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Abstract

We investigate separability and entanglement of Rokhsar-Kivelson (RK) states and res-
onating valence-bond (RVB) states. These states play a prominent role in condensed
matter physics, as they can describe quantum spin liquids and quantum critical states of
matter, depending on their underlying lattices. For dimer RK states on arbitrary tileable
graphs, we prove the exact separability of the reduced density matrix of k disconnected
subsystems, implying the absence of bipartite and multipartite entanglement between
the subsystems. For more general RK states with local constraints, we argue separabil-
ity in the thermodynamic limit, and show that any local RK state has zero logarithmic
negativity, even if the density matrix is not exactly separable. In the case of adjacent
subsystems, we find an exact expression for the logarithmic negativity in terms of parti-
tion functions of the underlying statistical model. For RVB states, we show separability
for disconnected subsystems up to exponentially small terms in the distance d between
the subsystems, and that the logarithmic negativity is exponentially suppressed with d.
We argue that separability does hold in the scaling limit, even for arbitrarily small ratio
d/L, where L is the characteristic size of the subsystems. Our results hold for arbitrary
lattices, and encompass a large class of RK and RVB states, which include certain gapped
quantum spin liquids and gapless quantum critical systems.
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1 Introduction

Arguably the most fascinating phenomenon of quantum mechanics, entanglement has con-
founded many a physicist since Einstein, Podolsky, Rosen [1] and Schrödinger [2]. Once
mainly a subject of philosophical debates, entanglement now constitutes a central notion in
the modern field of quantum information [3], where it is recognized as a resource, enabling
tasks such as quantum cryptography [4] or quantum teleportation [5].

More recently, entanglement has been shown to play a prominent role in quantum many-
body systems [6–8]. In particular, groundstate entanglement of many-body Hamiltonians
is related to critical properties [9–11] and topological order [12, 13]. The detection and
quantification of entanglement is a fundamental issue, and despite a considerable amount of
work [14–16], it still remains extremely challenging to determine whether a given quantum
state is entangled or separable, and no general solution to the separability problem is known
as of yet.

LetρA1∪A2
act on the Hilbert spaceH =HA1

⊗HA2
. A stateρA1∪A2

is called separable [17,18]

if it can be written as a finite convex combination of pure product states ρ(i)A1
⊗ρ( j)A2

, i.e.

ρA1∪A2
=
∑

i, j

pi jρ
(i)
A1
⊗ρ( j)A2

, (1)

where the probabilities pi j sum to one. This definition of separability usually requires ρ(ℓ)Ak
to
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be projectors on normalized pure states. However, since any mixed state can be written as a
convex sum of pure states, it suffices that ρ(ℓ)Ak

be Hermitian positive semidefinite operators.
There exist several criteria that imply that a state is entangled or not. The quintessential

example is the entanglement entropy for bipartite pure states; if it vanishes, then the state is
separable. For mixed states, detecting entanglement reveals to be more complicated. A simple
computable measure of entanglement for mixed states is the logarithmic negativity [19–21],
which is based on the positive partial transpose (PPT) criterion [22,23], and defined as

E(A1 :A2) = log Tr
�

�

�ρ
T1
A1∪A2

�

�

� , (2)

where Tr |O| ≡ Tr
p

O†O is the trace-norm of O, and ρT1
A1∪A2

is the partial transpose of ρA1∪A2

with respect to the degrees of freedom of A1. A vanishing logarithmic negativity provides, in
general, only a necessary but not sufficient condition for separability, i.e. there exist entangled
states that remain positive under partial transposition (PPT states) [18]. Such states have the
interesting property that their entanglement cannot be distilled.

The definition of separability and entanglement is more complex in the multipartite sce-
nario than in the bipartite case, see [15,16] and references therein. Full separability, a direct
extension of bipartite separability, exists along with various forms of partial separability. For
instance, a state which is separable for each possible bipartition is not necessarily fully separa-
ble. The structure of entanglement is much richer when more than two parties are involved. In
particular, several inequivalent classes of entanglement can be identified. To fully characterize
the entanglement structure of a system, it is thus crucial to investigate its multipartite entan-
glement and separability properties. Recently, there has been a burst of theoretical activities
aiming at better understanding multipartite entanglement in quantum many-body systems,
both in [24–31] and out of equilibrium [32–34].

In this paper, we investigate entanglement and separability of Rokhsar-Kivelson (RK) states
and resonating valence-bond (RVB) states. Introduced by Anderson [35, 36] as trial ground-
states for the anti-ferromagnetic spin-1/2 Heisenberg chain on the triangular lattice, such RVB
states are celebrated instances of quantum spin liquid where pairs of electrons form singlet
(valence) bonds, a superposition of which yields a liquidlike, non-Néel groundstate. Quantum
spin liquids are phases of matter with no long-range order which exhibit exotic features arising
from their topological nature [37,38], such as fractional excitations [39], spin-charge separa-
tion [38], protected groundstate degeneracy [40–42] and relation to gauge theory [43–46]. A
unifying and essential property of spin liquids is long-range entanglement, which implies that
the wavefunction cannot be continuously deformed into a product state. Since entanglement
plays such an important role in the definition and properties of quantum spin liquids, it is natu-
ral to investigate their expected representatives through that lens (see, e.g., [8,12,13,47–51]).

Quantum dimer models are paradigmatic examples of strongly-correlated systems subject
to hard local constraints. They were originally introduced on the square lattice by Rokhsar and
Kivelson [40,52] to describe the low-energy physics of short-range RVB states; here a valence
bond is represented by a dimer linking the two electrons which form it. Crucially, quantum
dimer models exhibit an “RK point” where the wavefunction is an equal-weight superposition
of all dimer coverings, which is the characteristic RVB form. The dimer RK wavefunction is
known to be a critical liquid state on the square lattice [53, 54], whereas a gapped Z2 liquid
state is realized on triangular and kagome (frustrated) lattices [55–57]. Dimer and RVB states
have also been investigated on three-dimensional lattices [58]. Similarly as in two dimensions,
they may describe critical or gapped phases, depending on whether the underlying lattice is
bipartite or not. Quantum dimer models thus come in many different flavors. Their study have
unearthed a wealth of phenomena, such as rich phase diagrams [59–64], mapping to height
models [65,66], gauge theory [46,57,67], and more.
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The construction of RK states is not limited to lattice models, nor are the wavefunctions
required to be equal-weight superpositions of all configurations [66, 68, 69]; one can, e.g.,
construct an RK state from the Boltzmann weights of their favorite statistical model. Some
entanglement properties of RK states have been studied in [70–76]. Recently, continuum RK
states for which the underlying models are local quantum field theories (QFTs) have been
shown to be separable for two disconnected regions [77] (see also [78]), which can be traced
back to the locality of the theory. In particular, taking the local QFT to be the free scalar
field describes the continuum limit of the dimer RK and RVB wavefunctions on the square
lattice [51, 66, 68, 79]. We note that separability implies a vanishing logarithmic negativity,
and mention that the logarithmic negativity for disjoint subsystems vanishes for other systems
as well, such as the toric code [80, 81], the AKLT model [82, 83], Motzkin and Fredkin spin
chains [84,85], and Chern-Simons theories [86,87]. Inspired by these results, one may wonder
whether separability and vanishing logarithmic negativity hold for dimer and more general
RK states on arbitrary graphs, as well as for RVB states. The goal of this work is therefore to
address this important issue.

This paper is organized as follows. We start in Sec. 2 with RK states. We study the separa-
bility of the reduced density matrix of two disconnected subsystems, for dimer RK states and
more general RK states with local constraints, on arbitrary graphs. We give general expressions
for the logarithmic negativity of such states at the end of the section, both for disconnected
and adjacent subsystems. In Sec. 3, we study the separability of RVB states on arbitrary graphs.
We discuss their logarithmic negativity as well as relevant higher-spin generalizations at the
end of the section. Finally, we investigate multipartite separability of RK and RVB states in
Sec. 4. We conclude in Sec. 5 with a summary of our main results, and give an outlook on
future study.

2 Rokhsar-Kivelson states

In this section, we review the definition of RK states and investigate their separability. These
are quantum states whose Hilbert space is spanned by the configurations of an underlying
statistical model.

2.1 Definition

Consider a statistical model on an arbitrary graph, with allowed configurations c ∈ Ω, “energy”
functional E(c), Boltzmann weights e−E(c) and partition function Z. For each configuration c,
we assign a quantum state |c〉 and impose 〈c|c′〉 = δc,c′ . The corresponding normalized RK
state is

|ψ〉=
1
p
Z

∑

c∈Ω
e−

1
2 E(c)|c〉 , Z =

∑

c∈Ω
e−E(c) . (3)

Different underlying statistical models yield different RK states. We shall focus on RK
states built from models whose degrees of freedom reside on the edges of the graph, with a
local energy functional. Moreover, we assume that the models satisfy local constraints, where
the state of all but one edge connected to a common vertex fixes the state of the remaining
edge. Such models include vertex models with generalized ice-rule and dimer models.

