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Abstract

We study the exact physical quantities of a competing spin chain which contains many
interesting and meaningful couplings including the nearest neighbor, next nearest neigh-
bor, chiral three spins, Dzyloshinsky-Moriya interactions and unparallel boundary mag-
netic fields in the thermodynamic limit. We obtain the density of zero roots, surface
energies and elementary excitations in different regimes of model parameters. Due to
the competition of various interactions, the surface energy and excited spectrum show

many different pictures from those of the Heisenberg spin chain.
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1 Introduction

Quantum integrable models [1] are very important to analyze some non-pertubative properties
of quantum field/string theory [2,3]. Moreover, the exact solutions and physical properties of
these models can provide the strict benchmarks for many important physics issues, and some-
times it can exactly predict and explain the results of experiments [4-6]. In recent years, the
study of quantum integrable models play an important role in the non-equilibrium statistical
physics [7-10], condensed matter physics [11], cold atom physic [12,13], superstring theory
AdS/CFT [14-16] and so on.

For the integrable models with U(1) symmetry, the exact solutions of the models can be
obtained by the conventional Bethe ansatz. In addition, due to the homogeneous Bethe ansatz
equations (BAEs) and the regular pattern of the Bethe roots, the thermodynamic properties
can be directly calculated by the thermodynamic Bethe ansatz (TBA) [17,18]. When the U(1)
symmetry of integrable systems is broken, the off-diagonal Bethe ansatz can be used to solve
the systems based on the algebraic analysis [19]. However, since the exact solutions of the
systems are described by the inhomogeneous T —Q relations [20,21] and the resulting inho-
mogeneous BAEs have the inhomogeneous term, the pattern of Bethe roots is not clear and
the TBA method can not be applied. Recently, a novel Bethe ansatz scheme has been proposed
to calculate the physical quantities of quantum integrable systems with or without U(1) sym-
metry [22,23]. The key point of the scheme lies in parameterizing the eigenvalue of transfer
matrix by its zero roots instead of the Bethe roots. Through this method, the homogeneous
BAEs and the well-defined patterns of zero roots can be obtained. Based on them, the thermo-
dynamic properties and exact physical quantities of the systems in the thermodynamic limit can
also be calculated. In this paper, we study an isotropic quantum spin chain which includes the
nearest neighbor (NN) [24], next nearest neighbor (NNN) [25], Dzyloshinsky-Moriya (DM)
interactions [26, 27], chirality three-spin couplings [28] and unparallel boundary magnetic
fields [29]. The density of zero roots, surface energy and elementary excitations in different
regimes of model parameters are obtained.

The paper is organized as follows. Section 2 serves as an introduction to the model and
explain its integrability. In section 3, we give the patterns of zero roots in the different regimes
of model parameters. In section 4, we calculate the surface energies induced by the boundary
magnetic fields. In section 5, we study the typical bulk elementary excitations in the system.
The boundary excitations are computed in section 6. In section 7, we calculate the surface
energies in ferromagnetic regime. Concluding remarks are given in section 8. A simple method
is introduced in Appendix A..

2 Integrability of the model
The model Hamiltonian reads
H =Hpy +H, + Hg. (D

Here Hy,;; describe the interactions in the bulk which includes the NN, NNN and chiral three
spin couplings with the form of
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2N-1
Hpyir = Z {16+ Fj1 + 028 G jua +J3(—1Y 54y - (8 X G u2)} (2)
j=1
where 0;?‘(0( = Xx,Y,2) is the Pauli matrix along the a-direction on the j-th site, and 2N is the
number of sites. We note that the convention J4y,; = 0 has been used. H; quantifies the
left boundary terms which includes the boundary magnetic field along the z-direction and the
anisotropic and DM interactions of the first bond
1—4d® z S z . (= =
HL:;TaZ[pUl_a ojo,—iapDi- (31 x 53)], 3)
where p is the strength of magnetic field, a® and ap quantify the spin-exchanging and DM
interactions respectively, and D is the unit vector along the z-direction. Hp characterizes
the right boundary terms which includes the boundary magnetic field lies in the x —z plane,

anisotropic and DM interactions of the last bond also constrained in the x —z plane. Thus Hy
reads

