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Abstract

We derive a dispersion relation for two-point correlation functions in defect conformal
field theories. The correlator is expressed as an integral over a (single) discontinuity that
is controlled by the bulk channel operator product expansion (OPE). This very simple
relation is particularly useful in perturbative settings where the discontinuity is deter-
mined by a subset of bulk operators. In particular, we apply it to holographic correlators
of two chiral primary operators in N = 4 Super Yang-Mills theory in the presence of a
supersymmetric Wilson line. With a very simple computation, we are able to reproduce
and extend existing results. We also propose a second relation, which reconstructs the
correlator from a double discontinuity, and is controlled by the defect channel OPE. Fi-
nally, for the case of codimension-one defects (boundaries and interfaces) we derive a
dispersion relation which receives contributions from both OPE channels and we apply it
to the boundary correlator in the O(N) critical model. We reproduce the order ε2 result
in the ε-expansion using as input a finite number of boundary CFT data.
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1 Introduction and discussion

Extended excitations are important probes of Quantum Field Theories (QFT). On the one hand,
the fact that a QFT must support extended excitations (such as Wilson lines for gauge theories)
may provide additional constraints for the classification of consistent QFTs. On the other
hand, it is interesting to understand how to carve out the space of consistent defects supported
by a given QFT. Some of these questions can be made very precise in the context of defect
Conformal Field Theories (dCFT) [1], where this rich interplay between bulk and defect finds
an explicit realization in the defect crossing equation. The latter is the central ingredient of
the defect bootstrap program, an ambitious endeavour which has recently expanded in various
interesting directions, such as the study of line and surface defects in holographic theories
[2–9], the classification of boundaries and defects in free theories [10–16], the analysis of
general boundaries in CFTs and the application to statistical systems [17–27], the bootstrability
program aimed to an exact solution of a defect CFT [28, 29] or the study of superconformal
defects [30–45].

Many of these achievements were possible thanks to a large effort in developing the ana-
lytic techniques that have proven successful for bootstrapping standalone CFTs (see [46] for a
review). In that context, the derivation of a Lorentzian inversion formula, allowing to extract
the CFT data of a given correlator from its double discontinuity [47], has led to impressive
results for CFTs which naturally admit an expansion in a small parameter, such as 1/N for
holographic theories or ε for statistical models at the Wilson-Fisher fixed point. For a bulk
two-point function in the presence of a defect there are two different OPE channels. The de-
fect channel is controlled by the bulk-to-defect couplings and the scaling dimensions of the
defect operators, while the bulk channel is controlled by the bulk OPE coefficients and the
one-point function of the exchanged bulk operators. Correspondingly, two Lorentzian inver-
sion formulae have been derived. One of them takes a single discontinuity that is controlled
by the bulk OPE to extract the defect data [48], while the other takes a double discontinuity
that is controlled by the defect OPE to extract bulk data [49].
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One of the immediate consequences of these formulae is that all the information that is
needed to reconstruct the correlator is encoded in its discontinuity (or double discontinuity).
An important question is then how to reconstruct the correlator starting from its discontinuity.
This is the content of a dispersion relation. The importance of dispersion relations in physics
has been appreciated for a long time. Starting from the optical theorem, dispersion relations
have then been derived for relativistic S-matrices and more recently for four-point correlation
functions in CFTs [50]. These relations are particularly useful when the (double) discontinuity
is simpler to compute than the whole correlator. Furthermore, they often enjoy important
physical properties, such as positivity, which was used to derive an infinite set of dispersive
sum rules [51].

In this paper we tackle the question of deriving a dispersion relation for dCFTs. The exis-
tence of two Lorentzian inversion formulae suggests that we should be able to write down two
distinct dispersion relations, one controlled by the defect OPE and the other controlled by the
bulk OPE. It turns out that the latter is very simple to obtain, as the problem is effectively one-
dimensional and it involves a single discontinuity.1 Therefore, we will derive it using complex
analysis together with the symmetries and the analytic structure of the correlator and we will
confirm it by resumming the result of the Lorentzian inversion formula. Despite its simplic-
ity (and thanks to it), this formula is still very useful as it allows to easily reproduce the full
correlator in those cases where the discontinuity takes a simple form. In particular, since the
discontinuity is dominated by the bulk OPE, this formula provides an explicit way to recon-
struct the full defect correlator starting only from a subset of bulk data (the information about
the defect is encoded in the one-point functions of bulk operators). Therefore, the formula
is particularly suitable for those theories where the bulk is under great control and we can
exploit that control to get information about the defect.

In this respect, a perfect example is the supersymmetric Wilson line in N = 4 SYM, which
will be our main application in this work. Perturbative results for the bulk two-point function
at strong coupling were recently derived in [44] by using the Lorentzian inversion formula to
extract the defect CFT data and then resumming the block expansion. We will reproduce this
result with a single line integration, skipping the technically challenging intermediate steps.

One limitation of the Lorentzian inversion formula of [48] is that it fails to reproduce the
CFT data of defect operators with low transverse spin. The meaning of low is related to a
particular double lightcone limit of the correlator and, unlike the homogeneous case of [50],
no bound is known on this behaviour, although in all known examples this value is lower
than two. A similar limitation applies to the defect dispersion relation. In that case, however,
it is easy to overcome this difficulty by introducing a suitable prefactor which improves the
behaviour of the correlator in the relevant limit without altering its analytical properties.

The second dispersion relation should involve the double discontinuity and should be con-
trolled by the defect channel. The derivation in this case is more involved, but for some specific
values of the defect dimension one can relate the problem to the case without a defect [50]
and, since the dispersion relation is a mathematical statement that is valid for any function of
two complex variables with a given analytical structure, we propose a general formula. The
formula is essentially analogous to the one derived in [51] and, in a similar way, it is techni-
cally hard to use. We test it only on disconnected correlators and we leave further checks of
this formula for future work.

A slightly different discussion is needed for the case of codimension-one defects. In that
case, the bulk two-point function depends on a single cross-ratio and the dispersion relation
looks different. In particular, it is not possible to find a relation that is only controlled either
by the bulk or by the boundary OPE. This is not so surprising as a similar drawback is present

1A dispersion relation in terms of the single discontinuity has been used also for homogeneous CFTs [52], al-
though in that case it cannot be derived from a Lorentzian inversion formula, which contains a double discontinuity.
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for the Lorentzian inversion formula derived in [22]. Therefore, we write down a dispersion
relation which receives contributions from two different cuts, dominated by the two OPE chan-
nels. We show the effectiveness of this relation by applying it to the conformal boundary of
the O(N) critical model. In particular, we show that the results of [20] for the second-order
ε-expansion of the two-point correlator can be reproduced by the dispersion relation with a
finite number of defect CFT data.

Our boundary formula involves two single discontinuities, while the Lorentzian inversion
formula of [22] involves a single discontinuity controlled by the bulk channel and a double
discontinuity controlled by the boundary. It would be interesting to understand whether a
dispersion relation could be derived which exhibits the same features. This would be important
because the double discontinuity is often more constraining than the single one. However
the problem seems technically challenging as no closed form is known for the kernel of the
Lorentzian inversion formula in [22].

Note added: While this paper was in preparation, we became aware of [53], whose con-
tent partially overlaps with the present work. We coordinated with the authors for a simulta-
neous submission.

2 Defect correlators and Lorentzian inversion formula

We consider a planar conformal defect of dimension p and codimension q. We split the co-
ordinates xµ in p parallel coordinates xa

∥ and q orthogonal coordinates x i
⊥. The observable

of interest for this work is the bulk two-point function of two identical bulk primary opera-
tors φ(x)

〈φ(x1)φ(x2)〉=
F(z, z̄)

|x1⊥|∆φ |x2⊥|∆φ
, (1)

which is determined up to a function of two conformal cross-ratios z and z̄. In Appendix A we
summarize our conventions and the relation with different kinematical variables. As usual,
we can understand the variables z and z̄ thinking of a defect in Euclidean kinematics stretched
along x⊥ = 0. After using the preserved subgroup of conformal transformations to set x1∥ = 0
and x1⊥ = (1,0 . . . 0), the residual transformations can be used to fix the point x2 on a plane
with complex coordinates z and z̄. After Wick rotation, the complex coordinates z and z̄ are
mapped into two real independent lightcone coordinates. The lightcones are then located at
z = 0,1 and z̄ = 0,1 as shown in Figure 1

Any bulk two-point function admits two different OPE channels. In the bulk channel,
controlled by the limit z, z̄→ 1, the two operators are expanded in terms of an infinite tower
of bulk operators through the ordinary bulk OPE. In the defect channel, for z, z̄ → 0, both
bulk operators are expanded in terms of defect operators using their defect OPE. These two
channels are associated to two different block expansions.

The defect channel expansion reads

F(z, z̄) =
∑

∆̂,s

b2
∆̂,s

f̂∆̂,s(z, z̄) , (2)

where the sum runs over defect primaries Ô of dimension ∆̂ and transverse spin s,2 and b∆̂,s are
the bulk-to-defect couplings associated to the two-point functions 〈φ Ô〉. The defect conformal
blocks in (2), eigenfunctions of the quadratic Casimir operator of the SO(p+1,1)×SO(q) group
preserved by the defect, factorize accordingly and their exact form is [1]

2Defect primaries do not carry SO(p) spin when the external operators are scalars [1].
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φ(1,1)

z̄ =
0 z =

1

z =
0 z̄ =

1

Defect

φ(z, z̄)

Figure 1: A Lorentzian plane orthogonal to the defect, which lies at the origin.
The first operator lies at z = z̄ = 1, while the position of the second operator is
parametrized by the real lightcone coordinates z and z̄.

f̂∆̂,s(r, w) = f̂∆̂(r) ĝs(w) , (3)

with

f̂∆̂(r) = r∆̂ 2F1

�

∆̂,
p
2

, ∆̂+ 1−
p
2

, r2
�

, ĝs(w) = w−s
2F1

�

−s,
q
2
− 1, 2−

q
2
− s, w2
�

. (4)

In (3), we introduced the convenient variables r and w defined by

z = rw , z̄ =
r
w

. (5)

In the Euclidean regime, when z̄ = z∗, r is the norm of the complex number z and w is the
phase. In the Lorentzian case instead, when z and z̄ are independent real variables, also r and
w are real. The z↔ z̄ symmetry is translated into

F(r, w) = F(r, 1/w) . (6)

It is useful to notice that the angular part of the defect blocks, for integer s, is actually a
Gegenbauer polynomial in the variable η= 1

2

�

w+ 1
w

�

ĝs(w) =

�

s+ q
2 − 2

q
2 − 2

�−1

Cq/2−1
s (η) . (7)

The bulk expansion reads

F(z, z̄) =

� p
zz̄

(1− z)(1− z̄)

�∆φ
∑

∆,ℓ

aO λφφO f∆,ℓ(z, z̄) , (8)

where ∆ and ℓ are dimensions and spins of the operators O exchanged in the bulk OPE, aO is
the coefficient of the one-point function 〈O〉 and λφφO is determined by the bulk three-point
function 〈φφO〉. The bulk conformal blocks f∆,ℓ(z, z̄) are fully fixed by conformal invariance,
although, generically, they do not admit a closed form [54]. We spell out their expressions in
Appendix A.
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2.1 Lorentzian inversion formulae for defect CFT

The idea of the Lorentzian inversion formula for conformal field theories [47] is to provide
a concrete and universal way to extract the defect CFT data from the double discontinuity
of a four-point function (as opposed to the Euclidean inversion formula, which requires the
knowledge of the full correlator and not only the double discontinuity). The powerful feature
of that formula is that it allows for a cross talk between the different OPE channels, and very
few operators in the t- and u-channel allow to extract an infinite tower of CFT data in the
s-channel (the prototypical example being the identity operators which reconstruct the whole
tower of double-twist operators in the crossed channel).

