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Abstract

We investigate 4D Chern-Simons theory with ADE gauge symmetries in the presence
of interacting Wilson and ’t Hooft line defects. We analyse the intrinsic properties of
these lines’ coupling and explicate the building of oscillator-type Lax matrices verifying
the RLL integrability equation. We propose gauge quiver diagrams QµG encoding the
topological data carried by the Lax operators and give several examples where Darboux
coordinates are interpreted in terms of topological bi-fundamental matter. We exploit
this graphical description (i) to give new results regarding solutions in representations
beyond the fundamentals of s lN , so2N and e6,7, and (i i) to classify the Lax operators for
simply laced symmetries in a unified E7 CS theory. For quick access, a summary list of
the leading topological quivers QµADE is given in the conclusion section [Figures 29 .(a-e),
30.(a-d) and 31.(a-d)].

Copyright Y. Boujakhrout et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 30-12-2022
Accepted 31-05-2023
Published 05-09-2023

Check for
updates

doi:10.21468/SciPostPhys.15.3.078

Contents

1 Introduction 2

2 Wilson and ’t Hooft lines of A- type 5
2.1 Electric/Magnetic lines in slN Chern-Simons theory 5
2.2 Interacting tHµi

γ0
-W R
ξz

lines in CS theory 8
2.2.1 Minuscule coweights of slN 9
2.2.2 The tHµi

γ0
- WR

ξz
coupling 10

2.2.3 Levi decomposition of slN 10
2.3 the L-operators in slN theory 13

2.3.1 ’t Hooft line with magnetic charge µ1 13
2.3.2 Magnetic charge µk with 2≤ k ≤ N − 2 14
2.3.3 Magnetic charge µN−1 15

3 Topological gauge quivers: A- family 16
3.1 Motivating the topological quivers QµR 16
3.2 Topological quiver of Lµ1

N 17
3.2.1 The L-operator in the projector basis 18
3.2.2 Formal expression of Lµ1

N and the quiver Qµ1
N 18

3.3 Topological quivers: Case 2≤ k ≤ N − 2 19
3.3.1 Generic projectors Πk and Πk̄ 19

1

https://scipost.org
https://scipost.org/SciPostPhys.15.3.078
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.3.078&amp;domain=pdf&amp;date_stamp=2023-09-05
https://doi.org/10.21468/SciPostPhys.15.3.078


SciPost Phys. 15, 078 (2023)

3.3.2 Constructing the topological quivers Qµk
N 20

4 Vector ’t Hooft lines of DN - type 21
4.1 Vector lines tHµ1

γ0
and their L-operators 22

4.1.1 Vectorial tHvect
γ0

line: Magnetic charge 22
4.1.2 Vector- like tHvect

γ0
line: Building the L-operator 25

4.2 Topological quiver Qvect
2N : Case of the vector ’t Hooft line 26

5 Spinorial ’t Hooft lines of DN - type 27
5.1 ’t Hooft line with magnetic charges µN−1 and µN 27
5.2 Magnetic charge µN and the link between SO2N and SLN 29

5.2.1 Spinorial ’t Hooft line tHµN
γ0

29
5.2.2 Levi and nilpotent subalgebras within so2N 32

5.3 Nilpotent subalgebras and L-operator 33
5.3.1 Realising the nilpotent generators of n± 33
5.3.2 Building the Lax operator LµN

2N 35
5.4 Topological quiver QµN

2N of LµN
2N 36

6 Exceptional E6 ’t Hooft lines 37
6.1 Minuscule coweights and Levi subalgebras of E6 37

6.1.1 The e6 algebra and the representation 78 38
6.1.2 Decomposing the representation 27 39

6.2 Minuscule E6 ’t Hooft operator 40
6.2.1 Realizing the generators of the nilpotent subalgebras 40
6.2.2 Constructing the operator Lµe6

42
6.3 Topological gauge quiver for E6 43

7 Minuscule line defects in E7 CS theory 44
7.1 Levi subalgebra of E7 and weights of the 56e7

45
7.1.1 Minuscule coweight of E7 45
7.1.2 Representation 56 of the e7 Lie algebra 46

7.2 Constructing the Lµ56 48
7.2.1 Realising the generators of the n±27 subalgebras 48
7.2.2 The L-operator Lµ56 49

7.3 Topological gauge quiver Qµ56 50

8 Conclusion and comments 52

A Appendix 55

References 58

1 Introduction

Integrable two-dimensional field theories and spin models represent a significant area in clas-
sical and quantum physics that still bear several open questions intending to explicitly describe
the interactions between fundamental particles [1–9]. The investigation of special features of
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these low dimensional theories has aroused much interest since the integrable spin chains ad-
vent [10] and the factorisation of many body scattering amplitudes of relativistic QFT [11,12].
In these regards, tremendous efforts have been deployed to deal with the basic equations un-
derlying these systems by following various approaches such as the Bethe Ansatz [13–15],
quantum groups [16] and algebraic methods involving Yangian and graded-Yangian represen-
tations [17–20].

Recently, these efforts gained a big impulse after the setup by Costello, Witten and Ya-
mazaki of a Chern-Simons -like theory living on four-dimensional M4 with the typical (ra-
tional) fibration R2 × C , and having a complexified gauge symmetry G [21–23]. This topo-
logical gauge theory represents a higher dimensional field framework to approach quantum
integrability and offers a new form of the gauge/Integrability correspondence [24–32]. On
another side, it bridges to N = (1,1) supersymmetric Yang Mills theory in six and lower di-
mensions [33–36] and to supersymmetric quiver gauge theories [37–40]. It also allows for
an interesting realisation of solvable systems in terms of intersecting M-branes of the 11d
M-theory and, via dualities, in terms of intersecting branes in type II strings with NS5- and
D-branes as the main background [41–44].

The main ingredients of the 4D Chern-Simons theory are line and surface defects [45–
50]; these topological quantities play a fundamental role in the study of this theory and the
realisation of lower dimensional solvable systems. In particular, we distinguish two basic line
operators: (i) Electrically charged Wilson lines which, roughly speaking, are assimilated to
worldlines of particles in 2D space-time with a spectral parameter z related to rapidity; they
are characterised by highest weights λ of representations R of the gauge symmetry G. (ii)
Magnetically charged ’t Hooft lines characterised by coweights µ of G and acting like Dirac
monopoles. The coupling of these lines in the 4D gauge theory is behind important results of
quantum integrability. In these regards, recall that crossing Wilson lines yield a nice realisation
of the famous R-matrix and the Yang-Baxter equation of integrable two-dimensional QFTs [21].

Regarding the magnetically charged line defects to be further explored in this paper, they
have recently been subject to particular interest where they were interpreted in terms of the
monodromy matrix for non compact spin chains, the transfer matrix for compact spin chains
[51,52] and more specifically as the Baxter Q-operator [53]. They have also been implemented
in various contexts as boundaries of surface defects [54], or as type II branes intersecting
along distinguished directions [55]. Moreover, these brane realisations open windows to links
between integrable spin and superspin chains and supersymmetric gauge quiver theories via
correspondences like the so-called Bethe/gauge correspondence [56–59].

In what concerns us here, a quantum integrable XXX spin chain with N nodes can be gener-
ated in the framework of the 4D CS by taking N parallel Wilson lines perpendicularly crossed
by a ’t Hooft line standing for the magnetic field created by the system of the spin chain par-
ticles [53]. In this spirit, one can calculate the Lax operator for each node of the chain as a
coupling of Wilson and ’t Hooft lines in the gauge theory. The power of this construction with
interacting lines in 4D comes from: (i) the topological invariance on the real plane R2 that
translates into the RLL integrability equation, (ii) the Dirac -like singularity of the topological
gauge configuration in the presence of ’t Hooft line yielding the oscillator realisation of the Lax
operator, (iii) the holomorphy of observables on the Riemann surface C where the complex
parameter z allows for realisations in the Yangian representation. These features constitute
the common thread of the fascinating results derived from this Gauge/Integrability correspon-
dence. In particular, it was shown in [53] that for the special case where the magnetic charge
of the ’t Hooft line is given by a minuscule coweight µ of the gauge group G, the oscillator re-
alisation of the Lax operator for a spin chain with internal symmetry given by g, the lie algebra
of G, is easily constructed in 4D CS as the parallel transport of the topological field connexion
through the singular ’t Hooft line. This yields a general formula permitting to explicitly realise
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the Lax or the L-operator in the fundamental representation of any lie algebra g having at least
one minuscule representation, in terms of harmonic oscillators.

The main goal of this paper is to deeply analyse the data carried by the Lax operator and
encode it into a simple gauge quiver description unveiling interesting common features of this
quantity. These properties are relevant for both the study of integrable spin chains and of
the gauge fields behavior in the presence of disorder operators. To this end, we investigate
4D Chern-Simons theories on R2 ×CP1 with complex gauge symmetries G =An, Dn, E6,7 by
implementing Wilson and ’t Hooft line defects and studying intrinsic topological features of
their coupling. In these regards, notice that the oscillator realisation of Lax matrices for mi-
nuscule nodes of slN and so2N was firstly recovered from 4D CS in [53]; the exceptional E6
and E7 minuscule Lax operators were constructed in details in [60], while a full list of ABCDE
minuscule Lax matrices is collected in [61] where the absence of a Lax matrix for the E8 sym-
metry is because this group has no minuscule coweight. Here, in order to graphically visualise
the effect of the Dirac-like singularity induced by a ’t Hooft line on a deep level of the gauge
configuration, we treat each case separately by demystifying the Lie algebra components ap-
pearing in the construction of the L-operator and derive its action on the internal quantum
states by using a projector basis in the electric representation. Eventually, we can build the
corresponding topological quivers QµG where we translate the topological data of the lines’ cou-
pling into quiver-like diagrams with nodes and edges as inspired from supersymmetric quiver
gauge theories (see subsection 3.1 for motivation). This graphical representation allows to
(i) interpret sub-blocks of the L-matrices in terms of topological adjoint and bi-fundamental
matter, (ii) forecast the form of cumbersome Lax matrices without explicit calculation, (iii)
link Levi decompositions of ADE Lie algebras to exceptional symmetry breaking chains of a
unified E7 Chern-Simons theory. These results are summarized in the conclusion section, see
Figures 29.(a-e), 30.(a-d), and 31.(a-d).

The presentation is as follows: In section 2, we begin by considering the 4D CS theory with
SLN gauge symmetry as a reference model where we describe in details the implementation of
the electrically and magnetically charged line defects and the calculation of their coupling in
the topological theory. We revisit the oscillator realisation of the A-type minuscule Lax opera-
tors in the fundamental representation and then extend the construction by discussing other
cases where electric charges of the Wilson lines correspond to representations of slN beyond
the fundamental. In section 3, we derive the topological gauge quiver diagrams corresponding
to the A-type L-operators calculated in section 2, and give an interpretation of their nodes and
links in terms of topological matter. Moreover, we yield quiver diagrams describing the form
of L-operators for the symmetric N∨N∨N and adjoint representations of slN . In section 4, we
study the minuscule D-type line defects in 4D CS theory with SO2N gauge invariance. Here, we
distinguish two sub-families given by the vector-like minuscule coweight, and the two spino-
rial ones. Focussing on the vector-like family, we calculate the corresponding L-operator and
construct the associated topological gauge quiver. In section 5, we move on to the minuscule
spinor-like D-type L-operators where we also build the associated topological quiver. Other as-
pects concerning fermionic lines and the link with the slN family are also discussed. In section
6 and 7, we similarly treat the 4D CS theories with exceptional E6 and E7 gauge symmetries
in order, we focus on the minuscule topological lines and their associated topological quiv-
ers. The conclusion is devoted to a summary of the results. The appendix section regards the
derivation of a Lax matrix from the corresponding topological gauge quiver in 4D CS.
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2 Wilson and ’t Hooft lines of A- type

In this section, we begin by focusing on the 4D Chern-Simons theory of [23] with slN gauge
symmetry where we introduce the basics of this theory and the implementation of topological
line defects. We consider the various types of minuscule ’t Hooft lines for the slN - family
with N ≥ 2 and investigate their interaction with electric Wilson lines. We show how the
symplectic oscillators of the phase space of ’t Hooft lines allow for an explicit realisation of
the Lax operators. We moreover extend the results by considering Wilson lines for different
representations of slN and investigating their properties according to the nature of their electric
charges.

2.1 Electric/Magnetic lines in slN Chern-Simons theory

In order to study the A- type electric Wilson lines and magnetic ’t Hooft line defects as well as
their interpretation in quantum integrable systems, we begin by briefly recalling some useful
aspects of the 4D Chern-Simons theory with SLN gauge symmetry over complex numbers. This
is an unconventional topological field theory living on a 4D space M4 that we take as R2×CP1

parameterised by (x , y; z) with real (x , y) for R2 and local complex z = Z1/Z2 for C = CP1.
The field action of the topological theory was first constructed in [24] and reads as follows

S4dCS =

∫

R2×CP1

dz ∧ t rΩ3 , (1)

where Ω3 is the CS 3-form

Ω3 =A∧ dA+ 2
3
A∧A∧A , (2)

with 1-form gauge potential A = taAa where ta stand for the generators of slN and Aa is a
partial gauge connection as follows [26]

Aa = d xAa
x + d yAa

y + dz̄Aa
z̄ . (3)

The equation of motion of the potential field A is given by the vanishing gauge curvature

F2 = dz ∧ (dA+A∧A) = 0 . (4)

This flat curvature indicates that the system is in the ground state with zero energy. To deform
this state, we consider observables given by line or surface defects such as the Wilson W R

ξz

and ’t Hooft tHµγ0
lines that we are interested in here. These are represented by curves in the

topological planeR2 and located at positions z inCP1; they can be represented as in the Figure
1.

Regarding the Wilson lines expanding along ξz ⊂ R2 with z ∈ CP1, they are semi-classical line
defects, electrically charged, defined as

W R
ξz
= TrR

�

Pexp

�

∫

ξz

A
��

. (5)

This shows that they are functions of ξz and R which is here a representation of slN charac-
terised by a highest weight state |ωR〉 with ωR =

∑N−1
i=1 nR

i ωi . Notice that at the quantum
level, R is lifted to a representation of the Yangian Y (slN ) [22, 31, 61]. Here, to perform ex-
plicit calculations, R is often taken as the (anti-) fundamental N representation of slN with
fundamental weight ω1; however this construction can be extended at the classical level to
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R

Figure 1: Line defects in the real plane R2. On the left, a horizontal ’t Hooft line
with magnetic charge µ expanding along the x-axis (y = 0) at z = 0. On the right, a
vertical Wilson line expanding along the y-axis (x = 0) at z ̸= 0 with electric charge
in some representation R. Notice that the ’t Hooft line is in fact paired to a similar
one located at z =∞ with magnetic charge −µ [53].

Figure 2: Four examples of Wilson lines in different representations of slN occupying
vertical lines inR2; they carry different electric charges. The representation R and the
type of incoming quantum states are indicated above each line, while the outgoing
states are given at the bottom of the line. The red cross indicates a local interaction
point.

other slN representations nR
i ωi such as the family of completely antisymmetric representations

N∧k ∼ ωk, the family of completely symmetric N∨n ∼ nω1 and the adjoint representation
N2−1. As examples, Wilson lines with electric weight charges in the representations N ∧ N
and N ∨N as well as in the adjoint are depicted in the Figure 2. The interest into Wilson lines
W R
ξz

with generic R can be motivated by the two following:
(1) The special slN representation theory where from fundamental objects like R = N and/or
N̄ with weight ωN−1, one can construct many composites carrying higher weight charges and
describing higher conserved quantities. For example, the particles’ current running along W R

ξz

is given by quadratic composites transforming like N ⊗ N̄ = 1+ ad j . In this regard, notice
that for the fundamental W R=N

ξz
, we have N quantum states |A〉 traveling along the vertical

blue line of the Figure 1. They couple to the CS gauge field like JaAa with Ja ∼ 〈A|ta|B〉.
(2) Knowing the action of the minuscule coweight µ on the fundamental representation of slN ,
we can deduce its action on higher dimensional representations by help of the tensor product
properties. To fix ideas, see eq.(26).

Concerning the ’t Hooft lines that we denote like tHµγ0
, they are magnetically charged semi-

classical line defects with magnetic charge given by a minuscule coweight µ of the complex
Lie algebra slN . The curve γ0 belongs to R2 and sits at a point z0 in the holomorphic plane
that we take at the origin; it is imagined in the 4D CS theory as the intersection U1 ∩ U2 of
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two patches U1 and U2 of the topological plane R2. Following [53], the topological field A[µ]
sourced by the magnetic ’t Hooft line defect γ0 is generated by a singular gauge transformation
g = g (z) from the patch U1 to the patch U2. By thinking of γ0 as coinciding with the x-axis in
the topological plane, meaning that

γ0 = R2
y≤0 ∩R

2
y≥0 , R2 = R2

y≤0 ∪R
2
y≥0 , (6)

the gauge configuration A[µ] in the presence of singularity µ is generated by a parallel trans-
port of the gauge field bundles from R2

y≤0 towards R2
y≥0. In this case, the transport path is

then given by the y-axis and the topological gauge configuration is given by

A[µ]y = g
1
zµg

2
, (7)

with gauge transformations g
1
(z) and g

2
(z) singular near z = 0 but regular in the neigh-

bourhood of z =∞ with the limit g
1
(∞) = g

2
(∞) = Iid . Notice that zµ is the operator

ex p(log(z)µ)with µ referring to the adjoint action of the coweight operating as in eqs(10,14).
Using this configuration, one can associate to the tHµγ0

the following gauge invariant observ-
able measuring the parallel transport from y ≤ 0 to y ≥ 0 as follows

L[µ] (z) = P exp

�

∫

y

d yA[µ]y (z)

�

. (8)

This L[µ] is a holomorphic function of z valued in the SLN gauge group; it may have poles and
zeros at z= 0 and z=∞ arising from the tHµγ0

at z = 0 and the mirror tH−µγ∞ line at z =∞ [53].

