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Abstract

A holographic description of three-dimensional warped black holes suffers from ambi-
guities due to a seemingly harmless choice of coordinate system. This gives rise to the
notion of ensembles in warped black holes, and we focus on two of them: the canon-
ical and quadratic ensemble. Our aim is to quantify the imprint of these ensembles
in the near-extremal limit of a warped black hole. To this end, for each ensemble, we
explore the thermodynamic response and evaluate greybody factors. We also set-up a
holographic dictionary in their near-AdS2 region, and decode aspects of the dual near-
CFT1. This gives us different perspectives of the black hole that we can contrast and
compare. On the one hand, we find perfect agreement between the near-extremal limit
of the canonical ensemble warped black holes, their near-AdS2 effective analysis, and
a warped conformal field theory description. On the other, we are led to rule out the
quadratic ensemble due to inconsistencies at the quantum level with the near-AdS2 ef-
fective description.
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1 Introduction

Warped black holes are three-dimensional stationary spacetimes, which can carry mass and
angular momentum. They usually appear as classical solutions of gravitational theories with a
massive degree of freedom, such as topologically massive gravity [1,2], theories with a massive
vector field [3,4], or higher-derivative theories [5–7]. In all of these cases, the term “warped”
originates from approximate symmetries of the solution: in the absence of the black hole, the
Killing vectors of a warped background form an sl(2)× u(1) algebra. Intuitively, this algebra
can be understood as a deformation, or warping, of the size of a circle fiber inside of three-
dimensional Anti-de Sitter space (AdS3). In relation to its parent theory, the mass of the extra
degree of freedom controls the size of the fiber.

An appealing aspect of warped black holes is their delicate balance between simplicity and
complexity. They are simple configurations because they are a quotient of a warped AdS3
spacetime [8]: this places them on a similar footing to the BTZ black hole [9,10], and several
concepts that are useful in BTZ can be applied to warped black holes [11]. Their complexity
is due to its warped nature: a warped spacetime is neither locally, nor asymptotically, AdS3
which makes it an instance of non-AdS holography. Moreover, this deviation from AdS has
similarities with the near horizon geometry of the extreme Kerr black hole [12]. This places
several holographic aspects of warped solutions closer to the challenges faced by Kerr/CFT
[13], where it remains difficult to construct (or even characterise!) precisely the field theory
that would represent a holographic dual in Kerr/CFT.

Our aim here is to differentiate among different proposals of a holographic dual to warped
black holes. At the moment there are at least three different proposals to describe them holo-
graphically. Based on the results in [8], one expectation is that warped spacetimes (WAdS)
are dual to a two-dimensional conformal field theory (CFT2). This gives rise to a WAdS/CFT2
duality, and some evidence towards it includes [14–17]. Another approach is to view the dual
to warped spaces as a CFT2 for which one turns on a suitable irrelevant operator. The choice
of deformation is such that the theory becomes non-relativistic, and in particular one would
break the conformal group from sl(2)×sl(2) down to sl(2)×u(1). Two approaches that can ac-
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complish this mechanism are either a dipole deformation [18,19] or a JT̄ deformation [20,21].
Here we will take a third approach, where the proposed dual theory to WAdS is expected

to be a warped conformal field theory (WCFT). In its essence, a WCFT is a non-relativistic field
theory whose symmetries are sl(2)× u(1). Examples of WCFTs, and its field theoretic proper-
ties, have been reported in [22–29], and evidence towards a WAdS/WCFT correspondence can
be found in [11, 30–36]. Although this proposal seems compelling, and might be compatible
with the second proposal involving deformations, it also suffers from ambiguities. As observed
in [11], a WCFT seems to admit two different facades: a description in terms of a canonical en-
semble or a quadratic ensemble.1 The main difference between these ensembles is a choice of
coordinates. This coordinate transformation is state-dependent, and was introduced in [11] to
make a WCFT mimic some thermodynamic properties of a CFT2. In this context, the canonical
ensemble is a natural choice to describe the non-relativistic system using a state-independent
algebra; the quadratic ensemble has a state-dependent algebra that tries to imitate a CFT2.
We will review the definitions and properties of each of these ensemble in the next section.