For the defect case, there are two possibilities. The first inversion formula was derived
in [48] and it allows to extract the defect CFT data from a single discontinuity that is controlled
by the bulk OPE. In particular the function F(z, z̄), expressed in terms of the variables (5), can
be written as

F(r, w) =
∞
∑

s=0

∫ p/2+i∞

p/2−i∞

d∆̂
2πi

b(∆̂, s) ĝs(w)Ψ̂∆̂(r) , (9)

with

Ψ̂∆̂(r) =
1
2

�

f̂∆̂(r) +
K̂p−∆̂

K̂∆̂
f̂p−∆̂(r)

�

, K̂∆̂ ≡
Γ (∆̂)
Γ (∆̂− p

2 )
. (10)

The coefficient function b(∆̂, s) encodes in a simple way the CFT data of the exchanged de-
fect operators. Indeed, b(∆̂, s) has simple poles corresponding to the spectrum of exchanged
operators with residues given by the defect OPE coefficients b2

∆̂,s
[48]. One can easily invert

equation (9) using the orthogonality properties of ĝs(w) and Ψ̂∆̂(r) thus finding a Euclidean
inversion formula. However, it turns out that one does not need the knowledge of the full
correlator F(r, w) to compute b(∆̂, s), but only of its discontinuity through the cut running
from w= 0 to w= r

DiscF(r, w) = F(r, w+ i0)− F(r, w− i0) . (11)

This is the content of the Lorentzian inversion formula

b(∆̂, s) = −
K̂∆̂

iπK̂p−∆̂

∫ 1

0

dr

∫ r

0

dw µ̂(r, w) ĝ2−q−s(w)Ψ̂∆̂(r)DiscF(r, w) , (12)

where the integration measure is

µ̂(r, w) = w1−q(1−w2)q−2r−p−1(1− r2)p . (13)

This formula was derived in [48] through a contour deformation of the w integration in the
Euclidean inversion formula. This contour deformation is only allowed if the integrand van-
ishes sufficiently fast for w→∞ (or equivalently, thanks to (6), for w→ 0). This means that
the formula (12), as well as the original Caron-Huot formula [47], might fail for sufficiently
low spin. While in the case without defect ref. [47] managed to derive a bound on the asymp-
totic behaviour of the correlator, no bound is currently known for the large w behaviour of
F(r, w). Assuming that the correlator has a power-like behaviour for w → 0, one has that if
F(r, w) ∼ w−s∗ for w→ 0 then the formula is valid for s > s∗ [48]. The general expectation,
based on the known examples, is that the correlator is indeed bounded by w−s∗ , with s∗ a
small integer (no example is currently known where s∗ > 2). We will find a similar limitation
for the dispersion relation, but in this case, given a specific value of s∗, one can introduce an
additional factor to improve the convergence of the formula (see Section 3).
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A second inversion formula can be derived starting from the bulk partial wave decompo-
sition [49]

F(z, z̄) =
∑

ℓ

∫ d/2+i∞

d/2−i∞

d∆
2πi

c(∆,ℓ)Ψ∆,ℓ(z, z̄) , (14)

with

Ψ∆,ℓ(z, z̄) =
1
2

�

f∆,ℓ(z, z̄) +
Kd−∆,ℓ

K∆,ℓ
fd−∆,ℓ(z, z̄)

�

, (15)

K∆,ℓ =
Γ (∆− p− 1)Γ (∆−1

2 )

Γ (∆− d
2 )Γ (

∆−p−1
2 )

κ∆+ℓ , κ∆+ℓ =
Γ (∆+ℓ2 )

2

2π2Γ (∆+ ℓ)Γ (∆+ ℓ− 1)
. (16)

In this case, the coefficient function c(∆,ℓ) contains all the information about the defect CFT
data of the operators that are exchanged in the bulk OPE. Specifically, it has poles corre-
sponding to their scaling dimensions and residues given by the product cφφOaO. Unlike the
previous case, the relevant quantity to extract c(∆,ℓ) through a Lorentzian inversion formula
is the double discontinuity defined by

dDiscF(z, z̄) = F(z, z̄)−
1
2

F⟲(z, z̄)−
1
2

F⟳(z, z̄) , (17)

where the functions F⟲(z, z̄) and F⟳(z, z̄) are obtained by taking the analytic continuation
around the point z̄ = 0 following an anticlockwise and a clockwise contour respectively. The
final formula is very similar to the case without defect and, for identical scalars, it reads

c(∆,ℓ) = (1+ (−1)ℓ)κ∆+ℓ2

∫ 1
0 d2z µ(z, z̄) fℓ+d−1,∆−d+1(z, z̄)dDisc

�
�

(1−z)(1−z̄)p
zz̄

�∆φ
F(z, z̄)
�

, (18)

with

µ(z, z̄) =
|z − z̄|d−p−2|1− zz̄|p

(1− z)d(1− z̄)d
. (19)

The physical content of the Lorentzian inversion formulae is that the discontinuity of the cor-
relator around the point z̄ = 1 is sufficient to reconstruct the full defect spectrum, while the
double discontinuity around z̄ = 0 allows to reconstruct the bulk spectrum. Given the full
spectrum of exchanged operators and their OPE coefficients, in principle one can resum the
block expansions (2) and (8) to obtain the full correlator. Therefore, we conclude that the
knowledge of either the discontinuity at z̄ = 1 or the double discontinuity at z = 0 is enough
to obtain the full correlator. In practice, resumming the block expansion is usually a pretty
hard task and for this reason it would be more convenient to have a formula that directly re-
lates the discontinuity (or double discontinuity) to the full correlator. This is achieved through
the defect dispersion relations.

3 Defect dispersion relations

The natural route one can follow to obtain a dispersion relation from the Lorentzian inversion
formula is to insert the expression of the coefficient function b(∆̂,ℓ) (c(∆,ℓ)) into the partial
wave decomposition (9) ( (14) ) and perform the integrals over ∆̂ and s (∆ and ℓ). For the
case with the dDisc this seems to be the only viable way and we briefly discuss it in Section 3.2.
For the case involving the single discontinuity at z̄ = 1, instead, there is an easier way to find
a dispersion relation, which exploits the fact that the problem is effectively one-dimensional.3

3We are grateful to M. Meineri for suggesting this strategy to us and for very helpful discussions on this point.
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This allows to obtain the dispersion relation from a simple argument of complex analysis com-
bined with the symmetry (6). In Appendix C we show that the formula we find here perfectly
agrees with the one obtained through the Lorentzian inversion formula.

w′

r 1
r

Figure 2: Contour deformation leading to the dispersion relation.

We start by observing that the radial part of the Lorentzian inversion formula (12) is essen-
tially equivalent to its Euclidean counterpart, i.e. it does not involve any contour deformation.
As a consequence, one is led to expect that the associated dispersion relation only involves the
angular variable w. Furthermore, since the inversion formula involves a single discontinuity
it is clear that one should be able to find an elementary derivation of the dispersion relation.
Indeed, fixing r ∈ (0,1), we see from the bulk and defect block expansions that the two-point
function is regular everywhere in the complex w plane except for two branch cuts at (0, r) and
(1

r ,∞) (see [48] for a detailed analysis of the analytic structure of F(r, w)). Therefore we can
simply use Cauchy’s theorem for the variable w and write

F(r, w) =

∮

dw′

2πi
F(r, w′)
w′ −w

. (20)

We can now deform the contour to wrap it around the branch cuts as shown in Figure 2. We
assume for the moment that we can drop the contribution from all the circles, i.e. the circle
at infinity as well as the small circles around w= 0, r, 1/r.4 If this is the case, we can write

F(r, w) =

∫ r

0

dw′

2πi
1

w′ −w
Disc0<w′<r F(r, w′) +

∫ ∞

1
r

dw′

2πi
1

w′ −w
Discw′> 1

r
F(r, w′) . (21)

Finally, we can use the symmetry F(r, w) = F(r, 1
w) to change variable w′ → 1

w′ in the second
integral and get

F(r, w) =

∫ r

0

dw′

2πi

�

1
w′ −w

+
1

w′ − 1
w

−
1
w′

�

DiscF(r, w′) , (22)

4Notice that, thanks to the symmetry (6), we just need to require a sufficiently good behaviour at w = 0 and
w= r. This automatically implies that we can neglect the circles at |w|=∞ and w= 1

r
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where the discontinuity is taken around the branch point at w= r as in (11).
We now discuss the behaviour at w′ = 0 and w′ = r. The latter is controlled by the bulk

OPE, i.e. the block expansion (8). The bulk blocks f∆,ℓ(z, z̄) behave like (w−r)∆−ℓ for w→ r so
the correlator is dominated by the exchanged operator with lowest twist, which is the identity.
Then we conclude that for w→ r the correlator goes like

F(r, w)∼ (w− r)−∆φ . (23)

Therefore, for ∆φ > 1, some care is needed in interpreting the formula (22). Since the inte-
gral we started from, before deforming the contour, was guaranteed to be finite, if no other
singularity is present, also the contribution of the small circle around w′ = r combined with
the integral in (22) must be finite. What happens is that the discontinuity in equation (22)
must be interpreted in a distributional sense and values of∆φ > 1 give additional finite contri-
butions localized at w′ = r. We will see some examples in the explicit correlators we analyze
below.