402 -1 5
Hg = @2E2 4 a? — g2 [Q(gogN +tooy)—a(Eogy g + o5y )0y +035y)
—iaq(ED5y + D) - (Gay X Fan—1) ], 4

where g and & are the boundary parameters, D3 is the unit vector along the x-direction and
D3, is the unit vector along the z-direction. We should note that the boundary fields are
unparallel boundary and the U(1) symmetry of the system are broken. The hermitian of the
Hamiltonian (1) requires that the model parameter a is pure imaginary and the boundary
parameters p, g, & are real. Moreover, the integrability of the system (1) requires that the
couplings J;, Jo, J3 satisfy the relationships

Jl :1+Cj(5j,1+6j,2N—1)’ J2:—2612, J3=ia, (5)

_ a?(1—2a?—2p?)
o p2—a?

a’(4¢>—&2—1)
a22+a2—q2 ’

5 CZN—]. = 2(12 + (6)

9
where the index j is the summation index in Hy,;; (2). The Hamiltonian (1) is constructed

by using the R-matrix and the reflection matrices K* based on the quantum inverse scattering
method. The R-matrix defined in the tensor space V; ® V; is

1 .
Rl,z(u):u+P1’2:u+£(1+0'1'0'2), (7)

where u is the spectral parameter and P; , is the permutation operator. The R-matrix (7)
satisfies the quantum Yang-Baxter equation (QYBE),

R1,2(U1 - Uz)Rl,s(Ul - U3)R2,3(U2 —uz) = Rz,s(uz - ug)Rl,s(ul - us)Rl,z(ul —uy). €)

The reflection matrix K; (u) defined the space V; is

K;(u)=(p+” p_u), ©)

which satisfies the reflection equation (RE)

Ry 5(A —u)K; (A)Ry1(A + K (u) = Ky (WRy 2(A + Ky (A)Ry1(A—u), (10)

3
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where R, 1 (1) = P; 5R; 5(u)P; 5. The dual reflection matrix K (u) is

_( gtu+1 Eu+1)
Kf(u)—( Eu+1) q—u-—1 )’ an

satisfying the dual reflection equation
R1,2(_A’ + U)K;—(A)Rz}l(—x —u-— 2)K;_(u) = K;(U)Rl’z(—x —u-— Z)K;_(A)Rz’l(—l + u) . (12)

The monodromy matrix Ty(u) and the reflecting one To(u) are constructed by the R-matrices
as

To(u)=Rg on (uta+0o5)Rg on—1(u—a—6ay_1) -+ Rop(uta+6;)Ro 1 (u—a—06),

To(u) :RO,l (u+a+ 01 )RO’Z(u_a_Gz) tee RO,ZN—l (u+ a+ 92N—1 )RO,ZN (u—a— QZN) B (13)
where V} is the auxiliary space, ®2.£1Vj is the quantum space, and {0;|j = 1,---,2N} are the
inhomogeneity parameters. The transfer matrix t(u) is defined as

t(u) = tro {Kg (W) To(WKy (W) To(w)} (14)

where tr, means the partial trace over the auxiliary space. The Hamiltonian (1) is generated
by the transfer matrix as

1 d Int(u) 8 Int(u) )
H = —=(4a®— gniu) ‘ — 1
5 (4a )( | ica e 0”0 (15)
where
4_ g 2
=—(2N — 1)(2a2 —-1)— zazﬁ ,
a‘—1
c, =8(1— 4a2)2N_2(p2 —a®)(a®—1)(a?E% + a? —q2) . (16)

The QYBE (8), the RE (10) and its dual (12) guarantee the integrability of the model
described by the Hamiltonian given by (1). Moreover, using the properties of the R-matrix one
may easily prove that t(u) = t(—u— 1) and the following operator identities [19]

t(0; +a)t(0; +a—1)=a(6; +a)d(6;+a—1), j=1,---,2N, (17)
where
2N
a(u)— (u+p)[(1+§2)2u+q]l_[(u+9 +a+1Du—6;—a+1),
j=1 (18)
dlu)=a(—u—1).