2.2 Tripartition and disconnected subsystems

Let the underlying statistical model be defined on a graph which consists of three subregions,
A1, A2 and B. In this setting, a subregion is a set of edges of the graph. Two edges are said
to be adjacent if they are connected to a common vertex. We assume that A1 and A2 are
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disconnected, namely edges in A1 and A2 are never adjacent. By convention, the boundary
between A1, A2 and B consists of the edges in A1, A2 that are adjacent to edges in B. We
denote the configurations on these boundaries by i and j, respectively. In contrast, the bulk
configurations of A1, A2 (and B) do not include the boundary edges. We illustrate such a
tripartition in Fig. 1 for the dimer model on the square lattice.

The state corresponding to a configuration c can be decomposed as

|c〉= |a1, i〉 ⊗ |b〉 ⊗ |a2, j〉 . (4)

Here, a1, a2 are bulk configurations of A1, A2, while b is the configuration of B, and i, j are the
boundary configurations. We have 〈ak,ℓ|a′k,ℓ′〉 = δak ,a′k

δℓ,ℓ′ with k = 1, 2, ℓ = i, j, as well as

〈b|b′〉 = δb,b′ . We denote by ΩℓAk
the set of all bulk configurations of Ak that are compatible

with the boundary configuration ℓ. Similarly, Ωi j
B is the set of all configurations of B compatible

with both boundary configurations. Moreover, because the energy functional E(c) is local, we
may express it as

E(c) = E(a1, i) + E(b, i, j) + E(a2, j) , (5)

where E(ak,ℓ) encodes the interaction in the bulk of subsystem Ak, as well as interactions
between bulk and boundary degrees of freedom. It is similar for E(b, i, j), except B has degrees
of freedom adjacent to both boundaries i and j.

With these conventions, the RK wavefunction (3) reads

|ψ〉=
∑

i, j

 

Z i
A1
Z j

A2
Z i j

B

Z

!1/2

|ψi
A1
〉 ⊗ |ψi j

B 〉 ⊗ |ψ
j
A2
〉 , (6a)

with subsystem RK states

|ψℓAk
〉=

1
Ç

ZℓAk

∑

ak∈ΩℓAk

e−
1
2 E(ak ,ℓ)|ak,ℓ〉 ,

|ψi j
B 〉=

1
Ç

Z i j
B

∑

b∈Ωi j
B

e−
1
2 E(b,i, j)|b〉 ,

(6b)

and the normalizations

ZℓAk
=

∑

ak∈ΩℓAk

e−E(ak ,ℓ) , Z i j
B =

∑

b∈Ωi j
B

e−E(b,i, j) . (6c)

2.3 Reduced density matrix

In this section, we compute the RK reduced density matrix ρA1∪A2
= TrB(|ψ〉〈ψ|) of the sub-

system A1 ∪ A2. The calculation depends on the underlying statistical model, the lattice and
the shapes of the subsystems.

2.3.1 Arbitrary graphs

Let us consider an RK state defined on an arbitrary graph. We only impose that the two regions
A1 and A2 are disconnected. In general, there might be vertices connected to edges in B and to
more than one edge in A1 or A2. This is for example the case for the square lattice in the case
where the boundaries have concave angles, or the triangular lattice, see Fig. 2 below. Hence,
there may be different boundary configurations compatible with the same configurations in B.
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i

A1

j

A2

Figure 1: Illustration of a tripartite geometry for a specific configuration of the dimer
model on the square lattice. Regions A1 and A2 are tiled with green and blue dimers,
respectively, and consist of the edges encircled or crossed by the dotted lines; region
B is tiled with gray dimers. The boundary dimers are those that cross the boundaries
(dotted lines) of the subsystems. Indices i and j correspond to the boundary config-
urations between B and A1 or A2, respectively.

To proceed, we introduce the notation i ∼ i′ for boundary configurations i, i′ that are
compatible with the same configurations in B. By definition, we also have i ∼ i, namely we
do not impose that i ̸= i′. This translates to

Ω
i j
B = Ω

i′ j′

B , i ∼ i′, j ∼ j′ , (7)

and we have the orthogonality relation

〈ψi j
B |ψ

i′ j′

B 〉= δi∼i′δ j∼ j′
Z i j,i′ j′

B
Ç

Z i j
B Z

i′ j′
B

, (8)

where δi∼i′ = 1 if i ∼ i′, and vanishes otherwise. Moreover, we introduced

Z i j,i′ j′

B =
∑

b∈Ωi j
B

e−
1
2 (E(b,i, j)+E(b,i′, j′)) . (9)

The reduced density matrix reads

ρA1∪A2
=
∑

i, j

∑

i′∼i

∑

j′∼ j

Pi j,i′ j′ |ψi
A1
〉 〈ψi′

A1
| ⊗ |ψ j

A2
〉 〈ψ j′

A2
| , (10a)

with

Pi j,i′ j′ =
(Z i

A1
Z i′

A1
Z j

A2
Z j′

A2
)1/2Z i j,i′ j′

B

Z
. (10b)

2.3.2 Square lattice and no concave angles

Let us assume that the graph is the two-dimensional square lattice, and the subsystems A1 and
A2 do not have any concave angles (they can be rectangles, strips, cylinders, etc). In that case,
the calculation of the reduced density matrix simplifies greatly.

6
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Figure 2: Illustration of two different configurations of the dimer model for a region
with a concave angle (top) and on the triangular lattice (bottom). In both cases, the
two configurations have different boundary configurations (highlighted darker green
dimers), but are both compatible with the same configuration of dimers outside the
green region.

If a configuration b of B is compatible with a boundary configuration (i, j), then the local
constraints imply that b is incompatible with all other possible choices (i′, j′) ̸= (i, j). In other
words,

Ω
i j
B ∩Ω

i′ j′

B = ; , (i, j) ̸= (i′, j′) , (11)

and the relation (8) becomes 〈ψi′ j′

B |ψ
i j
B 〉= δi,i′δ j, j′ .

The density matrixρ = |ψ〉〈ψ| is a double sum over the pairs of indices (i, j) and (i′, j′) that
involve projectors of the form |ψi j

B 〉〈ψ
i′ j′

B |. Using the orthogonality of the RK wavefunctions
for B, we obtain

ρA1∪A2
=
∑

i, j

Z i
A1
Z j

A2
Z i j

B

Z
|ψi

A1
〉 〈ψi

A1
| ⊗ |ψ j

A2
〉 〈ψ j

A2
| . (12)

We note that this is a simplification of (10), because in this case δi∼i′ = δi,i′ .
The reduced density matrix (12) can be cast in the form

ρA1∪A2
=
∑

i, j

pi jρ
(i)
A1
⊗ρ( j)A2

, (13a)

with

pi j =
Z i

A1
Z j

A2
Z i j

B

Z
, ρ

(ℓ)
Ak
= |ψℓAk

〉〈ψℓAk
| . (13b)

Here, ρ(ℓ)Ak
are pure states, and hence the reduced density matrix ρA1∪A2

is separable in the
sense of (1).

2.4 Separability for disconnected subsystems

For disjoint A1 and A2 with no concave angles on the square lattice, we showed with (13a)
that the reduced density matrix for any RK state with local constraints is separable. For the
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more general situation of disjoint subsystems with concave angles and/or a model defined on
an arbitrary lattice, the reduced density matrix given in (10) is not trivially separable. We
investigate the separability of the reduced density matrix in this case.

2.4.1 Dimer states

We first focus on RK states whose underlying statistical model is the dimer model. An allowed
configuration of dimers on a graph, or tiling, is such that each vertex is covered by exactly one
dimer, and allowed configurations have the same Boltzmann weight. Dimer states are thus
particular types of RK states, where E(c) = 0 for allowed dimer configurations, and E(c) =∞
for forbidden ones.

Since all allowed configurations have the same Boltzmann weight, and using (7), we have

Z i j,i′ j′

B = Z i j
B = Z i′ j′

B = Z i j′

B = Z i′ j
B , i ∼ i′ , j ∼ j′ , (14)

such that

Pi j,i′ j′ =
(Z i

A1
Z i′

A1
Z j

A2
Z j′

A2
Z i j

B Z
i′ j′

B )
1/2

Z
. (15)

From Pi j,i′ j′ in (15) and the symmetry of Z i j
B given in (14), the reduced density matrix (10)

is symmetric in i↔ i′ and j↔ j′. In particular, we may rewrite it as

ρA1∪A2
=
∑

i, j

Z i
A1
Z j

A2
Z i j

B

Z
ρ
(i)
A1
⊗ρ( j)A2

, (16a)

where we explicitly symmetrized the density matrices,

ρ
(ℓ)
Ak
=

1
2

∑

ℓ′∼ℓ

√

√

√

√

Zℓ′Ak

ZℓAk

�

|ψℓAk
〉〈ψℓ

′

Ak
|+ |ψℓ

′

Ak
〉〈ψℓAk
|
�

. (16b)

The reduced density matrix corresponding to two disjoint regions is hence separable. As a
consistency check, we note that (16b) reduces to (13b) for regions with no concave angles on
the square lattice.