For the behaviour near w = 0, the situation is the same as in (12). While equation (12)
allows to extract the defect CFT data for sufficiently high spin (s > s∗), the dispersion relation
(22) reconstructs only part of the full correlator and the missing terms are given by low spin
conformal blocks (summed over all the ∆̂) which are polynomials in w but arbitrarily compli-
cated functions of r. Therefore, it is important to improve this formula in order to include the
missing contributions. This can be easily done after knowing the behaviour of the correlator
for w→ 0 (or equivalently for |w| →∞). In particular, if one knows that

F(r, w)∼ w−s∗ , for w→ 0 , (24)

then we can define

F̃(r, w) =

�

r

(w− r)( 1
w − r)

�s∗+1

F(r, w) , (25)

which, by construction, goes like w−1 at large w. Therefore, formula (22) certainly applies for
the function F̃ . We can then write down an improved version of the dispersion relation

F(r, w)

(w− r)s∗+1( 1
w − r)s∗+1

=

∫ r

0

dw′

2πi

�

1
w′ −w

+
1

w′ − 1
w

−
1
w′

�

Disc

�

F(r, w′)

(w′ − r)s∗+1( 1
w′ − r)s∗+1

�

. (26)

An alternative strategy would be to subract from F(r, w) the contribution of all operators with
spin lower than s∗. Given a specific value of s∗, the subtraction strategy implies resumming the
contribution of infinitely many low spin operators to reconstruct the correlator, while the re-
lation (26) can be used immediately. On the other hand, the prefactor inside the Disc worsens
the behaviour at w→ r, and we will see in the following that this produces some additional
complication when trying to reconstruct the discontinuity from the bulk block expansion.

The main advantage of the formula (26) is that the discontinuity at w= r is controlled by
the bulk OPE. Indeed, the bulk blocks (A.9) are of the form

f∆,ℓ = (w− r)
∆−ℓ

2 f̃∆,ℓ(r, w) , (27)

where f̃∆,ℓ(r, w) is regular at w= r. This turns out to be particularly powerful in a perturbative
setting where the dimensions of the exchanged operators are deformed away from integer
values ∆(0)

∆=∆(0) + εγ(1) + ε2γ(2) + . . . ,

λφφ∆a∆ = λ
(0) + ελ(1) + ε2λ(2) + . . .

(28)
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Plugging this data in the bulk OPE expansion (8) we find the following structure

F(z, z̄) =
∑

λ(0) f∆(0),ℓ + ε
�

λ(1) f∆(0),ℓ +λ
(0)γ(1)∂ f∆(0),ℓ
�

+ ε2
�

λ(2) f∆(0),ℓ +
�

λ(0)γ(2) +λ(1)γ(1)
�

∂ f∆(0),ℓ +
1
2
λ(0)(γ(1))2∂ 2 f∆(0),ℓ

�

+ . . . ,
(29)

where we used the notation ∂ f∆(0),ℓ ≡ ∂∆ f∆,ℓ|∆=∆(0) and we suppressed the dependence of
the blocks on the cross ratios. We can use this expansion to compute the discontinuity of the
correlator, term by term in the expansion. The advantage of doing this is that not all of the
above terms contribute. Indeed it is clear from the explicit form of the blocks (47) that the
relevant discontinuity is given by the derivatives of the blocks, which produce logarithms when
the derivative hits the exponent of [(1− z)(1− z̄)]

∆−ℓ
2 . We see that those terms at any given

order depend on lower order OPE data and the anomalous dimensions at the order we are
working at. Furthermore, since the anomalous dimension at a specific order multiplies the
lowest-order OPE coefficient λ(0), we only need the anomalous dimensions of the operators
that contribute at leading order. In other words, the discontinuity can be computed from a
subset of OPE data. In particularly convenient cases, such as the one we are going to analyze
in Section 5, this subset is finite and the formula provides a convenient and immediate way
to reconstruct a correlator from a finite number of bulk CFT data. In general there may be an
additional source of discontinuities. If the correlator goes at large w worse than 1

w we may need
to introduce a prefactor, in order to drop the contribution at infinity in the dispersion relation.
That prefactor may introduce additional poles in the OPE expansion, which will contribute to
the discontinuity.

3.1 The contribution of bulk and defect identity operators

The simplest application we can consider is the bulk identity operator, i.e. the trivial defect. In
the conventions of equation (1), the bulk two-point function without the defect corresponds
to the function

F(z, z̄) =

� p
zz̄

(1− z)(1− z̄)

�∆φ

=

�

r
(1− rw)(1− r

w)

�∆φ

. (30)

For w→ 0 the function (30) goes like w∆φ and for w→ r it goes like (w− r)−∆φ . Therefore,
the circle contributions in Figure 2 can be neglected for 0<∆φ < 1 and in this regime we can
simply use equation (22). The discontinuity of equation (30) at w= r is given by

Disc
�

1−
r
w

�−∆φ
= 2i sin(π∆φ)
� r

w
− 1
�−∆φ

. (31)

Then, one can check by explicit computation that

sin(π∆φ)

π

∫ r

0

dw′
� 1

w′ −w
+

1

w′ − 1
w

−
1
w′

�� r
(1− rw′)( r

w′ − 1)

�∆φ
=
� r
(1− rw)(1− r

w)

�∆φ
, (32)

for 0<∆φ < 1. For∆φ > 1 one can include the contributions of the small circle around w= r
and still find perfect agreement with the expectations.

A subtler example is the defect identity, i.e. F(r, w) = a2
φ

with aφ the coefficient of the one-

point function 〈φ〉. In this case, we have F(r, w)∼ w0 for w→ 0 so one needs to use equation
(26) with s∗ = 0. Naively, one would conclude that the discontinuity vanishes, however one
should interpret equation (26) in a distributional sense such that

Disc
�

1
w′ − r

�

= −2πi δ(w′ − r) . (33)
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Using this relation, the dispersion relation is a trivial consequence of

−(w− r)
�

1
w
− r
�

∫ r

0

dw′
�

1
w′ −w

+
1

w′ − 1
w

−
1
w′

�

1
1
w′ − r

δ(w′ − r) = 1 . (34)

Therefore, we checked that the dispersion relation correctly reproduces the disconnected part

of a defect correlator, i.e. F(r, w) = a2
φ
+
�

r
(1−rw)(1− r

w )

�∆φ
. In section 5, we will apply our

dispersion relation to more interesting examples and we will show that it allows to repro-
duce, in one line, perturbative results that were previously obtained by resumming the block
expansion.

3.2 A dispersion relation with the double discontinuity

Plugging the result of the Lorentzian inversion formula (18) into the partial wave decom-
position (14) and performing the sums over spin and dimension should lead to a dispersion
relation involving the double discontinuity at z̄ = 0. In general, this is hard because no closed
form is known for the bulk blocks. However, we should remember that this is true also for the
case without the defect. The strategy of [47] was to derive a formula for d = 4 and d = 2
and then argue for its validity in general. We believe a similar logic applies to our case. In the
particular case of p = 2, for any d, we can exploit the following fact [49]

f∆,l(z, z̄) =
(1− z)(1− z̄)

1− zz̄
gd−2
∆−1,l+1(1− z, 1− z̄) , (35)

where f∆,l(z, z̄) is the bulk block and gd
∆,l(z, z̄) is the conformal block for a four-point function

without the defect in dimension d. Then, if we rewrite the defect two-point function as

F(z, z̄) =

� p
zz̄

(1− z)(1− z̄)

�∆φ (1− z)(1− z̄)
1− zz̄

G(1− z, 1− z̄) , (36)

then the function G(z, z̄) is a function which can be expanded in ordinary four-point function
conformal blocks. This means that it can be computed using the dispersion relation for Regge-
bounded four point functions derived in [50]. The formula reads5

G(u, v) = G t(u, v) +Gu(u, v) ,

u
v
G t(u, v) =

∫ 1

0

du′dv′ K(u, v, u′, v′)dDisc
�

u′

v′
G(u′, v′)
�

,
(37)

where the u-channel expression is obtained by sending z → z
z−1 and we have introduced the

variables
u= zz̄ , v = (1− z)(1− z̄) . (38)

In these coordinates the kernel K(u, v, u′, v′) is

K(u, v, u′, v′) =
u− v + u′ − v′

64π(uvu′v′)
3
4

x
3
2 2F1

�

1
2

,
3
2

,2, 1− x
�

(θ (x − 1)− 4δ(x − 1)) , (39)

where

x =
16
p

uvu′v′

[(
p

u+
p

v)2 − (
p

u′ +
p

v′)2][(
p

u−
p

v)2 − (
p

u′ −
p

v′)2]
. (40)

5The prefactor u
v is introduced to improve the behaviour of G(u, v) at infinity and take into account the contri-

bution of small spin operators, similarly to what was done in (26). We refer to [50] for a detailed discussion.
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Therefore for our correlator we find

F t(z, z̄) =

� p
zz̄

(1− z)(1− z̄)

�∆φ zz̄
1− zz̄

∫ 1

0

dwdw̄ K(1− z, 1− z̄, 1−w, 1− w̄)

× dDiscw̄=0

�

F(w, w̄)
�

(1−w)(1− w̄)
p

ww̄

�∆φ 1−ww̄
ww̄

�

.

(41)

This formula is derived and guaranteed to work for p = 2 and arbitrary d, however we notice
that the function F(z, z̄) has the same analytic structure for all p and that the prefactors in
the formula do not introduce new singularities. Since the original formula is derived from
a contour deformation argument which is essentially based on the analytic structure of the
functions, we conjecture that this formula works for all dimensions and codimensions, if F(z, z̄)
is appropriately bounded (otherwise we can simply add the suitable prefactors).
We checked this formula explicitly for the bulk identity correlator, which corresponds to

G(1− z, 1− z̄) =
1− zz̄

(1− z)(1− z̄)
, (42)

and the check reduces to the one performed in [50] for generalized free fields. We leave further
checks of this relation for future work.

4 Dispersion relation for boundary CFT

In this section we treat separately the case of codimension one, i.e. boundaries and interfaces.
The main difference with the case of general defect lies in the presence of a single cross-ratio
z, which is reflected in the absence of the transverse spin. In a sense, this provides a simplifi-
cation. Nevertheless, it was observed in [22] that this feature leads to a different structure for
the Lorentzian inversion formula, which contains two different contributions: a term involv-
ing a single discontinuity, controlled by the bulk OPE, and a term with a double discontinuity,
controlled by the boundary OPE. Unlike the general defect case, it is not possible to find an
inversion formula controlled by a single channel. Another drawback of this case is that the
integration kernels are not known in a closed form, except when the difference of the external
dimensions is an odd integer. The first obstacle is present also in our case. We can indeed
use a simple contour deformation, as in section 3, to derive a dispersion relation involving
two discontinuities, but, unlike the case of the general defect, there is no symmetry relating
the two contributions. This leads to a less powerful formula, which requires knowledge of a
subset of bulk CFT data as well as a subset of defect CFT data. Nevertheless, we will show
in section 6 that, for some important perturbative settings, such as the boundary of the O(N)
model at the Wilson-Fisher fixed point, only a finite number of CFT data will be needed to
reconstruct the full correlator.