The notion of ensembles also percolates into the definition of a warped black hole, giving
rise to a canonical ensemble solution and its counterpart quadratic ensemble black hole. In
this work we will be able to distinguish the fitness of each ensemble at setting up a holographic
dictionary between WAdS and WCFT, and we will also comment on the WAdS/CFT2 proposal.
Our approach exploits the near-extremal limit of warped black holes, which will be used as a
lamppost to establish the basic features of a holographic dual. Extremality corresponds to the
zero temperature black hole, where the inner and outer horizon coincide. Near-extremality
splits apart these horizons slightly: this increases the temperature by a small degree, and it
induces an increase of mass and entropy (and although not essential, angular momentum is
kept fixed in our analysis). Taking a near-extremal limit is a useful strategy. As it has been
advocated in [37, 38], and shown in countless examples,2 the near-extremal dynamics of a
black hole is well approximated by Jackiw-Teitelboim (JT) gravity [40, 41]. This provides
a universal sector in the low-temperature regime of the black hole, which can capture both
classical and quantum aspects of the black hole as one ignites the solutions from extremality
to near-extremality.

When we apply these new developments to warped black holes, we will see that each en-
semble (canonical and quadratic) follows parallel and consistent descriptions at the classical
level. In the near-extremal limit, we will analyse the thermodynamic properties of their Wald
entropy, the properties of the near-horizon geometry and correlation functions. We will also
construct a low-energy (IR) effective theory that describes the near-extremal dynamics: this
theory contains a JT sector, in addition to a massive degree of freedom. All these quantities
can be mapped and contrasted using the state-dependent coordinate transformation without
any issues, and we find perfect agreement among the quantities considered here. The remark-
able results come from the fact that the IR theory and the dual WCFT3 independently make
predictions about quantum corrections to the black hole entropy in the near-extremal regime.
Comparing the quantum corrections to the entropy predicted by these derivations gives a non-
trivial test to WAdS/WCFT: only the canonical ensemble is compatible with the prediction of
the effective IR description. We deem this as a non-trivial and compelling reason to discard
the quadratic ensemble as a description of quantum properties of warped black holes.

The analysis of the near-extremal dynamics of warped black holes will be done when they
are solutions to topologically massive gravity. Regardless of the theory used, we expect that
qualitatively the observables involved in our analysis will be robust and follow the trend de-

1The word “ensemble” is used here to match the nomenclature in [11]. It denotes a frame, or set of variables,
to describe the theory; it has nothing to do with ensembles in statistical physics.

2For a recent review, see [39].
3The field-theoretic analysis of the near-extremal limit of WCFTs was done in [28,29].
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scribed here; this is due to the robustness of the Wald entropy and the fact that the quantities
in play rely mainly on the geometrical properties of the background and not the theory. In
particular, from the perspective of the IR effective theory, the appearance of a JT sector will
be universal. However, we expect differences to arise which involve the additional massive
degree of freedom in the IR theory. In our analysis, it will appear as a massive scalar field,
which has a negative mass squared. There is a range for which the field is stable, and would
be dual to a relevant operator. However, it can also create an instability in the theory—the
same one found in [42]. We suspect this instability is specific to topologically massive gravity.
We will comment more on these differences in our final section.

This paper is structured as follows. We start in Sec. 2 with a review of warped black holes
as solutions to three-dimensional topologically massive gravity. In this context, we introduce
the canonical and quadratic ensembles, and for each ensemble we overview their thermody-
namic properties at finite temperature, the associated asymptotic symmetry group, and how
these quantities are compatible with a dual WCFT description. The next two sections, Sec. 3
and Sec. 4, we cover several aspects of the near-extremal limit of warped black holes. The
content is presented in a way that it treats in parallel the properties of canonical and quadratic
ensemble of warped black holes. For each ensemble we report on the extremal limit, the
low temperature response of thermodynamic variables, the near-horizon geometry at near-
extremality, and the behaviour of greybody factors in the near-extremal regime. In Sec. 5 we
take a different approach to the near-extremal limit: via dimensional reduction, we construct
an effective description of the near-AdS2 region. This effective IR theory should consistently
describe the response of the black hole due to turning on a small temperature at fixed angular
momentum. As a simple check, we verify that the solutions in Sec. 3.2 and Sec. 4.2 are cor-
rectly captured by the effective IR theory. In Sec. 6 we discuss and contrast warped black holes
from various perspectives. We first contrast the results in Sec. 3 and Sec. 4. Then we contrast
those to the near-extremal limit of WCFT. And finally we contrast with the outcomes of the
near-AdS2 theory. We conclude with a summary of our main findings and outlook in Sec. 7.