We thus conclude that for the dimer RK states, two disconnected regions are not entangled.
This is in accordance with the result of [77] where it was shown that continuum RK states
are separable if the subsystem consists of two disjoint regions. However, we emphasize that
here, we prove exact separability on the lattice, without taking any thermodynamic/continuum
limit.

2.4.2 Rokhsar-Kivelson states with local constraints

Taking a generic underlying statistical model (still satisfying local constraints), we have
Ω

i j
B = Ω

i′ j′

B for i ∼ i′ and j ∼ j′. However, in general we cannot absorb the sums over i′

and j′ separately to define reduced density matrices for A1 and A2, as in (16). This issue arises
because of the term Z i j,i′ j′

B in Pi j,i′ j′ , see (10). We can however argue that the reduced den-
sity matrix ρA1∪A2

is nearly separable in the thermodynamic limit where the volume of each
subsystem A1, A2, B becomes large, whereas their ratio is kept constant. We stress that the
following argument also holds in the limit where B becomes large with A1, A2 finite.

Owing to the locality of the energy functional and the fact that A1 and A2 are disjoints, we
may express E(b, i, j) as

E(b, i, j) = Ebulk(b) + Ebd(b, i) + Ebd(b, j) , (17)

8
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where Ebulk(b) encodes the bulk energy of the configuration b, whereas Ebd(b, i) is the energy
arising from the interactions between B and the boundary i.

In general, we can write

E(b, i, j) = Ebulk(b)(1+∆i j) , (18)

and we expect |∆i j| ≪ 1, because boundary energies are negligible compare to bulk energies

in the thermodynamic limit. We thus approximate Z i j,i′ j′

B as

Z i j,i′ j′

B ≃
∑

b∈Ωi j
B

e−Ebulk(b) ≡ Z i j
B,bulk . (19)

Since by definition Z i j
B,bulk = Z i′ j

B,bulk = Z i j′

B,bulk = Z i′ j′

B,bulk for i ∼ i′ and j ∼ j′, the construction
of the previous section holds, and the reduced density matrix takes the separable form of (16)
where Z i j

B is replaced by Z i j
B,bulk. Again, this is in agreement with the separability of continuum

RK states for disconnected subsystems [77].

2.5 Logarithmic negativity

As alluded to in the introduction, the logarithmic negativity is given as the violation of the
PPT criterion and serves as a measure of entanglement for mixed states. In its original defini-
tion (2), the logarithmic negativity requires the knowledge of the spectrum of ρT1

A1∪A2
, which is

very difficult to obtain for quantum many-body systems. To circumvent this difficulty, a replica
method was developed in [88,89], which relates the logarithmic negativity to the moments of
ρ

T2
A1∪A2

, i.e.

E(A1 : A2) = lim
n→1/2

log Tr
�

ρ
T1
A1∪A2

�2n
. (20)

For pure states, the logarithmic negativity reduces to the Rényi entropy of order n = 1/2,
defined as

Sn(A1) =
1

1− n
logTrρn

A1
, (21)

for the reduced density matrix ρA1
. We shall give general expressions for the logarithmic

negativity of RK states.

2.5.1 Disjoint subsystems

The reduced density matrix ρA1∪A2
for disjoint subsystems is given in (10). Using (9) and (17),

one may readily verify that Pi j,i′ j′ = Pi′ j,i j′ , hence ρA1∪A2
= ρ

T1
A1∪A2

. This implies

Tr|ρT1
A1∪A2
|= TrρA1∪A2

= 1 and thus a vanishing logarithmic negativity,

E(A1 : A2) = 0 . (22)

We conclude that any RK state with local constraints has zero negativity, even if the density
matrix is not exactly separable. Note that for dimer states, the exact separability implies a
vanishing negativity.

In the previous sections, we focused on RK states with local constraints. However, our
arguments can be generalized to RK states for which the local constraints rule is removed. An
example would be an RK state constructed from an underlying Ising model where the spins are
defined on the vertices of the graph. There are no constraints in that case, hence all boundary
configurations are compatible with all bulk configurations of B. Expression (10) remains valid,
only the sum

∑

i′∼i becomes a sum over all possible configurations i′, irrespective of i, and
similarly for j, j′. The locality of the energy functional still implies that (17) holds, such that
we have ρT1

A1∪A2
= ρA1∪A2

and a vanishing negativity.
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i

j

A1

k A2

Figure 3: Illustration of a tripartite geometry where regions A1 and A2 are adjacent
for a dimer state. The boundary dimers between A1, A2 and B are those that cross
the boundaries of the subsystems. Indices i and i (dotted lines) correspond to the
boundary configurations of A1 and A2 with respect to B, respectively, while k (dashed
line) denotes the boundary configuration between A1 and A2.

2.5.2 Comment on the mutual information

Commonly used as a measure of entanglement and correlations between separate subsystems,
the mutual information is defined as

I(A1 : A2) = S(A1) + S(A1)− S(A1 ∪ A2) , (23)

where S(A) = limn→1 Sn(A) is the celebrated entanglement entropy. With our results from the
previous sections and that of [72], one can express the mutual information of RK states in terms
of partition functions of the underlying model. In particular, it does not vanish identically for
disconnected systems, contrarily to the logarithmic negativity. The mutual information has
a well defined operational meaning [90] as the total amount of correlations, both quantum
and classical, between two systems, whereas the logarithmic negativity is a genuine quantum
entanglement measure [21]. Separability of RK states then implies that the mutual information
results entirely from classical and quantum non-entangling correlations [91,92].

2.5.3 Adjacent subsystems

For two adjacent subsystems A1 and A2, the corresponding reduced density matrix ρA1∪A2
is in

general not separable. Below, we derive an explicit expression for the logarithmic negativity
in terms of partition functions of the underlying statistical model, similarly as for the Rényi
entropies, see [72].

As for the disjoint case, the boundary configurations between B and A1 and A2 are denoted
i and j, respectively. By convention, the edges that connect A1 and A2 belong to A1, and the
corresponding boundary configurations are denoted k. We illustrate this geometry in Fig. 3
for the dimer state. Using similar conventions as in previous sections, the RK state (3) for two
adjacent subsystems can be written as

|ψ〉=
∑

i, j,k

 

Z ik
A1
Z jk

A2
Z i j

B

Z

!1/2

|ψik
A1
〉 ⊗ |ψ jk

A2
〉 ⊗ |ψi j

B 〉 , (24)
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where the partition functions and RK states for A1 and A2 are defined as in (6), but now
also depend on their common boundary configuration k. For convenience, we introduce the
probabilities pi jk as

pi jk =
Z ik

A1
Z jk

A2
Z i j

B

Z
. (25)

For simplicity, we consider RK states with local constraints on the square lattice and bound-
aries with no concave angles, as in Fig. 3. The following calculations can be generalized to
arbitrary situations with the technical tools developed in Sec. 2.3.1. With these constraints,
RK states for B are orthogonal, and hence the reduced density matrix reads

ρA1∪A2
=
∑

i, j,k,ℓ

(pi jkpi jℓ)
1/2|ψik

A1
〉〈ψiℓ

A1
| ⊗ |ψ jk

A2
〉〈ψ jℓ

A2
| . (26)

We now compute the logarithmic negativity using the replica definition (20). To proceed,
the partial transposition of ρA1∪A2

with respect to A1 reads

ρ
T1
A1∪A2

=
∑

i, j,k,ℓ

(pi jkpi jℓ)
1/2|ψiℓ

A1
〉〈ψik

A1
| ⊗ |ψ jk

A2
〉〈ψ jℓ

A2
| . (27)

Since there are no concave angles in the boundary between A1 and A2, their respective RK
states are orthogonal, and we find

Tr(ρT1
A1∪A2

)2n =
∑

i, j,k,ℓ

pn
i jkpn

i jℓ , (28)

for integer values of n. The limit n→ 1/2 yields

E(A1 : A2) = log
∑

i, j,k,ℓ

p1/2
i jk p1/2

i jℓ . (29)

The sums over k and ℓ can be performed separately, and we recast this result in the form

E(A1 : A2) = log
∑

i, j

h2
i j , (30a)

with

hi j =
∑

k

 

Z ik
A1
Z jk

A2
Z i j

B

Z

!1/2

. (30b)

Our calculations can straightforwardly be adapted to different geometries such as two imbri-
cate squares.

As an important consistency check, the logarithmic negativity (30) must reduce to the
known result for the Rényi entropy of index n = 1/2 [72] in the case where A1 and A2 are
complementary subsystems. For B = ;, the RK state (24) takes the form

|ψ〉=
∑

k

�

Zk
A1
Zk

A2

Z

�1/2

|ψk
A1
〉 ⊗ |ψk

A2
〉 . (31)

Computing the logarithmic negativity in a similar manner as in the previous paragraphs, we
find

E(A1 : A2) = 2 log
∑

k

�

Zk
A1
Zk

A2

Z

�1/2

= S1/2(A1) ,

(32)
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in agreement with [72].
For local RK states, we expect the logarithmic negativity for adjacent regions to satisfy an

area law, proportional to the area of the boundary shared by the two subsystems, as is observed
for, e.g., two-dimensional topological systems [80, 81, 86] and free boson models [93, 94].
Indeed, for bipartite states with B empty, the logarithmic negativity equals the 1/2–Rényi
entropy, so if the Rényi entropies satisfy an area law—as, e.g., for dimer RK states on square
and hexagonal lattices [72]—then the logarithmic negativity does too. Since the area law
term is insensitive to the geometry, we further expect it to hold for logarithmic negativity of
more general tripartitions with B nonempty, the corresponding coefficient being also that of
the 1/2–Rényi entropy.