We start from the two point function

〈φ(x1)φ(x2)〉=
F(z)

(4|x1⊥||x2⊥|)∆φ
. (43)

Notice that our conventions are slightly different compared to the general defect case to match
those that are commonly used in the literature. The boundary block expansion reads

F(z) =
∑

∆̂

b2
∆̂

f̂∆̂(z) , (44)

with

f̂∆̂(z) = z∆̂ 2F1

�

∆̂, ∆̂+ 1−
d
2

, 2∆̂+ 2− d, z
�

, (45)
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z′

0 1

Figure 3: Contour deformation for the boundary case.

and the bulk block expansion is

F(z) =
� z

1− z

�∆φ∑

∆

aOcφφO f∆(z) , (46)

with

f∆(z) = (1− z)
∆
2 2F1

�

∆

2
,
∆

2
+ 1−

d
2

,∆+ 1−
d
2

,1− z
�

. (47)

From the block expansions we see that the correlator has branch cuts for z ∈ (−∞, 0) and
z ∈ (1,+∞).

Following the same logic as for the general defect we start from

F(z) =
1

2πi

∮

dz′
F(z′)
z′ − z

, (48)

where the integration contour encircle any regular point z.
We can deform the contour as shown in Figure 3 and, assuming again that we can neglect

the contribution from the circle at infinity and the two small circles at z′ = 0 and z′ = 1, we
get

F(z) =
1

2πi

∫ 0

−∞
dz′

Discz′<0(F(z′))
z′ − z

+
1

2πi

∫ ∞

1

dz′
Discz′>1(F(z′))

z′ − z
. (49)

In other words, the two-point function can be computed from its discontinuity, defined as the
difference between two analytic continuations of the correlator above and below a certain
branch cut

Disc(F(z)) = F(z + iε)− F(z − iε) . (50)

Before moving to the applications, let us discuss the convergence at z′ = 0, 1,∞. The
lightest exchanged operator in the boundary channel is the boundary identity, which corre-
sponds to ∆̂ = 0 in (44). All other boundary operators will contribute with terms that vanish
for z = 0, so this limit does not present any problem. At z = 1, the leading contribution is
given by the bulk identity, which, using (46), corresponds to F(z) ∼ (1 − z)−∆φ exactly like

13

https://scipost.org
https://scipost.org/SciPostPhys.15.2.055


SciPost Phys. 15, 055 (2023)

the general defect for w→ r (see (23)). Therefore, the same considerations that we applied
in that case can be applied here.

The circle at |z| →∞ is again subtler as it is not directly controlled by an OPE expansion.
Compared to the case of higher codimension, however, the situation is slightly different as
the authors of [22] managed to derive a bound on the large |z| behaviour of a boundary
correlator, i.e.

F(z)∼ z∆φ , for |z| →∞ . (51)

We can then improve the dispersion relation (49) by introducing a suitable prefactor as we did
in (26). A possible choice is

F(z) =
z∆φ+1

2πi

∫ 0

−∞
dz′

Discz′<0

�

F(z′)
(z′)∆φ+1

�

z′ − z
+

z∆φ+1

2πi

∫ ∞

1

dz′
Discz′>1

�

F(z′)
(z′)∆φ+1

�

z′ − z
. (52)

Of course this choice affects the behaviour of the integrand at z′ = 0 and one should then
reanalyse the contribution of the small circle around z′ = 0 and take into account the contri-
bution of the small circle around zero in case the integral diverges, as we discussed around
(23). We stress that the choice (52) is by no means unique and we will see in Section 6 that in
a perturbative setting, this freedom can be used to simplify the computation by reducing the
number of exchanged operators that are needed to compute the discontinuities.

4.1 The contribution of bulk and boundary identity operators

As we did for the general defect, we can test our dispersion formula on the contribution of
the identity operator. The identity operator in the boundary corresponds to ∆̂ = 0, therefore,
according to (45)

F(z) = a2
φ , (53)

where aφ is the coefficient of the one-point function 〈φ(x⊥)〉 =
aφ

|2x⊥|
∆φ

. If we want to repro-

duce this correlator from the dispersion relation, we need to improve its behaviour at large z
by adding a prefactor of 1

z . Then we have

Discz<0

�

1
z

F(z)
�

= −2πiδ(z)a2
φ ,

Discz>1

�

1
z

F(z)
�

= 0 ,
(54)

and therefore we trivially have

F(z) = −a2
φz

∫ 0

−∞
dz′

1
z′ − z

δ(z′) = a2
φ . (55)

From (46) we see that the bulk identity operator corresponds to a correlator

F(z) =
z∆φ

(1− z)∆φ
. (56)

Since ∆φ > 0, it behaves like a constant for large z, therefore we need to add a prefactor in
order to drop the large circle contributions in the contour integral. We have

Discz<0

�

1
z

F(z)
�

= 2i sin(π(∆φ − 1))
(−z)∆φ−1

(1− z)∆φ
,

Discz>1

�

1
z

F(z)
�

= 2i sin(π(∆φ))
z∆φ

(z − 1)∆φ
,

(57)
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and finally

F(z) = z

∫ 0

−∞
dz′

1
z′ − z

sin(π(∆φ − 1))

π

(−z′)∆φ−1

(1− z′)∆φ
+ z

∫ ∞

1

dz′
1

z′ − z

sin(π∆φ)

π

z′∆φ

(z′ − 1)∆φ

=
z∆φ

(1− z)∆φ
, (58)

for 0 < ∆φ < 1. One can recover the ∆φ > 1 result from analytic continuation or by reintro-
ducing the contributions of small circles around z = 0,1. When the external dimension is an
integer, the discontinuity has to be interpreted as a delta function, as we said before.

5 Wilson line in N = 4 SYM

A non-trivial example of conformal defect, which has been intensively analyzed in the litera-
ture, is the supersymmetric Wilson line in N = 4 SYM theory

W =
1
N

TrP exp

�∫

dτ
�

iAµ ẋµ + | ẋ |θIφ
I
�

�

, (59)

where we take the contour to be a straight line parametrized by τ and the unit vector θ I

(θ IθI = 1) is a constant SO(6) vector which we will take to be θ6 = 1 and θA = 0 for
A = 1, . . . , 5. We are interested in the two-point function of 1

2BPS operators of protected
dimension ∆= P, where P is their R-charge. Let us start from the case P = 2

OI J
20′(x) = Tr
�

φ I(x)φJ (x)−
1
6
δI JφK(x)φK(x)

�

. (60)

This operator is the superprimary of the N = 4 stress tensor multiplet and it changes in the 20′

representation of the SO(6) R-symmetry group.6 To handle the dependence on R-symmetry
indices it is often convenient to introduce the complex null vector Y I , Y I YI = 0 and define

O2(x , y)∝ Tr (Y ·φ(x))2 . (61)

By acting with a suitable differential operator it is always possible to transform functions of Y
into SO(6) tensor structures. This expression readily generalizes for higher-dimensional BPS
operators

OP(x , y)∝ Tr (Y ·φ(x))P . (62)

The overall normalization of these operators is clearly related to the normalization of the
field φ in the N = 4 Lagrangian. In this work we take an abstract point of view, using only
the symmetries and the internal consistency of the SCFT. We never need to make explicit
reference to a Lagrangian formulation and all the quantities we compute are independent
of the normalization of the field φ. For this reason, we will take the operators (62) to be
normalized as

〈OP(Y1, x1)OP(Y2, x2)〉=
�

Y1 · Y2

x2
12

�P

. (63)

In the presence of the Wilson line these operators have a non-vanishing one-point function,
which is fixed by superconformal invariance up to a coefficient aP

〈OP(Y, x)〉W ≡
〈OP(Y, x)W〉
〈W〉

= aP

�

Y · θ
|x⊥|

�P

. (64)

6The 1
2 BPS operators in N = 4 SYM are often identified by the Dynkin labels [0, P, 0] and the operator (60)

corresponds to the [0,2, 0] case.
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We are interested in the two-point function in the presence of the Wilson line

〈OP(Y1, x1)OP(Y2, x2)〉W =
〈OP(Y1, x1)OP(Y2, x2)W〉

〈W〉
, (65)

which can be written as [43,44]

〈OP(Y1, x1)OP(Y2, x2)〉W =
�

Y1 · θ Y2 · θ
|x1⊥||x2⊥|

�P

FP(z, z̄,σ) , (66)

where z and z̄ are the same kinematical cross-ratios as in (1) and σ is the R-symmetry cross-
ratio

σ =
Y1 · Y2

Y1 · θ Y2 · θ
. (67)

It is not hard to realize that the function FP(z, z̄,σ) is a polynomial in σ of order P. We can
then write it as

FP(z, z̄,σ) =
P
∑

n=0

σP−nFP,n(z, z̄) . (68)

It is worth emphasizing that the dispersion relation (26) holds separately for the functions
FP,n(z, z̄) provided that we know their behaviour at w→ 0. In the following, we will consider
the expansion of the functions FP,n(z, z̄) at weak and strong coupling and discuss how a subset
of the bulk operators is sufficient to reconstruct the full correlator. Before doing this, we
need to introduce the selection rules and the superconformal block decompositions in the
bulk channel.

5.1 Selection rules and superconformal block expansion

The function FP(z, z̄,σ) can be expanded in the bulk and in the defect channel. The block
expansions discussed in Section 3 are improved to superblock expansions in the presence of
supersymmetry. Here we summarize the results for the selection rules and the superblocks
derived in [43,44] and we refer the reader to these works for a thorough discussion.