From the definition (14), we know that the transfer matrix t(u) is a polynomial operator of
u with the degree 4N + 2. Denote the eigenvalue of the transfer matrix t(u) as A(u). From
above analysis, we know that the eigenvalue A(u) satisfies

Aw) =A(—u—1), (19)

Aw) =2uN2 4.0 u—> oo, (20)
2N

AO)=2pq| [A-6;—a)1+6; +a) =A(-1), (21)
j=1

A6 +a)A(6; +a—1)=a(6; +a)d(6; +a—1), j=1,---,2N. (22)

4
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Obviously, A(u) is a degree 4N + 2 polynomial of u and can be parameterized as

2N+1

A(u)—21_[( u—zj+— )(u+zj+%), (23)

where {z;|j =1,---,2N + 1} are the zero roots of the polynomial. Putting the parameterizing
(23) into (22), we obtain the BAEs

2N+1 1 1 1
41_[(9 +a— Zl+ )(9j+a+zl+5)(9j+a—zl—§)(9j+a+zl—§)
=a(0;+a)d(6; +a—1), j=1,---,2N. (24)

The above 2N equations and (21) can determine the 2N + 1 unknowns {z;} completely. In the
homogeneous limit {6; =0|j = 1,---,2N}, Eq. (21) is replaced by

A(0)=2pq(1—a®)?V, (25)
and Eq. (22) becomes
[A(u+a)Au+a—1)]"]o =[au+a)du+a—1)]"],—, (26)

where the superscript (n) indicates the n-th order derivative and n = 0,1,---,2N — 1. Egs.
(25) and (26) can determine the 2N + 1 zeros roots {zj} in the homogeneous limit in finite
system size. Moreover, the energy spectrum of the Hamiltonian (1) can be determined by the

Zero roots as
2N+1

=—n(4a®>—1) Z [a,(izj —ia) + a;(iz; + ia)] —co, 27)
j=1
where the function a,(u) is given by

n
21 u2+n2/4

a,(u) = (28)

By solving the BAEs Egs. (25) and (26), we can obtain all the eigen-energies of the system (1).

3 Patterns of zero roots

We first study the solutions of zero roots {z;} at the ground state. For convenient, we choose
all the inhomogeneity parameters to be imaginary, {6; = iéj}, and let {z; = —iz;}. In addition,
we set the boundary parametersas p > 0and g =q(1+¢& 2)_%. From the numerical calculation
and algebraic analysis, we find that the distribution of the z-roots at the ground state can be
divided into following six different regimes in the upper p — g plane, as shown in Fig. 1.

1) In the regime I, where 0 < p < %,0 <gq< %, all the z-roots form 2N — 2 conju-
gate pairs as {z; ~ %; +i|j = 1,---,2N — 2} with real {%;}, two boundary conjugate pairs
{£i(lp| + %), +i(|g| + %)} and two symmetrical real roots Z, = +a. The numerical check with
2N = 8 is shown in Fig. 2a. In the thermodynamic limit, two symmetrical real roots a
would tend to infinity and contribute nothing to the ground state energy. These two real roots
correspond to the Majorana modes at the two boundaries.

2) In the regime II, where 0 < p < —, -5 < g < 0, as shown in Fig. 2b, all the z-roots form
2N — 2 conjugate pairs, two boundary conjugate pairs {xi(|p| + %), +i(|q| + %)} and one pure
imaginary conjugate pair £if with f > min(|p|, |g]).
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Figure 2: Pattern of Z-roots at the groungl state in regimes I (a) and II (b) with 2N = 8.
The blue asterisks indicate z-roots for {6; = 0|j =1,---,2N} and the red circles spec-
ify z-roots with the inhomogeneity parameters {Q_j =0.1(j—N—-0.5)|j=1,---,2N}.

3) In the regime III, where p > %,0 <g< % or0<p< %,E] > 1 as shown in Fig. 3a, all
the z-roots form 2N — 2 conjugate pairs, one boundary conjugate pair +i[min(|p|,|q|) + %],
two symmetrical real roots 2, = =%a, and one pure imaginary conjugate pair +if8 with
B > min(|p, q]).

4) In the regime IV, where p > %,—% <g<0Oor0<p< %,q < —%, as shown in Fig. 3b,
all the Z-roots form 2N conjugate pairs and one boundary conjugate pair £i[ min(|p|, |q|) + %].