For dimer RK states on the square lattice, one can be more quantitative. Let us consider the
case where the three regions A1, A2 and B are rectangles of sizes LX × L, with X = A1, A2, B,
and A1, A2 share a common boundary of length L. The partition function ZX of the dimer
model on a LX × L rectangle scales as [95]

ZX ∼ eaLX L−bX LX−bL+··· , (33)

where a, b, bX > 0, and the ellipsis indicate subleading terms in the large-L, LX limit. Assum-
ing that the fixed dimer configurations on the boundaries only affect the subleading coeffi-
cients b, bX , but not the bulk coefficient a, we expect the probabilities pi jk in (25) to scale as
log pi jk ∼ αL + . . . , with α > 0 (see [72] for exact calculations for Rényi entropies). This in
turn implies that the logarithmic negativity in (30) satisfies an area law, E(A1 : A2)∝ L.

3 Resonating valence-bond states

In the context of lattice spin models, a valence bond is a spin singlet, and an RVB state is
a quantum superposition of such valence bonds coverings, usually involving nearby spins.
Schematically, a singlet can be represented as a dimer connecting two spins. Similarly to dimer
RK states, RVB states with positive weights are thus constructed from an underlying classical
dimer model, but the degrees of freedom are now spin-S located on the vertices of the graph.
The corresponding states are denoted SU(N ) RVB state, with N = 2S + 1 [51, 96, 97]. In
the limit N →∞, the valence-bond states become exactly orthogonal dimer states [51]. The
results of this section are thus generalizations of those obtained in the previous one for RK
states. In the following, we begin with SU(2) RVB states and study their separability and
logarithmic negativity as a function of the distance d between the subsystems. We discuss the
case SU(N ) in Sec. 3.7.

3.1 Definition for SU(2)

We work with the simplest RVB states, namely equal-weight superposition of spin-1/2 singlets,
on arbitrary graphs. In our framework, singlets can be located on any edge of the graph. As
such, nearest-neighbor and next to nearest-neighbor RVB states, for example, correspond to
different underlying graphs. Since our results hold for arbitrary graphs, they encompass a
wide variety of RVB states.

Given a spin-1/2 singlet configuration γ of a given graph, the corresponding state |γ〉 is
the product of singlets states between sites that are connected by a singlet,

|γ〉=
⊗

(x ,y)∈γ
|Sx ,y〉 , (34)
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γ γ′ ⟨γ|γ′⟩

Figure 4: Two configurations, γ and γ′, and the corresponding transition graph on
the 4 × 4 square lattice. In this example, the number of sites is 16, the number of
closed loops is 2, and therefore 〈γ|γ′〉= 2−6.

where the notation (x , y) ∈ γ indicates that the sites x and y are connected by a singlet in the
configuration γ, and |Sx ,y〉 is the spin-1/2 singlet state

|Sx ,y〉=
1
p

2

�

|↑x ↓y〉 − |↓x↑y〉
�

. (35)

The states corresponding to different configurations γ and γ′ are not orthogonal, and the
value of the overlap 〈γ|γ′〉 can be read from the underlying singlet configurations. On the
graph, one draws both configurations. The resulting image, denoted transition graph, consists
of closed loops of singlets. We illustrate this in Fig. 4. The smallest loops have length two,
when two singlets overlap. Denoting the number of closed loops by nℓ(γ,γ′) and the number
of sites on the graph by N , we have [98]

〈γ|γ′〉= 2nℓ(γ,γ′)−N/2 . (36)

For γ = γ′, this overlap is one since all the singlets perfectly overlap and the number of loops
is exactly N/2.

The RVB state reads

|Ψ〉=
1
p
Z

∑

γ∈Ω
|γ〉=

1
p
Z

∑

γ∈Ω

⊗

(x ,y)∈γ
|Sx ,y〉 , (37)

where Ω denotes the set of all allowed singlet configurations on the graph, and Z is a constant
that ensures 〈Ψ|Ψ〉= 1. From the overlap (36), it reads

Z =
∑

γ,γ′∈Ω
2nℓ(γ,γ′)−N/2 . (38)

3.2 Tripartition and disconnected subsystems

Let us consider a tripartition A1 ∪ B∪A2 of the graph. Each subsystem consists in a set of NA1
,

NB and NA2
vertices, respectively. By definition, a boundary site belonging to a subsystem is

connected through an edge to at least one site from a different subsystem. Similarly, boundary
edges are edges of the graph that connect sites from different subsystems. Importantly, we
assume that A1 and A2 are disconnected, namely there are no boundary edges that connect
sites in A1 to A2. The distance d between A1 and A2 is defined as the minimal number of edges
needed to connect two boundary sites in B, pertaining to different boundaries. We illustrate
such a tripartition in Fig. 5 for the square lattice.

Our goal is to express the RVB state (37) in terms of RVB states for each subsystem. We
denote by Ωk

bd, k = 1, 2, the set of allowed singlet configurations on boundary edges that

13

https://scipost.org
https://scipost.org/SciPostPhys.15.2.066


SciPost Phys. 15, 066 (2023)

A1 B A2

d

e1

e2

Figure 5: Top: Example of a tripartition for the RVB state on a 3× 12 square lattice.
Here, NA1

= NA2
= NB = 12 and d = 3. Bottom: A singlet configuration on the same

lattice as in the top panel. The boundary singlets in e1 and e2 are highlighted.

connect sites in Ak to B. Singlet states defined on boundary edges are called boundary singlets.
Given two boundary configurations e1, e2 in Ω1

bd and Ω2
bd, respectively, we define Ωe1,e2 as the

set of all singlet configurations on the whole graph, from which we removed all the edges
connected to occupied boundary sites in e1, e2. We give an example of a singlet configuration
in Fig. 5.

We can recast the RVB state (37) as

|Ψ〉=
1
p
Z

∑

e1∈Ω1
bd

∑

e2∈Ω2
bd

∑

γ∈Ωe1,e2

|e1〉 ⊗ |γ〉 ⊗ |e2〉 , (39)

where |ek〉, k = 1,2, is the product of boundary singlet in the boundary configuration ek,

|ek〉=
⊗

(ik , jk)∈ek

|Sik , jk〉 . (40)

By convention, the sites ik belong to Ak, whereas jk label sites in B. By abuse of notation, we
will sometimes write ik ∈ ek to denote the sites in Ak that are occupied by a boundary singlet
in ek, and jk ∈ ek to denote the corresponding sites in B. We further introduce Ωek

Ak
, k = 1,2, as

the set of singlet configurations on the system Ak from which we removed the edges connected
to an occupied site in the boundary configuration ek. We also introduce Ωe1,e2

B , which is the
equivalent quantity for system B, and it depends on both boundary configurations e1, e2. With
these notations, we have

∑

γ∈Ωe1,e2

|γ〉=
∑

γA1
∈Ωe1

A1

∑

γB∈Ω
e1,e2
B

∑

γA2
∈Ωe2

A2

|γA1
〉 ⊗ |γB〉 ⊗ |γA2

〉 , (41)

where |γX 〉, X = A1, B, A2, are defined as in (34). Finally, we introduce

|Ψek
Ak
〉 ≡

1
Ç

Z ek
Ak

∑

γAk
∈Ωek

Ak

|γAk
〉 ,

|Ψe1,e2
B 〉 ≡

1
q

Z e1,e2
B

∑

γB∈Ω
e1,e2
B

|γB〉 ,
(42)
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where

Z ek
Ak
=

∑

γAk
,γ′Ak
∈Ωek

Ak

2nℓ(γAk
,γ′Ak
)−NAk

/2 ,

Z e1,e2
B =

∑

γB ,γ′B∈Ω
e1,e2
B

2nℓ(γB ,γ′B)−NB/2 ,
(43)

and rewrite (39) as

|Ψ〉=
∑

e1∈Ω1
bd

∑

e2∈Ω2
bd

�

Z e1
A1
Z e2

A2
Z e1,e2

B

Z

�1/2

|Ψe1
A1
〉 ⊗ |e1〉 ⊗ |Ψ

e1,e2
B 〉 ⊗ |e2〉 ⊗ |Ψ

e2
A2
〉 . (44)

3.3 Reduced density matrix

As the degrees of freedom reside on the vertices of the graph, we compute the reduced density
matrix as

ρA1∪A2
=

∑

σ j=↑,↓
j∈B

〈σ1 · · ·σNB
|Ψ〉〈Ψ|σ1 · · ·σNB

〉 , (45)

where the sum is over all the spin configurations in B. From (44), we find

ρA1∪A2
=

∑

e1,e′1∈Ω
1
bd

∑

e2,e′2∈Ω
2
bd

�

Z e1
A1
Z e2

A2
Z e1,e2

B

Z

�1/2




Z e′1
A1
Z e′2

A2
Z e′1,e′2

B

Z





1/2

|Ψe1
A1
〉〈Ψe′1

A1
| ⊗ |Ψe2

A2
〉〈Ψe′2

A2
|

×
∑

σ j=↑,↓
j∈B

〈σ1 · · ·σNB
|
�

|e1〉 ⊗ |Ψ
e1,e2
B 〉 ⊗ |e2〉

��

〈e′2| ⊗ 〈Ψ
e′1,e′2
B | ⊗ 〈e′1|

�

|σ1 · · ·σNB
〉 . (46)

We recall that the state |e1〉, for instance, is a product of singlets that involve boundary sites
in B and in A1. In the sum over the spin values σ j =↑,↓ for boundary sites in B occupied by a
boundary singlet in the configurations {e1, e2, e′1, e′2}, the corresponding spins in A1 or A2 are
thus fixed to be of opposite value.