The gauge singularity is implemented in this construction by thinking of A[µ]y as valued in the
Levi decomposition of slN with respect to the minuscule coweight µ, namely [62]

slN → n− ⊕ lµ ⊕ n+ ,

A[µ] ∼An− +Alµ +An+ .
(9)

Notice that this decomposition is due to the fact that the minuscule coweight µ acts on the Lie
algebra elements with only three eigenvalues 0;±1. Therefore, a Lie algebra is decomposed
to three subspaces; the lµ is a Levi subalgebra, and n± are nilpotent subalgebras constrained
as follows, with Levi charge q = ±1:

�

µ, lµ
�

= 0 ,
�

µ,nq

�

= qnq ,
�

nq,nq

�

= 0 . (10)

In these regards, notice that for the case of the topological slN gauge theory, we can define
N − 1 minuscule ’t Hooft lines carrying different magnetic charges:

tHµ1
γz1

, . . . , tHµN−1
γzN−1

. (11)

They are in 1:1 correspondence with the N −1 minuscule coweights µ1, ...,µN−1 of the slN Lie
algebra of the gauge symmetry (as listed in (16)); and eventually with the N − 1 simple roots
α1, ...,αN−1 of the Dynkin diagram of slN as depicted in Figure 3.

In what follows, we focus our attention on the XXX spin chain construction in the framework
of the 4D CS theory. As described in the figure 4, we need to take N vertical (parallel) Wilson
lines W R

ξi
z

in the topological plane R2 traversed by a horizontal ’t Hooft line tHµγ0
(in red color).

The W R
ξi

z
s sit at the position z ̸= 0 in the holomorphic plane while the tHµγ0

is in z = 0. From

the integrable spin chain point of view, every Wilson line presents a node of the chain and the
’t Hooft line is interpreted as the Baxter Q-operator [53]. This way, we have a ’t Hooft-Wilson
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Figure 3: The Dynkin diagram for the slN family, it has N − 1 simple roots, all corre-
sponding to minuscule coweights.

Figure 4: The spin chain configuration in the Chern-Simons theory: N Wilson lines
represented by the blue vertical lines crossed by a ’tHµγ represented by the red hori-
zontal line.

coupling in the topological plane at every node as depicted by the Figure. The interaction by
line-crossing is interesting as it allows to define the Lax operator in every node of the spin chain
which plays an important role in the study of integrable systems. Because W R

ξz
is characterised

by (ξz;R) and tHµγ0
by (γ0;µ), the coupling between them should carry all this data and can

be defined as follows
LµR (γ0,ξz) =
¬

tHµγ0
, W R

ξz

¶

. (12)

Following [53], this L-operator, denoted from now on like LµR, is precisely given by (8) such
that the transport path is identified with the Wilson line. Moreover, it can be put into a simpler
form using the Levi-like factorisation

LµR (z) = eXRzµR eYR , (13)

where XR is a nilpotent matrix valued in the nilpotent algebra n+, and YR is also a nilpotent
matrix but valued in the nilpotent algebra n−. These matrices are constrained by the Levi
decomposition requiring

[µR, XR] = +XR , [µR, YR] = −YR . (14)

2.2 Interacting tHµi
γ0

-W R
ξz

lines in CS theory

For the next step in the study of minuscule tHµi
γ0

lines interacting with W R
ξz

in 4D CS theory,

it is interesting to explore the algebraic structure of the magnetic charges µi of the tHµi
γ0

’s. As
these charges are given by the minuscule coweights of the slN Lie algebra, we give below some
useful tools regarding their properties and then turn to study their coupling with W R

ξz
.

8
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2.2.1 Minuscule coweights of slN

First, we recall that there are N − 1 fundamental coweights ωi for the slN Lie algebra, they
are defined as the algebraic dual of the N − 1 simple roots αi; which means that ωi .α j = δi j .
These simple roots of slN are realised in terms of a weight basis vectors 〈ei〉 like αi = ei − ei+1.
So, the fundamental coweights solving ωi .α j = δi j read in terms of the ei ’s as follows

ωi =
N − i

N
(e1 + ...+ ei)−

i
N
(ei+1 + ...+ eN ) . (15)

It turns out that in the case of the slN Lie algebra, the fundamental coweights are all minuscule
[62]. So, the magnetic charges of the (N − 1) lines tHµi

γ0
of the AN−1- CS theory are given by

µ1 =
N − 1

N
e1 −

1
N
(e2 + ...+ eN ) ,

µl =
N − l

N
(e1 + ...+ el)−

l
N
(el+1 + ...+ eN ) ,

µN−1 =
1
N
(e1 + ...+ eN−1)−

N − 1
N

eN ,

(16)

with 2≤ l ≤ N−2. Obviously one can treat all these coweights collectively; but it is interesting
to cast them as we have done.
As illustrating examples, we have for the sl2 model, one minuscule charge µ = 1

2 (e1 − e2) .
For the sl3 theory, we have two minuscule coweights µ1 = 2

3 e1 −
1
3 (e2 + e3) and

µ2 =
1
3 (e1 + e2) −

2
3 e3; and for the sl4 CS theory, we have three minuscule charges given

by

µ1 =
3
4

e1 −
1
4

�

e2 + e3 + e4

�

,

µ2 =
1
2
(e1 + e2)−

1
2

�

e3 + e4

�

,

µ3 =
1
4
(e1 + e2 + e3)−

3
4

e4 .

(17)

As far as the sl4 example is concerned, notice that using the isomorphism sl4 ∼ so6, these
fundamental weights can be also viewed as the fundamental of so6. Here, the µ2 corresponds
to the vector of so6 while the µ1 and µ3 correspond to the two Weyl spinors of orthogonal
groups in even dimensions, they will be encountered later when we study the L-operators of
D-type.
Notice also that given a minuscule coweight µ of slN , one defines its adjoint form by help of
the e∗j ’s obeying e∗j (ei) = δ

j
i . We denote the adjoint form of the coweight µl by the bold symbol

µl and express it as follows

µl =
N − l

N
Πl −

l
N
Π̄l , (18)

with projector Πl and co-projector Π̄l = Iid −Πl as follows

Πl =
l
∑

i=1

eie
∗
i , Π̄l =

N
∑

i=l+1

eie
∗
i . (19)

The use of this projector in the above decomposition is crucial in our modeling; it is at the basis
of our way to approach the coupling between the tHµγ0

and W R
ξz

as well as in the construction

of the topological gauge quivers QµR describing the A-type L-operators.
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2.2.2 The tHµi
γ0

- WR
ξz

coupling

To properly define the coupling between W R
ξz

and a given minuscule ’t Hooft line tHµk
γ0

with a

magnetic charge µk in the 4D Chern-Simons theory living in R2 × CP1, we follow [53] and
proceed as summarised below:
(i) tHµk

γ0
as a horizontal magnetic defect in R2

We think of the ’t Hooft tHµk
γ0

as the curve γ0 extending in the topological plane R2 of the 4D
space. The defect γ0 is located at a given point z in CP1 that we take as z = 0; say the south
pole of S2 ∼ CP1. For convenience, we think of γ0 as the horizontal line given by the x-axis of
the plane R2 with (x , y) coordinates; see the red line in the Figure 4. Topologically speaking,
this γ0 can be also imagined as the intersection of two patches like γ0 = R2

y≤0 ∩R
2
y≥0. Along

with this tHµk
γ0

, we also have a tH−µk
γ∞

sitting at z =∞ corresponding to the north pole of S2.
(ii) crosses a vertical Wilson line

The horizontal tHµk
γ0

crosses a vertical Wilson line W R
ξz

with ξz located at a generic point z of

CP1. We imagine ξz as coinciding with the y-axis in R2, i.e. ξz = {(x , y) |= x = 0, y ∈ R}.
Recall that the quantum states |A〉 propagating in the electrically charged line W R

ξz
are in the

representation R which is taken for instance as the fundamental N of slN . The incoming particle
states are denoted by the bra 〈A| and the outgoing states by the ket |B〉 with

〈A|B〉= δB
A , (20)

in the case of free propagation. In the presence of interaction, the above δB
A is replaced by a

multi-label vertex object.
(iii) L-operator and phase space

The crossing of the horizontal tHµk
γ0

and the vertical W R
ξz

lines is thought of in terms of lines’
coupling described by the L-operator (12) represented by the typical matrix operator

¬

A|L(µ)R |B
¶

= L(µ)AB . (21)

This operator is equivalent to the usual Lax operator of integrable spin chain systems [18,63].
It is a holomorphic function of z and its representative matrix L(µ)AB is valued in the algebra A

of functions on the phase space of tHµγz
. Formally, we have

LµR ∈ A⊗ End (R) , (22)

with A generated by Darboux coordinates (b, c) to be commented later on; see eq.(32). The
phase space of the L i

j (z) operator is obtained by considering two coupled vertical Wilson lines

W R
ξz

and W R
ξz′

crossed by a horizontal tHµk
γ0

as depicted by the Figure 5.

This topological invariant crossing describes integrability as encoded in the following RLL
relations

Lr
j (z)R

ik
rs

�

z − z′
�

Ls
l

�

z′
�

= L i
r (z)R

rs
jl

�

z − z′
�

Lk
s

�

z′
�

. (23)

In this equation, Rik
rs

�

z − z′
�

is the well known R-operator appearing in the Yang- Baxter equa-
tion, it is proportional to the second Casimir C ik

rs of slN having the value δi
rδ

k
s . For the trigono-

metric case corresponding to the holomorphic line CP1, the structure of this R-matrix as a
series of ħh has leading terms like Rik

rs (z) = δ
i
rδ

k
s +
ħh
z C ik

rs +O
�

ħh2
�

.

2.2.3 Levi decomposition of slN

The RLL relations of eq.(23) can be shown to be equivalent to the usual Poisson bracket
�

bα, cβ
	

PB = δ
α
β

of symplectic geometry with bα and cβ as phase space coordinates (Darboux
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Figure 5: (a) The operator L (z) encoding the coupling between a ’t Hooft line at z=0
(in red) and a Wilson line at z (in blue) with incoming 〈i| and out going | j〉 states.
(b) RLL relations encoding the commutation relations between two L-operators at z
and z’.

coordinates). This equivalence between the L i
j bracket (eq.(23)) and the

�

bα, cβ
	

PB follows
from the Levi decompositions of slN that we describe here for different coweights of eq(17).

1) Minuscule coweight µ1
The Levi decomposition of slN and its fundamental representation N with respect to the mi-
nuscule coweight µ1 reads as follows

µ1 : slN → sl1 ⊕ slN−1 ⊕ n+ ⊕ n− ,

N → 1 N−1
N
⊕ (N−1)− 1

N
,

(24)

with n± = (N − 1)± and sl1 refers to C. Because of this decomposition of slN , one can imagine
the Levi subalgebra as the manifest invariance in dealing with the study of the tHµ1

γ0
lines in the

CS gauge theory with slN gauge symmetry. In this view, we use the projectors ϱ1 and ϱN−1
of the irreducible parts of the decomposition N = 1 N−1

N
⊕ (N−1)− 1

N
as well as the identity

ϱ1 +ϱN−1 = Iid to think of the adjoint form µ1 of the minuscule coweight as the sum of two
contributions, one coming from 11−1/N and the other from (N−1)−1/N like

µ1 = µ1ϱ1 +µ1ϱN−1 . (25)

The projectors ϱR appearing in the above relation are as in eqs.(18-19). In this picture the ’t
Hooft line of the slN gauge symmetry gets splitted into two parallel “sub-lines” as represented
in the Figure 6. This is our first result regarding the using the projector basis to understand
the intrinsic properties of the L-operator in the A-series. Clearly, the two ’t Hooft “sub-lines”
in the Figure 6-(b) are coincident in the external space R2 × CP1 of the CS theory, but are
lifted in the slN internal space where the transitions between the two sub-lines are generated
by operators belonging to the nilpotent subalgebras n±.

Moreover, the decomposition N → 11−1/N ⊕ (N − 1)−1/N can be extended to higher dimen-
sional representations R of the slN gauge symmetry. This follows with the previous discussion
concerning W R

ξz
beyond the fundamental weight N. For example, the antisymmetric N∧N, the

symmetric N∨N and the ad j representations of slN decompose with respect to the minuscule
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Figure 6: (a) Magnetic ’t Hooft with charge µ1 from the point of view of global slN
symmetry. (b) The same line from the point of view of internal sl1⊕ slN−1. here, the
line µ splits into two sub-lines µϱ1 and µϱN−1 as described in eq.(25).

coweight µ1 as follows

slN sl1 ⊕ slN−1

N ∧ N F1− 2
N
⊕ (F ∧ F)− 2

N

N ∨ N 12− 2
N
⊕ F1− 2

N
⊕ (F ∨ F)− 2

N

N × N̄ 11− 1
N
⊗ 1 1

N −1 + 11− 1
N
⊗ F 1

N
+ F− 1

N
⊗ 1 1

N −1 + F− 1
N
⊗ F 1

N

ad j (slN ) F−1 ⊕
�

10 ⊕ ad j (slN−1)0
�

⊕ F+1

(26)

where F = N − 1. Notice also that compared to N → 11−1/N ⊕ (N − 1)−1/N , the symmetric
N∨N reduces to three sl1⊕slN−1 representations namely 12− 2

N
and F1− 2

N
as well as (F ∨ F)− 2

N
;

the same holds for ad j (slN ). This feature is interesting as it indicates that the correspond-
ing Lax operators LN∨N and Lad j(slN ) have a richer intrinsic structure compared to LN , see
subsection 2.3.

2) Minuscule coweights µk for 2≤ k ≤ N − 2.
Levi decomposition of slN and its fundamental representation with respect to µk leads to

µk : slN → slk ⊕ slN−k ⊕ sl1 ⊕ k (N − k)+ ⊕ k (N − k)−
N → k N−k

N
⊕ (N − k)− k

N
,

(27)

where the Levi subalgebra is slk⊕slN−k⊕sl1 and the nilpotents are k (N − k)±. For the example
of sl4 with k = 2, we have

µ2 : sl4→ sl2 ⊕ sl2 ⊕ sl1 ⊕ 4+ ⊕ 4−
4→ 2+ 1

2
⊕ 2− 1

2
.

(28)

Notice that for this case as well, we have a splitting picture as in the Figure 6-(b) where eq.(25)
should be replaced by

µk = µkϱk +µkϱN−k . (29)

3) Minuscule coweight µN−1
The Levi- decomposition of slN with respect to µN−1 reads as follows

µN−1 : slN → slN−1 ⊕ sl1 ⊕ F+ ⊕ F−
N → 1 N−1

N
⊕ (N − 1)− 1

N
.

(30)

It has a similar structure to eq.(24), so we can omit the details regarding this µN−1 case; it can
also be recovered from the generic µk with k = N − 1.
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Figure 7: (a) A horizontal minuscule ’t Hooft line with magnetic charge µk crossing a
vertical Wilson line with electric charge R = N. The green dot describes the coupling
given by the Lax operator




A|Lµk
R |B
�

. (b) Intrinsic structure of the Lax operator taking
into account the Levi decomposition of slN with respect to µk.

2.3 the L-operators in slN theory

The expression of the Lµk -operator in terms of the adjoint form of the minuscule coweight µk
and the Darboux coordinates ba and ca is given by

Lµk (z) = eX zµk eY , (31)

with

X =
k(N−k)
∑

a=1

baXa , Y =
k(N−k)
∑

a=1

caY a . (32)

In eq(31), the minuscule coweight acts like

[µk, Xa] = +Xa , [µk, Y a] = −Y a , (33)

with the adjoint action µk = µi
kϱi where ϱi = |i〉 〈i| and where the µi

k ’s are fractions of the
unity given by (16). See also the Figure 7-(a,b) representing our vision regarding the topology
of the L-operators of A-type series. For the expressions of the generators Xa and Y a solving
the constraints of eq(33), they are constructed below depending on the value of the level k.

2.3.1 ’t Hooft line with magnetic charge µ1

In the case of a ’t Hooft line with a magnetic charge µ1 crossing a Wilson line W R=N
ξz

of slN , we
have N − 1 generators Xa and N − 1 generators Y a in the fundamental representation. These
are N × N triangular matrices solving eq.(33) and given by

Xa = |1〉 〈a+ 1| ,
Y a = |a+ 1〉 〈1| ,

µ1 =
N − 1

N
ϱ1 −

1
N
(ϱ2 + ...+ϱN ) ,

(34)

where we have set ϱi = |i〉 〈i| with
∑N

i=1ϱi = IN×N . Moreover, by taking ϱ1̄ = ϱ2 + ...+ ϱN
with ϱ1 +ϱ1̄ = I , the adjoint form µ1 can be written in the following form

µ1 =
N − 1

N
ϱ1 −

1
N
ϱ1̄ . (35)

These projectors play an important role in the study of the L-operator of the 4D CS theory with
SLN gauge invariance: (1) They single out the Levi charges of the two internal subspaces in
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the Levi decomposition N = 11−1/N ⊕ (N − 1)−1/N . For example, by multiplying eq(35) first
by ϱ1 and then by ϱ1̄, we obtain

µ1ϱ1 =
N − 1

N
ϱ1 , µ1ϱ1̄ = −

1
N
ϱ1̄ , (36)

which describe the two horizontal sub-lines in the Figure 6-(b). (2) They allow to write inter-
esting properties verified by the realisation (34) such as

Xaϱ1 = 0 , ϱ1Y a = 0 ,

ϱ1̄Xa = 0 , Y aϱ1̄ = 0 ,
(37)

indicating that Lµ1
R=N can be presented as a matrix with sub-blocks given in terms of the pro-

jectors ϱ1 and ϱ1̄.
We can check the relations (33) by computing the quantities µ1Xa and Xaµ1 using the above
realisation, we have

µ1Xa =
N − 1

N
Xa , Xaµ1 = −

1
N

Xa , (38)

thus giving [µ1, Xa] = Xa; the same can be done for the generators Y a.
Now, in order to explicitly calculate the L-operator, we need to evaluate the exponentials eX

and eY such that X and Y are given by

X =
N−1
∑

a=1

ba |1〉 〈a+ 1| , Y =
N−1
∑

a=1

ca |a+ 1〉 〈1| . (39)

These matrices obey the property X 2 = Y 2 = 0, so we have eX = I + X and eY = I + Y ,
consequently

Lµ1
N (z) = (I + X ) zµ1 (I + Y )

= zµ1 I + Xzµ1 + zµ1 Y + Xzµ1 Y .
(40)

Using µ1 =
N−1

N ϱ1 −
1
Nϱ1̄ with ϱ1̄ = I −ϱ1 and zµ1 = zµ

i
kϱi , we can express the L-operator in

terms of projectors as follows

Lµ1
N (z) = z

N−1
N ϱ1 + z−

1
N Xϱ1̄Y + z−

1
N
�

Xϱ1̄ +ϱ1̄Y
�

+ z−
1
N ϱ1̄ . (41)

This form of the Lax operator is a result of the projectors basis that we choose above, this
unique writing is particularly significant for the quiver description of the L-operator as well as
for the straightforward extension to other electric charges of the 4D CS gauge theory with slN
gauge symmetry.