5) In the regime V, where p > %,q = %, as shown in Fig. 3c, all the z-roots form 2N
conjugate pairs and two symmetrical real roots Z, = *a.

6) In the regime VI, where p > 1,7 < —%, as shown in Fig. 3d, all the z-roots form 2N
conjugate pairs and one pure imaginary conjugate pair +if3 with 8 > min(|p|, |g]).

We also find that the choice of pure imaginary inhomogeneities {Q_j} does not change the
patterns of zero roots {Z;} but the roots density, as shown in Fig. 2. This result allows us to
calculate the physical quantities such as the surface energy and the elementary excitations of
the system in the thermodynamic limit with the help of suitable {9_]-} [23].
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Figure 3: (a)-(d) Patterns of z-roots for {éj =0|j=1,---,2N} at the ground state in
regimes III-VI with 2N = 8.

4 Surface energy

Now, we consider the surface energy induced by the boundaries. The surface energy is defined
by E, = E, — E,,, where E, is the ground state energy of present system and E,, is the ground
state energy of the corresponding periodic chain. In the thermodynamic limit, the distribution
of Z-roots can be characterized by the density p(Z). Furthermore, we assume that the density
of inhomogeneity parameters 1/[2N (Q_j - éj_l)] has the continuum limit ().

In regime I, substituting the corresponding pattern of z-roots into BAEs (24) and taking
the logarithm of the absolute value, we have

2N—-1 . . . .
e A N e A N P 1
In|4| + ; |:1n 9j+a—zl+5 +In |60, + &t +1In 9j+a—zl—5 +In 9j+a—zl—3:|
+1n (éj+a—a+i)(éj+a—a—i) +In (éj+a+a+i)(éj+a+a—i)
2 2 2 2
+1n[(6; +a—ilp(0; +a+ilpDl +1n|(6; + a—ilp| —i)(6; + a+ilp| + i)l
+1In[(0; +a—ilg(0; +a+ilg)l +In|(6; +a—ilg| —i)(6; +a+ilg| +1)

=In|(6; +a+i)(6;+a—i)—In ((éj+a)+é) ((éj+a)_é)
+1n|(6) +a+ip)(§; +a—ip)| +1n|((1+E2)7(6; + &)+ iq)((1 + E2)2(6; + @) — iq))
2N
+ > [(n|(6;— G +)(0;— B — D) +In[(§; — G +2a+ )(0; — G+ 2a—D)]],  (29)
k=1



https://scipost.org
https://scipost.org/SciPostPhys.15.2.060

Scil SciPost Phys. 15, 060 (2023)

where @ = —ia. In the thermodynamic limit, we assume that the zero roots and inhomo-
geneities have continuum densities

1 o(0) 1

B)= e =
P 2N(Zj11 — %)) 2N(6;11—96;)

Taking the continuum limit of Eq. (29) and replacing éj with A, we obtain

ZNJ [by(A+a—2)+bs(A+a—2)]p(E)dz+b;(A+a+a)+b(A+a—a)

—0Q0

:ZNJ [by(A—0) + by(A+ 0 +2a)]0(0)dO + by(A+a)— by (A +a)

—00
— byp42(A + @) — byjg42(A +a), (30)
where b,(1) = ﬁﬁrm Eq.(30) is a convolution equation and can be solved by the

Fourier transformation. The solution of Z-roots density is

p (k) = [4N by(k) cos(ak) (k) + by(k) — by (k) = byjpj1.2(k)
— byjgp+2(k) — 2b; (k) cos(ak)]/[2N (b (k) + by (k))], (31)
where Bn(k) = sign(k)ie "™ !, From now on, we use o(6) = §(0). In the thermodynamic

limit, a tends to infinity. The ground state energy of the Hamiltonian (1) can thus be expressed
as

Eg1 = N(4a®—1) f [, (k) — ds (k)] cos(ak)p (k)dk — ¢

| pl+1 al a1 ]
—(4a*—1 - + - , 32
e o ey R et iy

where @, (k) = eIkl is the Fourier transformation of a,(A). The ground state energy of the
system with periodic boundary condition can be obtained similarly. After tedious calculation,
we obtain the surface energy in the regime I as