For σ =↑,↓, we define σ̄ =↓,↑, and we introduce the notations

|σe1
〉=

⊗

j∈e1

|σ j〉B ,

|σ̄e1
〉=

⊗

j∈e1

|σ̄ j〉A1
,

(47)

for a given spin configuration {σ j}, j ∈ e1 of occupied boundary sites in B, and similarly for
e2. We stress that the product in the first line of (47) is over the sites in B that are occupied by
a boundary singlet in the configuration e1, whereas the product on the second line is over the
corresponding sites in A1, as highlighted by the notation in the right-hand side of (47). After
some algebra, we arrive at

ρA1∪A2
=

∑

e1,e′1∈Ω
1
bd

∑

e2,e′2∈Ω
2
bd

∑

σ j=↑,↓
j∈{e1,e′1,e2,e′2}

2−
1
2 |{e1,e2,e′1,e′2}|

�

Z e1
A1
Z e2

A2
Z e1,e2

B

Z

�1/2




Z e′1
A1
Z e′2

A2
Z e′1,e′2

B

Z





1/2

× 〈Ψe′1,e′2
B ⊗σe′1

⊗σe′2
|Ψe1,e2

B ⊗σe1
⊗σe2
〉
�

|Ψe1
A1
⊗ σ̄e1
〉〈Ψe′1

A1
⊗ σ̄e′1
|
�

⊗
�

|Ψe2
A2
⊗ σ̄e2
〉〈Ψe′2

A2
⊗ σ̄e′2
|
�

,

(48)

15

https://scipost.org
https://scipost.org/SciPostPhys.15.2.066


SciPost Phys. 15, 066 (2023)

where |{e1, e2, e′1, e′2}| is the number of boundary singlets in the combined configurations
{e1, e2, e′1, e′2}, and factor of 1/2 originates from the singlet normalization.

For simplicity, we write the reduced density matrix as

ρA1∪A2
=

∑

e1,e′1∈Ω
1
bd

∑

e2,e′2∈Ω
2
bd

∑

σ j=↑,↓
j∈{e1,e′1,e2,e′2}

F(e1, e2; e′1, e′2;σbd)

×
�

|Ψe1
A1
⊗ σ̄e1
〉〈Ψe′1

A1
⊗ σ̄e′1
|
�

⊗
�

|Ψe2
A2
⊗ σ̄e2
〉〈Ψe′2

A2
⊗ σ̄e′2
|
�

, (49)

with

F(e1, e2; e′1, e′2;σbd) = 2−
1
2 |{e1,e2,e′1,e′2}|

�

Z e1
A1
Z e2

A2

Z

�1/2




Z e′1
A1
Z e′2

A2

Z





1/2

×
�

Z e1,e2
B Z e′1,e′2

B

�1/2〈Ψe′1,e′2
B ⊗σe′1

⊗σe′2
|Ψe1,e2

B ⊗σe1
⊗σe2
〉 , (50)

where σbd ≡ {σ j}, j ∈ {e1, e2, e′1, e′2} is the spin configuration of occupied boundary sites in B.

3.4 Overlap

Let us introduce the notation

G(e1, e2; e′1, e′2;σbd)≡
�

Z e1,e2
B Z e′1,e′2

B

�1/2〈Ψe′1,e′2
B ⊗σe′1

⊗σe′2
|Ψe1,e2

B ⊗σe1
⊗σe2
〉 , (51)

and describe how to compute this normalized overlap graphically, in a similar fash-
ion as for the overlap in (36). In the following, we use the lighter notation
G(e1, e2; e′1, e′2) ≡ G(e1, e2; e′1, e′2;σbd), but one should keep in mind that G(e1, e2; e′1, e′2) does
not only depend on the boundary singlet configurations, but also on the corresponding bound-
ary spin configuration σbd. We will use the same notation for F(e1, e2; e′1, e′2).

The overlap in G(e1, e2; e′1, e′2) involves a double sum over configurations γB and γ′B,
see (42). First, we isolate one term in the double sum, and focus on the overlap
〈γ′B ⊗ σe′1

⊗ σe′2
|γB ⊗ σe1

⊗ σe2
〉. One draws the fixed boundary spins σbd, and the singlets

of the configurations γB and γ′B on the same graph. In the resulting transition graph, fixed
spins are connected by strings of singlets, and in the rest of the domain there are closed sin-
glet loops. It is convenient to draw the spins and singlets of the bra 〈γ′B ⊗σe′1

⊗σe′2
| in red,

and those of the ket |γB ⊗σe1
⊗σe2
〉 in blue.

Because singlets have zero magnetisation, we have the following rules: (i) two fixed
boundary spins of the same color can be connected by a string of singlets only if they are
opposite, whereas (ii) two fixed boundary spins with different colors can only be connected if
they are equal. If those rules are not satisfied, the bra and ket involved have different mag-
netisation, and hence the resulting overlap is zero. We illustrate this graphical construction in
Fig. 6.

To compute the overlap from the transition graph, we generalize (36) to account for the
presence of singlet strings. A string of nD singlets connecting two fixed spins has weight 2−nD/2,
irrespective of the colors or orientation of the fixed boundary spins, provided that the connec-
tivity rules from the previous paragraph are satisfied.

Let Γ = {γB, e1, e2,σbd} encode all the information about the configuration γB, the bound-
ary singlets and boundary spins configurations. To proceed, we need to introduce four addi-
tional notations: (a) the total number of strings is ns(Γ , Γ ′), (b) the total number of singlets in
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xγ1
Bbσe1

1
bσe1

2
|

Ò
Ò

Ò Ó

|γBbσe1 bσe2y

Ò

Ò
ÒÓ

Ò
Ò

Ò Ó
Ò

Ò
ÒÓ

xγ1
Bbσe1

1
bσe1

2
|γBbσe1 bσe2y

Figure 6: Illustration of the graphic method to compute the overlap
〈γ′B ⊗ σe′1

⊗ σe′2
|γB ⊗ σe1

⊗ σe2
〉 on a 4 × 5 domain. The fixed boundary spins

are illustrated by arrows.

the strings is nD(Γ , Γ ′), and (c) the number of closed singlet loops is nℓ(Γ , Γ ′). Moreover, (d)
the number of sites that are not in a string of singlets is

ÑB(Γ , Γ
′) = NB −

�

nD(Γ , Γ
′) + ns(Γ , Γ

′)
�

. (52)

With these conventions, the overlap is

〈γ′B ⊗σe′1
⊗σe′2
|γB ⊗σe1

⊗σe2
〉= 2−nD(Γ ,Γ ′)/22nℓ(Γ ,Γ ′)−ÑB(Γ ,Γ ′)/2 , (53)

where the first factor arises from the singlet strings contributions, and the second comes from
the closed singlet loops contributions, as in (36). Simplifying this expression, the result for
the total overlap G(e1, e2; e′1, e′2) is

G(e1, e2; e′1, e′2) =
∑

γB∈Ω
e1,e2
B

∑

γ′B∈Ω
e′1,e′2
B

2nℓ(Γ ,Γ ′)−(NB−ns(Γ ,Γ ′))/2 . (54)

3.5 Separability for disconnected subsystems

In this section, we show that the reduced density matrix (49) is separable, up to exponentially
small terms in the distance d between A1 and A2. Our argument is twofold. First, we show
that the reduced density matrix satisfies ρT1

A1∪A2
= ρA1∪A2

up to exponentially small terms in d.
Second, we argue that the symmetric part of the reduced density matrix can be written in the
separable form of (1).

