam propagation [13]. Retaining sufficient control
over the intra-plane field propagation marks an important step towards efficient still highly
versatile continuous beam shaping.

In this paper, we demonstrate spatially continuous three-dimensional intensity sculpting
using an improved numerical phase retrieval method. The appeal of this approach is based
on its overall simplicity while allowing for high flexibility. We show that our approach cannot
only reproduce complex beams but it is even capable of modifying their beam profile during
propagation in a predictable manner. We demonstrate our approach using the examples of a
single-beam optical bottle [9] and a rotating double-helix point spread function [3] without
providing any analytical input. We then show that the methodology can be extended beyond
cylindrical symmetry and beyond simple scaling transformations.

2 Experimental setup and volumetric phase retrieval

The experimental setup (see Figure 1) is composed of a spatial light modulator at location
z = 0, which is illuminated by a collimated Gaussian laser beam of waist w0=6.3mm and a
wavelength of λ=735nm. The phase-only spatial light modulator1 imprints a phase pattern
φSLM onto the Gaussian beam. The beam after phase modulation is imaged by a thin lens
( f=250mm) in a 2 f -configuration onto the focal plane P2 f , which projects the Fourier trans-
form of the front focal plane P0 onto P2 f . We compensate aberrations from non-perfect optical
elements, including the spatial light modulator itself, by a Shack-Hartmann wavefront correc-
tion algorithm [14]. The sculpted intensity is measured with a CCD camera mounted on a
linear translation stage in several target planes Pj , covering ∆z ∈ (−12,12)mm around the
focal plane P2 f .

The complex transfer functions of Fourier optics provide a full description of linear optical
systems [15]. Based on this foundation, phase retrieval algorithms calculate a two-dimensional
phase corresponding to a target intensity distribution for a given incident field [16].

To obtain intensity control over a single target plane Pj the phase φSLM is optimized by
iterative projection between the incident plane and the target plane. Applying constraints

1Hamamatsu Photonics X10468-02.
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Figure 1: Working principle of the setup with the spatial light modulator located at
P0. Cylindrical coordinate system in red (z-axis coincides with optical axis). (a) cubic
phase pattern displayed on the spatial light modulator to control the beam around
the back focal plane P2 f sampled at Pj to form an Airy beam. (b) ray simulation of
2 f -setup with phase (a) applied.
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Figure 2: Adaptive real-space target sampling: Creating an overlap between adjacent
target planes to avoid random evolution. Solid black lines indicate the sample planes
Pj with binary target (blue). The sample planes are distanced such that adjacent
planes share some overlap (shaded red). The numerical phase retrieval algorithm is
guided to the continuous structure (solid red line).

in the target plane P2 f and in the front focal plane P0 guides the optimization towards the
target intensity. These constraints are implied by the available intensity and the desired target
intensity. However, the solutions are not necessarily unique.

Describing the propagation characteristics of an optical beam in a finite volume requires
volumetric intensity information. We obtain this information by sampling the beam’s intensity
at discrete planes Pj around the focal plane P2 f . The phase φSLM is then calculated with a
Gerchberg-Saxton based phase retrieval algorithm [13] (see Figure 3). An important subtlety
of this algorithm design is that there is no cross-talk between adjacent target planes Pj and Pj+1.
Hence, in each iteration the algorithm solves for all Pj individually and performs a weighted
average on the back projected fields at P0. This may lead to a randomly evolving intra-plane
intensity [13], which is not suitable for the creation of optical beams.

Realizing continuously evolving patterns requires an adjusted target design compensat-
ing the algorithms mentioned behavior. We have found that the random evolution between
adjacent planes can be removed by a proper target sampling. A great discrepancy in the tar-
get beam profile between adjacent planes result in ambiguous solutions for the intra-plane
field. Hence, choosing an adaptive real-space target sampling, tailored to the requested beam,
guides the algorithm to converge towards a continuous solution.