Epy = ep(p) +ep(q) + epo (33)
ep(p) = Ma%” f:)g — ey cosh(ak) e_lkl/;;zlz(k/z)dk, (34)
ep(q) = %4_1) [:(1 — e~y cosh(ak) ej;'l/(;’g:;_:;;)dk, (35)

oy — L‘r_l) Jr ~ (1 — e cosh(ak) e_‘Tl;'/';' ;):;(k]'{/ /22)dk. (36)

—0Q

From Eq.(33), we see that the surface energy E;; can be divided into three terms. e;(p)
and e, (q) are the contributions of left and right boundaries, respectively. e, exactly equals to
the surface energy induced by the free boundaries.


https://scipost.org
https://scipost.org/SciPostPhys.15.2.060

Scil SciPost Phys. 15, 060 (2023)

In the regime II, taking the logarithm then the derivative of the absolute value of BAE (24),
we have

2NJ [by(A+d—2)+ bs(A+a—2)]p(5)d2

—0Q0

= ZNJ [by(A—0) + by(A+ 0 +2a)]0(0)dO + by(A+a)— by (A +a)

—0Q

— byjp+2(A + @) — byjgj42(A + @) — bygj+1 (A + @) — by 1 (A +a). (37)
The Fourier transform gives

p(k)=[4N Bz(k) cos(ak)& (k) + Bz(k) - Bl(k) - BZ|p|+2(k) - B2|q|+2(k)
— byjp1(k) = byypi—1 (K)1/[2N (b1 (k) + b3 (K))]. (38)

Then we obtain the surface energy in this regime as

Epy = ep(p) +ep(q) +epo, (39)

where e, (p), e;(q) and ey are given by Egs.(34)-(36), respectively. It is clear that the forms of
surface energies in the regimes I and II are the same, although the resulted values are different.

We further calculate the surface energies in the rest regimes and the result is that all the
surface energies can be expressed as the form of Eq.(33). The reason is that the bare contribu-
tions of the boundary conjugate pairs to the ground state energy are exactly canceled by those
of the back flow of continuum root density, as happened in the diagonal open boundary case.

The surface energies E;, with certain a versus the different values of boundary parameter
p are shown in Fig. 4(a). If a = 0, all the NNN, chiral three spin and DM interactions are zero
and the system (1) degenerates into the Heisenberg spin chain with unparallel boundary fields.
From the blue dotted lines in Fig. 4(a), we see that the surface energy of Heisenberg spin chain
is smaller than zero, and is monotonically increasing with the increasing of |p|. When p = 0,
the surface energy is divergent, this is because that the strength of boundary magnetic field
is quantified by 1/p. The results are similar to the those of the Heisenberg spin chain with
parallel boundary fields [30,31]. While for the present model with a # 0, the surface energies
can be larger or smaller than zero, and have two peaks and three minimums at some special
values of |p|. At the point of p = 0, the surface energy arrives at its minimum. The surface
energy is smaller than that of Heisenberg spin chain if |p| is large, and is larger than that of
Heisenberg spin chain if |p| is smalle.

The surface energies e,(p) with fixed a versus p are shown in Fig. 4(b). Comparing
Figs. 4(a) and (b), we find that if |p| is large which means that the boundary field is small, due
to the existence of NNN, chiral three spin and DM interactions, the surface energy is smaller
than that of the Heisenberg spin chain. We should note that the relation between e;,(q) and g
is the same as that between e, (p) and p, where g =q/+/1 + &2.

The strength of boundary magnetic field along the z-direction is quantified by p or g up
to a normalized scalar factor. The further numerical calculation of the analytical expression
of surface energy shows that the curves of Ej versus q are similar with those of Ej, versus p.
Thus we omit the figure of E; with the changing of g here. In Fig. 4(c), we show the surface
energies E; with given a versus the boundary parameter £. The & quantifies the twisted angle
between two unparallel boundary magnetic fields, and quantifies the strength of magnetic
field on the right boundary. If £ is large, the twisted angle is large. At the same time, the right
boundary magnetic field is small. From the blue dotted lines in Fig. 4(c), which corresponds
to the Heisenberg spin chain, we see clearly that if £ is small, the magnetic field is strong thus
the induced surface energy is large, as it should be. For the present system with a # 0, if & is

9
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Figure 4: (a) The surface energy E; versus the boundary parameter p, where
a=0,0.6i,0.8i, p=1and £ = 1.2. (b) The surface energy e, (p) versus the bound-
ary parameter p. (c) The surface energy E; versus the boundary parameter . (d)
The surface energy ey, versus a.

small, the contributions of NNN, chiral three spin and DM interactions are large, which leads
to the surface energy becomes small. Thus the behaviors of surface energies with a = 0 and
a # 0 are totally different.