3.5.1 Symmetry under partial transpose

In what follows, we show

F(e1, e2; e′1, e′2) = F(e′1, e2; e1, e′2) +O(2−d/2) , (55)

implying thatρA1∪A2
in (49) is symmetric under partial transposition, up to exponentially small

terms in d.
Crucially, we note that G(e1, e2; e′1, e′2) (and thus F(e1, e2; e′1, e′2)) vanishes, unless

m(e1) +m(e2) = m(e′1) +m(e′2) , (56)

where m(e) ≡
∑

j∈eσ j is the total magnetisation of the fixed boundary spins in B occupied

by boundary singlets in the configuration e. This holds because |Ψe1,e2
B 〉 and |Ψe′1,e′2

B 〉 are states
with zero magnetisation and the overlap (51) is zero, unless the magnetisation in the bra and
the ket are equal. This is exactly condition (56).
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Gpe1, e2; e1
1, e

1
2q

Ò Òe1
1 e2

wr

wr

Ze1,e2
B

wr

Ze1
1,e

1
2

B

Figure 7: Each transition graph in G(e1, e2; e′1, e′2) has at least one string of length d
or larger, and the rest of the configuration has weight wr . For each such transition

graph, there is a transition graph in Z e1,e2
B and Z e′1,e′2

B where the string is replaced by
overlapping singlets with weight one, and the whole configuration has weight wr .

The case m(e1) ̸= m(e′1). Boundary configurations such that G(e1, e2; e′1, e′2) ̸= 0 but
G(e′1, e2; e1, e′2) = 0, can break the invariance under the exchange e1↔ e′1. This happens
if (56) holds, but

m(e′1) +m(e2) ̸= m(e1) +m(e′2) , (57)

namely if m(e1) ̸= m(e′1). In that case, with the rules for the connectivity of fixed spins de-
scribed in Sec. 3.4, one can show that each transition graph that appears in the normalized
overlap G(e1, e2; e′1, e′2) contains at least one string of singlets that stretches across B and con-
nects boundary sites adjacent to A1 and A2.

We recall that, by definition, the minimal distance between two boundary points in B per-
taining to different boundaries is d, and hence nD(Γ , Γ ′) ⩾ d. Moreover, the total number of
strings satisfies ns(Γ , Γ ′) = |{e1, e2, e′1, e′2}|/2 and is thus fixed by the boundary-singlet configu-
rations, but does not depend on the magnetisation. Hence, the number of closed singlet loops
in each transition graph is bounded form above,

nℓ(Γ , Γ
′)⩽

NB − (d + ns(Γ , Γ ′))
2

. (58)

The bound is saturated if there is only one string of singlets, of minimal length d, and that
all other singlets perfectly overlap, hence maximizing the number of loops. As a consequence
of (58), each term in the sum in (54) is of order 2−d/2 or smaller. However, this bound is
not enough to conclude that (55) holds for m(e1) ̸= m(e′1), because there is an exponential
number of terms in the sum in (54) which could add up to cancel the individual exponential
suppression of each term. We thus develop our arguments to show that F(e1, e2; e′1, e′2) in (50)
is negligible for m(e1) ̸= m(e′1).
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First, we note that
�

Z e1
A1
Z e2

A2
Z e1,e2

B

Z

�

⩽ 1 , (59)

and hence

F(e1, e2; e′1, e′2)⩽
G(e1, e2; e′1, e′2)

(Z e1,e2
B Z e′1,e′2

B )1/2
. (60)

The numerator G(e1, e2; e′1, e′2) is a sum over γB ∈ Ω
e1,e2
B and γ′B ∈ Ω

e′1,e′2
B . For each choice of

γB,γ′B, the transition graph has at least one string of length d or larger. The total weight of the
strings thus satisfies ws(γB,γ′B) =O(2−d/2), and the weight of the rest of the transition graph
from which the strings are excluded is wr(γB,γ′B)⩽ 1. We thus have

G(e1,e2; e′1, e′2) =
∑

γB∈Ω
e1,e2
B

∑

γ′B∈Ω
e′1,e′2
B

ws(γB,γ′B)wr(γB,γ′B)

=O(2−d/2)







∑

γB∈Ω
e1,e2
B

∑

γ′B∈Ω
e′1,e′2
B

wr(γB,γ′B)






.

(61)

Second, we turn to the investigation of the denominator in the right-hand side of (60).

Similarly to G(e1, e2; e′1, e′2), the partition functions Z e1,e2
B and Z e′1,e′2

B are also sums over tran-
sition graphs, see (43). For each transition graph in G(e1, e2; e′1, e′2), there is one transition
graph in Z e1,e2

B where the strings are replaced by overlapping singlets with weight one and the
rest of the configuration is identical, with weight wr(γB,γ′B). The same argument holds for

Z e′1,e′2
B . We illustrate this in Fig. 7. Moreover, both partition functions contain more terms than

those described here. Hence, we have

(Z e1,e2
B Z e′1,e′2

B )1/2 ⩾
∑

γB∈Ω
e1,e2
B

∑

γ′B∈Ω
e′1,e′2
B

wr(γB,γ′B) . (62)

Finally, combining equations (60), (61) and (62) we conclude that F(e1, e2; e′1, e′2) =O(2−d/2)
and hence (55) holds for m(e1) ̸= m(e′1).

The case m(e1) = m(e′1). To show separability up to exponentially small corrections, it re-
mains to show that (55) holds when

m(e1) +m(e2) = m(e′1) +m(e′2) , (63)

and
m(e′1) +m(e2) = m(e1) +m(e′2) , (64)

that is if m(e1) = m(e′1). In that case, both G(e1, e2; e′1, e′2) and G(e′1, e2; e1, e′2) are non-
vanishing. Again, our arguments use the fact that G(e1, e2; e′1, e′2) is a sum over transition
graphs. In the sum, there are two distinct types of transition graphs: (I) those without strings
that connect different boundaries, and (II) those with at least one string that stretches across
B to connect different boundaries.

For graphs of type I, there are nonetheless singlet strings, but they only connect boundary
sites pertaining to the same boundary. For each such graph in G(e1, e2; e′1, e′2), there is a graph
with the exact same weight in G(e′1, e2; e1, e′2) where each string attached to the boundary
between A1 and B is drawn in opposite colors. We illustrate this in the top panel of Fig. 8. If
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e1
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1, e

1
2q

Ò

Ò

e1
1

e1

Gpe1
1, e2; e1, e

1
2q

Ò

Ò

Gpe1, e2; e1
1, e

1
2q

ÒÒe1 e1
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ÒÒe1
1 e2
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1, e2; e1, e

1
2q

Ò Òe1
1 e2ˆ
e1 e1

2ˆÒ Ò

Figure 8: Top panels: For each transition graphs in G(e1, e2; e′1, e′2) where no singlet
strings connect both boundaries, there is a transition graph in G(e′1, e2; e1, e′2)with the
same weight, where the singlet strings pertaining to the boundary between A1 and
B have opposite colors. Bottom panels: For each transition graphs in G(e1, e2; e′1, e′2)
where at least one singlet string connects both boundaries, there is no counterpart
in G(e′1, e2; e1, e′2) because of coloring arguments. However, these configurations are
exponentially suppressed, as discussed in the previous paragraphs.

it were not for type-II graphs, we would thus have a perfect equality between G(e1, e2; e′1, e′2)
and G(e′1, e2; e1, e′2).

For graphs of type II, the above pictorial argument does not work. Since we consider partial
transposition with respect to A1, we draw the boundary spins along A1 in a different color
in G(e1, e2; e′1, e′2) and G(e′1, e2; e1, e′2), whereas those at the boundary with A2 are identical
in both overlaps. Hence, if a string connects boundary spins from different boundaries in
G(e1, e2; e′1, e′2), the configuration where a spin along the boundary of A1 is drawn in opposite
color is forbidden and has weight zero. We illustrate this in the bottom panel of Fig. 8. Those
transition graphs thus break the symmetry e1 ↔ e′1. However, each such transition graph
has at least one string of length greater than d, with weight ws = O(2−d/2). Using similar
arguments as for the case m(e1) ̸= m(e′1), we can argue that the correction due to type-II
graphs is exponentially small in d. We thus conclude that (55) holds for m(e1) = m(e′1), and
in general.