2 Black holes in topologically massive gravity

In this section we review the basic features of the two families of black holes we will be con-
sidering in this work. These fall under the broad umbrella of warped black holes (WBH), with
one family denoted as black holes in the canonical ensemble (CE) and the other as black holes
in the quadratic ensemble (QE). They share several similarities and ties, which we will highlight
below, and also stress their differences.

One particularly interesting gravitational theory in three dimensions in which these WBH
can be embedded is topologically massive gravity (TMG) [43–45]. In terms of its action, TMG
contains two terms: the Einstein-Hilbert action and a gravitational Chern-Simons term. The
explicit expression is

I3D = IEH + ICS , (1)

where the two contributions are

IEH =
1

16πG3

∫

d3 x
p

−g
�

R(3) − 2Λ
�

,

ICS =
1

32πG3µ

∫

d3 x
p

−gϵMN L
�

Γ P
MS∂NΓ

S
LP +

2
3
Γ P

MSΓ
S
NQΓ

Q
LP

�

,

(2)

whereR(3) denotes the three-dimensional Ricci scalar. We have added a cosmological constant
to the Einstein-Hilbert term, which we will take to always be negative: Λ = −1/ℓ2. The
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gravitational Chern-Simons term is controlled by a real coupling µ that has dimensions of
mass. The equations of motion of TMG are

R
(3)
MN −

1
2

gMNR
(3) −

1
ℓ2

gMN = −
1
µ

CMN , (3)

where CMN is the Cotton tensor,4

CMN = ε
QP

M ∇Q

�

R
(3)
PN −

1
4

gPNR
(3)
�

. (4)

To categorise the solutions to TMG, it is common to introduce the dimensionless coupling

ν≡
µℓ

3
. (5)

Without loss of generality, we will always take ν to be a positive number. This can always be
reverted by a choice of orientation, since the Chern-Simons action is parity odd.

There are two branches of solutions in TMG that will be recurrent in our analysis:

Warped backgrounds. These solutions have a non-vanishing Cotton tensor, CMN ̸= 0. The
term warped is used to highlight the symmetries of the vacuum solutions of this theory:
warped AdS3 (WAdS3). These are the most simple non-Einstein manifolds one can obtain
in TMG, and we will review their properties below. In this context, we will focus on the
so-called warped black hole solutions [1, 2, 8], which are quotients of specific instances of
WAdS3.

Locally AdS3 backgrounds. These have a vanishing Cotton tensor, CMN = 0, and hence the
backgrounds are independent of µ. These solutions are also part of the classical phase space
of pure AdS3 gravity, i.e., when only the Einstein-Hilbert term is in play. And as it is well-
known, these type of solutions are all locally AdS3 spacetimes. Among this class, the solution
that will be prominently used here is the BTZ black hole [9,10] as a means to contrast against
the warped black holes.

It is worth reviewing in more detail the general properties of WAdS3. We will be following
the discussion in [8]. Similar to AdS3, the warped solution is a real line fibration over AdS2,
with the crucial difference being that the size of the fibration of WAdS3 depends on µℓ. This has
the effect of breaking the SO(2, 2) symmetries of AdS3 down to SL(2,R)×U(1). In this context
there are three categories of vacua: spacelike, timelike, and null WAdS3. This nomenclature
refers to the signature of the fibration. For spacelike and timelike vacua, there are two distinct
cases depending on ν: stretched (ν2 > 1), and squashed (ν2 < 1). Null WAdS3 requires that
ν= 1, and there are two choices for the sign of the fiber.

For our work, the relevant vacua are spacelike and timelike WAdS3. Spacelike WAdS3 is
given by the metric

ds2 =
ℓ2

ν2 + 3

�

− cosh2σdτ2 + dσ2 +
4ν2

ν2 + 3
(du− sinhσdτ)2

�

, (6)

with {τ,σ, u} ∈ [−∞,∞]. In this coordinate system the structure of the fiber and isometries
of the vacua are manifest. Note that for ν = 1 one recovers an AdS3 space with SO(2, 2)
isometries.5 The warped black holes we will study here are obtained as quotients of this
space, but this requires that ν2 ≥ 1 in order to avoid closed timelike curves [8].