2.3.2 Magnetic charge µk with 2≤ k ≤ N − 2

In this generic case, we have k (N − k) generators Xα and k (N − k) generators Y α generating
the nilpotent k (N − k)+ and k (N − k)− of the Levi decomposition of slN with respect to the
minuscule coweight µk. In fact, the X iα and the Y iα of n± are N×N triangular matrices realised
as follows

X iα = |i〉 〈k+α| , 1≤ i ≤ k ,

Y iα = |k+α〉 〈i| , 1≤ α≤ N − k ,
(42)

and the µk is given by

µk =
N − k

N
Πk −

k
N
Πk̄ , (43)
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with

Πk =
k
∑

l=1

ϱl , Πk̄ =
N
∑

l=k+1

ϱl . (44)

The generators (42) satisfy the Levi decomposition conditions that read as

[µk, X ia] =
�

N − l
N
+

l
N

�

X ia = X ia ,

�

µk, Y ia
�

=
�

−
l
N
−

N − l
N

�

Y ia = −Y ia .
(45)

This interesting realisation also obeys

XaΠk = 0 , ΠkY a = 0 , (46)

which indicates the sub-blocks of the matrix Lµk
N . The commutators

�

X ia, Y ia
�

give the Cartan
generators reading as Hia = ϱi − ϱa while the nilpotency X iαX jβ = Y iαY jβ = 0 leads to
eX = I + X and eY = 1+ Y. Using these features, we obtain

Lµk
N = (I + X ) zµk (I + Y )

= zµk I + Xzµk + zµk Y + Xzµk Y .
(47)

Moreover, using

µk =
N − k

N
Πk −

k
N
Πk̄ , (48)

with Πk̄ = I − Πk and zµ1 = zµ
k
kΠk + zµ

k̄
kΠk̄, we can express the operator in terms of the

projectors as follows.

Lµk
N (z) = z

N−k
N Πk + z−

k
NΠk̄ + z−

k
N XΠk̄ + z−

k
NΠk̄Y + z−

k
N XΠk̄Y . (49)

This is the generic form of the L-operator in the 4D Chern-Simons gauge theory with slN gauge
invariance.

2.3.3 Magnetic charge µN−1

In this case, the N − 1 generators X i and N − 1 generators Y a are given by

Xa = |1+ a〉 〈N | , Y a = |N〉 〈1+ a| , (50)

with 1≤ a ≤ N − 1 and

µN−1 =
1
N
ϱN −

N − 1
N

ϱN . (51)

The Lax operator reads as

LµN−1
N (z) = z

1
N ϱN + z

1−N
N ϱN + z

1−N
N XϱN + z

1−N
N ϱN Y + z

1−N
N XϱN Y , (52)

which corresponds to setting k = N − 1 in eq(49).
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3 Topological gauge quivers: A- family

In this section, we want to construct quiver gauge diagrams corresponding to the topological L-
operators in 4D Chern Simons theory with A-type gauge symmetry. This graphical description
was first proposed in [60] for the case of exceptional gauge symmetries E6,7, and it will be
extended here for the ADE series. First, we begin by defining these quivers and explaining
the procedure of their construction; then we illustrate this for the topological quivers Qµk

N
corresponding to L-operators Lµk

N of slN -type with µk, 1 ≤ k ≤ N and R = N. This leading
model is exploited to build other quiver diagrams Qµk

R in 4D CS with A-type gauge symmetry;
these correspond to L-operators in representations R beyond the fundamental N of slN and
are collectively given in the Figure 29 at the conclusion section.

3.1 Motivating the topological quivers QµR

The quiver diagrams QµR that we introduce here in the framework of 4D Chern Simons theory
give a unified graphical representation of the data carried by the L-operators LµR. We refer
to these graphs as topological gauge quivers, first because they have a formal similarity with
quiver diagrams Qsus y

gauge in supersymmetric quiver gauge theories that we briefly recall here be-
low; and second because the L-operators they illustrate match topological ’t Hooft line defects
in the 4D CS [53].
• Gauge quivers in supersymmetric theory

For a supersymmetric quiver gauge theory with unitary gauge symmetry G factorised as

G =
n0
∏

i=1

U (Mi) , (53)

and Lie algebra g = ⊕n0
i=1u (Mi), and where the gauge symmetry factors are imagined in type

II strings as stacks of Mi coincident D branes wrapping cycles in Calabi-Yau compactifications
[64], we have a gauge quiver denoted as Qsus y

gauge. This diagram has: (i) n0 nodes N1, ...,Nn0

corresponding to the gauge group factors G1, ..., Gn0
describing ”adjoint matter” in the gauge

theory transforming in the adjoint representations

ad jU (Mi) = M i × M̄ i , (54)

(ii) a number nl ink of links Li j between the nodes
�

Ni ,N j

�

describing bi-fundamental matter
transforming in the representations

M i × M̄ j ∈ U (Mi)× U
�

M j

�

. (55)

• Topological gauge quivers in 4D CS
Based on general aspects of supersymmetric quivers, we introduce our topological gauge
quiver diagrams QµR describing the L-operators in 4D Chern Simons theory by focusing in this
section on the A-type symmetry. These have similar features with Qsus y

gauge that allow to interpret
the phase space coordinates bα and cα in terms of topological variables and bi-fundamental
matter. As for the L-operator, a topological quiver QµR is defined for a general gauge group G,
by the choice of a minuscule coweight µ and a representation R of g. Notice here that only
representations that lift to the Yangian lead to quantum L-operators in the 4D CS, otherwise
the obtained L-operators are to be interpreted semi-classically.
However, the construction presented here is valid for any representation R, where the minus-
cule µ that decomposes the Lie algebra g into a Levi subalgebra lµ, and two nilpotents n± as
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in (9,10) , splits the R into p irrepresentations Ri having charges mi with respect to the SO(2)
of µ. We write

R =
p
∑

i=1

Ri , µ=
p
∑

i=1

miΠi ,
∑

i

Πi = 1R , (56)

with Πi being the projector on the subspace Ri . To such data, we associate a topological gauge
quiver QµR having p nodes, each one given by the couple (Ri , mi) such that the charge is noted
as a subscript of the irrepresentation. These nodes are ordered such that mi −mi+1 = ±1, and
we have for two nodes Ni and Ni , mi − m j = ±k where k = 1, ..., p − 1 is an integer. This
property comes from the branching rules [65], and is to be observed from the different cases
studied in the present paper. In the (dimR×dimR)matrix representation of the corresponding
LµR, we have p diagonal sub-blocks in one to one with the nodes Ni = ΠiLΠi of QµR.
The links connecting different nodes of the quiver are therefore given by off-diagonal blocks
Li j = ΠiLΠ j that indeed allow to transit between the mi ’s. These carry charges ±k because
they contain polynomials of the form ck+lbl and bk+lcl with l = 0, ..., p − 2. Here b = bα and
c= cα are the oscillator vector and co-vector of dimensions n+ = n−; they carry charges ∓1 as
noticed from

eX = ebα(−1)Xα(+1) , eY = ecα(+1)Y
α
(−1) . (57)

For simplicity, the link Li→ j from Ni to N j with
�

�m j −mi

�

� = k is indexed in the quiver by ck;
and similarly L j→i is indexed by bk. Eventually, we should obtain p−k couple of links

�

bk,ck
�

that guarantee the conservation of charges following the circulation of arrows in the quiver.
The topological aspect of such quivers can be visualised from the key ingredients b and c
appearing in the quiver diagram. In fact, the bα can be expressed in terms of the topological
line defect using eqs.(31,32) as well as bα = t r (X Y α) and X = log

�

Lµk e−Y z−µk
�

; we have

bα = t r
�

log
�

Lµk e−Y z−µk
�

Y α
�

. (58)

Similar calculations for cα yield

cα = t r
�

log
�

z−µk e−XLµk
�

Xα
�

. (59)

Concerning the interpretation of the phase space coordinates bα and cα as bi-fundamental
matter, it follows from the decomposition of the gauge potential A[µ] in the Lie algebra. For
example, for A[µ] ∼ ad jslN , we have the following decompositions (eq.(24))

slN −→ slk ⊕ slN−k ⊕ sl1 ⊕ n+ ⊕ n− ,

ad jslN −→ ad jslk ⊕ ad jslN−k
⊕ ad jsl1 ⊕
�

k, N − k
�

⊕
�

k̄, N − k
�

,

A[µ] −→Aslk ⊕AslN−k
⊕Asl1 ⊕ {b

a} ⊕ {ca} ,

(60)

where we see that ba and ca sit in the bi-fundamental of the gauge symmetry SLk × SLN−k.
Therefore, we have a quiver diagram with two nodes corresponding to the adjoints

�

k× k̄
�

−1

and (N− k)
�

N− k
�

− 1, and two links corresponding to the bi-fundamentals
�

k,N− k
�

and
�

k̄,N− k
�

. This quiver is constructed below by analysis of the elements of the associated L-
matrix (see Figure 9).

3.2 Topological quiver of Lµ1
N

In this subsection, we want to associate a topological quiver to the Lµ1
N calculated before in

the framework of 4D CS theory with SLN gauge symmetry for the first coweight µ1 and the
fundamental representation R = N. To this end, we exploit the projector basis in the matrix
form of the L-operator to cast its elements corresponding to different representations of the
subalgebras in the Levi lµ1

.
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3.2.1 The L-operator in the projector basis

The expression of Lµ1
N involves two projectors ϱ1 and ϱ̄1 corresponding the representations of

the Levi subalgebra sl1 ⊕ slN−1. The presence of these projectors in the explicit expansion of
Lµ1

N is interesting in the sense that it allows to represent it as a four sub-block matrix. We have

Lµ1
N =

�

z
N−1

N IN−1 + X Y z−
1
N X

z−
1
N Y z−

1
N

�

, (61)

which is obtained from 41 using special projectors features of the realisation of Xα and Y α

(34) like Xϱ1 = 0, ϱ1Y = 0, X ϱ̄1 = X , ϱ̄1Y = Y and X ϱ̄1Y = X Y . Moreover, we can write

Lµ1
N =

�

ϱ1[z
N−1

N + z−
1
N X Y ]ϱ1 z−

1
N ϱ1Xϱ1̄

z−
1
N ϱ1̄Yϱ1 z−

1
N ϱ1̄ϱ1̄

�

, (62)

to visualize the correspondence with irrepresentations and bi-modules of slN ; thus opening a
window on a formal similarity with the structure of supersymmetric quiver graphs. This allows
to think of the topological quiver Qµ1

N for the A- type symmetry as having two nodes Ni and
two links Li j associated to sub-blocks of Lµ1

N as follows

N1 = 〈ϱ1Lϱ1〉 , L11̄ =



ϱ1Lϱ1̄

�

,

N1̄ =



ϱ1̄Lϱ1̄

�

, L1̄1 =



ϱ1̄Lϱ1

�

.
(63)

Moreover, by replacing with X = bαXa and Y = caY α as well as X Y = (bαca)ϱ1 in the Lax
operator, we end up with the known form of Lµ1

N in the literature [17].

Lµ1
N =

�

z
N−1

N + z−
1
N bT c z−

1
N bT

z−
1
N c z−

1
N

�

. (64)

In this oscillator realisation, the bα and cα appear indeed as fundamental quantities.

3.2.2 Formal expression of Lµ1
N and the quiver Qµ1

N

To explicitly match the L-matrix in terms of oscillators 64 with ingredients of the Qµ1
N , we can

use the property ϱ1+ϱ1̄ = IN to cast Lµ1
N in different but equivalent ways: First as INLµ1 and

Lµ1 IN giving

Lµ1
N = ϱ1Lµ1 +ϱ1̄Lµ1

= Lµ1ϱ1 +Lµ1ϱ1̄ .
(65)

And second, using the form INLµ1 IN to express the Lax operator as
�

ϱ1 +ϱ1̄

�

Lµ1
�

ϱ1 +ϱ1̄

�

,
namely

Lµ1
N = ϱ1Lµ1ϱ1 +ϱ1Lµ1ϱ1̄ +ϱ1̄Lµ1ϱ1 +ϱ1̄Lµ1ϱ1̄ . (66)

Moreover, by help of ϱ2
1 = ϱ1 and ϱ2

1̄
= ϱ1̄ as well as ϱ1ϱ1̄ = 0, we can present Lµ1

N in the

operator basis
�

ϱ1,ϱ1̄

�

like a 2×2 blocks matrix as follows

Lµ1
N =

�

ϱ1Lµ1ϱ1 ϱ1Lµ1ϱ1̄
ϱ1̄Lµ1ϱ1 ϱ̄1Lµ1ϱ1̄

�

. (67)

This formulation of the Lax operator was behind the construction of the topological quivers
concerning exceptional ’t Hooft lines in 4DCS theories with E6 and E7 gauge symmetries. Here,
for the minuscule coweight µ1 and representation R = N of slN , the topological gauge quiver
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N N

Figure 8: The topological quiver Qµ1
N representing Lµ1

N of slN . It has 2 nodes and 2
links. The nodes describe self-dual topological matter and the links describe topo-
logical bi-matter.

Qµ1
N is depicted in the Figure 8. Its two nodes N1 = ϱ1Lµ1ϱ1 and N1̄ = ϱ1̄Lµ1ϱ1̄ are inter-

preted as topological adjoint matter of the Levi sub-symmetry group SL1 × SLN−1 SL1. This
can also be referred to as self dual matter since it is uncharged under the minuscule coweight
operator, like the quantity bT c. The two links L11̄ = ϱ1Lµ1ϱ1̄ and L1̄1 = ϱ1̄Lµ1ϱ1 are given in
terms of oscillators bα and cα. They carry charges ∓1 under µ1, and are interpreted in terms
of topological bi-fundamental matter of SL1 × SLN−1. This QFT interpretation matches the
supersymmetric gauge quiver description. Finally, notice that using the Killing form, the bα

and cα can be related to the links L11̄ and L1̄1 as

bα = z
1
N Tr
�

L11̄Y α
�

, cα = z
1
N Tr
�

L1̄1Xα
�

. (68)

3.3 Topological quivers: Case 2≤ k ≤ N − 2

Here, we generalise the construction of subsection 3.2 regarding the minuscule coweight µ1
to the generic minuscule coweight µk with 2≤ k ≤ N − 2.

3.3.1 Generic projectors Πk and Πk̄

In the generic case, the expression (49) involves the projectors Πk and Πk̄ on the representa-
tions of the Levi subalgebra slk ⊕ slN−k ⊕ sl1. Using the properties

XΠk = 0 , ΠkY = 0 , (69)

and the identities
XΠk̄ = X , Πk̄Y = Y , (70)

leading to XΠk̄Y = X Y, the L- operator Lµk
N can be presented in block matrices like

Lµk
N =

�

z
N−k

N + z−
k
N X Y z−

k
N X

z−
k
N Y z−

k
N

�

. (71)

By exhibiting the dependence into the Darboux coordinates while substituting X = biαX ia and
Y = c jβY jβ as well as X Y = biαciα, we obtain

Lµk
N =

�

z−
k
N (z + biαciα) z−

k
N biαX ia

z−
k
N c jβY jβ z−

k
N

�

, (72)

which is also in agreement with [17].
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N N

Figure 9: The topological quiver representing Lµk
N of slN . It has 2 nodes and 2 links.

The nodes describe self-dual topological matter and the links describe bi-matter.

3.3.2 Constructing the topological quivers Qµk
N

By using the property Πk +Πk̄ = I , we can cast Lµk
N as follows

Lµk
N =
�

Πk +Πk̄

�

Lµk
�

Πk +Πk̄

�

. (73)

Using ΠkΠk̄ = 0, we can put this L(µk) into the following matrix form

Lµk
N =

�

ΠkLµkΠk ΠkLµkΠk̄
Πk̄LµkΠk Πk̄LµkΠk̄

�

. (74)

The topological gauge quiver Qµk
N associated with this L-operator has two nodes Nk,Nk̄ and

two links Lkk̄, Lk̄k. It is depicted by the Figure 9.

The two nodes
Nk = Πk̄L

µkΠk , Nk̄ = Πk̄L
µkΠk̄ (75)

describe topological adjoint matter of SLk and SLN−k; and are interpreted as topological self
dual matter. The two links relating the two nodes are given by,

ΠkLµkΠk̄ , Πk̄L
µkΠk , (76)

they describe bi-fundamental matter of SLk × SLN−k. These bi-matters are precisely given by
the Darboux variables biα and cia of the phase space of ’t Hooft line tHµk

γ0
. To end this section,

notice the following:

(1) the topological quiver Qµ1
N of the operator Lµ1

N appears just as the leading quiver of the k-
family Qµk

N associated with the family Lµk
N . So, the topological quiver QµN−1

N of the LµN−1
N

turns out be just the last member of the k-family. We omit its description.

(2) the quiver Qµk
N given in this section concerns Wilson lines with quantum states in the

fundamental R = N. For Wilson lines in other representations of slN like the completely
antisymmetric N∧k and the completely symmetric N∨n, we can construct the associated
the L-operators and the corresponding quivers Qµk

R . Examples of the topological quivers
Qµ1

N∧k and Qµ1

N∨n are given in Figure 29. Their Levi charges reported on the nodes can be

read from the decomposition (26). As an illustration, the quiver Qµ1

N∨3 corresponding to
the representation the symmetric N ∨ N ∨ N is depicted by the Figure 10.
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N

ꓦN N ꓦ

Figure 10: The topological quiver Qµ1
R for the representation R = N ∨ N ∨ N. This

quiver has four nodes and 12 links.

C Ck(N-k)k(N-k)

Figure 11: The topological quiver Qµk
ad j(slN )

for the adjoint representation of slN . It
has three nodes N0 = lµk

and n± = k (N − k)±.

(3) An interesting topological quiver diagram Qµk
ad j(slN )

given by the Figure 11. It is the
one associated with the adjoint representation; that is R = ad j (slN ). From the de-
composition given by eq.(26), we see that ad j (slN ) splits as n− ⊕ lµk

⊕ n+ with
lµk
= ad j (slk)0 + ad j (slN−k)0 + sl1 and n± = k (N − k)±. The second concerns sl1

with the representation 10 = 11−1/N × 1−1+1/N .