3.5.2 Separable form of the reduced density matrix

In the previous section, we have established that the reduced density matrix ρA1∪A2
takes the

form
ρA1∪A2

= ρs
A1∪A2

+ ρ̃A1∪A2
, (65)

where ρs
A1∪A2

is the symmetric part of the matrix satisfying (ρs
A1∪A2

)T1= ρs
A1∪A2

. The second
term ρ̃A1∪A2

breaks the invariance under partial transposition, but its matrix elements are of
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order 2−d/2. Now, we prove the stronger statement that ρs
A1∪A2

is separable as in (1).
We start with

ρs
A1∪A2

=
∑

e1,e′1∈Ω
1
bd

∑

e2,e′2∈Ω
2
bd

∑

σ j=↑,↓
j∈{e1,e′1,e2,e′2}

F s(e1, e2; e′1, e′2)

×
�

|Ψe1
A1
⊗ σ̄e1
〉〈Ψe′1

A1
⊗ σ̄e′1
|
�

⊗
�

|Ψe2
A2
⊗ σ̄e2
〉〈Ψe′2

A2
⊗ σ̄e′2
|
�

, (66)

where F s(e1, e2; e′1, e′2) only contains terms and transition graphs that are invariant under
e1 ↔ e′1 (and e2 ↔ e′2). In particular, every term in the sum satisfies m(e1) = m(e′1) and
m(e2) = m(e′2). We recast (66) as

ρs
A1∪A2

=
∑

e1,e′1∈Ω
1
bd

∑

e2,e′2∈Ω
2
bd

∑

σ j=↑,↓
j∈{e1,e′1,e2,e′2}

F s(e1, e2; e′1, e′2)Z
e1,e′1
A1

Z e2,e′2
A2

�

ρ
e1,e′1
A1
⊗ρe2,e′2

A2

�

, (67a)

with
ρ

ek ,e′k
Ak
=

1

2Z ek ,e′k
Ak

�

|Ψek
Ak
⊗ σ̄ek
〉〈Ψ

e′k
Ak
⊗ σ̄e′

k
|+ |Ψ

e′k
Ak
⊗ σ̄e′

k
〉〈Ψek

Ak
⊗ σ̄ek
|
�

, (67b)

and
Z

ek ,e′k
Ak

= 〈Ψ
e′k
Ak
⊗ σ̄e′

k
|Ψek

Ak
⊗ σ̄ek
〉 . (67c)

The normalization Z
ek ,e′k
Ak

, k=1,2, is non-zero since m(ek) = m(e′k), such that the magnetiza-

tion of both terms in the overlap is equal. The density matrices ρ
ek ,e′k
Ak

are thus well-defined
Hermitian operators with unit trace. The operator ρs

A1∪A2
in (67a) is thus separable.

3.6 Logarithmic negativity

Here we investigate the logarithmic negativity of disjoint subsystems in SU(2) RVB states on
arbitrary graphs. We consider the quantity

T2n ≡
Tr(ρT1

A1∪A2
)2n − Tr(ρA1∪A2

)2n

Tr(ρA1∪A2
)2n

=
Tr
�

(ρT1
A1∪A2

)2n − (ρA1∪A2
)2n
�

Tr(ρA1∪A2
)2n

,

(68)

for integer n. Importantly, in the limit n→ 1/2, we have T1 = Tr|ρT1
A1∪A2
| − 1. Using the result

of the previous section, the numerator is a sum of terms each of order 2−d/2 at most. The
denominator prevents the sum in the numerator to cancel the exponential suppression of the
individual terms, and we find

T2n =O(2−d/2) , (69)

irrespective of n. Taking the limit n→ 1/2, we obtain

Tr|ρT1
A1∪A2
|= 1+ T1 = 1+O(2−d/2) , (70)

or, equivalently,
E(A1 : A2) =O(2−d/2) , (71)
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where we used the replica formula (20). We conclude that the logarithmic negativity is ex-
ponentially suppressed with the distance d between the subsystems, irrespective of the un-
derlying graph. It is possible to derive a formula similar to (30) for RVB states in the case of
adjacent intervals, but we leave this issue to future investigations.

Let us now discuss the physical implications of (71). We consider two regions A1, A2 of
characteristic length L separated by a distance d. For continuum theories, such as a massive
scalar or conformal field theories (CFTs), the logarithmic negativity is a scaling function of ra-
tios constructed from the characteristic length scales of the system. For gapped theories with
a finite correlation length ξ, one expects the logarithmic negativity to vanish exponentially
for d/ξ ≫ 1, whereas for CFTs it is a scaling function of the ratio d/L and decays for large
values thereof [88,89]. Expression (71) implies that for RVB states the logarithmic negativity
vanishes exactly in the scaling limit d, L→∞ with fixed ratio d/L, even for arbitrarily small
values of d/L. Moreover, our results hold irrespective of the underlying graph. For critical
RVB states defined on bipartite graphs, while the correlation functions of certain observables
exhibit a power-law decay, entanglement between disjoint regions is nonetheless suppressed
exponentially fast in d. This is in stark contrast with the CFT behavior. The case of gapped
RVB states is also surprising, since the exponential decay of the logarithmic negativity is inde-
pendent on the correlation length, and is faster than for generic gapped theories. The scaling
behavior of the logarithmic negativity (71) is thus highly nongeneric.

There is a substantial difference between the logarithmic negativity and mutual informa-
tion of disconnected subsystems in RVB states, similarly as for RK states (see Sec. 2.5.2). The
mutual information serves as an upper bound for correlation functions [99], and therefore it
decays as a power-law for critical RVB states. For gapped RVB states, the decay of the mutual
information depends on the ratio d/ξ. In both cases, the mutual information is much larger
than the logarithmic negativity.

3.7 Generalization to SU(N ) RVB states

We discuss the generalization of our results for SU(2) RVB states to SU(N ), where spins have
N = 2S + 1 components. The idea of SU(N ) RVB states originates from [96], where the
authors investigate SU(N ) Heisenberg models using Monte Carlo algorithms. We consider a
spin-S generalization of the SU(2) singlet state between sites x and y , defined as

|Sx ,y〉=
1

p
2S + 1

∑

m∈{−S,−S+1,...,S}

(−1)m−S|m〉x ⊗ |−m〉y , (72)

where |m〉 is an eigenvector of the magnetization operator Sz , with eigenvalue m. For N = 2
(i.e. S = 1/2), we recover the SU(2) spin singlet of (35), whereas for N > 2, the operator Sz

can be constructed from the generators of the SU(N ) algebra, see [96]. Similarly to the SU(2)
case, the SU(N ) RVB state is an equal-weight superposition of states corresponding to singlet
configurations on a graph. Given a singlet configuration γ, the associated state is

|γ〉=
⊗

(x ,y)∈γ
|Sx ,y〉 , (73)

exactly as for SU(2). The difference is that the overlap between states corresponding to dif-
ferent singlet configurations is now [96,97]

〈γ|γ′〉=N nℓ(γ,γ′)−N/2 , (74)

similarly as (36). In the limit N → ∞, singlet configurations become orthogonal, as for
dimer RK states. Indeed, SU(N ) RVB states interpolate between SU(2) RVB states and dimer
states [51].
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The calculations of Secs. 3.3 through 3.6 can be generalized to the SU(N ) case. The
reduced density matrix has the form of (49), except that the boundary spins take value in
σ ∈ {−S,−S+1, . . . , S}, instead of σ ∈ {↑,↓}. The overlaps that appear in the matrix elements
ofρA1∪A2

can still be interpreted in terms of transition graphs with singlet loops and strings that
connect fixed boundary spins. Since singlet states have zero magnetization, the connectivity
rules for singlet strings based on the color of boundary spins still holds, but singlet strings of
length nD now have weight N−nD/2. The reduced density matrix is thus separable, up to terms
of order N−d/2, and the logarithmic negativity satisfies

E(A1 : A2) =O(N−d/2) . (75)

In the limit N →∞, we recover our results for the dimer states, namely we find that the
reduced density matrix is exactly separable and the logarithmic negativity vanishes identically
for disjoint subsystems.

4 Multipartite separability

Thus far, we have focused on the separability of bipartite mixed states constructed from tripar-
tite pure states by considering their reduced density matrix on two disconnected subsystems.
In this section, we investigate multipartite separability of RK and RVB states.

A system A with k parties, A =
⋃k

j=1 A j , in a general state is k-separable if its reduced
density matrix can be written as

ρ⋃k
j=1 A j

=
∑

i1,...,ik

pi1...ik

k
⊗

j=1

ρ
(i j)
A j

, (76)

where pi1...ik are probabilities that sum to one, and ρ
(i j)
A j

are Hermitian positive semidefinite
operators, as in (1).

4.1 RK states

We consider RK states defined on an arbitrary lattice which is divided in k + 1 subregions,
A1, . . . , Ak and B. The A j ’s are disjoints and share a boundary with B. The respective boundary
configurations are denoted i j . Using similar conventions as in Sec. 2.2, we decompose the
state corresponding to a configuration c as

|c〉= |b〉
k
⊗

j=1

|a j , i j〉 , (77)

the locality of the energy functional E(c) yields

E(c) = E(b, i1, . . . , ik) +
k
∑

j=1

E(a j , i j) , (78)

and the RK wavefunction (3) reads

|ψ〉=
∑

i1,...,ik

 

k
∏

j=1

Z i j

A j

!1/2�
Z i1...ik

B

Z

�1/2

|ψi1...ik
B 〉

k
⊗

j=1

|ψi j

A j
〉 , (79)

where the subsystems RK states and partition functions are defined as in (6).
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Using similar techniques an in Sec. 2.4, we investigate the k-separability of the RK state
(79). For dimer RK states, the reduced density matrix corresponding to k disjoint regions reads

ρ⋃k
j=1 A j

=
∑

i1,...,ik

 

k
∏

j=1

Z i j

A j

!

Z i1...ik
B

Z

k
⊗

j=1

ρ
(i j)
A j

, (80a)

where the density matrices for each subsystem are

ρ
(i j)
A j
=

1
2

∑

i′j∼i j

√

√

√

√

√

Z
i′j
A j

Z i j

A j

�

|ψi j

A j
〉〈ψ

i′j
A j
|+ |ψ

i′j
A j
〉〈ψi j

A j
|
�

. (80b)

This state is exactly k-separable, see (76).
For generic RK states, the arguments of Sec. 2.4.2 carry through to the multipartite situ-

ation and we find that the state is separable in the thermodynamic limit where the boundary
energies are negligible compared to the bulk energy of system B.