4We are using convention where
p
−g ε012 = −1. Indices with capital latin letters label three-dimensional

spacetime, i.e., M , N , . . .= {0,1, 2}.
5Note that while being smoothly connected to WAdS3, the AdS3 vacuum and the locally AdS3 backgrounds

discussed above exist as classical solutions regardless the value of ν.
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The timelike WAdS3 metric is given by

ds2 = −dt2 +
dr2

r
�

(ν2 + 3)r + 4
� − 2νrdtdφ +

r
4

�

3(1− ν2)r + 4)dφ2 , (7)

with φ ∼ φ + 2π. These coordinates cover the global spacetime, and for ν > 1, there are
closed timelike curves at large r. Alternatively, global timelike WAdS3 can be obtained from
(6) by taking u → iτ, τ → iu. It will appear when we review the properties of the vacuum
state in the holographic picture.

2.1 Warped black hole: Canonical ensemble

The first class of black hole solutions will be referred to as WAdS3 black holes in the canonical
ensemble. These appeared in [1, 2, 30, 46, 47] and were first studied holographically in [8].
The metric is given by

ds2 = −N(r)2dt2 +
ℓ2

4R(r)2N(r)2
dr2 + R(r)2
�

dθ − Nθ (r)dt
�2

, (8)

where we defined

R(r)2 =
r
4

�

3(ν2 − 1)r + (ν2 + 3)(r+ + r−)− 4ν
Æ

r+r−(ν2 + 3)
�

,

N(r)2 =
1

4R(r)2
(ν2 + 3)(r − r+)(r − r−) ,

Nθ (r) =
2νr −
p

r+r−(ν2 + 3)
2R(r)2

.

(9)

The constants r± determine the positions of the outer and inner horizons of the black hole.
These solutions are obtained as a discrete quotient from the metric in (6), much like BTZ black
holes are discrete quotients of global AdS3. Actually for ν = 1, the metrics are locally AdS3,
and represent BTZ black holes, albeit in an unusual coordinate system. A difference though
is that the global metric (6) is not recovered for any value of the black hole parameters [42].
However, for the choice

r+ = −
4iℓ
ν2 + 3

, r− = 0 , (10)

the metric possesses enhanced symmetries (four Killing vectors forming the algebra of
sl(2,R) × u(1), instead of two generically). The metric is then complex, and the analytic
continuation r → ir, t → −i t brings it to the global timelike WAdS3 metric (7), which is
viewed as the global vacuum [11].6

These black holes satisfy the usual thermodynamics laws, which we now review. The mass
MCE and angular momentum JCE of the black hole, are defined as conserved charges associated
to ∂t and ∂θ respectively, and are given by

MCE =
ν2 + 3

24νG3ℓ

�

(r+ + r−)ν−
Æ

(ν2 + 3)r+r−
�

,

JCE =
(ν2 + 3)
96νG3ℓ

�

�

(r+ + r−)ν−
Æ

(ν2 + 3)r+r−
�2
−

5ν2 + 3
4

(r+ − r−)
2

�

.
(11)

6Notice that the determination of the vacuum metric is ambiguous. First, r+ and r− could be switched. Second,
the choice (10) is not unique as in the AdS3 situation. For instance, symmetry enhancement from two to four
Killing vectors occurs for r+ − r− = −

4iℓ
3+ν2 .
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These values are tied to the theory the WBH belongs to: TMG in this case. They are also tied
to the black hole background: this is why we are using the superscript “CE”, which stands for
canonical ensemble. The Wald entropy of the black hole (8) is given by [8,48–50]

SCE =
π

24νG3

�

(9ν2 + 3)r+ − (ν2 + 3)r− − 4ν
Æ

(ν2 + 3)r+r−
�

. (12)

The first law of black hole thermodynamics then reads

dMCE = T CEdSCE +ΩCEdJCE , (13)

where the Hawking temperature and angular velocity are given by

T CE =
ν2 + 3
4πℓ

r+ − r−
2νr+ −
p

(ν2 + 3)r+r−
,

ΩCE =
2

�

2νr+ −
p

(ν2 + 3)r+r−
� . (14)

The thermodynamic behaviour of a WBH can be accounted for holographically by making
use of the symmetries of their semi-classical phase space. The key observations are as follows.
A phase space accommodating the WBH solutions (but not the global timelike WAdS3 vac-
uum) was proposed and further studied in [30–33]. Its symmetry algebra is generated by the
following asymptotic Killing vectors,

ℓn = einθ∂θ − inreinθ∂r , pn = einθ∂t , (15)

with n ∈ Z. To each of these vectors we can associate a corresponding conserved charge,
which we denote as Ln and Pn. In particular, the zero modes are related to the mass and
angular momentum in (11) via

P0 = MCE , L0 = −JCE . (16)

The algebra for the charges is given by

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m ,

[Pn, Pm] =
k

2
nδn+m ,

[Ln, Pm] = −mPm+n .