4 Vector ’t Hooft lines of DN - type

In this section, we study the class of vector-like L-operators Lvect
so2N

in the 4D Chern-Simons
theory with SO2N gauge symmetry. This is a sub-family of the family of D- type Lax operators
which contains moreover the Lax operators Lspin

so2N
of the spinorial class to be studied in the next

section. Because SO4 = SU2 × SU2 and SO6 ∼ D3 is isomorphic to SL4, we assume that N ≥ 4
so that the first element of the DN series is given by SO8.
Notice that the general aspects of the present construction are similar to those introduced in
the previous sections. The ’t Hooft line tHµγ0

is taken as the horizontal x-axis of R2 and the W R
ξz

is chosen as the vertical y-axis; the z is a generic position in the holomorphic line CP1, and R
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Figure 12: (a) A horizontal vector-like ’t Hooft line with magnetic charge µ1 cross-
ing an electrically charged vertical Wilson line in fundamental vector representation
R = 2N. The green dot refers to the coupling between the two lines; it is given by
the Lax operator Lµ1

2N . (b) Intrinsic structure of the Lax operator which will be inter-
preted as a topological gauge quiver with three nodes and 6 links.

is a given representation of so2N . Moreover, most of the features associated to the derivation
of Lax operators from 4D CS with SO2N gauge symmetry have been considered in [53, 61].
Therefore, we focus here on analysing the internal algebraic structure of this theory allowing to
illustrate the key elements of the quiver gauge Qvect

so2N
associated toLvect

so2N
. This quiver constitutes

a necessary part in the unified theory chain in the sense that it links the A-type symmetries
to the exceptional ones, and allows to indirectly include the B-type symmetries thanks to its
similarity with the minuscule coweight of the so2N+1 Lie algebra.

4.1 Vector lines tHµ1
γ0

and their L-operators

We begin by recalling that minuscule ’t Hooft lines within the DN family of 4D CS theory
are magnetically charged with magnetic charge given by the minuscule coweights µ of DN .
Because there are three minuscule coweights in the DN Lie algebras given by µ1,µN−1,µN
(see the Figures 13 and 17), we distinguish three types of ’t Hooft lines tHµγ0

in the 4D Chern-
Simons theory with orthogonal gauge symmetry SO2N that we can refer to as

tHµ1
γ0
= tH vect

γ0
, tHµN

γ0
= tHspin

γ0
, tHµN−1

γ0
= tHcospin

γ0
. (77)

The coweights µ1,µN−1,µN are respectively dual to the vector representation 2N , the spinor
representation 2N−1

L and the cospinor representation 2N−1
R . Here, we first focus on the coupling

of the vector-like tHµ1
γ0

with the Wilson line in fundamental R = 2N; then we move in the next
section to the study of tHµN−1

γ0
and tHµN

γ0
. To fix the ideas, we illustrate in the Figure 12 the Levi

splitting characterising tHvect
γ0

. This intrinsic structure will be derived and commented later
on.

4.1.1 Vectorial tHvect
γ0

line: Magnetic charge

The fundamental coweight µ1 is the dual to the simple root α1 of the so2N Lie algebra. By
taking the N simple roots of SO2N as αi = ei − ei+1 for i ∈ [1, N − 1] and αN = eN−1 + eN ; it
follows that the value of the minuscule coweight constrained as µ1αi = δi1 can be solved like
µ1 = e1. In terms of the simple roots, we have

µ1 = α1 + ...+αN−2 +
1
2
(αN−1 +αN ) . (78)

Notice that by setting N=3 in this relation, the resulting µ1 takes the value α1 +
1
2 (α2 +α3)

which can be compared with the fundamental weight µ̃2 = α̃2 +
1
2(α̃1 + α̃3) of the sl4 Lie
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Figure 13: Dynkin diagram of DN Lie algebras where the N simple roots αi are ex-
hibited. The Levi decomposition of so2N → so2⊕ so2N−2 using the vector coweight is
given by cutting the simple root α1.

algebra which is isomorphic to so6. Here, the α̃i ’s stand for the simple roots of sl4.
From the Dynkin diagram of the DN Lie algebras given in Figure 13, we can see that the Levi
decomposition lµ1

⊕ n+ ⊕ n− of so2N with respect to the vectorial coweight µ1 is given by
lµ1
= so2 ⊕ so2N−2 and n± = (2N − 2)± with the charge symmetry so2 ∼ sl1. As such, the

dimensions of the so2N and its vector 2N split as follows

N (2N − 1) = 10 + (N − 1) (2N − 3)0 + (2N − 2)+ + (2N − 2)− ,

2N= 20+(2N− 2)0 ,
(79)

where we have also exhibited the charge of so2. To construct the L-operator of the tHvect
γ0

line
represented graphically by the Figure 12-(a), we need the adjoint action of the coweight µ1
and the explicit expressions of the generators of the nilpotent subalgebras n±.
The 2N−2 generators of n+ are denoted by X i and their homologues generating n− are denoted
like Y i , their realisation should solve the Levi decomposition constraint [µ1, n±] = ±n± and
�

nq, nq

�

= 0 with q = ±.
To get this solution, we consider (i) an electric vertical Wilson line as in the Figure 12-(a)

W R=2N
ξz

, ξz = {(x , y) | x = 0;−∞< y <∞} , (80)

with incoming vector-like states 〈A| (A=1,..., 2N) and outgoing |B〉 ones propagating along the
line ξz . (ii) a horizontal ’t Hooft line defect tHvect

γ0
with the magnetic charge µ1;

tH vect
γ0

, γ0 = R2
y≤0 ∩R

2
y≥0 . (81)

In this case, we can split the vector representation |B〉 of SO2N as a direct sum |β〉⊕ | j〉 where
|β〉 is a vector of so2 and | j〉 a vector of so2N−2. Moreover, we use the isomorphism so2 ∼ sl1
to split |β〉 as |+〉 and |−〉 . Eventually, we have

|B〉=





|0〉
| j〉
�

�0̄
�



≡





|+〉
| j〉
|−〉



 , 1≤ j ≤ M , (82)

where we have set M = 2N − 2 and considered the splitting of the 2N vector as
1+ ⊕ (2N− 2)0 ⊕ 1− such that the Levi subalgebra is sl1 ⊕ so2N−2. In this vector states basis
(82), the operators X i and Y i generating the nilpotent subalgebras are given by

X i = |+〉 〈i| − |i〉 〈−| ,

Y i = |i〉 〈+| − |−〉 〈i| .
(83)
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Figure 14: A graphic representation of the splitting of the vector 2N representation
under the vectorial Levi decomposition. The projectors on these three blocks are
ϱ+ = |+〉 〈+| ,
∑

ϱi =
∑

|i〉 〈i| and ϱ− = |−〉 〈−| .

The action of these operators Xi and Yi on the vector representation of so2N can be visualized
in the the Figure 14 describing the splitting of the 2N vector. As for the adjoint action of
the minuscule coweight, it is given by a particular linear combination of projectors ϱR on the
irreducible representations 1± and (2N− 2)0 of the so2 ⊕ so2N−2 Levi subalgebra as follows

µ1 = ϱ+ −ϱ− , (84)

with ϱ+ = |+〉 〈+| and ϱ− = |−〉 〈−| .
Because of the vanishing so2 charge of (2N− 2)0, the minuscule coweight has no dependence
on the projector

Π0 =
∑

i

ϱi , (85)

with ϱi = |i〉 〈i|. Notice that X i and Y j satisfy some characteristic relations like for example
X iY

j = δ j
jϱ+ + |i〉 〈 j| indicating that

Tr
�

X iY
i
�

= 2δ j
j . (86)

From the realisation of eqs(83-84) we can deduce that [µ1, X i] = +X i ,
�

µ1, Y i
�

= −Y i and
�

X i , Y i
�

= µ1. Other useful and simplifying relations are listed below

X iX j = −δi j |+〉 〈−| , X iX jX l = 0 ,

Y iY j = −δi j |−〉 〈+| , Y iY jY l = 0 ,
(87)

and

ϱ−X i = 0 , X iϱ+ = 0 ,

ϱ+Y i = 0 , Y iϱ− = 0 ,
(88)

as well as

X iϱ− = −|i〉 〈−| , ϱ+X i = |+〉 〈i| ,

ϱ−Y i = −|−〉 〈i| , Y iϱ+ = |i〉 〈+| .
(89)

By considering the linear combinations

X = biX i ∈ n+ , Y = ciY
i ∈ n− , (90)

where bi and ci are the phase space coordinates, we can calculate their powers X n and Y n;
and then eX and eY . We find that X 2 = −b2E, Y 2 = −c2F and X 3 = Y 3 = 0 where we have set
b2 = biδi j b

j and c2 = ciδ
i jc j as well as E = |+〉 〈−| and F = |−〉 〈+| satisfying [E, F] = µ1 and

Tr (EF) = 1. We also have

bi =
1
2

Tr
�

X Y i
�

, b2 = −Tr
�

X 2F
�

,

ci =
1
2

Tr (X iY ) , c2 = −Tr
�

Y 2E
�

.
(91)
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Moreover, we have

ϱ−X = 0 , ϱ+X = bi |+〉 〈i| , Xϱ− = −bi |i〉 〈−| ,
ϱ+Y = 0 , ϱ−Y = −ci |−〉 〈i| , ϱ−Y = −ci |−〉 〈i| .

(92)

4.1.2 Vector- like tHvect
γ0

line: Building the L-operator

Using the properties X 3 = Y 3 = 0 indicating that eX = I + X + 1
2 X 2 and equivalently for eY ;

then putting back into the expression of the L-operator namely L= eX zµ1 eY , we obtain

Lvect
2N = zµ1+Xzµ1+zµ1 Y+

1
2

zµ1 Y 2+
1
2

X 2zµ1+Xzµ1 Y+
1
2

Xzµ1 Y 2+
1
2

X 2zµ1 Y+
1
4

X 2zµ1 Y 2 , (93)

with higher monomial given by X 2zµ1 Y 2. Replacing zµ1 = zϱ+ + z−1ϱ− and using eq.(88)
indicating that

Xzµ1 = z−1Xϱ− , zµ1 Y = z−1ϱ−Y , (94)

the above L-operator reads as follows

Lvect
2N = zϱ+ + z−1ϱ− + z−1Xϱ− + z−1ϱ−Y +

1
2

z−1ϱ−Y 2 +
1
2

z−1X 2ϱ− + z−1Xϱ−Y

+
1
2

z−1Xϱ−Y 2 +
1
2

z−1X 2ϱ−Y +
1
4

z−1X 2ϱ−Y 2 . (95)

This operator has a remarkable dependence on the projector ϱ−. Using the non vanishing
ϱ+X iX jϱ− = −δi j E and ϱ−Y iY jϱ+ = −δi j F as well as ϱ+X iX jϱ−Y kY lϱ+ = δi jδ

klϱ+, we
have

ϱ+Lϱ+ = zϱ+ +
1
4

z−1ϱ+X 2ϱ−Y 2ϱ+ ,

ϱ+LΠ0 =
1
2

z−1ϱ+X 2ϱ−YΠ0 ,

ϱ+Lϱ− =
1
2

z−1ϱ+X 2ϱ− ,

(96)

and

Π0Lϱ+ =
1
2

z−1Π0Xϱ−Y 2ϱ+ ,

Π0LΠ0 = z−1Π0Xϱ−YΠ0 = z−1 biE j
i c j ,

Π0Lϱ− = z−1Π0Xϱ− ,

(97)

with E j
i = |i〉 〈 j|, and

ϱ−Lϱ+ =
1
2

z−1ϱ−Y 2ϱ+ ,

ϱ−LΠ0 = z−1ϱ−YΠ0 ,

ϱ−Lϱ− = z−1ϱ− .

(98)

Substituting Xϱ− = −bi x i and ϱ−Y = −ci y i as well as X 2ϱ− = −b2E and ϱ−Y 2 = −c2F by
help of eqs.(89,91,92), we obtain

Lvect
2N =
�

z +
1
4

z−1b2c2
�

ϱ+ + z−1ϱ− − z−1 bi x i − z−1ci y i +−
1
2

z−1c2F −
1
2

z−1b2E

+ z−1
�

bic j

�

x i y j +
1
2

z−1
�

bic2
�

x i F +
1
2

z−1b2ci E y i . (99)
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N N

N2N-2

Figure 15: The topological quiver representing Lvect
2N . It has three nodes and 6 links.

The nodes describe self-dual topological matter and the links describe topological
bi-matter.

4.2 Topological quiver Qvect
2N : Case of the vector ’t Hooft line

From the realisation eqs.(83-84) and the diagram of the Figure 12, we learn that the Lax
operator Lvect

2N has an intrinsic structure that can be represented by a topological gauge quiver
Qvect

2N . To draw this topological quiver diagram, we use the projectors ϱ+,ϱ− and Π0 =
∑

ϱi ,
singling out the representations of the Levi subgroup SO2×SO2N−2 of the orthogonal symmetry
SO2N , to cast eq(95) as follows

Lvect
2N =





ϱ+Lϱ+ ϱ+LΠ0 ϱ+Lϱ−
Π0Lϱ+ Π0LΠ0 Π0Lϱ−
ϱ−Lϱ+ ϱ−LΠ0 ϱ−Lϱ−



 . (100)

In this decomposition, we have used the relation ϱ+ +Π0 +ϱ− = Iid and ϱ±Π0 = ϱ+ϱ− = 0.
Finally, we recover the matrix representation in agreement with [66]

Lvect
2N = z−1





z2 + 1
4b2c2 1

2b2ci −
1
2b2

1
2 b jc2 b jci −b j

−1
2c2 −ci 1



 . (101)

The topological gauge quiver Qvect
2N representing the above vector like Lvect

2N is given by the
Figure 15. The Qvect

2N has three nodes N+, N2N−2 and N− given by

N+ ≡ 〈ϱ+Lϱ+〉 , N2N−2 ≡ 〈Π0LΠ0〉 , N− ≡ 〈ϱ−Lϱ−〉 . (102)

It has 3 + 3 links Li j with i, j = 0,± interpreted as topological bi-fundamental matter
SO2 × SO2N−2 reading as

L+0 = 〈ϱ+LΠ0〉 , L0+ = 〈Π0Lϱ+〉 , L−+ = 〈ϱ−Lϱ+〉 ,

L+− = 〈ϱ+Lϱ−〉 , L0− = 〈Π0Lϱ−〉 , L−0 = 〈ϱ−LΠ0〉 .
(103)

Notice that The Darboux coordinates can be expressed in terms of the operator Lvect
2N and the

generators X i , Y i and the minuscule coweight µ1 as follows:

bi = zTr
�

µ1Y iLvect
2N

�

, ci = zTr
�

Lvect
2N X iµ1

�

. (104)

While bi and ci sit respectively in the vector representation of SO2N−2 and its transpose, they
carry opposite unit charges under the minuscule coweight µ1.
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Figure 16: A horizontal ’t Hooft line of D- type with spinor-like magnetic charge given
by the minuscule coweight µN of SO2N couples to a vertical Wilson line characterized
by a representation R of so2N .

As for the Darboux, we also have their composites that appear in the expression of the L-
operator, they are scalars of SO2N−2 and carry non trivial SO2 charges. They are given by

b2 = −2zTr
�

FLvect
2N

�

, c2 = −2zTr
�

ELvect
2N

�

, (105)

where E and F are related to the minuscule coweight operator as [E, F] = µ1. Interesting
composites of the Darboux coordinates that transform non trivially under SO2 are given by

b2ci = 2zTr
�

µ1FLvect
2N X i

�

, bic2 = 2zTr
�

µ1Y iLvect
2N E
�

. (106)

5 Spinorial ’t Hooft lines of DN - type

This section is a continuation to the previous one, it concerns the operators Lspin
2N . Here, we

introduce the two spinorial like ’t Hooft lines of DN type denoted as tHµN−1
γ0

and tHµN
γ0

and con-
struct associated Lax operators. We cast their special properties in the associated topological
quivers Qspin

R . We also treat exotic cases where the electric charges are given by representations
beyond the (anti)fundamental of the so2N Lie algebra.

5.1 ’t Hooft line with magnetic charges µN−1 and µN

Besides the vectorial µ1 = e1 given by eq.(78), the SO2N has moreover two other minuscule
coweights µN−1 and µN . These coweights yield the magnetic charges of the two spinorial-like
’t Hooft lines:

tHµN−1
γ0

, tHµN
γ0

.

These line defects are represented similarly to the vector-like line tHµ1
γ0

of previous section as
depicted in Figure 16 where the tHµN

γ0
couples to a vertical Wilson line W R

ξz
carrying internal

states |A〉 belonging to some representation R of so2N . Interesting candidates for R are given
by the vectorial and the spinorials, namely

R = 2N , R = 2N−1
L , R = 2N−1

R , R = 2N . (107)

So depending on the electric charge of the Wilson line W R
ξz

, one distinguishes various kinds of
L-operators that generally speaking, can be labeled as follows

Lµs
R = eXRzµs eYR , (108)
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Figure 17: Dynkin diagram of DN Lie algebras where the two Levi decompositions
with respect to the spinorial coweights are illustrated by: (a) removing the simple
root αN for the minuscule coweight µN . (b) removing the simple root αN−1 for the
minuscule coweight µN−1.

with a spinor-like minuscule coweight µs of SO2N . For an electric representation R, we have a
Lax operator LµR described by a dimR×dimR matrix whose entries are functions of the Darboux
coordinates. These phase space coordinates labeled as

�

b[i j], c[i j]
�

appear in the expression of
the XR and YR as follows

XR = b[i j]X R
[i j] , YR = c[i j]Y

[i j]
R , (109)

where the X R
[i j] and Y [i j]

R are generators of the nilpotent subalgebras nR
± issued from the Levi

decomposition of so2N . In fact, for the spinor-like coweights µs = µN−1 or µN , we have the
following Levi decomposition of so2N

so2N → lµs
⊕ n+ ⊕ n− , (110)

with lµs
= glN . This can be directly read from the Figure 17 where we see that the funda-

mental coweight µN−1 is the dual of the simple root αN−1 = eN−1 − eN , while µN is the dual
of αN = eN−1 + eN .
Notice that by cutting the root αN−1 from 17-a, we end up with the Dynkin diagram of an slN
Lie algebra with the following simple roots:

α1, ...,αN−2;αN . (111)

And if instead, we cut the root αN as in 17-b, we also end up with the Dynkin diagram of an
sl ′N Lie algebra having the simple roots:

α1, ...,αN−2;αN−1 . (112)

The two slN and sl ′N are isomorphic, they are related by the exchange αN ↔ αN−1. We can
therefore focus our analysis on the minuscule tHµN

γ0
since the calculations are similar for tHµN−1

γ0
.

Notice however that the expressions of the coweights in terms of the ei weight vector basis are
given by

µN−1 =
1
2
(e1 + ...+ eN−1 − eN ) ,

µN =
1
2
(e1 + ...+ eN−1 + eN ) .