4.2 RVB states

Let us now consider an SU(2) RVB state on an arbitrary graph with k+1 subregions, A1, . . . , Ak
and B. The graph distance between two subsystems Ai and A j is di j > 0, and we define

d(i)min ≡ min
j=1,...,k

j ̸=i

{di j} ,

dmin ≡ min
i, j=1,...,k

i ̸= j

{di j} .
(81)

As in Sec. 3.2, we denote by ei the boundary singlet configuration between Ai and B. The
reduced density matrix of subsystem A=

⋃k
j=1 A j takes the form (49) generalized to k bound-

aries. The function F (see Sec. 3.3) now depends on 2k boundary singlet configurations,
F ≡ F(e1, . . . , ek; e′1, . . . , e′k). Using similar graphical arguments as in Sec. 3.5, it can be shown
that terms that break the symmetry ei ↔ e′i in F correspond to transition graphs where at
least one string connects Ai to another subregion A j . Then proceeding as in Sec. 3.5, we find

F(ei; e′i) = F(e′i; ei) +O(2−d(i)min/2) , (82)

and hence
F = F s +O(2−dmin/2) , (83)

where F s is the part of F which is fully symmetric under all exchanges ei ↔ e′i . Following
Sec. 3.5.2, we conclude that the RVB reduced density matrix of k disjoint subsystems is k-
separable up to terms of order 2−dmin/2. In particular, we recoved the exact separability in the
scaling limit of large system sizes and distances with fixed ratios. Moreover, our results readily
generalize to the case of SU(N ), where the k-separability is spoiled only by terms of order
N−dmin/2. In the limit N →∞, we recover the exact k-separability of the dimer RK states,
similarly as in Sec. 3.7.

5 Discussion

We have investigated entanglement and separability of RK and RVB states. The first part of
this work was devoted to RK states constructed from the Boltzmann weights of an underlying
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classical model. We proved the exact separability of the reduced density matrix of two discon-
nected subsystems for dimer RK states on arbitrary (tileable) graphs, implying the absence of
entanglement between the two subsystems. For more general RK states with local constraints,
we showed that the reduced density matrix of two disjoint subsystems is exactly separable on
the square lattice when the boundaries do not have concave angles. For arbitrary graphs or
boundaries with concave angles, we argued that the reduced density matrix of disjoint sys-
tems is separable in the thermodynamic limit. We also showed that any local RK state has zero
negativity for disjoint subsystems, even if the density matrix is not exactly separable. Such RK
states are thus bound states whose entanglement cannot be distilled.

For adjacent subsystems, we derived an exact formula for the logarithmic negativity of RK
states in terms of partition functions of the underlying statistical model. Finally, we verified
that our results reduce to the Rényi entropy S1/2 for complementary subsystems, and argued
that the logarithmic negativity satisfies an area law.

Similarly to dimer RK states, RVB states are constructed from a classical dimer model on an
arbitrary tileable graph, although the degrees of freedom are spins located on the sites of the
graph rather than on the edges. For spin 1/2, we showed that the reduced density matrix of
disconnected subsystems is separable up to exponentially small terms of order 2−d/2, where d
is the lattice distance between the two subsystems. Separability thus holds in the scaling limit,
even for arbitrarily small ratio d/L, where L is the characteristic size of the subsystems. While
asymptotic separability and vanishing logarithmic negativity in the limit of large separation
is a usual feature of local theories, the fact that they hold in the scaling limit with arbitrarily
small ratio d/L is a novel, surprising feature of RVB states.

For simplicity, we mainly focused on SU(2) RVB states (i.e. with spin S = 1/2), but our
results straightforwardly generalize to SU(N ). In particular, we argued that separability for
two disjoint subsystems holds up to exponentially small terms of order N−d/2 and that the
logarithmic negativity is exponentially suppressed as O(N−d/2) with the distance d between
the subsystems, irrespective of the underlying lattice. Finally, in the limit N →∞, we recover
the results of dimer RK states, namely the reduced density matrix of disjoint subsystems is
exactly separable, and the logarithmic negativity vanishes.

We extended our analysis to the multipartite situation, considering the separability prop-
erties of k disconnected subsystems. Similarly as in the bipartite scenario, we found that the
reduced density matrix is exactly k-separable for the dimer RK states, whereas separability is
spoiled only by subleading terms that vanish in the scaling limit for generic RK states and RVB
states. Hence, for disjoint subsystems, there is neither bipartite nor multipartite entanglement
in these states in the scaling limit, irrespective of the underlying lattice.

We conclude with an outlook on future directions. First, RK states are examples of sign-free
states since they are defined as a coherent superposition of basis states with positive coeffi-
cients. Sign-free states are groundstates of stoquastic local Hamiltonians (see, e.g., [100,101]).
For one-dimensional systems with zero correlation length, the measurement-induced entan-
glement (MIE) [102] of such non-negative states is superpolynomially small in the distance
between two subsystems [103, 104], which was conjectured to hold as well in higher dimen-
sions. The MIE is the amount of entanglement that can be generated between two subsystems
if one measures the rest of the system; it can thus be regarded as a measure of entanglement
between noncomplementary subsystems. Our results suggest that the logarithmic negativity
of RK and RVB states is smaller than the MIE. It would be worth investigating the relation
between these two entanglement measures in the context of sign-free states. Second, our re-
sults for RK states on graphs are consistent with the literature regarding the separability of
the reduced density matrix for continuum RK states, see [77]. It would be interesting to see
whether such a continuum treatment is amenable in the context of field theories describing
spin liquids. Third, one could generalize our results on the logarithmic negativity of adjacent

25

https://scipost.org
https://scipost.org/SciPostPhys.15.2.066


SciPost Phys. 15, 066 (2023)

subsystems for RK and RVB states to arbitrary graphs and partitions, pushing toward a more
quantitative understanding of its behavior.

Acknowledgements

We thank Jean-Marie Stéphan, Christian Boudreault and Bryan Debin for interesting discus-
sions and comments on the manuscript. We also thank Antoine Brillant for previous related
work.

Funding information G.P. holds a CRM-ISM Postdoctoral Fellowship and acknowledges sup-
port from the Mathematical Physics Laboratory of the CRM. C.B. was supported by a CRM-
Simons Postdoctoral Fellowship at the Université de Montréal. W.W.-K. was funded by a Dis-
covery Grant from NSERC, a Canada Research Chair, and a grant from the Fondation Courtois.

References

[1] A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical descrip-
tion of physical reality be considered complete?, Phys. Rev. 47, 777 (1935),
doi:10.1103/PhysRev.47.777.

[2] E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwis-
senschaften 23, 807 (1935), doi:10.1007/BF01491891.

[3] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum informa-
tion, Cambridge University Press, Cambridge, UK, ISBN 9780511976667 (2010),
doi:10.1017/CBO9780511976667.

[4] A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661
(1991), doi:10.1103/PhysRevLett.67.661.

[5] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting
an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys.
Rev. Lett. 70, 1895 (1993), doi:10.1103/PhysRevLett.70.1895.

[6] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev.
Mod. Phys. 80, 517 (2008), doi:10.1103/RevModPhys.80.517.

[7] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A:
Math. Theor. 42, 504005 (2009), doi:10.1088/1751-8113/42/50/504005.

[8] N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 646, 1
(2016), doi:10.1016/j.physrep.2016.06.008.

[9] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenom-
ena, Phys. Rev. Lett. 90, 227902 (2003), doi:10.1103/PhysRevLett.90.227902.

[10] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.:
Theor. Exp. P06002 (2004), doi:10.1088/1742-5468/2004/06/P06002.

[11] J. Eisert, M. Cramer and M. B. Plenio, Colloquium: Area laws for the entanglement en-
tropy, Rev. Mod. Phys. 82, 277 (2010), doi:10.1103/RevModPhys.82.277.

26

https://scipost.org
https://scipost.org/SciPostPhys.15.2.066
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1007/BF01491891
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1103/RevModPhys.82.277


SciPost Phys. 15, 066 (2023)

[12] A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404
(2006), doi:10.1103/PhysRevLett.96.110404.

[13] M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function,
Phys. Rev. Lett. 96, 110405 (2006), doi:10.1103/PhysRevLett.96.110405.

[14] M. B. Plenio and S. Virmani, An introduction to entanglement measures, Quantum Inf.
Comput. 7, 1 (2007), doi:10.26421/QIC7.1-2-1.

[15] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement,
Rev. Mod. Phys. 81, 865 (2009), doi:10.1103/RevModPhys.81.865.

[16] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474, 1 (2009),
doi:10.1016/j.physrep.2009.02.004.

[17] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a
hidden-variable model, Phys. Rev. A 40, 4277 (1989), doi:10.1103/PhysRevA.40.4277.

[18] P. Horodecki, Separability criterion and inseparable mixed states with positive partial
transposition, Phys. Lett. A 232, 333 (1997), doi:10.1016/S0375-9601(97)00416-7.
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