To influence the optimization as discussed, we choose the target beam sampling such that
the intensity at sample plane Pj propagated to Pj+1 and the intensity at Pj+1 share an overlap.
However, this requirement is not yet strict enough: we have found that we specifically need
to create the overlap at the edge of the beam profile. Intuitively, this can be understood as a
series of apertures so closely stacked, that the individual rays form the desired contour. Fig-
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1: procedure RANDOM SUPERPOSITION ALGORITHM(z j , T j)

2: return φRS =
∑

z j
P−1

2 f P−1
z

Æ

T j · exp
�

iφrand
j

�

3: procedure GLOBAL GERCHBERG-SAXTON(z j , T j)
4: φ(0)← φRS ▷ random superposition phase
5: E(0)P0

←
p

Iin ▷ initialization of field in P0
6: n← 0
7: while n< nmax do
8: n← n+ 1
9: E(n)P0

← E(n−1)
P0

exp
�

iφ(n−1)
�

10: for z ∈ z j do

11: E(n)Pj
← PzP2 f

�

E(n)P0

�

▷ propagation to Pj

12: E(n)Pj
←
Æ

T j · exp
�

i · arg
�

E(n)Pj

�

φn

�

▷ constraint at Pj

13: E(n)P0, j
← P−1

2 f P−1
z

�

E(n)Pj

�

▷ back propagation to P0

14: φ(n)← arg
�

∑

j E(n)P0, j

�

15: return φ(n)

Figure 3: Pseudo code of the Gerchberg-Saxton phase retrieval algorithm adopted
from [13]. The target intensities T j applied as a constraint in line 10 are obtained
from the adaptive beam sampling.

ure 2 illustrates this concept. A two-dimensional bottle beam is formed from a small number
of binary beam samples. Ensuring an overlap at the beams edge between adjacent sample
planes leads to unambiguous paths for the intra-plane field. This intuitive geometric interpre-
tation also serves to determine the required minimal number of sample planes N and their
positions z j . Of course the target beam could be sampled at a much higher rate. Deducing the
minimal required N optimizes the computational complexity while still ensuring continuous
beam evolution.

A common issue with numerical optimization in general is the stagnation in local minima,
which applies as well to numerical phase retrieval. A well chosen initial field, i.e., an initial
phase guess φ0

SLM, can serve to improve convergence and avoid stagnation. There are multiple
approaches to find an initial phase guess, but due to the huge diversity of the considered
targets we choose a random superposition algorithm [13]. This algorithm propagates the
three-dimensional target intensities T j(r⃗) at z j back to the incident plane P0 and performs a
weighted average on the back-propagated fields.

3 Results

3.1 Optical bottle and helix beams: Benchmark

A benchmark for arbitrary three-dimensional beam shaping by numerical phase retrieval is the
creation of optical beams for which either analytical or closed-form expressions already exist,
without actually using this knowledge.

The single-beam optical bottle, for instance, can be realized as a superposition of Laguerre-
Gaussian modes [17]. Characteristically, this beam transforms from a bright spot to a ho-
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mogeneous ring and back to a spot when moving through its focus. Advances in caustic
beam engineering have established optical bottles composed of circular auto(de)focusing Airy
beams [18] or convex trajectories [9,19].

As mentioned in the previous section, the number of sampling planes N and their positions
need to be derived from the target beam.

In order to deduce the number of sample planes N and their positions z j for an arbitrary in-
tensity map T (x , y, z) consider the intensity overlap O(∆z) between two planes axially shifted
by ∆z:

O (∆z) =

∫∫

M
dxdy T (x , y, zi) T (x , y, zi +∆z) , (1)

where T (z) is the normalized target beam intensity at the axial position z and M denotes the
focal volume. The steepest descent of O (∆z) takes place at

∂ 2O(∆z)
∂ (∆z)2

�

�

�

�

∆zi

!
= 0 . (2)

The vanishing second derivative of O(∆z)with respect to the axial shift∆z defines the location
of the next plane zi+1 = zi + ∆zi . Applying this procedure iteratively defines all sampling
planes z j and the minimal required number of sample planes Nmin.

The bottle beam’s annulus cross-section evolves on a spheroidal trajectory, given in polar
coordinates by

r(z) =
Æ

(rmax − r0)2 − (z − z̄)2 − r0 . (3)

Here, rmax denotes the maximal radius of the bottle beam centered at z = z̄, while r0 is a
radial offset. The length L and the maximal radius rmax are the bottle beams characteristic
parameters. Hence, we choose the radial offset r0 such that r(±L/2) = 0. Consequently,
the center of the spheroidal surface is located at (r0, z̄). Describing the bottle beam by a
cylindrical symmetric Gaussian of width w moving on the trajectory paramtrized by equation 3
provides the full three-dimensional target beam. Applying the overlap criterion in equation 1
to the three-dimensional target beam yields the number of adaptive sample planes and their
positions.