(113)
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5.2 Magnetic charge µN and the link between SO2N and SLN

Here, we study the Levi decomposition of so2N with respect to µN in order to explore intrinsic
aspects of the coupling between the minuscule tHµN

γ0
and the Wilson line in a representation

R of so2N that is usually taken as the vectorial 2N. Particularly, we extend the results here for
Wilson lines in the spinorial representation 2N where we build the graphic representation of
their remarkable coupling with ’t Hooft lines; see Figure 18-(a).

5.2.1 Spinorial ’t Hooft line tHµN
γ0

As shown by the Figure 17-a without αN , there is a close relationship between SO2N and SLN .
It is given by the Levi decomposition so2N → lµN

⊕ n+ ⊕ n− with respect to the coweight µN
of the SO2N gauge symmetry of the CS theory. In this decomposition, we have the following
dimension splitting

N (2N − 1) = N2 +
1
2

N (N − 1) +
1
2

N (N − 1) , (114)

and the subalgebra structures

lµN
= sl1 ⊕ slN ,

n+ = N+ 1
2
∧ N+ 1

2
,

n− = N− 1
2
∧ N− 1

2
,

(115)

with sl1 ⊕ slN ∼ glN and [sl1,n±] = n± indicating that
�

sl1, N± 1
2

�

= ±
1
2

N± 1
2

. (116)

We also have the Rso2N
representations’ splitting

repres Rso2N
repres RglN

2N N+ 1
2
⊕ N− 1

2

2N ∧ 2N ad j0 ⊕
�

N+ 1
2
∧ N+ 1

2

�

⊕
�

N− 1
2
∧ N− 1

2

�

2N ∨ 2N ad j0 ⊕
�

N+ 1
2
∨ N+ 1

2

�

⊕
�

N− 1
2
∨ N+ 1

2

�

2N ⊕N
k=0N∧k

qk

(117)

where 2N describes vector- like states, 2N ∧2N the antisymmetric (adjoint) and 2N ∨2N the
symmetric. The 2N states describe a Dirac-type spinor reducible into left handed and right
handed Weyl spinors as follows

2N= 2N−1
L ⊕ 2N−1

R . (118)

Notice that the wedge product ∧kN is the k-th anti-symmetrisation order (for short N∧k) of
the tensor product of k representation N. Its dimension is equal to N !

(N−k)!k! . As illustrating
examples of the degrees of freedom described by such wedge products, we give below the
reductions associated with the leading gauge symmetry groups

so2N 2N 2N 2N−1
L 2N−1

R

so6 6 8 4L 4R

so8 8 16 8L 8R

so10 10 32 16L 16R

so12 12 64 32L 32R

(119)
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Figure 18: On the left, a horizontal spinorial like ’t Hooft line crossing a vertical
Wilson line carrying internal fermionic states Ψ = (ψL ,ψR) . On the right, the struc-
ture of the coupling under the Levi decomposition showing chiral and antichiral Weyl
states traveling along vertical lines.

where we have also given the so6 which is isomorphic to sl4 with no Levi charge operator sl1.
The Levi decompositions with respect to µN of the above spinorial representations 2N are given
by the sum of two blocks: (i) the first block involving the even powers N∧2l , it corresponds to
Weyl spinor; say 2N−1

L . (ii) the second block having the odd powers N∧2l+1 and corresponding
to 2N−1

R . So, we have:

so2N 2N−1
L 2N−1

R

so6 4L = 1+ 3∧2 4R = 3∧1 + 3∧3

so8 8L = 1+ 4∧2 + 4∧4 8R = 4∧1 + 4∧3

so10 16L = 1+ 5∧2 + 5∧4 16R = 5∧1 + 5∧3 + 5∧5

so12 32L = 1+ 6∧2 + 6∧4 + 6∧6 32R = 6∧1 + 6∧3 + 6∧5

(120)

By assuming the 2N−1
L and the 2N−1

R as traceless, we can exhibit the Levi charges in the above
relations leading to

so2N 2N−1
L 2N−1

R

so6 4L = 1+3/4+3−1/4 4R = 3+1/4+1−3/4

so8 8L = 1+1+60+1−1 8R = 4+1/2+4−1/2

so10 16L = 15/4+10+1/4+5−3/4 16R = 5+3/4+10−1/4+1−5/4

so12 32L = 1+3/2+15+1/2+15−1/2+1−3/2 32R = 6+1+200+6−1

(121)

Thanks to the reduction of so2N representations in terms of glN ones like in eqs.(117), one can
construct various kinds of spinorial-like Lax couplings depending on the electric representation
R hosted by the Wilson line W R

γz
crossing the tHµN

γ0
line. Two of such couplings are studied here

below:
• Case of electric Rs = 2N

In this case, the coupling is given by the interaction between the spinorial tHµN
γ0

and a Wilson
W R
γz

line with electric representation Rs = 2N as illustrated by the Figure 18-(a). The quantum
states propagating along the vertical Wilson line form a Dirac spinor Ψ = ΨL ⊕ ΨR. By using
the projector ΠL on the left handed spinor and the projector ΠR on the right handed one, we
can use the properties ΠL +ΠR = Iid and ΠLΠR = 0 to decompose the action of the minuscule
coweight on 2N like

µ= ΠLµ+ΠRµ ↔ µ= µL +µR . (122)
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Figure 19: On the left, a horizontal spinorial like ’t Hooft line crossing a vertical
Wilson line carrying a bosonic current JA = ΨΓ AΨ. On the right, The splitting of the
current into two currents ui = ΨΥiΦ and v̄ i = ΨῩ iΦ traveling along the vertical lines.

This splitting is illustrated by the Figure 18-(b) where the states propagating in the two vertical
Wilson lines are given by the left handed ΨL and the right handed ΨR Weyl spinors. In this
case, the L-operator decomposes into four blocks as follows

LµN
Rs
=

�

ΠLLΠL ΠLLΠR
ΠRLΠL ΠRLΠR

�

. (123)

Notice that in this expression of LµN
Rs

, we have not yet implemented the Levi decomposition;
we have only exhibited the chiral and anti-chiral structure of the Dirac spinor. To implement
the effect of the Levi decomposition, we introduce other types of projectors

PN∧k =
�

�N∧k
� 


N∧k
�

� , (124)

that give the reduction 2N = ⊕kN∧k and eqs.(117-121). This leads to a more complicated
structure of this specific type of coupling; we will come back to this case later for further
development.
• Case of electric Rv = 2N

In this case, the spinorial tHµN
γ0

crosses a Wilson W R
ξz

line with electric representation R = 2N

as shown by the Figure 19-(a). This representation can be related to the previous Rs = 2N

because it can also be viewed as an so2N electric current JA given by the Dirac bi-linear like

JA = 〈Ψ| ΓA |Φ〉 , (125)

where the 2N Gammas ΓA are 2N ×2N Dirac matrices. To deal with this so2N Wilson lines, it is
interesting to use the new basis

Υl =
1
p

2
(Γl + iΓN+1) , Ῡ l =

1
p

2
(Γl − iΓN+1) . (126)

Then by putting back into (125), we find that the so2N electric current JA decomposes as two
(covariant and contravariant) glN currents given by

ui = ΨΥiΦ , v̄ i = ΨῩ iΦ . (127)

The ui transforms in the fundamental N+ of the Levi subalgebra glN ; and the v̄ i transforms in
the anti- fundamental N−. Using the projector ϱ+ on the N+ and the projector ϱ− on the N−,
we can express the L-operator as follows, see also Figure 19-(b)

LµN
2N =

�

ϱ+Lϱ+ ϱ+Lϱ−
ϱ−Lϱ+ ϱ−Lϱ−

�

. (128)
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5.2.2 Levi and nilpotent subalgebras within so2N

To model properties of the spinorial ’t Hooft lines in 4D Chern-Simons theory with SO2N sym-
metry characterized by the following Levi decomposition with respect to µn

so2N → (N− ∧ N−)⊕ glN ⊕ (N+ ∧ N+) , (129)

where N± stand for N±1/2, it is interesting to recall some useful tools concerning the euclidian
Dirac spinors in higher dimensions and the algebra of Gamma matrices.
In even 2N dimensions, the Dirac spinor |ψDirac〉 has 2N components and decomposes as a
sum of two Weyl spinors like |ψL〉+ |ψR〉 where

|ψL〉= ΠL |ψDirac〉 ,

|ψR〉= ΠR |ψDirac〉 ,
(130)

and

ΠL =
1
2
(I + Γ2N+1) ,

Πr =
1
2
(I − Γ2N+1) .

(131)

The ψL and ψR are Weyl spinors transforming in 2N−1
L and 2N−1

R while the ΠL and the ΠR are
the spin projectors encountered earlier reading as follows

ΓL =

�

I 0
0 0

�

, ΓR =

�

0 0
0 I

�

. (132)

The identity and the zeros appearing in these matrices live in 2N−1 dimensions. The Γ2N+1 is
the chiral operator given by

ΓA1
ΓA2

....ΓA2N
= (i)N ϵA1.....A2N

Γ2N+1 , (133)

where ϵA1.....A2N
is the completely antisymmetric tensor with ϵ1...2N = 1 and ΓA obeying the

Clifford algebra of a 2N dimension euclidian space.

ΓAΓB + ΓBΓA = 2δAB . (134)

The relations (129) and (133) allow to split the 2N Gamma matrices ΓA into two subsets that
will be used later to construct a new basis for the Gammas that is compatible with glN ,

Γi
ΓN+i

, i = 1, ..., N . (135)

Recall also that the generators J[AB] of the so2N spinor representation are defined by the com-
mutators

ΓAB =
1
2i
[ΓA, ΓB] . (136)

As for sl1 ⊕ slN , the so2N algebra also has N commuting diagonal generators Hl realised in
terms of the Gamma matrices as

Hl =
1
2i
[Γl , ΓN+l] = −iΓlΓN+l , l = 1, ..., N . (137)

To exhibit the realisation of the sl1⊕ slN representations within the so2N orthogonal symmetry
group, we substitute the spliting ΓA = (Γi , ΓN+l) into the N (2N − 1) generators ΓAB of so2N and
we obtain the following antisymmetric 2× 2 block matrix

ΓAB =

�

Γ[i j] Γ̂
j

i
−Γ̂ i

j Γ̃ [i j]

�

. (138)
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This decomposition contains:
(a) the N2 operators Γ̂ j

i generating N+ ⊗ N− of the Levi subalgebra sl1 ⊕ slN .
(b) the 1

2 N (N − 1) operators Γ[i j] generating the N+ ∧ N+ nilpotent subalgebras.
(c) the 1

2 N (N − 1) operators Γ̄ [i j] generating the N− ∧ N− dual nilpotent subalgebra.

5.3 Nilpotent subalgebras and L-operator

In order to explicitly realise the generators Γ[i j], Γ̃
[i j] and Γ̂ j

i appearing in the decomposition
(138) and consequently the generators X[i j] and Y [kl] of the nilpotent subalgebras n±, we first
think of the set of the 2N Dirac matrices ΓA = (Γi , ΓN+1) as follows,

Υl =
1
p

2
(Γl + iΓN+1) , Ῡ l =

1
p

2
(Γl − iΓN+1) . (139)

This new Gamma matrix basis satisfy the Clifford algebra

ΥiῩ
j + Ῡ jΥi = 2δ j

i ,

ΥiΥ j + Υ jΥi = 0 ,

Ῡ kῩ l + Ῡ l Ῡ k = 0 .

(140)

Then, we consider the two glN vector currents ui = 〈ξ|Υi|ψ〉 and v̄ i =



ψ|Ῡ i|ξ
�

of eq(127)

constructed out of bilinears of the Dirac fermions and use them to construct Γ[i j], Γ̃
[i j] and Γ̂ j

i .
These two currents transform in the N+ and N− representation of sl1 ⊕ slN .

5.3.1 Realising the nilpotent generators of n±

First, using the N+N complex variables ui and v̄ i , we build the translation operators ∂̄ i = ∂ /∂ ui
and ∂i = ∂ /∂ v̄ i as well as the rotations

X[i j] = ui∂ j − u j∂i , Z l
i = ui ∂̄

l − v̄ l∂i ,

Y [i j] = v̄ i ∂̄ j − v̄ j ∂̄ i , H =
1
2

Tr
�

Z l
i

�

.
(141)

In these relations, the operator

H =
1
2

∑

i

�

ui ∂̄
i − v̄ i∂i

�

(142)

is the charge generator of sl1. It acts on the complex variables like

Hui = +
1
2

ui , Hv̄ i = −
1
2

v̄ i . (143)

We also have X[i j] v̄
l = δl

jui − δl
iu j and Y [i j]ul = δ

j
l v̄ i − δi

l v̄
j as well as Z j

i uk = uiδ
j
k and

Z j
i v̄ l = −v̄ jδl

i . The above operators (141-142) obey interesting commutation relations such
as

�

X[i j], Y [kl]
�

=
�

δk
j Z l

i −δ
k
i Z l

j

�

−
�

δl
j Z

k
i −δ

l
i Z

k
j

�

,
�

X[i j], X[kl]
�

= 0 ,
�

Y [i j], Y [kl]
�

= 0 .

(144)
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For particular values of the labels, we obtain
�

X[i j], Y [ jl]
�

= (N − 2) Z l
i + 2δl

i H ,
�

Z j
i , Xkl

�

=
�

δ
j
kX[il] −δ

j
l X[ik]
�

,
�

Z j
i , Y [kl]
�

= −
�

δk
i Y [ jl] −δl

i Y
[ jk]
�

,

(145)

and
�

H, X[kl]
�

= +X[kl] ,
�

H, Y [kl]
�

= −Y [kl] .
(146)

In order to introduce similar notations to the ones used in the previous sections, we associate
to the variables ui and v̄ i the kets

ui →
�

�

�

�

+
1
2

, i
·

, v̄ i →
�

�

�

�

−
1
2

, i
·

, (147)

and to the translation operators ∂̄ i = ∂ /∂ ui and ∂i = ∂ /∂ v̄ i the following bras

∂̄ i →


−
1
2

, i

�

�

�

�

, ∂i →


+
1
2

, i

�

�

�

�

. (148)

We use moreover the following notation

〈−, j|+, i〉= δ j
i , 〈+, j|+, i〉= 0 ,

〈+, j|−, i〉= δ j
i , 〈−, j|−, i〉= 0 ,

(149)

to realise the operators X[i j], Y [kl] and Z l
i as

X[i j] = |+, i〉 〈+, j| − |+, j〉 〈+, i| ,

Y [kl] = |−, k〉 〈−, l| − |−, l〉 〈−, k| ,

Z l
i = |+, i〉 〈−, l| − |−, l〉 〈+, i| .

(150)

We also have X[i j]Y
[kl] = U [kl]

[i j] with

U [kl]
[i j] = δ

k
j |+, i〉 〈−, l| −δk

i |+, j〉 〈−, l| −δl
j |+, i〉 〈−, k|+δl

i |+, j〉 〈−, k| , (151)

as well as

H =
1
2
ϱ+ −

1
2
ϱ− , (152)

where

Π+ =
∑

i

ϱ+i , ϱ+i = |+, i〉 〈−, i| ,

Π− =
∑

i

ϱ−i , ϱ−i = |−, i〉 〈+, i| ,
(153)

with the properties Π+X[i j] = X[i j] and Y [kl]Π+ = Y [kl]. Notice also that using (149), we have

X i jXkl = 0 , Y [i j]Y [kl] = 0 , (154)

and
X[i j]Y

[ jl] = |+, i〉 〈−, l|+δl
iΠ
+ . (155)
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5.3.2 Building the Lax operator LµN
2N

Now, we are finally able to explicitly calculate the expression of the spinorial Lax operator of
the 4D CS theory with SO2N gauge symmetry. This operator LµN

2N describing the coupling of
Figure 19-(b) is generally given by

LµN
2N = eX vect zµN eYvect , (156)

where the X vect and Yvect are 2N × 2N matrices given by the following linear combinations

X vect = b[i j]X vect
[i j] , Yvect = c[i j]Y

[i j]
vect , (157)

such that the antisymmetric b[i j] and c[i j] are Darboux coordinates satisfying the Poisson
Bracket

�

b[i j], c[kl]
	

PB = δ
i
kδ

j
l −δ

i
lδ

j
k . (158)

The adjoint form µN of the minuscule coweight in (156) is given by

µN =
1
2
Π+ −

1
2
Π− , (159)

where the projectorsΠ± are as given in (153) with the propertiesΠ++Π− = Iid andΠ+Π− = 0.
This allows us to write

zµN = z
1
2Π+ + z−

1
2Π− . (160)

Moreover, because of the properties (154), the matrices X and Y (157) are nilpotent with
degree 2, that is X 2 = Y 2 = 0. Therefore, the L-operator expands as

LµN
2N = zµN + XzµN + zµN Y + XzµN Y . (161)

By substituting zµN by its expression (160) and using the properties XΠ+ = 0 and Π+Y = 0,
we end up with

LµN
2N = z

1
2Π+ + z−

1
2Π− + z−

1
2 XΠ− + z−

1
2Π−Y + z−

1
2 XΠ−Y . (162)

And by putting X = b[i j]X[i j] and Y = c[kl]Y
[kl], this operator can be also expressed like

LµN
2Nz

1
2Π+ + z−

1
2Π− + 8z−

1
2 (b[ik]E j

i c[k j]) + (2z−
1
2 b[i j])X[i j] + (2z−

1
2 c[kl])Y

[kl] , (163)

where Ek
i = |+, i〉 〈−, k| . Moreover, using

Tr
�

X[i j]Y
[kl]
�

= 2
�

δl
iδ

k
j −δ

l
jδ

k
i

�

,

Tr
�

X Y [i j]
�

= −2b[i j] ,

Tr
�

X[i j]Y
�

= −2c[i j] ,

(164)

we have

b[i j] = −
1
4

z
1
2 Tr
�

Y [i j]LµN
�

, c[i j] = −
1
4

z
1
2 Tr
�

X[i j]LµN
�

. (165)

The expression of the L-operator in the basis |+, i〉 , |−, j〉 defined in eq(138) reads as follows

LµN
2N = z−

1
2

�

2c[i j] zδi
j + 8b[ik]c[k j]

δi
j 2b[i j]

�

. (166)

This is equivalent to spinor solutions in [66] by change of basis.
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N N

Figure 20: The topological quiver QµN
Rv

representing the operator LµN
Rv

. It has 2 nodes
N1, N2; and 2 links L12, L21. The nodes describe self-dual topological matter and the
links describe topological bi-matter.

5.4 Topological quiver QµN
2N of LµN

2N

In order to construct the topological gauge quiver QµN
2N associated to the spinor coweight and

the fundamental representation of the D-type symmetry, we begin by rewriting the LµN
2N in the

projector basis
�

Π+,Π−
�

of the representation 2N = N+ ⊕ N−.