The operators OP are superprimaries of the 1
2BPS multiplet B[0,P,0] (here we used the no-

tation of [55] for the N = 4 supermultiplets). In the bulk channel, we are interested in taking
the fusion B[0,P,0]×B[0,P,0] and select the supermultiplets with a non-vanishing defect one-point
function. Combining the results of [56] and [31,44], we have

B[0,P,0] ⊗B[0,P,0]→ 1⊕
P
∑

k=1

B[0,2k,0] ⊕
P−1
∑

k=1

∑

ℓ

C[0,2k,0],ℓ ⊕
P−2
∑

k=0

∑

∆,ℓ

A∆[0,2k,0],ℓ , (69)

where C[0,2k,0],ℓ are semishort multiplets with protected scaling dimension ∆ = 2 + 2k + ℓ,
while A∆[0,2k,0],ℓ are long multiplets with arbitrary scaling dimension ∆ > 2 + 2k + ℓ. Each
exchanged supermultiplet corresponds to a superblock F∆,ℓ(z, z̄,σ), which encodes the con-
tributions of all the superdescendants in the associated supermultiplet and for this reason it
can be expressed as a linear combination of ordinary bulk blocks. Then the correlator can be
expanded as

FP(z, z̄,σ) =

� p
zz̄ σ

(1− z)(1− z̄)

�P
∑

O
λPPOaOF∆,ℓ(z, z̄,σ) , (70)

where the sum is taken over the superprimary operators O for each of the supermultiplets
that are allowed to appear in the OPE (69). The coefficients are given by a product of a
bulk three-point function λO and a one-point function aO. For single-trace short exchanged
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multiplets, the OPE coefficients are known exactly from supersymmetric localization. Their
large-N expression reads

λP1P2P3
=

p

P1P2P3

N
, aP =

p
λP

2
P
2+1N

IP(
p
λ)

I1(
p
λ)

. (71)

Each superconformal block F∆,ℓ(z, z̄,σ) can be expressed as a linear combination of ordinary
bulk conformal blocks f∆,ℓ(z, z̄) (A.9) as shown in Appendix B. In the defect channel, each
supermultiplet B[0,P,0] is expanded in defect superblocks. For this work, we will not need the
details of this expansion, which can be found in [43, 44]. Our next goal is to understand the
implications of the dispersion relation (26) for this setup.

5.2 Strong coupling

We start our analysis at large N and largeλ, where the supersymmetric Wilson loop is described
as the string worlsheet of minimal area ending on the contour of the loop. The correlator of
bulk operators can be computed perturbatively by Witten diagrams where some propagators
end on the worldsheet. At large N and large λ, the leading contribution to the correlator
〈OPOP〉W is just (66), i.e. the two-point function without the defect. At order 1/N2 we have
many contributions and we focus on the first two: a disconnected one, which simply gives
the product of two one-point functions at leading order and a second one, suppressed by 1p

λ
which is the leading connected contribution, i.e.

〈OPOP〉W = 〈OPOP〉+
λ

N2

�

〈OP〉
(0)
W 〈OP〉

(0)
W +

1
p
λ
〈OPOP〉

(1)
W +O(1/λ)
�

+O
�

1
N4

�

. (72)

Correspondingly, the function FP(z, z̄,σ) reads

FP(z, z̄,σ) =

� p
zz̄ σ

(1− z)(1− z̄)

�P

+
λ

N2

�

P
2P+2

+
1
p
λ
F (1)P (z, z̄,σ) +O(1/λ)

�

+O
�

1
N4

�

, (73)

where we used the result for the one-point function (71). The function F (1)P (z, z̄,σ) has been
computed for P = 2, 3,4 in [44] by extracting the defect CFT data using the Lorentzian inver-
sion formula and resumming the defect block expansion. Here, using the dispersion relation
(22) we can skip the intermediate step and recover the result by performing a very simple in-
tegration. This gives a clear understanding of the reason why the final result for the correlator
is particularly simple.

The crucial observation of [44] is that very few operators contribute to the discontinuity
at z̄ = 1. In particular, at large N and large λ, the bulk theory is described by an effective
supergravity theory in AdS5 and the spectrum of light excitations contains only the protected
Kaluza-Klein modes in the short B[0,P,0] multiplets and double trace operators with dimension

∆= 2P + 2n+ ℓ+O(N−2) . (74)

Notice that the twist of the double trace operators (τ=∆−ℓ= 2P+2n) is significantly higher
than the lower bound allowed by the selection rules (69) which would allow for long operators
of twist as low as two. Then the factor (w− r)

∆−ℓ
2 in (27) together with the prefactor in (70)

ensures that the contribution of the double trace operators goes like (w − r)n with n ≥ 0.
Therefore, double trace will not contribute to the discontinuity as long as no improvement is
needed, i.e. if we can use (22) instead of (26). In [44] it was argued that the behaviour of
the functions F (1)P,n (z, z̄) in (68) for w → 0 is F (1)P,n (r, w) ∼ wP−n−1 so that the improvement is

needed only for F (1)P,P−1 and F (1)P,P . For all the cases when the improvement is not needed, only
short operators contribute to the discontinuity.
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For P = 2, no improvement is needed to compute F (1)2,0 (z, z̄). Following [44], we compute
the discontinuity from the OPE, keeping only the negative powers in the superblock expansion.
This gives a δ-function contribution

Disc(F (1)2,0 (r, w)) = −2πiλ(1)222δ(r −w)

�

r2w
�

r4 − 2r2 log
�

r2
�

− 1
��

(r2 − 1)3 (rw− 1)
, (75)

where λ(1)222 is the strong coupling expansion of (71). More generally, we define

λPPOaO =
p
λ

N2
λ
(1)
PPO +O(λ) . (76)

Equation (75) can be immediately integrated in (22) obtaining with no effort the final result
of [44]

F (1)2,0 (r, w) = −λ(1)222

r2w
�

r4 − 2r2 log
�

r2
�

− 1
�

(r2 − 1)3 (r −w)(rw− 1)
. (77)

In principle, we could follow a similar procedure for the other R-symmetry components, but
the situation is more complicated. For example, the function F (1)P,1 (r, w) goes like w0 for w→ 0
and it needs an improvement given by (26) with s∗ = 0. Therefore, it will receive contribu-
tions also from twist-four double traces with any spin. This is still a simplification compared to
resumming the full block expansion as it requires to resum a single infinite family of operators
(fixed twist, any spin), instead of two. Still, in this case this procedure is not very practical and
a more efficient one, proposed in [44], would be to use the dispersion relation (22) to deter-
mine F (1)P,1 (r, w) up to low spin ambiguities and then fix the ambiguities using superconformal
Ward identities.

In general, we can carry out this same procedure for all 〈OPOP〉, confirming and extending
the results of [44]. Indeed, in this holographic setup only short operators contribute to the
discontinuity in all the cases where we do not need to improve the dispersion relation.7 This
means that in (69) only the multiplets B[0,2k,0] need to be considered for the discontinuity.
Furthermore the multiplet B[0,2P,0] is too high in dimension and it does not contribute. We can
then compute the discontinuity at the order we are interested in as

Disc(F (1)P (z, z̄,σ)) = Disc

�

� p
zz̄σ

(1− z)(1− z̄)

�P P−1
∑

k=1

λPP2ka2kG[0,2k,0](z, z̄,σ)

�

, (78)

and use the dispersion formula to find the F (1)P,p up to p = P − 2. Notice that, as for the case
P = 2 all the contributions are distributions, specifically δ-functions or derivatives thereof. For
example for P = 3

Disc(F (1)3,0 (r, w)) = λ(1)334δ(w− r)

�

r3w
�

r6 + 9r4 − 9r2 − 6
�

r4 + r2
�

log
�

r2
�

− 1
��

4 (r2 − 1)5 (rw− 1)

−
λ
(1)
332 δ

′(w− r) r3w

4 (r2 − 1)5 (rw− 1)2

�

2r2
�

−5r4w+ 3r3
�

w2 + 1
�

− 2r2w+ 3r
�

w2 + 1
�

− 5w
�

log
�

r2
�

+
�

r2 − 1
� �

3r6w− r5
�

w2 + 1
�

+ 9r4w− 10r3
�

w2 + 1
�

+ 9r2w− r
�

w2 + 1
�

+ 3w
�

�

.

(79)

7For the improved relation the prefactor inside the discontinuity in (26) worsens the behaviour of the function
at w→ r and generates poles associated to operators with higher twist, such as, for instance, an infinite tower of
long twist-four operators for P = 2.

18

https://scipost.org
https://scipost.org/SciPostPhys.15.2.055


SciPost Phys. 15, 055 (2023)

Which gives the expected result [44]

F (1)3,0 (r, w) = −
3
4

r3w2
�

r4 − 4r2 log(r)− 1
�

(r2 − 1)3 (r −w)2(rw− 1)2
. (80)

Computing at higher P does not involve any conceptual obstacle and it is only an algorthmic
procedure. We checked the conjecture of [44] for the function F (1)P,0

F (1)P,0 (z, z̄) = −
P
4

(zz̄)
P
2

[(1− z)(1− z̄)]P−1

�

1+ zz̄
(1− zz̄)2

+
2zz̄ log(zz̄)
(1− zz̄)3

�

, (81)

up to very high values of P and we always found perfect agreement. We also derived the
functions F (1)P,p (z, z̄) with p ≤ P − 2 for several values of P. As an example, in Appendix D we

spell out the results for F (1)5,p , which is the first case that did not appear in [44].

5.3 Weak coupling

At weak coupling things get more complicated as there is no simplification in the spectrum of
exchanged operators and all the operators that are allowed to appear actually appear. There-
fore, we cannot derive the correlator from the known CFT data of protected operators. Still,
we can use some of the results obtained in [43] for 〈O2O2〉 to check the consistency of the
dispersion relation. The function F2(z, z̄,σ) is expanded at small λ as

F2(z, z̄,σ) = F (0)2 (z, z̄,σ) +
λ

N2
F (1)2 (z, z̄,σ) +

λ2

N2
F (2)2 (z, z̄,σ) (82)

and, at each order the functions F (i)2 are decomposed as in (68). At order zero there is a
disconnected contribution, corresponding to the identity operator being exchanged in the bulk.
The only non-vanishing function is then (in our normalization)

F (0)2,0 (r, w) = λ221a(0)1
r2w2

(1− rw)2(w− r)2
, (83)

where the coefficient of the bulk identity is λ221a(0)1 = g4N2

25π4 [43].
At order one, if we look at the superblock bulk expansion, according to the argument below
(29), there are no logarithmic contributions from the anomalous dimensions, since at this
order they would be proportional to the order zero coefficients. The discontinuity is then gen-
erated by the negative powers in the OPE. Only the protected operators and the long operators
with twist 2 will produce such negative powers. Using the results of [43] for the coefficients
of the twist 2 long operators

λ22([0,2+ℓ,0],ℓ) =
g6N

π422(ℓ+4)
(ℓ+ 1)

Γ (1
2)Γ (ℓ+ 2)

Γ (ℓ+ 5
2)

, (84)

we find, thanks to a remarkable cancellation between the coefficients of long and short oper-
ators

DiscF (1)2,2 = 0 ,

Disc(F (1)2,1 ) = 2πi
4λ222a(1)2 rw

(1− rw)
δ(w− r) ,

DiscF (1)2,0 = 0 .

(85)
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Inserting this into (22) we find

F (1)2,2 = 0 ,

F (1)2,1 =
λ222a(1)2 rw

(1−wr)(1− r
w)

,

F (1)2,0 = 0 ,

(86)

in agreement with [43]. Let us stress that, in this case, we need to use an infinite set of
data from [43] to reproduce their result. Therefore, the dispersion relation has less predictive
power than in the strong coupling case. This is a familiar situation also in the case without
defects.