Starting from φ0
SLM the phase retrieval algorithm calculates the phase pattern φSLM in

Figure 4(a). The experimental measured and numerically simulated beam is also depicted
in Figure 4. This bottle beam particular bottle beam was recovered from N = 15 sampling
planes, having a maximal diameter of 2 · rmax = 220µm and a length of L = 10mm.

As desired, the created bottle beam encloses a volume void of any light and the pre-
designed trajectory matches the experimental data. The achieved contrast between the bottles
surface and its inner region is suitable for manipulation and trapping applications. Apart from
a weak intensity asymmetry (z↔−z) our result is consistent with bottle beams created from
caustic engineering [9]. The creation of various bottle beams within a feasible parameter
space (L ∈ (14,54) zR, rmax ∈ (5, 13)w0, maximal aspect ratio 80:1, where zR and w0 de-
note the Rayleigh length and waist of the unmodulated beam) offers a first impression of the
flexibility of the presented approach.

As a second benchmark, we consider the double-helix point spread function commonly
used in super-resolution microscopy [4]. Similar to the optical bottle beam the double he-
lix point spread function can also be described and created by a superposition of Laguerre-
Gaussian modes [20] or Bessel beams [21].

Since this pattern deviates substantially from the bottle beam discussed earlier, we need to
deduce N and the z j again. The two Gaussian spots are designed to rotate rigidly on a helical
trajectory r(z) = rrot = const, which implies equidistantly spaced z j along the pattern length L
which coincides with the sampling deduced from condition 2.
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Figure 4: Experimental and numerical results for a single-beam optical bottle. (a)
numerically obtained phase pattern, (b)-(g) transverse intensity at the planes indi-
cated in (h) (dotted lines). (h) intensity in the y=0-plane including the pre-designed
theoretical shape (dashed lines) and its numerically simulated counterpart (i).

The phase pattern obtained from the numerical phase retrieval is shown in Figure 5(b).
It shows very similar structures to the analytical phase of the Laguerre-Gaussian superposi-
tion [3]. Most intensity of the helix beam is concentrated in the two Gaussian spots. Fig-
ures 5(b)-(g) depict the rigid rotation of the equidistant spots. The entire beam propagates
shape-invariant throughout the considered volume. Notably our result is obtained without an
initial phase guess assuming a Laguerre-Gaussian superposition.

The investigated helix beam can be classified as a beam with radially self-accelerating
intensity [22]. Hence, there exist a rotating reference frame, in which the beam propagates in
a quasi-nondiffractive way. Nondiffractive beams are resilient to small perturbations [22,23].
This is valid for perturbations smaller or comparably sized to the characteristic beam size,
which is the Gaussian spots’ waist in our case. Due to their robustness such beams are suitable
for many applications where propagation does not take place in vacuum. To prove the quasi-
nondiffractive nature of the helix beam, we verify the self-healing after an opaque obstacle.
The self-healing properties of the generated beam are tested by a small opaque object placed
in the beam path to block one of the two rotating spots near the first target plane z0. The
original beam profile was recovered shortly after the obstacle.

The presented results show that our numerical approach combined with an adaptive target
sampling is capable of complex beam reconstructions, even when starting from a randomized
initial phase guess. The overlap condition implied by equation 2 provides a proper sampling
to overcome the random evolution between discrete sampling planes leading to continuously
evolving beams. Moreover, it is possible to reproduce beams that exhibit quasi-nondiffractive
propagation. Transverse and longitudinal scaling of the created beams can be easily achieved
by altering the target beam profile.

3.2 Realizing arbitrary beam shaping in three dimensions

We now show that numerical phase retrieval combined with adaptive target sampling pro-
vides access to arbitrary three-dimensional intensity sculpting. Not being bound by analytic
expressions enables us to create new types of beams with tailored propagation and symmetry
properties.
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Figure 5: Experimental and numerical results for two Gaussian spots rotating rigidly
on a helical trajectory covering a total rotation of ∆ϕ = π: (a) calculated phase pat-
tern for counter-clockwise rotation, (b)-(g) transverse intensity at planes indicated
with dotted lines in (h). (h) Experimental integrated intensity

∫

I(x , y, z)dy and
(i) numerical counterpart with theoretical trajectory projected onto the y = 0 plane
(dashed and dashdotted lines).

The creation of optical bottles with the discussed analytic approaches commonly exploits
its cylindrical symmetry, solving for a trajectory r(z) to calculate a phase φSLM(r) [9].