Using the properties of the glN projectors on N+ ⊕N−, in particular
�

Π+
�2
= Π+,
�

Π−
�2
= Π−

and
Π+ +Π− = Iid , Π+Π− = 0 , (167)

as well as Π+X = X and YΠ+ = Y, we can rewrite the Lax operator (162) as follows

LµN
2N =

�

z
1
2Π+ + z−

1
2Π+XΠ−YΠ+ z−

1
2 XΠ−

z−
1
2Π−Y z−

1
2Π−

�

. (168)

Moreover, by using the remarkable properties XΠ− = X andΠ−Y = Y that can be checked with
the explicit realisations X[i j] = |+, i〉 〈+, j| − |+, j〉 〈+, i| and Y [kl] = |−, k〉 〈−, l| − |−, l〉 〈−, k|,
the term XΠ−YΠ+ reduces to X YΠ+ and the eq(168) becomes

LµN
2N = z−

1
2

�

Π+(z + X Y )Π+ XΠ−

Π−Y Π−

�

. (169)

The nodes N1 and N2 of the topological gauge quiver QµN
2N representing LµN

2N as depicted in
Figure 20 are given by the diagonal entries of the matrix (169)

N1 ≡ Π+LΠ+ , N2 ≡ Π−LΠ− . (170)

They are interpreted in terms of topological self-dual matter in the sense that they have no
sl1 Levi charge. This feature is manifestly exhibited by their dependence into the monomi-
als b[ik]c[k j] that are neutral under sl1 because the Darboux coordinates b[ik] and c[k j] have
opposite charges. On the other hand, the two links are given by

L1→2 ≡ Π+LΠ− , L2→1 ≡ Π−LΠ+ . (171)

They are remarkably equivalent to the Darboux coordinates b[i j] and c[i j] and are interpreted
in terms of topological bi-fundamental matter of sl1⊕ slN . The sl1 charges data for the QµN

2N is
collected in the following table

Quiver N1 N2 L1→2 L2→1

sl1 +1
2 −1

2 −1 +1
(172)
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Figure 21: The Dynkin Diagram of e6 having six nodes labeled by the simple roots
αi . The cross (×) indicates the cutted node in the Levi decomposition with respect
to µ1, the Levi subalgebra in this case is given by so(10)⊕ so(2).

where we remark that the transition from the topological quiver node N1 to the N2 is given
by the link L1→2 carrying a Levi charge −1; while the reverse transition is given by the link
L2→1 with Levi charge +1.

6 Exceptional E6 ’t Hooft lines

This section is dedicated to the 4D Chern-Simons having as gauge symmetry the E6 group. This
case is characterized by two minuscule ’t Hooft lines tHµ1

γ0
and tHµ5

γ0
, and therefore two types of

minuscule Lax operators Lµ1
Re6

and Lµ5
Re6

that we need to study in order to build the associated

topological gauge quivers. In particular, we focus here on Re6
= 27; other possibilities are

considered in the conclusion section (31).

6.1 Minuscule coweights and Levi subalgebras of E6

We begin by describing the interesting properties of the finite dimensional exceptional Lie al-
gebra e6 that are useful for our construction. This is a simply laced Lie algebra with dimension
78 and rank 6; its algebraic properties are described by the root system Φe6

generated by six
simple roots αi . The intersection between these simple roots is represented in the Dynkin di-
agram De6

depicted in the Figure 21 and having the symmetric Cartan matrix Ke6
= αi .α j

given by:

Ke6
=















2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 −1
0 0 −1 2 −1 0
0 0 0 −1 2 0
0 0 −1 0 0 2















. (173)

The root system Φe6
contains 72 roots generated by the simple root basis {αi}1≤i≤6, it has 36

positive roots α ∈ Φ+e6
and 36 negative ones −α ∈ Φ−e6

. All of these roots have length α2 = 2

and are realised in the Euclidean R8 generated by the unit vector basis {εi}1≤i≤8 as follows

E6 : α1 =
1
2

�

ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8

�

,

αi = εi − εi−1 , i = 1, 2,3, 4,5 ,

α6 = ε1 + ε2 .

(174)

From the Figure 21, we learn that the Dynkin diagram De6
is invariant under a manifest Zaut

2
outer- automorphism symmetry exchanging four simple roots and leaving invariant α3 and
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α6. It acts like αi → α6−i with i = 1, ..., 5, by exchanging α2 with α4 and α1 with α5. In
permutation symmetry language, the Zaut

2 is generated by the double transposition (15) (24),
i.e:

Zaut
2 = {Iid , (15) (24)} . (175)

The 36+36 roots α of the e6 Lie algebra can be organised as follows

root realisation labels number

β+i j +εi + ε j 1≤ j < i ≤ 5 20

β−i j −εi − ε j 2≤ j < i ≤ 5 20

γ+qi
+1

2

�

qiεi − ε6 − ε7 + ε8

�

Π5
i=1qi = 1 16

γ−qi
−1

2

�

qiεi − ε6 − ε7 + ε8

�

Π5
i=1qi = 1 16

(176)

where the five qi can take the values ±1 with the constraint Πqi = 1.
Regarding the fundamental coweights ωi of the six fundamental representations of the Lie
algebra of E6, they are given by the duality relation ωi .α j = δi

j; this equation can either be
solved in terms of roots, or by using the weight unit vectors εl . The ωi read in terms of the
simple roots as follows

fund- ωi in terms of roots height Repres

ω1
4
3α1 +

5
3α2 + 2α3 +

4
3α4 +

2
3α5 +α6 8 27+

ω2
5
3α1 +

10
3 α2 + 4α3 +

8
3α4 +

4
3α5 + 2α6 15 351+

ω3 2α1 + 4α2 + 6α3 + 4α4 + 2α5 + 3α6 21 29250

ω4
4
3α1 +

8
3α2 + 4α3 +

10
3 α4 +

5
3α5 + 2α6 15 351−

ω5
2
3α1 +

4
3α2 + 2α3 +

5
3α4 +

4
3α5 +α6 8 27−

ω6 α1 + 2α2 + 3α3 + 2α4 +α5 + 2α6 11 780

(177)

From these expressions, we see that the outer-automorphism symmetry Zaut
2 discussed above

can be manifestly exhibited as follows,

ω1 +ω5 = 2 (α1 +α5) + 3
�

α2 +α4

�

+ 4α3 + 2α6 ,

ω2 +ω4 = 3 (α1 +α5) + 6
�

α2 +α4

�

+ 8α3 + 4α6 ,

ω3 = 2 (α1 +α5) + 4
�

α2 +α4

�

+ 6α3 + 3α6 ,

ω6 = (α1 +α5) + 2
�

α2 +α4

�

+ 3α3 + 2α6 .

(178)

Moreover, by using (174) and αi → α6−i with α0 ≡ α6, one can write down the action of the
outer-automorphism symmetry Zaut

2 on the weight vector basis εi . In what follows, we will
be particularly interested into: (1) the representation 780, associated with the simple root α6,
and (2) the 27± associated with α1 and α5.
The two minuscule coweights µ1 and µ5 that are dual to the α1 and α5 of the e6 are respectively
associated with the fundamentals 27+ and 27− as shown in table (177). Being related by Zaut

2 ,
we focus below on one of the two minuscule coweights, say µ = ω1; Similar results can be
derived for µ5.

6.1.1 The e6 algebra and the representation 78

There are different ways to decompose the root system of the e6 Lie algebra. The interesting
Levi decomposition with respect to charges of the minuscule coweight µ= µ1 considered here
reads as follows

e6→ so2 ⊕ so10 ⊕ 16+ ⊕ 16− . (179)
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From this splitting, we learn that the Levi subalgebra lµ = so2 ⊕ so10 and the nilpotent subal-
gebras n± = 16±. The root system Φe6

containing the 72 roots of e6 is therefore decomposed
in terms of two subsets: a subset Φso10

, and a subset given by the complement Φe6
\Φso10

; they
are described here below as they play an important role in the construction of the Lax operator
Lµe6

.
• Roots within Φso10

The subset Φso10
contains 40 roots βso10

, 20 positive and 20 negative; they define the step
operators Z±βso10

generating so10 within e6. It is generated by the simple roots

α2 , α3 , α4 , α5 , α6 , (180)

and has the usual symmetry properties of the root system of so10. The root subsystem Φso10
⊂ Φe6

can be defined as containing the roots βso10
with no dependence into α1, formally

δβso10

δα1
= 0 . (181)

This can be noticed by cutting the node α1 in the Dynkin diagram of the Figure 21, where
we recover the Dynkin diagram of so10 and a free node α1 associated with the so10 spinor
representations 16± charged under so2.
• Roots outside Φso10

This is the complementary subset of Φso10
within Φe6

; it is given by Φe6
\Φso10

and reads directly
from the root system of e6 by considering only the roots βe6

with a dependence into α1:

δβso10

δα1
̸= 0 . (182)

This subset contains 32 roots of spinorial type as they linearly depend on the simple root α1
which is spinorial-like. The importance of these roots is that they define the 16 step operators
X+β generating the nilpotent 16+ and 16 step operators X−β = Y β generating the 16−.

6.1.2 Decomposing the representation 27

As for the adjoint representation of e6, the fundamental representation also decomposes in
terms of representations of so2⊕so10. This representation is interesting in our study as it will be
taking as the electric charge of the Wilson line W R

ξz
where R = 27±. Generally speaking, given a

representation Re6
of the algebra e6, it can be decomposed into a direct sum of representations

of so2 ⊕ so10. such as
Re6
=
∑

l

nl

�

Rso10
l ,Rso2

l

�

, (183)

where nl are some positive integers. In the case of Re6
= 27, we have the following reduction

[67]

27=
�

1,−
4
3

�

+
�

10,+
2
3

�

+
�

16,−
1
3

�

, (184)

that we can simply write as 27= 1−4/3+102/3+16−1/3. Notice that by cutting the simple root
α1 in the Dynkin diagram, the SO10 representations get charged under SO2; these charges play
the role of a “glue” between these representations within the 27. This property is manifested
by the constraint that the sum (or the trace) of the charges of the 27 states with respect to
SO2 ∼ E6/SO10 must vanish. Notice moreover that these charges can be also observed in the
following relation

ω1 −ω5 =
2
3
α1 +

1
3
α2 −

1
3
α4 −

2
3
α5 , (185)
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Figure 22: The weight diagram of the representation 27 of the exceptional Lie algebra
e6 where every state |ξA〉 is simply represented by the node carrying its number. The
states 1+16+10 of the SO10 sub-representations of e6 are represented by different
colors.

where α2 stands for the spinorial of SO10 and α5 for the vectorial.
In order to understand the structure of the 27 states in the fundamental representation of e6,
we refer to the weight diagram of the Figure 22 where we have a top state |ξ1〉 with weight
ξ1 = ω1 and a bottom state ξ27 = −ω5. The other 25 states in between can be generated

either by starting from the |ξ1〉 and successively acting on it by the step operators
�

Eβ
�†
= E−β

where β a positive root of e6, or by acting on the bottom state
�

�ξ27

�

with
�

E−β
�†
= Eβ .

The subspaces of the 27 representation correspond in the figure 22 to:

|1〉 , |ξ1〉−4/3 = |ω1〉 ,
↓
|16〉 , |ξα〉+1/3 ,
↓
|10〉 , |ξi〉−2/3 ,

(186)

such that the top state |ξ1〉 is an SO10 singlet, the 16 states |ξ2〉 , ...,
�

�ξ17

�

constitute a chiral
spinor of SO10, and the ten states |ξ18〉 , ...,

�

�ξ27

�

form a vector of SO10.

6.2 Minuscule E6 ’t Hooft operator

We can now use the collected mathematical tools concerning the exceptional Lie algebra e6
to calculate the Lax operator Lµe6

describing the coupling of an exceptional minuscule ’t Hooft
line tHµγ0

with magnetic charge µ= µ1 interacting with a Wilson line W R
ξz

with electric charge
R = 27.

6.2.1 Realizing the generators of the nilpotent subalgebras

To construct the ’t Hoof line operator Lµ27 of the exceptional E6 Chern-Simons theory in 4D,
we begin by building the generators of the nilpotent subalgebras that appear in the Levi fac-
torisation -based formula [53] where µ=ω1 and the nilpotent matrix operators are given
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Figure 23: A graphical illustration of the Levi decomposition of the representation
27 of e6 in terms of representations of so10.

by

X =
16
∑

β=1

b
β

Xβ , Y =
16
∑

β=1

cβY β . (187)

In these expansions, the sixteen bβ and the sixteen cβ are the 16+16 Darboux coordinates
of the phase space of the exceptional E6 ’t Hooft line tHµγ0

. They satisfy the Poisson bracket
�

bγ, cβ
	

= δγ
β

that must be promoted to a commutator in the study of interacting quantum

lines. Xβ and Y β are the generators of the nilpotent subalgebras 16+ and 16−. The charge
operator µ of the Levi subalgebra associated with the minuscule coweight can be presented as

µ= −
4
3
ϱ1 +

2
3
ϱ10 −

1
3
ϱ16 , (188)

where ϱ1, ϱ10 and ϱ16 are projectors on the so2⊕so10 representation subspaces making the 27
fundamental of E6 as given by eq.(184). By denoting the 27 states |ξA〉 of this representation
as

Groups E6 SO10 × SO2

States |ξA〉 |υi〉 |sα〉 |ϕ〉
Repres 270 10+2/3 16−1/3 1−4/3

(189)

following the splitting formally represented in the picture 23,
we can write the projectors ϱR on the fundamental representation of e6 as

ϱ10 =
10
∑

l=1

|vl〉



v l
�

� , ϱ16 =
16
∑

β=1

�

�sβ
� 


sβ
�

� , ϱ1 = |ϕ〉 〈ϕ| . (190)

Using the state basis kets |vl〉 ,
�

�sβ
�

and |ϕ〉 satisfying the orthogonality properties
〈ϕ|vl〉 =



ϕ|sβ
�

=



vl |sβ
�

= 0, we realise the generators Xβ and Y β of the nilpotent sub-
algebras like

Xβ = |vi〉
�

Γ i
�

βγ
〈sγ|+
�

�sβ
�

〈ϕ| ,

Y β = |ϕ〉



sβ
�

�+
�

�sγ
�

(Γi)
βγ



v i
�

� ,
(191)

where the Γi ’s are Gamma matrices satisfying the usual Clifford algebra in ten dimensional
space, namely ΓiΓ j + Γ jΓi = 2δi j . Moreover, if we adopt the short notations |1〉 , |10〉 and
|16〉 to refer to the singlet state |ϕ〉 , the vector |vl〉 and the spinor

�

�sβ
�

, we can express the
projectors more simply like ϱ1 = |1〉 〈1|, and ϱ10 = |10〉 〈10| as well as ϱ16 = |16〉 〈16|. Then,
we also end up with the following expressions for the nilpotent generators (191):

Xβ = |10〉 〈16|+ |16〉 〈1| ,

Y β = |1〉 〈16|+ |16〉 〈10| ,

µ=
2
3
|10〉 〈10| −

1
3
|16〉 〈16| −

4
3
|1〉 〈1| .

(192)
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We can check that this realisation solves the Levi decomposition constraints, namely
�

µ, Xβ
�

= Xβ ,
�

µ, Y β
�

= −Y β . (193)

We have for example µXβ =
2
3 |10〉 〈16| − 1

3 |16〉 〈1| and Xβµ = −
1
3 |10〉 〈16| − 4

3 |16〉 〈1|, thus
leading to
�

µ, Xβ
�

= Xβ . Notice that this realisation leads to

XαXβ = |vi〉
�

Γ i
�

αβ
〈ϕ| ,

Y αY β = |ϕ〉 (Γi)
βα



v i
�

� ,
(194)

and
XαXβXγ = 0 , Y αY βY γ = 0 . (195)

We also have as interesting properties Xβϱ10 = 0 and ϱ10Y β = 0, as well as

Xβϱ1 = Xβ , ϱ1Y β = Y β ,

Xβϱ16 = Xβ , ϱ16Y β = Y β .
(196)

From these relations and the linear combinations X = b
β
Xβ and Y = cβY β given by (187), we

learn that X 3 = Y 3 = 0 while

X 2 = 2V i |vi〉 〈0| , Y 2 = 2Wi |0〉



v i
�

� , (197)

where we have set

V i =
1
2

bα
�

Γ i
�

αβ
bβ , Wi =

1
2

cα (Γi)
αβ cβ . (198)

In terms of the short notations, we have XαXβ ∼ |10〉 〈1| and Y αY β ∼ |1〉 〈10| as well as
X 2 = 2V |10〉 〈1| and Y 2 = 2W |1〉 〈10| where V and W are the vectors appearing in (197).