At second order things become more complicated. For the first time we get terms with
logarithms in the OPE expansion (29). It turns out that these terms only contribute to F (2)2,2

and F (2)2,1 . We can write down these logarithmic terms as infinite sums, using the CFT data
extracted from the correlator at previous orders, but we cannot evaluate them because the
bulk blocks are not known in closed form. Also, in principle there could be mixing between
the operators and in that case we would need to solve it at order one to extract the data needed
to compute the logarithmic term at second order.
The F (2)2,0 term is simpler, and its discontinuity receives contributions only from negative powers.

Assuming that F (2)2,0 goes as a constant for w going to infinity, we find

Disc(F (2)2,0 ) =
rw

1− rw
δ(w− r)

�

λ224a(2)4

3r2
�

−2r2 +
�

r2 + 1
�

log
�

r2
�

+ 2
�

(r2 − 1)3

−
∞
∑

ℓ=0

λ22ℓa
(2)
ℓ

(ℓ+ 1)r2
�

1− r2
�ℓ+2

2F1

�

ℓ+ 4,ℓ+ 4;2ℓ+ 8;1− r2
�

16(ℓ+ 2)

!

,

(87)

where λ22ℓa
(2)
ℓ

is the product of OPE coefficients and one-point function of twist-four semishort
operators in the C[0,4,0],ℓ multiplet. From (22) we get

F (2)2,0 = λ224a(2)4

3r2
�

−2r2 +
�

r2 + 1
�

log
�

r2
�

+ 2
�

(r2 − 1)3

−
∞
∑

ℓ=0

λ22ℓa
(2)
ℓ

(ℓ+ 1)r2
�

1− r2
�ℓ+2

2F1

�

ℓ+ 4,ℓ+ 4; 2ℓ+ 8;1− r2
�

16(ℓ+ 2)
.

(88)

We see that F (2)2,0 can be reconstructed only from a subset of operators. Using the CFT data
in [43], we have checked that this expansion reproduces the known result, which we reproduce
here for convenience

F (2)2,0 =
1

128π2

�

2Li2
�

r2
�

+ 4Li2

�

1+ r
2

�

− 4Li2

�

1− r
2

�

− 8Li2(r)− 4 log(1− r) log(r)

+ 4 log
�

(1− r)r
r + 1

�

log(r + 1) + 8 log(2) tanh−1(r) +π2
�

.
(89)

6 The boundary in the O(N) critical model

The advantage of the dispersion relation (49) is that, in some cases, the discontinuity can be
computed without knowing the full correlator. One example where this is possible is the O(N)
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statistical model at the Wilson-Fisher fixed point. We start from a free scalar theory in the
presence of a boundary. This was analyzed with bootstrap techniques in [17] where it was
found that two possible solutions to the boundary crossing equation are of the form

F (0)N (z) =
� z

1− z

�∆φ
+ z∆φ , F (0)D (z) =

� z
1− z

�∆φ
− z∆φ , (90)

with ∆φ =
d
2 − 1. These two solutions are associated to Neumann and Dirichlet boundary

conditions respectively. In this case, the expansion in bulk blocks features a single primary
operator, φ2 with dimension ∆ = 2∆φ , which is the only exchanged operator, other than the

identity, that has a non-vanishing one-point function a(0)
φ2λ

(0)
φφφ2 = ±1 (the upper sign refers to

Neumann and the lower one to Dirichlet). Also in the boundary channel expansion a single
operator is exchanged: φ̂ of dimension ∆̂ = ∆φ for Neumann (when ∂⊥φ̂ = 0) and ∂⊥φ̂
of dimension ∆̂ = ∆φ + 1 for Dirichlet (when φ̂ = 0).8 The corresponding squared bulk-to-

boundary coefficients are respectively b2(0)
φ̂
= 2 or b2(0)

φ̂
= d

2 − 1. We start from this solution

and we perturb it by expanding the bulk and defect CFT data. Let us start from the bulk
channel expansion (46) and, after defining aλ≡ aOλφφO, we take

∆=∆(0) + εγ(1) + ε2γ(2) + . . . ,

aλ= aλ(0) + εaλ(1) + ε2aλ(2) + . . .
(91)

Plugging this data in the bulk OPE expansion, we have the following structure

�

1− z
z

�∆φ

F(z) =
∑

aλ(0) f∆(0)(z) + ε
�

aλ(1) f∆(0)(z) + aλ(0)γ(1)∂∆ f∆(z)|∆(0)
�

(92)

+ ε2
�

aλ(2) f∆(0)(z) + (aλ
(0)γ(2) + aλ(1)γ(1))∂∆ f∆(z)|∆(0) +

1
2 aλ(0)(γ(1))2∂ 2

∆ f∆(z)|∆(0)
�

+ . . . ,

where the sum is taken over the exchanged bulk operators. In the case we are discussing, there
is a single bulk operator with non-vanishing aλ(0) and its anomalous dimension will appear in
the combination aλ(0)γ(1) at order ε. All the operators with a one-point function of order ε,
i.e. non-vanishing aλ(1), will enter at first order with their classical dimension ∆(0).

An analogous expansion holds in the defect channel

∆̂= ∆̂(0) + εγ̂(1) + ε2γ̂(2) + . . . ,

b2
∆̂
= b2(0) + εb2(1) + ε2 b2(2) + . . . ,

(93)

and inserting these into (44) we obtain

F(z) =
∑

b2(0) f̂∆̂(0)(z) + ε
�

b2(1) f̂∆̂(0)(z) + b2(0)γ̂(1)∂∆̂ f̂∆̂(z)|∆̂(0)
�

(94)

+ ε2
�

b2(2) f̂∆̂(0)(z) + (b
2(0)γ̂(2) + b2(1)γ̂(1))∂∆̂ f̂∆̂(z)|∆̂(0) +

1
2 b2(0)(γ̂(1))2∂ 2

∆̂
f̂∆̂(z)|∆̂(0)
�

+ . . .

Also in this case, the only exchanged operator at leading order will appear at order ε with its
anomalous dimension γ̂(1). All other operators with non-vanishing b(1) will enter with their
classical dimension.

We would like to use these expansions to compute the discontinuities of the correlator by
exchanging the discontinuity and the sum. In other words, we compute the discontinuity of
each term in the above sum first, and then we sum the contributions. The advantage of doing
this is that, thanks to the perturbative expansion, not all of the above terms are necessary to

8The derivatives ∂⊥ refer to derivatives in the direction orthogonal to the boundary and therefore ∂⊥φ̂ is not a
boundary descendant.
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compute the discontinuity. Let us see how this happens. The idea is to use the boundary block
expansion to compute the discontinuity at z′ = 0 in (49) and the bulk block expansion for the
discontinuity at z′ = 1. If we consider the boundary OPE expansion, it is clear from the explicit
expression of the boundary blocks (45) that the discontinuity at z = 0 is given by two sources.
The first source are the logarithms from the terms ∂∆ f∆(z), which contain ∂∆z∆. Notice that
these terms are proportional to the anomalous dimensions at the order we are working and
to lower order OPE coefficients. Therefore they are absent for all the operators that did not
appear in the previous order. The other possible discontinuities are poles that come from the
additional factor we need to add in (52) to improve the convergence at infinity. Indeed, we
should always keep in mind that the discontinuity must be interpreted in a distributional sense.
Therefore, if the function F(z) has a pole at z = 0, its discontinuity will be given by

Discz<0(z
−n) =

2πi(−1)n∂ n−1(δ(z))
(n− 1)!

. (95)

The important point is that using (94) we can compute the discontinuity of a correlator from a
subset of the defect CFT data. This remains true also at higher orders and it works also for the
z = 1 discontinuity, where we can use the bulk expansion. One drawback of this procedure
is that we need to know the anomalous dimensions of some operators at the order we are
interested in, i.e. the discontinuity is not completely fixed at a given order by lower order
data, as it is normally the case for the double discontinuity. Nevertheless, for the case at end
we will see that this procedure is still extremely powerful as we only need a finite number of
defect CFT data to reconstruct the full correlator up to order ε2.

Before showing how to obtain the result, let us comment on the relation between our
work and [20], where the authors also used the discontinuity to bootstrap the results that we
are reproducing here.9 In their case, they took one particular discontinuity of the crossing
equation, which allowed them to extract the boundary CFT data using only consistency of
the crossing equation. Here we use two different discontinuities to reconstruct the correlator
(which they computed by resumming the OPE expansion) and a finite number of boundary
OPE data are the input for our formula. In this sense the two approaches are complementary.
Notice also that we always use the OPE expansions in their region of convergence so we do
not have to worry the subtleties that were discussed in [20].

6.1 Order ε

Let us start from order ε. It was pointed out in [17] that it is sufficient to add a bulk block
corresponding to the operator φ4 with classical dimension ∆φ4 = 2d − 4 to find a consistent
solution to the defect crossing equation. From now on, we will focus on the Neumann case
although everything works exactly the same way for Dirichlet. First of all, let us take d = 4−ε
and define a rescaled correlator

F̃(z) =
1

z(1− z)
F(z) . (96)

Consider first the discontinuity at z = 0, which is controlled by the boundary expansion (94)
with a single operator φ̂10 of dimension

∆̂φ̂ =
d
2
− 1+ εγ(1)

φ̂
+O(ε2) = 1+ ε(γ̂(1)

φ̂
− 1/2) +O(ε2) . (97)

9The same result was also rederived in [57] by mapping the problem to AdS and solving the bulk equations of
motion.