After the benchmarks in the previous section we go a step further and create a structured
intensity surface of the optical bottle beam, that does not obey cylindrical symmetry. To ac-
complish this we explicitly do not use the bottle beam phase as an initial guess but instead we
design a new target beam with the desired properties and apply the phase retrieval algorithm
to the adaptively sampled target. The designed surface is structured with a periodic azimuthal
intensity gradient and still envelopes a volume of vanishing intensity. It is possible to create
this type of beam with our approach. However, the created azimuthal intensity gradient is of
static nature, meaning it does not change when moving through the focus. Additionally adding
a rotation to the azimuthal gradient also breaks the symmetry with respect to the focal plane.
Although the intensity gradient rotates similarly to the Gaussian spots of the helix beam, these
are different types of beams. The spheroidal surface beam emerges from a bright spot, forms
a structured annulus and collapses again into a spot, while the rotating helix beam propagates
shape invariant throughout all Pj . The number and position of sample planes derived from
the overlap condition are nearly identical to original bottle beam. The target sampling is only
marginally adjusted since the additional rotation is already sampled sufficiently by the bottle
beam planes.

A typical result for an optical beam with a rigidly rotating structured spheroidal surface is
shown in Figure 6.

As demanded, the beam exhibits a periodic azimuthal structure that rotates during prop-
agation. Figure 6(h) illustrates the evolution of the beam profile, which is still continuous
despite the substantial complexity increase compared to the benchmark beams. The requested
symmetry properties are also fulfilled. Being capable of shaping a beam to this extent separates
our approach from techniques that exploit the beam symmetry for simplifying assumptions.

The second example is a generalization of the double-helix beam. It is known that altering
the individual contributions of a Lagerre-Gaussian superposition yields different rotation rates
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Figure 6: Experimental and numerical results for a single-beam optical bottle with
a rotating periodic transverse intensity gradient. (a) numerically obtained phase
pattern, (b)-(g) transverse intensity at the planes indicated in (h) (dotted lines) and
indicated rotation in (b). (h) Experimental integrated intensity

∫

I(x , y, z)dy and
(i) numerical counterpart with the theoretical trajectories of the intensity maxima
projected onto the y = 0 plane (dashed lines).

∂ ϕ
∂ z and beam profiles [3,20]. Yet, the Gaussian spots of the double-helix point spread function
propagate on a trajectory with a circular cross-section (see Figure 5). We now demonstrate
that we can vary this cross-section from a circle to a polygon going beyond the Laguerre-
Gauss superposition. As the trajectory (along the z–direction) of the Gaussian spots composing
the intensity pattern is no longer rotational symmetric around the optical axis, the distance
between the two Gaussian spots changes with the propagation distance.

Due to its application in super-resolution microscopy the rotation rate of the double helix
point spread function is usually fixed to ∂ ϕ∂ z =

π
L . Similar to the Laguerre-Gaussian superposi-

tion, we can continuously adjust this rotation rate. To show this we increase the rotation rate
by a factor of two, in addition to the varied cross-section.

Regarding the target sampling, we describe the polygonial cross-section in polar coordi-
nates, which leads to

r(ϕ) = rmax ·
cos
�

π
n

�

cos
�

ϕ − 2π
n ⌊

nϕ+π
2π ⌋
� , (4)

where n denoted the polygon order. The target beam is then created from two Gaussian spots
propagating on the trajectory given by (r [ϕ(z)]),ϕ(z))T .

Typical results for a pair of spots moving on a triangular trajectory are shown in Figure 7.
Again the experimental measurements in Figure 7(h) coincides with the numerical simula-
tions, in Figure 7(i), and the varying distance between the two Gaussian spots can be ob-
served clearly. Due to the increased rotation rate a full period of the circulation around the
optical axis is visible now. The challenging sections of this beam are located at the corners
of the polygon. The sampling implied by the overlap condition does not deviate significantly
from an equidistant sampling. Hence, a equidistant sampling was employed. Still the spots’
propagation around the polygons corners suffices to recognize the altered cross-section.