6.2.2 Constructing the operator Lµe6

For the final step, we use the nilpotency feature of X and Y yielding the finite expansions
eX = I + X + 1

2 X 2 and eY = I + Y + 1
2 Y 2 as well as zµeY = zµ + zµY + 1

2zµY 2. Moreover, by
replacing with

zµ = z−
4
3ϱ1 + z

2
3ϱ10 + z−

1
3ϱ16 , (199)

and ϱ10Y = 0, we obtain

zµeY = z−4/3ϱ1 + z−1/3ϱ16 + z2/3ϱ10 + z−4/3ϱ1Y + z−1/3ϱ16Y +
1
2

z−4/3ϱ1Y 2 . (200)

Substituting this into eX zµeY and using the property Xϱ10 = 0, we finally find the expression
of the L-operator we are looking for:

Lµ27 = z−
4
3ϱ1 + z−1/3ϱ16 + z2/3ϱ10 + z−4/3ϱ1Y + z−1/3ϱ16Y (201)

+ z−
4
3 Xϱ1 + z−1/3Xϱ16 + z−

4
3 Xϱ1Y (202)

+
1
2

z−
4
3ϱ1Y 2 + z−1/3Xϱ16Y +

1
2

z−
4
3 Xϱ1Y 2 (203)

+
1
2

z−
4
3 X 2ϱ1 +

1
2

z−
4
3 X 2ϱ1Y +

1
4

z−
4
3 X 2ϱ1Y 2 . (204)

Notice that each one of the zµ, eX and eY has 3 monomials leading in general to 81 monomials
for the Lµ27. However, The above expression was simplified thanks to useful properties such
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as Xϱ10 = 0 and ϱ10Y = 0 and the other ones mentioned above. It can be further expressed
in terms of Darboux ccordinates by substituting the following relations

Xϱ1 = bβ , X 2ϱ1 = bβΓ i
βγbγ , (205)

ϱ1Y = cα , Xϱ1Y 2 = bαcβΓ
βγ
i c , (206)

Xϱ1Y = bβ cα , X 2ϱ1Y 2 = bβΓ i
βγbγcβΓ

βγ
i cγ , (207)

and

Xϱ16 = bγΓ i
γβ ,

ϱ16Y = Γ γβi cγ ,

Xϱ16Y = bγΓ i
γβΓ

γβ
i cγ ,

ϱ1Y 2 = cβΓ
βγ
i cγ ,

(208)

and
Xϱ16Y 2 = 0 , X 2ϱ16Y 2 = 0 . (209)

6.3 Topological gauge quiver for E6

In this subsection, we construct the topological gauge quiver Qµ27 associated with the operator
Lµ27 (204). First, we give the matrix form of the L-operator in terms of the phase variables bβ

and cβ to underline their field theory interpretation in terms of topological bi-matter. Then,
we derive the quiver representation Qµ27 using the projectors ϱ1, ϱ10 and ϱ16 on the sub-
representations of so10 within the 27 of E6.
By ordering the above mentioned projectors like

�

ϱ10,ϱ16,ϱ1

�

and thinking of them as rep-

resenting the sub-blocks of the matrix; the operator Lµ27 is put as follows

Lµ27 =







z
2
3ϱ10 + z−

1
3 Xϱ16Y + 1

4z−
4
3 X 2ϱ1Y 2 z−

1
3 Xϱ16 +

1
2z−

4
3 X 2ϱ1Y 1

2z−
4
3 X 2ϱ1

z−
1
3ϱ16Y + 1

2z−
4
3 Xϱ1Y 2 z−

1
3ϱ16 + z−

4
3 Xϱ1Y z−

4
3 Xϱ1

1
2z−

4
3ϱ1Y 2 z−

4
3ϱ1Y z−

4
3ϱ1






,

(210)
which is also obtained in [60]. By substituting eqs(191) and (197) into the expansions X= b

β

Xβ
and Y = cβY β as well as into their squares X 2 and Y 2, we obtain

Lµ27 =







z
2
3 + z−

1
3 bβ cβ +

1
4z−

4
3 V iWi z−

1
3 bβΓ i

βγ
+ 1

2z−
4
3 V icβ

1
2z−

4
3 V i

z−
1
3 cβΓ

βγ
i + 1

2z−
4
3 bβWi z−

1
3 + z−

4
3 bβ cβ z−

4
3 bβ

1
2z−

4
3 Wi z−

4
3 cβ z−

4
3






, (211)

where V i = 1
2bΓ ib and Wi =

1
2cΓic. This is the most convenient expression of the coupling

between ’tH
µe6
γ0

and W 27
ξz

in the E6 CS theory allowing to derive the associated topological

quiver Qµ27. In fact, by writing the L-operator like
¬

ϱRi
|Lµ|ϱR j

¶

, which is

Lµi j = ϱRi
LµϱR j

. (212)

We have in terms of the projectors:

Lµ27 =





ϱ10Lµϱ10 ϱ10Lµϱ16 ϱ10Lµϱ1

ϱ16Lµϱ10 ϱ16Lµϱ16 ϱ16Lµϱ1

ϱ1Lµϱ10 ϱ1Lµϱ16 ϱ1Lµϱ1



 . (213)
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N N

N

Figure 24: Lµ27 as a topological quiver with 3 nodes and 6 links. The nodes are
given by the self-dual Ri ⊗ R̄i and the links by bi-matter Ri ⊗ R̄ j . In addition to SO10
representations, the Darboux coordinates bα, cα carry SO2 charges given by q = ±1.
The fundamental vector-like matter V i and Wi carry −2 and +2.

This directly indicates that the topological gauge quiver Qµ27 has three nodes N1, N2, N3 and
six links, three Li j and three L ji with i > j = 1, 2,3, as depicted by the Figure 24.
The Ni nodes are associated with the diagonal enties of (213), namely

N1 ≡ ϱ10Lµϱ10 , N2 ≡ ϱ16Lµϱ16 , N3 ≡ ϱ1Lµϱ1 . (214)

We will refer to them in terms of the SO2 × SO10 representations as follows

N1 : 10+2/3 ,

N2 : 16−1/3 ,

N3 : 1−4/3 .

(215)

The Li j links of the quiver Qµ27 are given by the off diagonal terms ϱRi
LµϱR j

with i ̸= j. These
links transform in the fundamental representations of SO2×SO10 knowing that 10 and 16 and
their duals are fundamental representations of SO10. The explicit expressions of these links
are given in the following table

link Repres bi-matter link Repres bi-matter

L1→2 16− 1
3
× 10− 2

3
b, b2c L2→1 10 2

3
× 16 1

3
c, bc2

L2→3 1− 4
3
× 16+ 1

3
b L2→1 16− 1

3
× 1 4

3
c

L1→3 1− 4
3
× 10− 2

3
b2 L3→1 10 2

3
× 1+ 4

3
c2

(216)

7 Minuscule line defects in E7 CS theory

In this section, we complete the study undertaken in this paper regarding the minuscule L-
operators of ADE type by investigating the case of 4D Chern Simons theory with exceptional
E7 gage symmetry. Just as before, we treat this theory by studying the properties of interacting
minuscule ’t Hooft and Wilson lines, and construct the Lax operators LµRe7

and the associated

topological gauge quivers QµRe7
by focusing on the fundamental Re7

= 56.
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Figure 25: Dynkin Diagram of E7 having seven nodes labeled by the simple roots
αi . The cross (×) indicates the root cut by the Levi decomposition where the Levi
subgroup is SO2 × E6.

7.1 Levi subalgebra of E7 and weights of the 56e7

First, we begin by recalling the useful aspects of the e7 Lie algebra that will play an important
role in our construction. In particular, the root system Φe7

containing 126 roots is generated
by seven simple roots αi realised as follows

E7 : α1 =
1
2

�

ε1 − ε2 − ε3 − ε4 − ε5 − ε6 − ε7 + ε8

�

,

αi = εi − εi−1 , i = 2, 3,4, 6 ,

α7 = ε1 + ε2 .

(217)

The Dynkin diagram underlying the gauge symmetry of the 4D CS theory with E7 symmetry
is given by the Figure 25 where the seven simple roots αi are exhibited.
The associated Cartan matrix Ke7

reads as

Ke7
=



















2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 −1
0 0 −1 2 −1 0 0
0 0 0 −1 2 0 0
0 0 0 0 0 2 0
0 0 −1 0 0 0 2



















. (218)

It describes the intersection matrix αi .α j while its inverse gives the fundamental coweights of
E7. One of these coweights is particularly interesting for our present study; the µ dual to α6 is
the only minuscule coweight of e7.

7.1.1 Minuscule coweight of E7

From the Cartan matrix Ke7
, we can learn useful informations regarding the Lie algebra e7 and

its representations, in particular the expressions of fundamental weightsωi in terms of simple
roots:

fund- ωi in terms of roots
ω1 2α1 + 3α2 + 4α3 + 3α4 + 2α5 +α6 + 2α7

ω2 3α1 + 6α2 + 8α3 + 6α4 + 4α5 + 2α6 + 4α7

ω3 4α1 + 8α2 + 12α3 + 9α4 + 6α5 + 3α6 + 6α7

ω4 3α1 + 6α2 + 9α3 +
15
2 α4 + 5α5 +

5
2α6 +

9
2α7

ω5 2α1 + 4α2 + 6α3 + 5α4 + 4α5 + 2α6 + 3α7

ω6 α1 + 2α2 + 3α3 +
5
2α4 + 2α5 +

3
2α6 +

3
2α7

ω7 2α1 + 4α2 + 6α3 +
9
2α4 + 3α5 +

3
2α6 +

7
2α7

(219)
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The exceptional Lie algebra e7 has one minuscule coweight µ given by ω6, thus the corre-
sponding Levi decomposition n− ⊕ lµ ⊕ n+ for this algebra is given by

lµ = so2 ⊕ e6 , n± = 27± . (220)

The dimensions of n± can be calculated by dispatching the algebraic dimensions of e7 with
respect to so2 ⊕ e6, in fact we have 133 = 1 + 78 + 27 + 27. This Levi decomposition with
respect to the minuscule coweight µ requires the following adjoint actions

[µ,n±] = ±n± , [n+,n−] = 0 . (221)

These constraints show that the 27 generators Xβ of the nilpotent algebra n+ and the 27
generators Yβ of the algebra n− have opposite so2 charges ±1, which is important to consider
when realising the action of Xβ and Yβ on the electrically charged quantum states |A〉 that we
take in the fundamental representation of E7.

7.1.2 Representation 56 of the e7 Lie algebra

The fundamental representation of the e7 algebra has 56 dimensions, it is self dual and pseudo-
real [68]. Its weight diagram is given by the Figure 26 where the weight ξ0 of the top state
|ξ0〉 corresponds to the minuscule coweight ω6 while the weight ξ55 of the bottom state |ξ55〉
is precisely −ω6, meaning that we have ξ0 + ξ55 = 0.
Under the Levi decomposition associated to the minuscule µ, the fundamental representation
56 decomposes as a reducible sum of so2 ⊕ e6 representations as follows

560 = 28+ ⊕ 28− ,

28+ ⊕ 28− = 13/2 ⊕ 27+1/2 ⊕ 27−1/2 ⊕ 1−3/2 ,
(222)

where we have four e6 representations, two singlets 1±3/2 and two fundamentals 27±1/2.
In the diagram of Figure 27, the 28 weights of 28+ are labeled by the subset W+ = {|ξi〉}0≤i≤27
and the 28 weights of the 28− by W− = {|ξi〉}28≤i≤55. Weights ξi in the set W+ ∪W− obey
some special features that characterize this exceptional algebra and that will be helpful for the
construction of the operator Lµe7

, they are listed below

ξ27 = ξ0 − βmax , ξ27 + ξ28 = ξ0 + ξ55 ,

ξ28 = ξ55 + βmax , ξi + ξ55−i = ξ0 + ξ55 , (223)

ξi = ξ0 − γi , ξ55−i = ξ55 + γi ,

for a generic root γi in the nilpotent 27+ and where βmax is given by

βmax = 2α1 + 3α2 + 4α3 + 3α4 + 2α5 +α6 + 2α7 . (224)

We also have
ξ0 − ξ55 = 2ω6 , ξi − ξ55−i = 2ω6 − 2γi . (225)

The list of the ten weights ξA, A= 1, ..., 10 represented by blue dots in the Figure 26 is given
in the following table in terms of the seven ωi ’s,

ξ1 =ω5 −ω6 , ξ6 =ω2 −ω7 ,

ξ2 =ω4 −ω5 , ξ7 =ω1 +ω3 −ω7 −ω2 ,

ξ3 =ω3 −ω4 , ξ8 =ω1 +ω4 −ω3 , (226)

ξ4 =ω7 +ω2 −ω3 , ξ9 =ω1 +ω5 −ω4 ,

ξ5 =ω1 +ω7 −ω2 , ξ10 =ω1 +ω6 −ω5 ,
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Figure 26: The decomposition of the 56 representation of e7 in terms of representa-
tions of e6. We have 56= 28+ ⊕ 28− where 28± are reducible like 1±3/2 ⊕ 27±1/2.

47

https://scipost.org
https://scipost.org/SciPostPhys.15.3.078


SciPost Phys. 15, 078 (2023)

Figure 27: The decomposition of the 56 representation of E7 in terms of representa-
tions of E6. We have 56= 28+ ⊕ 28− with 28± reducible like 1±3/2 ⊕ 27±1/2.

while the next sixteen states (8+8) represented in the Figure 26 by yellow and magenta colored
dots (from ξ19 to ξ26) are listed here

ξ11 =ω7 −ω1 , ξ15 =ω5 +ω2 −ω4 −ω1 ,

ξ12 = −ω7 −ω1 , ξ16 =ω5 +ω3 −ω4 −ω2 ,

ξ13 =ω2 +ω4 −ω3 −ω1 , ξ17 =ω7 +ω5 −ω3 ,

ξ14 =ω4 −ω2 , ξ18 =ω5 −ω7 ,

(227)

and

ξ19 =ω2 +ω6 −ω1 −ω5 , ξ23 =ω7 +ω6 −ω4 ,

ξ20 =ω3 +ω6 −ω5 −ω2 , ξ24 =ω3 +ω6 −ω4 −ω7 ,

ξ21 =ω7 +ω4 +ω6 −ω5 −ω3 , ξ25 =ω2 +ω6 −ω3 ,

ξ22 =ω4 +ω6 −ω5 −ω7 , ξ26 =ω1 +ω6 −ω2 .

(228)

The last 27-th weight is equal to ξ27 =ω6 −ω1.

7.2 Constructing the Lµ56

Now, we consider the minuscule ’t Hooft line embedded in the E7 CS theory crossing a Wilson
line W R

e7
with electric weight given by the representation 56. To construct the L-operator Lµ56

describing these topological lines’ coupling, we follow the same approach adopted before for
the study A-, D- and E6 type theories.

7.2.1 Realising the generators of the n±27 subalgebras

We begin by recalling that in the L-operator formula for the E7 symmetry, namely
Lµ56 = eX zµeY , the µ is the minuscule coweight given in (25) and X and Y are nilpotent matrices
expanding as

X =
27
∑

β=1

b
β

Xβ , Y =
27
∑

β=1

cβY β . (229)

Here, the twenty seven bβ and twenty seven cβ are the Darboux coordinates of the phase space
of the E7-type ’t Hooft line. The realisation of the nilpotent generators Xβ and Y β can be first
written using simple representation language like

Xβ ≡ |1+〉 〈27+|+ |27+〉 〈27−|+ |27−〉 〈1−| ,

Y β ≡ |1−〉 〈27−|+ |27−〉 〈27+|+ |27+〉 〈1+| ,
(230)
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where we dropped the charges from 1±3/2 and 27±1/2 for simplicity. The explicit form of these
generators in terms of the weight states |ξA〉 and their duals 〈ξA| is given by

Xβ =
�

�ξ0+

� 


ξβ+

�

�+
�

�ξδ+

�

Γ
δ+γ−
β




ξγ−

�

�+
�

�ξβ−

� 


ξ0−

�

� ,

Y β =
�

�ξ0−

� 


ξβ−
�

�+ |ξγ−〉 Γ β
γ−δ+




ξδ+
�

�+
�

�ξβ+
� 


ξ0+

�

� ,
(231)

where Γ δ+γ−
β

and Γ β
γ−δ+

are couplings between states in the 27 representations of E6; these
tensors are allowed by the tensor product of E6 representations [65]. The adjoint form of the
minuscule coweight used is given by

µ=
3
2
ϱ1+ +

1
2
ϱ27+ −

1
2
ϱ27− −

3
2
ϱ1− , (232)

where the four ϱRi
’s are projectors on the e6 representations Ri within the 56 of e7, they read

as follows
ϱ1q
=
�

�

�ξ0q

¶¬

ξ0q

�

�

� , ϱ27q
=
�

�

�ξ27q

¶¬

ξ27q

�

�

� , (233)

with q = ± and
¬

ξ0q
|ξ0q

¶

=
¬

ξ27q
|ξ27q

¶

= 1. They can also be written in formal notations as

ϱ1q
=
�

�1q

� 


1q

�

� , ϱ27q
=
�

�27q

� 


27q

�

� . (234)

Now, we need to compute the powers of the generators Xβ and Y β that will appear in the
expansion of the L-operator. We find using the realisation (230-231) that the non vanishing
monomials are

XαXβ ≡ |1+〉 〈27−|+ |27+〉 〈1−| , XαXβXγ ≡ |1+〉 〈1−| ,

Y αY β ≡ |1−〉 〈27+|+ |27−〉 〈1+| , Y αY βY γ ≡ |1−〉 〈1+| ,
(235)

while the fourth order powers vanish identically. For the powers of the linear combinations
X = b

β
Xβ and Y = cβY β , we find

X 2 = 2Sβ−
�

�ξ0+

� 


ξβ−

�

�+ 2Sβ+
�

�ξβ+

� 


ξ0−

�

� ,

Y 2 = 2Rα+
�

�ξ0−

�

〈ξα+ |+ 2Rα− |ξ
α−〉



ξ0+

�

� ,
(236)

and

X 3 = 6E
�

�ξ0+

� 


ξ0−

�

� ,

Y 3 = 6F
�

�ξ0−

� 


ξ0+

�

� ,
(237)

and of course, X 4 = Y 4 = 0. The realisation (230-231) does also obey the commutation
relations
�

µ,Xβ
�

= Xβ and
�

µ,Y β
�

= −Y β from which we deduce that

[µ,X ] = X , [µ,Y ] = −Y , (238)

as required by the Levi decomposition with respect to µ.

7.2.2 The L-operator Lµ56

Finally, to obtain the expression of Lµ56 in terms of the 27+27 Darboux coordinates bβ and cβ ,
we use the nilpotency properties mentioned above to write

Lµ56 =
�

I + X +
1
2

X 2 +
1
6

X 3
�

zµ
�

I + Y +
1
2

Y 2 +
1
6

Y 3
�

, (239)
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and substitute with
zµ = z

3
2ϱ1+ + z

1
2ϱ27+ + z−

1
2ϱ27− + z−

3
2ϱ1− . (240)

We moreover need to take into account the special properties of the X and Y matrices, like for
example Xϱ1+ = 0 and ϱ1+Y = 0, to reduce the monomials of this L-operator down to 30 as
given below

Lµ56 = z
3
2ϱ1+ + z

1
2ϱ27+ + z−

1
2ϱ27− + z−

3
2ϱ1−

+ z
1
2 Xϱ27+ + z−

1
2 Xϱ27− + z−

3
2 Xϱ1−

+ z
1
2ϱ27+Y + z−

1
2ϱ27−Y + z−

3
2ϱ1−Y

+
1
2

X 2z−
1
2ϱ27− +

1
2

z−
3
2 X 2ϱ1− +

1
6

z−
3
2 X 3ϱ1−

+
1
2

z−
1
2ϱ27−Y 2 +

1
2

z−
3
2ϱ1−Y 2 +

1
6

z−
3
2ϱ1−Y 3

+ z
1
2 Xϱ27+Y + z−

1
2 Xϱ27−Y + z−

3
2 Xϱ1−Y

+
1
2

z−
1
2 Xϱ27−Y 2 +

1
2

z−
3
2 Xϱ1−Y 2

+
1
2

z−
1
2 X 2ϱ27−Y +

1
2

z−
3
2 X 2ϱ1−Y ++

1
6

z−
3
2 Xϱ1−Y 3

+
1
6

z−
3
2 X 3ϱ1−Y +

1
12

z−
3
2 X 2ϱ1−Y 3 +

1
12

z−
3
2 X 3ϱ1−Y 2

+
1
4

z−
1
2 X 2ϱ27−Y 2 +

1
4

z−
3
2 X 2ϱ1−Y 2 +

1
36

z−
3
2 X 3ϱ1−Y 3 . (241)

The explicit form of Lµ56 given in [60] is obtained by replacing X = bβXβ , Y = cβY β and µ by
their explicit realisations (231,232,236). This is clearly a cumbersome expression, that’s why
we use the quiver gauge description to exhibit the interesting information encoded in Lµ56 and
help visualize the key role of the Darboux coordinates.