The surface energies e versus the different values of parameter a are shown in Fig. 4(d).
We note that the value of ey at the point of a = 0 is the surface energy of the Heisenberg spin
chain with free open boundaries.

From above explanations, we conclude that the surface energy of present system is quite

different from that of the Heisenberg spin chain.

5 Bulk elementary excitations

Next, we study the elementary excitations in the system. We first consider the excitations in
the bulk. The bulk excitations in different regimes of boundary parameters are the same. From
the patterns of zero roots in the low-lying excited states, we find that the excitations can be
characterized by breaking several conjugate pairs and putting the corresponding zero roots
into the real axis, or the zero roots forming the conjugate pairs on the imaginary axis with
more larger imaginary parts i%i(n > 2). Thus the system has two kinds of bulk elementary
excitations. The first one is quantified by four finite real roots {£%;,+%,} and the second one
is quantified by two conjugate pairs {Z, = %i, —Z, £ % }, where the distribution of rest zero roots
almost does not change and the related difference between ground and excited states can be
erased by the rearrangement of Fermi sea in the thermodynamic limit.
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Figure 5: (a) The distribution of zero roots for {éj =0|j=1,---,2N} at the ground
state (blue asterisks) and at the first kind of excited state (red circles) with 2N = 8,
a=0.66i, p=1.2,q=0.7 and & = 1.2. (b) The excited energies 6, with fixed a
versus z; in the thermodynamic limit.

As an example, we give the pattern of zero roots at the ground state (blue asterisks) and
that at the first kind of excited sate (red circles) in the regime V with 2N = 8, which is shown in
Fig. 5a. It is clear that there are four new real roots at the excited state. In the thermodynamic
limit, the density difference 65, (k) between the ground state and the excited state is

cos(z; k) + cos(25k)
2Ne~lkl/2 cosh(k/2)’

where z; and 2, can take arbitrary continuous values in the real axis. Thus the energy carried
by this kind of excitation is

56 = 531 (51) + 5e1 (52),

5p~el(k) =- (40)

oo

8o, (Bsmz 2, = —%(4a2 -1) U (1 —e My cosh(ak) cos(zk) cosh™* (k/2)dk

—00

1 1
+— R —— -
(Z—ia)2+5 (F+ia)?+7 ]|,

2=21,%y
. 9 i i
=—(4a”~1): (cosh(i +1ia) * cosh(z —ia)) ’ (41)

which covers the previous results obtained by using the conventional Bethe ansatz method for
the periodic staggered (a # 0) spin chain [32]. The excited energies 6, with given values of
model parameter a versus z; are shown in Fig. 5b. From it, we see that the excited energy
of the Heisenberg spin chain (a = 0) only has one peak at the point of 2 = 0, while for the
present model (a # 0), the excited energies have two peaks at finite +%.

Now, we focus on the second kind of elementary excitation. In order to see the high strings
(n > 2) excitations more clearly, we show the pattern of zero roots at the n = 3 excited state in
Fig. 6, where the ground state is still in the regime V. In the thermodynamic limit, the density
difference 60, (k) between the ground state and the excited state is

(eI DKI/2 | o—l(n=1)kI/2) cog(2, k)

6p, (k)=— , 42
Pe, (k) 2N e~ 1kl/2 cosh(k/2) (42)
where Z,, is free. The related elementary excitation energy is
2_ oo |+ 1KI/2 . p—l(n=1)k|/2 s
6, = —M[ (1 —e_|k|)cosh(ak)(e ¢ ) cos(Zy )dk
n 2 o e~1kl/2 cosh (k/2)
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Figure 6: The distribution of Zz-roots for {éj =0|j=1,---,2N} at the second kind of
excited state with n = 3. Here 2N =8,a=0.66i, p=1.2,G=0.7 and £ = 1.2.
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Figure 7: (a) The distribution of Z-roots for {éj =0|j=1,---,2N} with 2N = 8,
a=0.66i,p =0.1,q = 1.2 and § = 1.2. Here the blue asterisks represent the pattern
of zero roots at the ground state and the red circles denote those at the excited state
with boundary string i(%—l pD). (b) The boundary excited energy versus the boundary
parameter p.