As well as the structured intensity surface, this beam serves very well to highlight the per-
formance and functionality of our approach compared to established techniques. The addi-
tional effort associated with altering the cross-section and rotation rate is negligible compared
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Figure 7: Experimental and numerical results for two Gaussian spots rotating rigidly
on a triangle trajectory covering a total rotation angle of ∆ϕ = 2π: (a) calculated
phase for a clockwise rotation, (b)-(g) transverse intensity at planes indicated in (h)
with the pre-designed triangular cross-section in (b). (h) experimental integrated
intensity
∫

I(x , y, z)dy and (i) numerical counterpart with theoretical trajectory pro-
jected onto the y = 0 plane (dashed and dotted lines).

to the creation of conventional helix beams.
In order to assess the overall pattern quality of the presented beams more quantitatively,

consider the global mean square error ϵ̄ and the patterns mean diffraction efficiency η̄ defined
by

η̄=
1
N

∑

∀z j

η(z j)NS(z j) with η(z j) =

∑

i∈S Iact
i (z j)
∑

i∈M Iact
i (z j)

,

ϵ̄ =
1
N

∑

∀z j

ϵ(z j)NS(z j) with ϵ(z j) =
∑

i∈S

�

Iact
i (z j)− Ides

i (z j)

Ides
i (z j)

�2

,

(5)

where S andM represent the signal region and the complete focal region for one axial position
z ∈ z j with NS(z j) being the number of sample points in the signal region of plane z j . Iact and
Ides denote the actual and desired intensity. The signal region is defined by the 1/e2 contour
of the target beam. To prevent the experimental setup from biasing the results and due to the
coincidence between the simulated and the measured intensities, we compare the simulated
data to the designed target intensities. Applying the metrics of equation 5, a clear differenti-
ation between the helix and bottle beams becomes evident. The diffraction efficiency of the
helix beams lies consistently below the bottle beams. Also the mean square error is higher
for the helix patterns. Requiring the light to be focused along a point-like three-dimensional
trajectory implies much stricter constraints to the light field then being distributed over a spe-
cific cross-section like a bottle beam [24], resulting in a reduced η̄. Remarkably, applying the
surface structure to the bottle in Figure 6 does not harm either diffraction efficiency or the
mean squared error significantly. For the helix beam on a triangular trajectory however, an
increasing ϵ̄ can be observed, which is closely connected to the sharp corners. The deviation
from the designed trajectory in these regions was already visible in Figure 7.

The presented beam shaping operations should be understood as examples, represent-
ing only a subset of potential diversification. All patterns created in this paper show that a
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Figure 8: Global mean square error ϵ̄ and mean diffraction efficiency η̄ versus the
number of iterations. The number of sampling planes is fixed at N = Nmin for all
patterns presented in this paper (DHPSF in Figure 5, triangle helix in Figure 7, bottle
beam in Figure 4 and structured bottle beam in Figure 6).

proper target sampling is key to obtain continuously evolving optical beams when using numer-
ical phase retrieval in three dimensions sampled at multiple axially shifted planes. Although
the considered three-dimensional beam profiles are of complex nature, numerical simulation
and experimental measurements coincide remarkably well, emphasizing the achievable pre-
dictability and control over the beam propagation.

4 Quantitative evaluation of adaptive target sampling

Considering each target beam profile individually and applying the introduced overlap crite-
rion helped to deduce the two critical parameters of adaptive target sampling: the number of
sample planes N and their positions z j . In the previous section we demonstrated the beam
shaping capabilities that can be achieved using such an adaptive target sampling. Here we
investigate the influence of these parameters separately. Looking at the results in Figures 4, 5,
6 and 7, the experimental measurement and theoretical simulation coincide well. However,
experimental data can be flawed by several effects like finite diffraction efficiency, phase mask
aliasing. To account for this we conduct our investigations based on the theoretical simula-
tions of optical bottle beams. Please note, that these will also include the finite active region,
and resolution of the used spatial light modulator. Following the previous calculations, we
find Nmin = 16 for the considered bottle beam. The simulated results for this specific bottle
beam sampled with different N ∈ {N1 =

1
2 Nmin, N2 = Nmin, N3 =

3
2 Nmin} using either adaptive

or equidistant sampling are depicted in Figure 9.
Despite that all bottle beams are created from the same target, the beneficial influence of

adaptive sampling combined with an appropriately sized N is clearly visible. First, consider
the equidistant sampled bottle beam in Figure 9(a-c). The bottle beams surface is composed
of mutliple segments of high intensity and exhibits a strong asymmetry for z ↔ −z. For
N = Nmin these high intensity segments seem to merge into a more continuous surface, but
even at the highest sample rate N3 there is no transition to a closed intensity surface like in
Figure 9(f). The observed segmentation is most prominent at regions of low/vanishing overlap
being the opening and closing points of the bottle beam (see Figure 9(c)). Such an beam
propagation would be expected for non proper sampling resulting in ambiguous intra-plane
intensities. Arguably these beams created with the equidistant sampling could be considered
to be bottle beams, having a higher intensity at the edge then in the center. Due to the degree
of discontinuity and the high number of artifacts penetrating the inner volume the applicability
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Figure 9: Simulation of the same bottle beam with different sample rates Ni . Upper
row is obtained from equidistant sampling, while lower row is based on the presented
adaptive target sampling.