10In principle, there could be infinitely many defect operators at order ε, see for example [58]. However, since
they would enter in the defect block expansion with their classical dimensions, they would not contribute to the
discontinuity. Therefore, one would obtain the same result for the correlator and by expanding it in blocks one
would see that the operators are not present. We thank Aleix Gimenez-Grau for pointing out this fact to us.
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The order ε term for F̃ reads

F̃ (1)(z) =
b2(1)
φ̂

f̂1(z) + b2(0)
φ̂
(γ̂(1)
φ̂
− 1/2)∂∆̂ f̂∆̂(z)|∆̂=1

z(1− z)
. (98)

Since f̂1(z) = z(1 + 1
1−z ), the only contribution to the discontinuity comes from the deriva-

tive ∂∆̂ f̂∆̂(z)|∆̂=1 and specifically from the logarithm that is generated by the action of the
derivative on the term z∆̂ in (45). Thus we have

Discz<0 F̃ (1)(z) = 2πi b2(0)
φ̂
(γ̂(1)
φ̂
− 1/2)
�

1
1− z

+
1

(1− z)2

�

. (99)

A parallel argument allows to derive the discontinuity at z = 1 using the bulk expansion (92)
with only two exchanged operators [59]

∆φ2 = d − 2+ εγ(1)
φ2 +O(ε2) = 2+ ε(γ(1)

φ2 − 1) +O(ε2) , aλφ2 = 1+ εaλ(1)
φ2 +O(ε2) , (100)

∆φ4 = 4+O(ε) , aλφ4 = εaλ(1)
φ4 +O(ε2) , (101)

where for the operator φ4 we neglected the anomalous dimension because its OPE coefficient
aλφ4 is already of order ε. For this channel we also need to take into account the prefactor
� z

1−z

�∆φ in equation (92) with

∆φ =
d
2
− 1+ εγ(1)

φ
+O(ε2) = 1+ ε(γ(1)

φ
− 1/2) . (102)

All in all we get

F̃ (1)(z) =
aλ(1)
φ2 f2(z) + aλ(1)

φ4 f4(z) + aλ(0)
φ2 (γ

(1)
φ2 − 1)∂∆ f∆(z)|∆=2 + log 1−z

z (γ
(1)
φ
− 1/2) f2(z)

(1− z)2
. (103)

Here all the terms contribute to the discontinuity: some of them contribute with a δ-function
and some with a logarithm. The only term which requires additional care is the one that comes
from the log(1− z) in the last term of (103). In that case we have Disc

�

log(1−z)
1−z

�

. The obvious
way to do the computation is to compute explicitly the contribution from the little circle around
z = 1 in the contour in Figure 3. However it turns out one can give to this discontinuity a sense
in terms of a distribution, i.e. given a test function f (x), the discontinuity for x < 0 is

∫ 0

−∞
d x f (x)Discx<0

�

log x
x

�

= −2πi

∫ 0

−∞
d x∂x f (x) log(−x) . (104)

Using this formula and inputting the bulk CFT data computed from the theory without defects

γ
(1)
φ
= 0 , γ

(1)
φ2 = 2α , (105)

we find

F (1)(z) = z
�

α+
1

2− 2z

�

log(1− z) + z(γ̂(1)
φ̂
+ aλ(1)

φ2 ) +
(2γ̂(1)

φ̂
− 1)(z − 2)z log(z)

2(z − 1)
. (106)

The result seems to depend on unknown bulk and boundary data, however we can fix the
undetermined coefficients by comparing our result with the bulk (46) and boundary (44)
block expansions. We find

γ̂
(1)
φ̂
= −α , aλ(1)

φ2 = α , (107)
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and finally

F (1)(z) = z
�

α+
1

2− 2z

�

log(1− z)−
(2α+ 1)(z − 2)z log(z)

2(z − 1)
, (108)

which agrees with the result of [17]. Here α is a free parameter for the solution of the crossing
equation and it can be identified with α= 1

2
N+2
N+8 by matching the result to explicit calculations

in the O(N) model without defects. From the correlator we can extract the squared bulk-to-
defect coupling b2(1)

φ̂
, which turns out to be zero.

6.2 Order ε2

At second order an infinite number of double trace operators enter the OPE both in the bound-
ary and in the bulk channel. The great advantage of our dispersion relation is that just a finite
subset of operators are sufficient to reconstruct the full correlator, and in particular we need
bulk data that can be computed from the O(N)model without defects. In the bulk channel we
have operators with dimensions

∆n = 4+ 2n+O(ε) , (109)

while in the boundary channel we have operators with dimensions

∆̂n = n+O(ε) , (110)

with n an odd integer for Neumann boundary conditions. Naively, we would expect the OPE
coefficients of these operators to be necessary to reconstruct the full correlator at this order,
however it turns out that the discontinuity does not depend on them and we can reconstruct
the correlator without knowing these new operators.

First, we compute the discontinuity at z = 0 by looking at the perturbative expansion in
the boundary OPE

F (2)(z) = b2(2)
∆̂

f̂∆̂(0)(z) + (b
2(0)
∆̂
γ
(2)
φ̂
+ b2(1)

∆̂
γ
(1)
φ̂
)∂ f̂∆̂(0)(z)

+
1
2

b2(0)
∆̂
(γ(1)
φ̂
)2∂ 2 f̂∆̂(0)(z) +

∞
∑

n=0

b2(2)
∆̂n

f̂∆̂n
(z) ,

(111)

where we used the short-hand notation ∂ f̂∆̂(0)(z) ≡ ∂∆̂ f̂∆̂(z)|∆̂=∆̂(0) . The factor 1/z in the
prefactor (96) is always canceled by the blocks or their derivatives, so that the discontinuity is
given only by the logarithmic terms arising from the derivatives of the block. These terms can
be computed from the OPE data at lower order plus the anomalous dimension of φ̂ at order
ε2. Notice that the new operators do not contribute. If we evaluate explicitly the perturbative
expansion and keep only the terms with logarithms we find

F̃ (2)(z)≈ −
(2α+ 1)2(z − 2) log2(z)

8(z − 1)2
−
γ̂
(2)
φ̂
(z − 2) log(z)

(z − 1)2

+
(2α+ 1)(2α(z − 1)− 1) log(1− z) log(z)

4(z − 1)2
+ regular at (z = 0) .

(112)

The discontinuity therefore is

Discz<0(F̃
(2)(z)) = −

πi(2α+ 1)2(z − 2) log(−z)
2(z − 1)2

−
2πiγ̂(2)

φ̂
(z − 2)

(z − 1)2

+
πi(2α+ 1)(2α(z − 1)− 1) log(1− z)

2(z − 1)2
.

(113)
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The discontinuity at z = 1 is more complicated, since the prefactor introduces poles propor-
tional to the identity and φ2 contributions. However, it is still true that the new operators do
not contribute. We can compute the discontinuity using the following finite set of bulk OPE
data

γ
(2)
φ
= −

1
12
α(2α− 1) ,

γ
(2)
φ2 = −

1
6
α(2α− 1)(20α+ 3) .

(114)

The computation is analogous to the previous case and yields the following singular terms at
z = 1

F̃ (2)(z)≈

�

1− 4α2(z − 1)
�

log2(1− z)

8(z − 1)2
+
α
�

40α2 − 30α+
�

−40α2 + 28α+ 8
�

z − 7
�

log(z)

12(z − 1)2

+ log(1− z)
�

α(2α− 1)(−20α+ 4(5α− 1)z + 5)
12(z − 1)2

+
(2α(z − 2)− 1) log(z)

4(z − 1)2

�

+
(4α− (4α+ 1)z + 2) log2(z)

8(z − 1)2
+
π2α2 − 6aλ(2)

φ2 − 6α2Li2(z)

6(z − 1)
+ regular at (z = 1) .

(115)

From this, we can extract the discontinuity at z = 1, which will get contributions from the
logarithms and the negative powers. By plugging the two discontinuities in the dispersion
relation (49) and using (104) we can compute the correlator

F (2)(z) = γ̂(2)
φ̂

z +
1

12
α(2α− 1)z + aλ(2)

φ2 z +
1
8

z
�

4α2 +
1

1− z

�

log2(1− z) +
γ̂
(2)
φ̂
(z − 2)z log(z)

z − 1

+
(2α+ 1)2(z − 2)z log2(z)

8(z − 1)
−
α(2α− 1)z(20α(z − 1)− 4z + 5) log(1− z)

12(z − 1)

−
(2α+ 1)z(2α(z − 1)− 1) log(z) log(1− z)

4(z − 1)
.

(116)

Once again we can fix the remaining unknowns by demanding consistency with the bulk and
boundary OPE expansions. That implies

γ
(2)
φ̂
=

5
12
α
�

8α2 − 6α+ 1
�

,

aλ(2)
φ2 = −

1
3
α(α(10α− 7) + 1) ,

(117)

and finally

F (2)(z) =
1
8

z
�

4α2 +
1

1− z

�

log2(1− z) +
5α
�

8α2 − 6α+ 1
�

(z − 2)z log(z)

12(z − 1)

+
(2α+ 1)2(z − 2)z log2(z)

8(z − 1)
−
α(2α− 1)z(−20α+ 4(5α− 1)z + 5) log(1− z)

12(z − 1)

−
(2α+ 1)z(2α(z − 1)− 1) log(z) log(1− z)

4(z − 1)
,

(118)

which corresponds to the result in [20]. One can follow the same procedure for the Dirichlet
case and find again perfect agreement with the literature.
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A Kinematics

A.1 Generic defect q > 1

We consider a conformal defect of dimension p and codimension q, with q > 1, in a d-
dimensional spacetime. We split the spacetime coordinates into p parallel coordinates xa

∥ with

a = q, ..., d − 1 and q orthogonal coordinates x i
⊥ with i = 0, ..., q − 1. The two-point function

of bulk identical scalars depends on two conformally invariant cross-ratios and we follow the
parametrization of [48], namely

〈φ(x1)φ(x2)〉=
F(χ,η)

|x1⊥|∆φ |x2⊥|∆φ
. (A.1)

The cross-ratios are related to the lightcone coordinates (z, z̄) and the polar coordinates (r, w)
used in the main text by

χ =
|x∥12|

2 + |x⊥1 |
2 + |x⊥2 |

2

|x⊥1 ||x
⊥
2 |

=
1+ zz̄

(zz̄)
1
2

=
1
r
+ r ,

η=
x1i x

i
2

|x⊥1 ||x
⊥
2 |
=

z + z̄

2(zz̄)
1
2

=
1
2

�

w+
1
w

�

,

(A.2)

and the lightcone coordinates are related to the radial ones by

z = rw ,

z̄ =
r
w

.
(A.3)

The correlator satisfies the crossing equation

F(z, z̄) =
∑

∆̂,s

b2
∆̂,s

f̂∆̂,s(z, z̄) =

� p
zz̄

(1− z)(1− z̄)

�∆φ
∑

∆,ℓ

aO cφφO f∆,ℓ(z, z̄) , (A.4)

where the defect conformal blocks are given by

f̂∆̂,s(z, z̄) = z
∆̂−s

2 z̄
∆̂+s

2 2F1

�

−s,
q
2
− 1, 2−

q
2
− s,

z
z̄

�

2F1

�

∆̂,
p
2

, ∆̂+ 1−
p
2

, zz̄
�

. (A.5)

They factorize in radial coordinates

f̂∆̂,s(r, w) = f̂∆̂(r) ĝs(w) , (A.6)
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with

f̂∆̂(r) = r∆̂ 2F1

�

∆̂,
p
2

, ∆̂+ 1−
p
2

, r2
�

, ĝs(w) = w−s
2F1

�

−s,
q
2
− 1,2−

q
2
− s, w2
�

. (A.7)

The bulk conformal blocks are not known in a closed form. In [54] they were constructed as
a linear combination of two Harish-Chandra functions

f∆,ℓ(z, z̄) = f HS
∆,ℓ(z, z̄) +

Γ (ℓ+ d − 2)Γ (−ℓ− d−2
2 )

Γ (ℓ+ d−2
2 )Γ (−ℓ)

Γ ( ℓ2 +
d−p

2 −
1
2)Γ (−

ℓ
2 +

1
2)

Γ ( ℓ2 +
d
2 −

1
2)Γ (−

ℓ
2 −

p
2 +

1
2)

f HS
∆,2−d−ℓ(z, z̄) ,

(A.8)
where f HS

∆,ℓ(z, z̄) can be expressed as a double infinite sum

f HS
∆,ℓ(z, z̄) =

∞
∑

m

∞
∑

n

[(1− z)(1− z̄)]
∆−ℓ

2 +m+nhn(∆,ℓ)hm(1− ℓ, 1−∆)
4m−n

n!m!