+ 2n(an+1(£n + ia) + an+1(§n - ia) —ap1 (gn + ia) —dp (in - ia))]
=0, (43)

which indicates that the bare contributions of the conjugate pairs with n > 2 to the energy is
exactly canceled by that of the back flow of the continuum root density. Thus the conjugate
pairs with n > 2 contribute nothing to the energy. However, the conjugate pairs do affect the
scattering matrix among the real roots [33].

6 Boundary elementary excitations

Next, we consider the boundary excitations. Comparing with the zero roots distributions at

the ground state, we find that the boundary excitations can exist in the regimes I-IV, where the

boundary parameter —% <p< % or —% <g< % The typical boundary excitation is putting
. . 1 1 crl= 1 .r1 —

the boundary string from i(|p| + 5) to i(5 — |p|), or from i(|g| + 5) to i(5 —[q|). These two
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new boundary strings indeed are the solutions of BAEs (24) and would appear at the low-lying
excited states.

As an example, we show the pattern of zero roots at the ground state (blue asterisks) and
that at the excited state (red circles) with boundary string i(% — |pl) in the regime III with
2N = 8, which is shown in Fig. 7a. We can find in the excitation, the 4 roots at +a and +f3 of
the ground state jump into the bulk string parts at i axes. The change of the zero roots a
and %if3 contribute nothing to the energy. Therefore, we omit the zero roots £a and +if} in
the following. The resulted density change 6 5 (k) between ground and excited states reads

B elPkl _ o—Ipk
opp(k) = 4N cosh(k/2) (44)
The corresponding excited energy is
__(4a2—1) * e cosh(|p|k)
5ep == [f_m(l e )COSh(ak)—elkl/Z cosh (k/2)
4lpl  2(pl+a)  2(pl—a) ]
p?—a? (lpl+a)*—1 (lpl—a)*—1
=—n(4a®>—1)- (csc(n(lpl +a)) + cse(n(|p| — a))) . (45)

The excited energies 5ep with fixed values of a versus p are shown in Fig. 7b. From it, we
see that the excited energy of present model is increasing with the increasing of boundary
parameter |p| and has a minimum at the point of p = 0, which is very different from that of
the Heisenberg spin chain. For the latter, the excited energy is decreasing with the increase

of |p|.
We have computed the boundary excitations in other regimes and found that the excited

energies has an unified form (45), although the resulted values are different. Please note that
when considering the boundary excitations in the regime of —% <q< %, the p in Eq.(45)
should be replaced by the g.

7 Surface energy in ferromagnetic regime

Furthermore, we study the surface energy in ferromagnetic regime. The corresponding Hamil-
tonian H'¢'" is the negative of Hamiltonian (1), namely

H/¥" = —H = —(Hpx + H, + Hg). (46)
In region III (p > %,O <gq< % or0<p< %,q > %), all the zeros {2;|j = 1,---,N} are real as

shown in Fig. 8a. Taking the logarithm then the derivative of the absolute value of BAE (24),
we have

oo
ZNJ bi(u+a—2)p " (£)dE — by (u + @) — by (u + @)

—0Q

= J [by(u—60)+ by(u+ 0 +2a)]o(0)dO + by(u+a)—by(u+a). (47)

—0Q
The Fourier transform gives

7€ (k) = [4N by(k) cos(ak)F (k) + ba(k) — by (k) + byyp (k) + bajg (k)1/[2N by (k)]
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Figure 8: (a) Patterns of z-roots for {éj =0|j=1,---,2N} at the ground state of the

ferromagnetic case in regimes III with 2N = 8. (b) The surface energy Ei " versus
the boundary parameter p in ferromagnetic case, where a = 0,0.6i,0.8i, p = 1 and
£=1.2.