of these bottle beams is very restricted. For all sampling rates depicted in Figure 9 the pattern
quality of the adaptive sampled bottle beams exceeds the equidistant sampled bottle beams.
Also its surface homogeneity improves significantly when increasing number of sample planes
N ≥ Nmin. Notably the trajectory r(z) in equation 3 can already be identified even at the lowest
sampling rate N1. In Figure 9(d-f) the transition from an discontinuous surface with artifacts
in the inner volume to a true bottle beam enclosing a volume is observed around N ≈ Nmin.

Investigating the diffraction efficiency and mean square error of an optical bottle beam for
different number of adaptive sample planes yields the results in Figure 10. To add more con-
sistency to these results we used the same initial phase guess since it is generated with some
random phase offset between the target planes. The transition observed in 9(d, e, f) is also
present in Figure 10. Around N ≈ Nmin the improvement gained from a higher number of sam-
ple planes stagnates to ∂ η̄

∂ N =
9.56·10−4

sample plane and ∂ ϵ̄
∂ N = −

5.71·10−4

sample plane . Hence, increasing the number
of sample planes above the minimal required N ≥ Nmin effects the diffraction efficiency and
the mean square error only marginally compared to the additional computation time. How-
ever, the idea of a multi-layer design algorithm based on two-dimensional Fourier transforms
would become obsolete by increasing the number of sample planes to comparable values of
other approaches build around three-dimensional Fourier transformations and sampling on a
three-dimensional grid with O(N) = 100.

Summarizing the evaluation of the adaptive target sampling applied to the bottle beam
by means of the error metrics in equation 5 and their beam profile in Figures 9 and 10, the
proposed method yields the expected improvements. We have shown that adaptive sampling
enhances the overall pattern quality. Additionally the minimal number of sampling planes was
calculated based on the target pattern and reproduced by numerical simulation. As intended
the value of Nmin marks a characteristic point for the algorithms convergence. For N exceed-
ing Nmin only minor improvements take place. Hence, Nmin can be considered the optimum
number of sample planes for a minimal algorithm running time.
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Figure 10: Mean diffraction efficiency η̄ and global mean squared error ϵ̄ versus the
number of sampling planes when employing adaptive target sampling. (a) absolute
values with a linear fit for N > Nmin and (b) relative improvements compared to
N = Nmin.

5 Conclusion and Outlook

In this paper, we have shown that the three-dimensional intensity distributions of complex
beams can be created by means of multi layer numerical phase retrieval. Despite the multi-
layer sampling the obtained beam profiles evolve continuously throughout the focal volume.
Our approach is capable of producing these optical beams with pre-designed non-trivially
evolving transverse profiles without sacrificing the patterns fidelity. We have shown that our
approach can reproduce light patterns of different approaches.In addition, we have success-
fully created new complex beams that have not been generated by conventional techniques,
showcasing the considerable sculpting possibilities of our approach.

The requested target beam properties can be directly applied in real-space targets instead
of tracking down their origin to the original beam or the generating phase pattern. These large
degrees of freedom increase the applicability of advanced tailored optical fields. Furthermore,
dynamic manipulation can be achieved by sequences of phase patterns only limited by the
spatial light modulators pixel refresh rate. The remaining intensity inhomogeneities along the
propagation trajectory may be compensated by additional amplitude control of the incident
field [19].

Numerical phase retrieval for three-dimensional beam shaping may open the door to novel
optical potentials built on top of already existing classes of optical beams. In the future our
method could help to launch new developments in various fields: quantum gases confined to
spatially curved potentials, particle manipulation and guiding along arbitrary trajectories or
laser writing of new types of structures could be achieved adopting our approach. Given the
flexibility and simplicity of the presented approach, it may be a valuable tool for applications,
wherever precisely controlled optical potentials are essential.
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