(∆+ℓ2 )n−m
�

∆+ℓ
2 −

1
2

�

n−m

× 4F3

�

−n,−m,
1
2

,
∆− ℓ

2
−

d
2
+ 1;−

∆+ ℓ
2
+ 1− n,

∆+ ℓ
2
−m,

∆− ℓ
2
−

d
2
+

3
2

;1
�

× (1− zz̄)ℓ−2m
2F1(

∆+ℓ
2 −m+ n, ∆+ℓ2 −m+ n,∆+ ℓ− 2(m− n), 1− zz̄) ,

(A.9)

where

hn(∆,ℓ) =

�

∆
2 −

1
2 , ∆2 −

p
2 , ∆+ℓ2

�

n
�

∆− d
2 + 1, ∆+ℓ2 + 1

2

�

n

. (A.10)

A.2 Boundary q=1

When q = 1 the correlator has the form

〈φ(x1)φ(x2)〉=
F(ξ)

(4|x⊥2 ||x
⊥
2 |)
∆φ

, (A.11)

and depends only on the cross-ratio

ξ=
(x1 − x2)2

4x⊥1 x⊥2
, (A.12)

where ξ > 0 when the two operators live in the Euclidean signature or are spacelike separated
in the Lorentzian signature. The boundary block expansion, corresponding to sending ξ→∞
reads

F(ξ) =
∑

∆̂

b̂2
∆̂

f̂∆̂(ξ) , (A.13)

where the sum runs over the dimensions of the defect operators ∆̂, b̂∆̂ are real OPE coefficients
and the conformal block is

f̂∆̂(ξ) = (ξ)
−∆̂

2F1

�

∆̂, ∆̂+ 1−
d
2

,2∆̂+ 2− d,−
1
ξ

�

. (A.14)

The bulk expansion, obtained by sending ξ→ 0 is

F(ξ) = (ξ)−∆φ
∑

∆

aOcφφO f∆(ξ) , (A.15)

where the sum runs over the dimensions of the bulk operators ∆ and

f∆(ξ) = (ξ)
∆
2 2F1

�

∆

2
,
∆

2
,∆+ 1−

d
2

,−ξ
�

. (A.16)
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Here aO are the one-point function coefficients (which are non zero in presence of a defect)
and cφφO are the OPE coefficients. The relation between the variable ξ and the variable z
used in the main text is

z =
1
ξ+ 1

. (A.17)

B Superblocks

Here we review the superconformal blocks that were found in [31] and that we used in Sec-
tion 5. We follow the conventions of [44]. After defining the R-symmetry block

hk = σ
− k

2 2F1

�

−
k
2

,−
k
2

;−k− 1;
σ

2

�

, (B.1)

then the superconformal blocks are expressed as a combination of ordinary bulk blocks f∆,ℓ
(47) as

GB[0,P,0]
= hP fP,0(z, z̄) +

(P + 2)2P
128(P + 1)2(P + 3)

hP−2 fP+2,2(z, z̄)

+
(P − 2)(P + 2)P2

16384(P − 1)2(P + 1)(P + 3)
hP−4 fP+4,0(z, z̄) ,

GC[0,2,0],ℓ
= h2 fℓ+4,ℓ + b1h0 fℓ+6,ℓ−2 + (b21h4 + b22h2 + b23h0) fℓ+6,ℓ+2 + (b31h2 + b32h0) fℓ+8,ℓ

+ b4h2 fℓ+8,ℓ+4 + b5h0 fℓ+10,ℓ+2 ,

GA[0,0,0],ℓ
= h0 f∆,ℓ + (h2η11 + h0η12) f∆+2,ℓ−2 + (h2η21 + h0η22) f∆+2,ℓ+2 +η3h0 f∆+4,ℓ−4

+ (h4η41 + h2η42 + h0η43) f∆+4,ℓ +η5h0 f∆+4,ℓ+4 + (h2η61 + h0η62) f∆+6,ℓ−2

+ (h2η71 + h0η72) f∆+6,ℓ+2 +η8h0 f∆+8,ℓ ,
(B.2)

where the explicit coefficients can be found in [43].

C Dispersion relation from Lorentzian inversion formula

Instead of using Cauchy’s theorem, we can obtain a dispersion relation starting from the confor-
mal partial wave expansion (9) and inserting the coefficient function b(∆̂, s) obtained through
the Lorentzian inversion formula (12). Unsurprisingly, after exchanging the order of integra-
tion, we find an expression of the form

F(r, w) =

∫ 1

0

d r̃

∫ r̃

0

dw̃ K(r̃, w̃, r, w)DiscF(r̃, w̃) , (C.1)

with

K(r̃, w̃, r, w) = S(w, w̃)I(r, r̃) ,

S(w, w̃) =
∞
∑

s=0

w̃1−q(1− w̃2)q−2 ĝ2−q−s(w̃) ĝs(w) ,

I(r, r̃) =

∫

p
2+i∞

p
2−i∞

d∆̂
2πi

r̃−p−1(1− r̃2)p
K̂∆̂

iπK̂p−∆̂
Ψ̂∆̂(r̃)Ψ∆̂(r) .

(C.2)
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Notice that the contributions from the angular and radial part factorize. The angular contribu-
tion S(w, w̃) can be computed using integral representations of the Gegenbauer polynomials
and of the hypergeometric function and exchanging the sum over spin with the integrals com-
ing from the integral representations. The result is

S(w, w̃) =
1

2πi

�

1
w̃−w

+
1

w̃− 1
w

−
1
w̃

�

. (C.3)

The remaining contribution I(r, r̃) can be evaluated exploiting the orthogonality of conformal
partial waves, namely

∫ 1

0

dr r−p−1(1− r2)pΨ∆̂1
(r)Ψ∆̂2

(r) =
π

2

Kp−∆̂2

K∆̂1

(δ(ν1 − ν2) +δ(ν1 + ν2)) , (C.4)

where ∆= 1
2 + iν, and the shadow conformal partial wave

Ψp−∆̂(r) =
K∆̂

Kp−∆̂
Ψ∆̂(r) . (C.5)

If we introduce a generic function f (r) and expand it on the Ψ∆̂(r) basis

f (r) =

∫

p
2+i∞

p
2−i∞

d∆′

2πi
f̂ (∆′)Ψ∆′(r) , (C.6)

then, using the properties above, we find

∫ 1

0

dr I(r, r̃) f (r̃)

=

∫ 1

0

dr I(r, r̃)

∫
1
2+i∞

1
2−i∞

d∆′

2πi
f̂ (∆′)Ψ∆′(r̃)

=

∫

p
2+i∞

p
2−i∞

d∆̂
2πi

∫

p
2+i∞

p
2−i∞

d∆′

2πi

K∆̂
Kp−∆̂

Ψ∆̂(r) f̂ (∆
′)

∫ 1

0

d r̃ r̃−p−1(1− r̃2)pΨ∆̂(r̃)Ψ∆′(r̃)

=

∫

p
2+i∞

p
2−i∞

d∆̂
2πi

∫

p
2+i∞

p
2−i∞

d∆′

2πi

K∆̂
Kp−∆̂

Ψ∆̂(r) f̂ (∆
′)
π

2

Kp−∆′

K∆̂
(δ(ν̂− ν′) +δ(ν̂+ ν′))

=

∫

p
2+i∞

p
2−i∞

d∆̂
2πi
Ψ∆̂(r) f̂ (∆̂)

= f (r) ,

(C.7)

which implies
I(r, r̃) = δ(r − r̃) . (C.8)

We can finally collect the pieces (C.3), (C.8) and we find our dispersion relation

F(r, w) =

∫ 1

0

d r̃

∫ r̃

0

dw̃ DiscF(r̃, w̃)
1

2πi

�

1
w̃−w

+
1

w̃− 1
w

−
1
w̃

�

δ(r − r̃) , (C.9)

which is exactly the formula we found using Cauchy’s theorem.
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D Results for F (1)5,p with p ≤ 3

F (1)5,0 = −
5
4

�

r4
p

r2(r2+1)w4

(r2−1)2(r−w)4(rw−1)4
− 2r6

p
r2w4 log(r2)

(r2−1)3(r−w)4(rw−1)4

�

,

F (1)5,1 =
5
4

�

(r4−38r2+1)r5w3

(r2−1)4(r−w)3(rw−1)3

+
r6w3(r6(w2+1)+5r5w−10r4(w2+1)+26r3w−10r2(w2+1)+5rw+w2+1) log(r2)

(r2−1)5(r−w)4(rw−1)4

�

,

F (1)5,2 =
5
4

�

−3r6w2(8r6(w2+1)+43r5w−83r4(w2+1)+214r3w−83r2(w2+1)+43rw+8w2+8)
(r2−1)6(r−w)3(rw−1)3

+
3r5w2(r(r9w+7r8(w2+1)+15r7w−46r6(w2+1)+284r5w)+w) log(r2)

2(r2−1)7(r−w)3(rw−1)3

+
3r5w2(r(−222r4(w2+1)+284r3w−46r2(w2+1)+15rw+7w2+7)+w) log(r2)

2(r2−1)7(r−w)3(rw−1)3

�

,

F (1)5,3 =
5
4

�

5r5w(r(3r11w+15r10(w2+1)+20r9w−35r8(w2+1)+833r7w−960r6(w2+1))+3w) log(r2)
2(r2−1)9(r−w)2(rw−1)2

+
5r5w(r(+2208r5w−960r4(w2+1)+833r3w−35r2(w2+1)+20rw+15(w2+1))+3w) log(r2)

2(r2−1)9(r−w)2(rw−1)2

− 5r5w(r(9r9w+72r8(w2+1)+188r7w−503r6(w2+1)+2743r5w−2078r4(w2+1)+2743r3w)+9w)
3(r2−1)8(r−w)2(rw−1)2

− 5r5w(r(−503r2(w2+1)+188rw+72(w2+1))+9w)
3(r2−1)8(r−w)2(rw−1)2

�

.

(D.1)
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