— 24, (k) cos(ak)6 (k) + %[al(k) — 1l (K) + g ()] (48)

The ground state energy of the Hamiltonian (46) can thus be expressed as

oo
Egerr — N(4a2 — 1)f d; (k) cos(ak)p(k)dk + cq
—o0

2a*—6a% +1

=(2N +1)(2a*—1)— o

+E£err’ (49)

where the surface energy E£ ™" in this regime as

2 oo
Eierr _ (4a - 1) J [ay(k) — @y (k) + dgyp (k) + dgyg (k)] cos(ak)dk

2|p|

214 2 1

Fi (50)

. (4a®>—1)
2

After calculation, the energy expressions in the other regions are found to be identical to Eq.
(50) in region IIl. The surface energies E{m
boundary parameter p are shown in Fig. 8b.

with certain a versus the different values of

8 Conclusions

In this paper, we have studied the exact physical quantities of a competing spin chain including
the NN, NNN, chiral three-spin couplings, DM interactions and unparallel boundary magnetic
fields in the thermodynamic limit. We obtained the density of zero roots, surface energy and
elementary excitations in different regimes of model parameter. Due to the competition of
various interactions, the excited spectrum have different behaviors from those of the isotropic
Heisenberg spin chain.
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A A simple method

In the review process, one anonymous referee recommends a clear and simple method to
derive the surface energy and the bulk excitations. Here, we list the referee’s method. Under
the simplifications that take place in the thermodynamic limit (dense distribution of zeros)
one can apply techniques introduced in [34] for the excitations and in [35, 36] for the bulk
properties. In the thermodynamic limit the functional relations (22) means

AWAu—1)=a(uw)d(u—1) = a(u)a(—u), (A.1D)

for all u out of the physical strip. Of course this means literally for the bulk and surface terms

Alu) = Ay (@) - Ay (W), (A.2)
+1
a(u)| = abulk(u) : asur(u) 5 asur(u) = ;1 1 (u + P)(u + C_I) 5 (AB)
2
that for instance
Agur W Agr (u—1) = agy (Wag, (—u). (A4
Now introducing
A(w) := Ay, (—iu) (A.5)

allows for the ansatz of a Fourier transform

oo

4 log A(u) = f dkL(k)etk (A.6)
du

—0Q

with a yet unknown function L(k). This function can be calculated from (A.4) by taking the
logarithm, the derivative and then the Fourier transform (the RHS gives an explicit function):

L(K)- (1+eX) =—i-sign(k) - (e 1Pkl 4 ¢7Iakl 4 o=Ikl _ g=lkl/2y (A.7)

From the last equation one gets L(k) and from this f—u log A(u) Fourier transform. The energy
is simply obtained by

d .
+i—IlogA(u)
ia du

u=t

1 d -
Egr =—=(4a*—1) (i— log A(u)
2 du

N ) : (A.8)

which straight away gives (33) of the paper.
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Next, the referee derives the bulk excitations. He starts with a remark: The result (41) can
be presented in a simplified, explicit form, by doing the Fourier integral resulting in:

5e1(£)=—(4a2—1)-( . ) (A.9)

cosh(¢2+ia) cosh(z—ia)

How to derive this in a most transparent manner? Define for an arbitrary excited state, actually
for an eigenvalue A, (u) the ratio to the leading eigenvalue A(u) of the transfer matrix

l(u) = =2—=. (A.10)

In the thermodynamic limit this function satisfies the functional equation (derived from two
times (A.1) for A(u) and for A (u))

[(Wlu—1)=1. (A.11)

This is solved uniquely for a given set of zeros z,,, in the physical strip by tanh resp. tan function
(for any distribution of inhomogeneity parameters 6;). Let us assume there are only two such
zeros z; and 2, , then

l(u)ztan(g(u—zl)+%) (g(u—22)+%). (A.12)

The shift +% is due to the convention (23). The logarithmic derivative and then inserting
u = #a and z,, = i%,, gives directly (41).

However, the method requires that there do not exist the zeros between the lines Re(z) =0
and Re(z) = —1 at the ground state. For example, we can know that zeros of the ground state
in ferromagnetic regime are mainly located in line Re(z) = —%1 from Section 7 . This will lead
to an error in the Fourier transform (A.7).
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