7.3 Topological gauge quiver Qµ56

The shape of the gauge quiver Qµ56 associated to the Lµ56 operator can be directly deduced
from properties of the e7 algebra by comparison with the previously built quivers for slN , so2N
and e6. Firstly, we can say that the Qµ56 has four nodes Ni in 1:1 correspondence with the four
projectors ϱ1± and ϱ27± , and 12 links Li j connecting the pairs

�

Ni ,N j

�

. Therefore, we can
begin by visualizing this Qµ56 as given in the Figure 28 , and then move on to explicitly derive
it and extract its features.
We represent the Lµ56 in the projector basis using the ϱRq

ordered like
�

ϱ1+ ,ϱ27+ ,ϱ27− ,ϱ1−

�

Lµ56 =







ϱ1+Lϱ1+ ϱ1+Lϱ27+ ϱ1+Lϱ27− ϱ1+Lϱ1−
ϱ27+Lϱ1+ ϱ27+Lϱ27+ ϱ27+Lϱ27− ϱ27+Lϱ1−
ϱ27−Lϱ1+ ϱ27−Lϱ27+ ϱ27−Lϱ27− ϱ27−Lϱ1−
ϱ1−Lϱ1+ ϱ1−Lϱ27+ ϱ1−Lϱ27− ϱ1−Lϱ1−






. (242)

The diagonal terms ϱRi
LϱRi

are depicted by the four nodes NRi
of Qµ56, while the off diagonal

terms ϱRi
LϱR j

with i ̸= j are associated to the twelve links Li j .

NRi
≡ ϱRi

LϱRi
, Li j = ϱRi

LϱR j
. (243)

As the explicit calculation of these quantities is cumbersome, we decompose the matrix Lµ56
(242) into four blocks Aµ56, Bµ56, Cµ56 and Dµ56 as follows

Lµ56 =

�

Aµ56 Bµ56
Cµ56 Dµ56

�

, (244)

50

https://scipost.org
https://scipost.org/SciPostPhys.15.3.078


SciPost Phys. 15, 078 (2023)

-

+ +

-

Figure 28: The topological quiver Qµ56 representing Lµ56. It has 4 nodes and 12
links. The nodes describe self-dual topological matter. The links describe bi-matter
in
�

Ri , R̄ j

�

of E6 charged under SO (2) with charges ±1,±2, ±3.

• the block A: concerns the sector 28+ of 56:

Aµ56 =

�

ϱ1+Lϱ1+ ϱ1+Lϱ27+
ϱ27+Lϱ1+ ϱ27+Lϱ27+

�

=

�

AI
I AI I

I
AI

I I AI I
I I

�

, (245)

with

AI
I = z

3
2ϱ1++z

1
2 Xϱ27+Y +

1
4

z−
1
2 X 2ϱ27−Y 2 +

1
36

z−
3
2 X 3ϱ1−Y 3 ,

AI I
I = z

1
2 Xϱ27++

1
2

z−
1
2 X 2ϱ27−Y +

1
12

z−
3
2 X 3ϱ1−Y 2 ,

AI
I I = z

1
2ϱ27+Y+

1
2

z−
1
2 Xϱ27−Y 2 +

1
12

z−
3
2 X 2ϱ1−Y 3 ,

AI I
I I = z

1
2ϱ27++z−

1
2 Xϱ27−Y +

1
4

z−
3
2 X 2ϱ1−Y 2 ,

(246)

The AI
I and AI I

I I are associated to the nodes N13/2
and N271/2

, while the sub-blocks AI I
I

and AI
I I describe links between these nodes.

• the block D: concerns the sector 28− of the representation 56:

Dµ56 =

�

z−
1
2ϱ27−+z−

3
2 Xϱ1−Y z−

3
2 Xϱ1−

z−
3
2ϱ1−Y z−

3
2ϱ1−

�

, (247)

where DI
I and DI I

I I are associated to N27−1/2
and N1−3/2

and DI I
I and DI

I I are associated to
links between them.

• the blocks B and C: Describe couplings between sectors 28+ and 28−:

Bµ56 =

�

1
2 X 2z−

1
2ϱ27− +

1
6z−

3
2 X 3ϱ1−Y 1

6z−
3
2 X 3ϱ1−

z−
1
2 Xϱ27−+

1
2z−

3
2 X 2ϱ1−Y 1

2z−
3
2 X 2ϱ1−

�

, (248)

Cµ56 =

�

1
2z−

1
2ϱ27−Y 2 + 1

6z−
3
2 Xϱ1−Y 3 z−

1
2ϱ27−Y+1

2z−
3
2 Xϱ1−Y 2

1
6z−

3
2ϱ1−Y 3 1

2z−
3
2ϱ1−Y 2

�

.
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Entries of these matrices give 4+4 links between the nodes’ pairs
�

N13/2
,N271/2

�

and
�

N27−1/2
,N1−3/2

�

.

And so indeed, the topological gauge quiver Qµ56 associated with Lµ56 has four nodes Ni
corresponding to the e6 representations

N1 : 1+3/2 , N3 : 27−1/2 ,

N2 : 27+1/2 , N4 : 1−3/2 ,
(249)

and describing self-dual topological gauge matter. It also has 12 links Li j describing topological
bi-fundamental gauge matter




Ri ,R j

�

as collected in the following tables

link Repres bi-matter link Repres bi-matter

L1→2




1+3/2,27−1/2

�

bα L2→3




27+1/2,27+1/2

�

bα

L1→3




1+3/2,27+1/2

�

Bα L2→4




27+1/2,1+3/2

�

Bα

L1→4




1+3/2,1+3/2

�

Bαbα L3→4




27−1/2,1+3/2

�

bα

(250)

and

link Repres bi-matter link Repres bi-matter

L1←−2




1−3/2,27+1/2

�

cα L2←−3




27−1/2,27−1/2

�

cα

L1←−3




1+3/2,27+1/2

�

Cα L2←−4




27−1/2,1−3/2

�

Cα

L1←−4




1+3/2,1+3/2

�

cααC L3←−4




27+1/2,1−3/2

�

cα

(251)

In these tables, Bγ stands for bαΓ γ
αβ

bβ having charge −2, and Cγ refers to cαΓ̄
αβ
γ cβ having

charge +2. The composites Bαbα and cααC have charges −3 and +3 respectively.

8 Conclusion and comments

The results presented in this paper are based on the correspondence between two dimensional
integrable models and four dimensional Chern-Simons gauge theory as formulated in [23].
In the M4 = R2 × CP1 of the gauge theory, one can build an integrable lattice model by
implementing a set of line defects looking like curves on R2 and points on CP1. In such
construction, the integrability of the corresponding low-dimensional system constrained by
the Yang Baxter or RLL equation is a direct result of the mixed topological-holomorphic nature
of the line defects and the diffeomorphism invariance in four dimensions. The RLL equation
for example, corresponds to the graphical equivalence of the intersections in different orders
of two electric Wilson lines with one magnetic ’t Hooft line, see Figure 5. In this image, the
explicit Feynman diagrams calculation for the intersection of two Wilson lines in 4D CS yields
the first order expansion of the R-matrix acting on the two quantum spaces carried by the
electrically charged lines [21–23]. The L-operator is realised as the intersection of an electric
Wilson line with a magnetic ’t Hooft line whose oscillator phase space acts as an auxiliary
space [53].

This Wilson/’t Hooft coupling in the 4D CS theory is the particularly interesting ingredient
of our current investigation, it allows to realise the Lax matrix as a building block of the transfer
matrix generating conserved commuting quantities of the spin chain. This important quantity
is calculated in the integrability literature using Yangian representations based techniques that
can be cumbersome and inefficient in cases with complicated symmetries. Surprisingly, it was
shown in [53] that the oscillator realisation of these L-operators for an XXX spin chain having
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the internal symmetry g can be recovered from the analysis of solutions to the equations of
motion of the 4D CS theory with gauge symmetry G, in the presence of interacting Wilson and
’t Hooft lines. A general formula describing the coupling of a Wilson line with electric charge
in a representation R of G and a ’t Hooft line with magnetic charge given by a minuscule
coweight µ of G reads as LµR = eXRzµeYR . This yields a matrix representation in terms of
harmonic oscillators in XR and YR with sub-blocks following from the Levi decomposition of R
with respect to µ.

The first part of our contribution concerned the exploitation of this formula to explicitly
calculate this coupling for different types of ’t Hooft and Wilson line defects in 4D Chern-
Simons theories with SLN , SO2N , E6 and E7 gauge symmetries. In particular, we investigated
the splitting of various representations under the action of minuscule coweights as a first step
towards the construction of L-operators in representations beyond the fundamental for ADE
Lie algebras. Therefore, a better understanding of the effect of the Dirac-like singularity on
the gauge field bundles behavior and the internal quantum states of a spin chain.

We remarked that the L-operators have unified intrinsic features that can be represented
by topological quiver diagrams QµR having a formal similarity with the well known graphs
Qsus y

G of supersymmetric quiver gauge theories embedded in type II strings. This formal link
gives an interesting interpretation of the Darboux coordinates

�

bα, cβ
�

of the phase space of
the L-operators in terms of topological bi-fundamental matter. In this regard, we gave several
examples to (i) explain the strong aspects of this diagrammatic approach, and (ii) to show
how it can be used to forecast the general form of the matrix representation of L-operators by
indicating the action of its sub-blocks and their charges in terms of combinations of Darboux
coordinates.

In particular, For the A-type Chern-Simons theory, all fundamental coweights are minus-
cule, and therefore we give in Figure 29, for a generic magnetic charge µk of slN , four quiver
diagrams describing L-operators classified by representations R of the Wilson line.

In the case of D-type symmetry, we have two types of minuscule ’t Hooft lines associated
to the vectorial and spinorial coweights of the SO2N gauge symmetry. In the figure 30, we
give quiver diagrams describing four possibilities of Wilson/’t Hooft couplings: a magnetic
charge µ1 with electric R = 2N and with R = ad j so2N , and magnetic µN ∼ µN−1 with electric
R = 2N−1 and with R = ad j so2N .

The Figure 31 represents quiver gauge diagrams of exceptional type where we gave for
each one of the E6 and E7 4D CS theories the graphical descriptions for the coupling of the mi-
nuscule ’t Hooft line with Wilson lines in the fundamental and in the adjoint representations.
Notice however, that not all the representations studied here for the three types of symme-
tries lift to the Yangian; the corresponding L-operators are interpreted semi-classically in the
integrability language.

Moreover, this construction can be extended for the investigation of other L-operators that
are still missing in the spin chain literature; and the interpretations associated to the compo-
nents of the L-operator can also be used to link the diagrammatic description presented here to
quiver diagrams associated to the realisation of ’t Hooft line defects in supersymmetric quiver
theories; in particular the ADE quiver gauge theories describing the phase spacse of t’ Hooft
lines as the Coulomb branches as in [53].

Another exquisite property of this graphical quiver description in the 4D Chern-Simons
topological theory is the natural appearance of a unified theory structure where the minuscule
L-operators can be connected and classified in a larger E7 4D CS theory. In fact, the Lie algebras’
decompositions with respect to minuscule coweights link the E7 symmetry to the E6 and then
to the family of DN symmetries with N ≤ 5 and/or the AN with N ≤ 4. These chains of Levi
decompositions lead to different possible paths for the E7 symmetry breaking as described in
Figure 32 [69]. To visualize this from the quiver descriptions of L-operators, we can focus
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(d)

(N-1)

(N-1)

(N-1) (N-1)

Figure 29: Leading elements of topological quiver diagrams for the L-operators of
A- type. These quivers are classified by the magnetic charge µk of the ’t Hooft line
and the representation R. (a) Wilson line with charge R = N. (b) Wilson line with
R = N∧k. (c) Wilson line with R = N∨2. (d) Wilson line with R = N∨3. (e) Wilson
line with charge R = ad jslN .

on those corresponding to the fundamental representations and notice that the Q
µe7
56 has a

node corresponding to the 27 of E6; this node can be therefore imagined as including the
Q
µe6
27 which in turn includes the Qvect

10(so10)
and so on. Finally, notice that the calculation of

minuscule L-operators in 4D CS theories with SO2N+1 and SP2N symmetries having each only
one minuscule coweight, shows that for R = f undamental, theLvect

R(so2N+1)
matrix is very similar
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C C2(N-2)2(N-2)

C C(N-1)

N+ N-

(a) 1-

2N-2

(N-1)

(b)

(c)

(d)

Figure 30: Leading elements of topological quiver diagrams for the L-operators of
D- type. The first two quivers correspond to the Levi decomposition with respect
to the (vectorial) minuscule coweight µ1: (a) Wilson line with charge R = 2N. (b)
Wilson line with R = ad j so2N . The other two quivers correspond to the Levi decom-
position with respect to the (spinorial) minuscule coweight µN : (c) Wilson line with
R = 2N−1. (d) Wilson line with R = ad j so2N .

to Lvect
R(so2N )

while the Lspin
R(sp2N )

is similar to Lspin
R(so2N )

[61]. This means that the corresponding

quivers look like Qµ1
2N and QµN

2N which allows to include the B and C -type symmetries into this
unified classification.

A Appendix

In this appendix, we give complementary tools regarding the construction of the Lax matrix
from the associated graphical quiver description introduced in section 3. Recall that a topo-
logical quiver diagram in the 4D CS gauge theory is defined by the data (g,R,µ); g is the Lie
algebra of the gauge symmetry G, having a Levi decomposition under a minuscule coweight
µ reading as g = n− ⊕ lµ ⊕ n+. The R is some representation of g decomposing under µ as
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16+ 16-
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27+ 27-(d)

C C

CC

1+ 27+

27-1-

(c)

0

Figure 31: Leading elements of topological quiver diagrams for the L-operators of
E- type. The first two quivers for the E6 gauge theory. (a) for the fundamental
27 of E6; and (b) for the adjoint representation. The last two quivers regard the
E7 Chern-Simons theory. (c) for the fundamental 56 of E7 and (d) for the adjoint
representation.

follows

R =
p−1
∑

i=1

Rmi
. (A.1)

The mi ’s are Levi charges appearing in the adjoint action of µ reading in terms of projectors
as µ=
∑

i
miΠi . We begin by elaborating the general derivation of L using a quiver Q; then we

illustrate the construction through the particular example of Lµk
ad j for g = slN .

In fact, given a topological gauge quiver with p nodes Ni (1≤ i ≤ p) where sit representations
Rmi

, and links Li j (i ̸= j) interpreted as the bi-fundamentals
¬

Rmi
,Rm j

¶

; the corresponding
Lax matrix is obtained as follows. The contributions of the nodes having no Levi charge are
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Figure 32: Breaking chains of E7 symmetry as given by Levi decompositions with
respect to minuscule coweights. The bold arrows describe the exceptional sequence
leading to the Standard model-like group. The minuscule coweights µ correspond to
the Lie algebra at which the arrow starts.

given by the polynomials Pn(x) with argument x =: bc : and order 0≤ n≤ p− 1 as follows

L1
1 = α11zm1 +α12zm2bc+ ...+α1pzmpbp−1cp−1 ,

...

Li
i = αi1zmi +αi2zmi+1bc+ ...+αipzmpbp−icp−i , (A.2)

...

Lp
p = αp1zmp ,

where αi j are some real numbers.
The contributions of the links carry non-trivial integer Levi charges; they are given by polyno-
mials in b and c such as

Li
i+1 = zmi+1b+ zmi+2b2c+...+ zmpbp−icp−(i+1) ,

Li+1
i = zmi+1c+ zmi+2bc2...+ zmpbp−(i+1)cp−i ,

Li
j = zm j b j−i + zm j+1b j−i+1c+ ...+ zmpbp−icp− j , j > i ,

L j
i = zm j c j−i + zm j+1bc j−i+1 + ...+ zmpbp− jcp−i , j > i .

(A.3)

However, since the phase space coordinates b and c can be given by vectors or tensors de-
pending on the realisation of X and Y generating n±, these terms could be accompanied with
metrics to contract indices, thus homogenizing the tensor structure of each block.
The Lax matrices associated to the topological quivers in Figures 29,30 and 31 can be con-
structed using these general expressions and by mimicking the example given below.

Example of Lµk
ad j for slN :

In Figure 29-e, we drawn the gauge quiver Qµk
ad j in the 4D Chern-Simons theory with A- type

gauge symmetry. It corresponds to the Levi-decomposition (27) of ad j (slN ) with respect to a
minuscule coweight µ = µk with 2 ≤ k ≤ N − 2, it has three nodes N1,N2,N3 and six links
Li j with i ̸= j. The nodes correspond to the representations

ad j (slN ) = Rm1
⊕Rm2

⊕Rm3
,

Rm1
= [k(N − k)]− ,

Rm2
=
�

N2 − 2kN + 2k2 − 1
�

0 ,

Rm3
= [k(N − k)]+ ,

(A.4)
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where Levi charges mi are as given by the sub-labels 0,±1.
The Lax operator associated to the quiver 29-e is represented by

�

N2 − 1
�

×
�

N2 − 1
�

matrix
divided into three sub-blocks of dimensions d1 = d3 = k(N − k) and d2 = N2−2kN +2k2−1.
The contributions of the nodes are given by

Node Contribution
N1 (L)d1×d1

=
�

z + bc+ z−1b2c2
�

Π1 ,
N2 (L)d2×d2

=
�

1+ z−1bc
�

Π2 ,
N3 (L)d3×d3

= z−1Π3 .

(A.5)

And the contributions of the links are as follows

Link Contribution
L12 (L)d1×d2

= b+ z−1b2c ,
N23 (L)d2×d3

= z−1b ,
N13 (L)d1×d3

= z−1b2 ,

Link Contribution
L21 (L)d2×d1

= c+ z−1bc2 ,
N32 (L)d3×d2

= z−1c ,
N31 (L)d3×d1

= z−1c2 .

(A.6)
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