(17)

This is a Virasoro-Kac-Moody algebra. The central extensions appearing here that are appro-
priate for TMG are given by [31]

c =
(5ν2 + 3)
ν(ν2 + 3)

ℓ

G3
, k= −

ν2 + 3
6ν

1
ℓG3

. (18)

In the same way that the Virasoro algebra incarnates the symmetries of a CFT2, the algebra
(17) represents those of a warped CFT [11], that is a two-dimensional field theory with chiral
scaling

θ → f (θ ) , t → t + g(θ ) . (19)

Here f (θ ) is a diffeomorphism and g(θ ) an arbitrary function. This suggests that a gravity
theory with WAdS3 boundary conditions is dual to a WCFT, whose intrinsic and holographic
properties have been explored in various works [11,22–36,51–65].
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WCFTs are able to capture certain properties of WAdS3 backgrounds [7,11] and of higher
dimensional spacetimes [4,66,67]. Here we will highlight how the black hole mechanics can
be reproduced by the thermodynamic behaviour of a WCFT. Using an adapted form of the
Cardy formula, one can show that at high-temperature the entropy of a WCFT is given by [11]

SWCFT-CE = −
4πiP0Pvac

0

k
+ 4π

√

√

√

−
�

Lvac
0 −

(Pvac
0 )2

k

��

L0 −
P2

0

k

�

. (20)

In order to compare this expression with SCE in (12), we need to provide the values of Lvac
0

and Pvac
0 , i.e., determine the vacuum charges. One key obstacle, relative to a CFT2, is that

for a WCFT the vacuum charges are not fully specified by the symmetries alone. Under the
assumption that the vacuum state is normalizable and invariant under sl(2,R)×u(1), one can
show that

Lvac
0 = −

c
24
+
(Pvac

0 )
2

k
. (21)

It is interesting to note that (10) satisfies this relation. Therefore, taking (10) as a choice of
vacuum state, and using (11), we would have

Lvac
0 = −

1
24ν

ℓ

G3
, Pvac

0 = −
i
6

1
G3

. (22)

It is straightforward to check that SCE = SWCFT-CE, provided (18), (16) and (22).
The values in (18) and (22) show a persistent feature of holographic WCFTs: they typically

have negative level and Pvac
0 is purely imaginary. This makes the theories non-unitary; still,

these features are manageable, rich, and interesting as they lead to intriguing synergy with
black holes [27,29].

2.2 Warped black hole: Quadratic ensemble

Another family of spacetimes we will be considering are the so-called Warped BTZ metrics;
also known as WBHs in the quadratic ensemble, a nomenclature that will become clear below.
Their line element reads

ds2 = −NQE(r)
2dt2 +

(1− 2H2)
RQE(r)2NQE(r)2

r2dr2 + RQE(r)
2 (dϕ + Nϕ(r)dt)2 , (23)

where

RQE(r)
2 = (1− 2H2)r2 − 2H2 (r

2 − r2
+)(r

2 − r2
−)

(r+ + r−)2
,

NQE(r)
2 =
(1− 2H2)
RQE(r)2 L2

(r2 − r2
+)(r

2 − r2
−) ,

Nϕ(r) = −
1

RQE(r)2 L

�

(1− 2H2)r+r− + 2H2 (r
2 − r2

+)(r
2 − r2

−)

(r+ + r−)2

�

.

(24)

Here r± are constants, which determine the positions of the outer and inner horizon. H2 and
L are related to the TMG parameters ν= µℓ/3 and ℓ through

H2 = −
3(ν2 − 1)
2(ν2 + 3)

, L =
2ℓ

p
ν2 + 3

. (25)

Notice that 1− 2H2 = ν2 L2/ℓ2. The above metric can be viewed as a deformation of the BTZ
black hole with AdS3 radius L. That is, the line element (23) is equivalent to

ds2 = ds2
BTZ
− 2H2ζ⊗ ζ , (26)
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where ζ= 1
r++r−

(−L∂t + ∂ϕ) is a spacelike Killing vector of unit norm and H2 determines the

deviation away from the BTZ black hole. For H2 = 0, we recover the BTZ black holes in usual
coordinates, with AdS3 radius L.

The mass and angular momentum of this black hole are given by

MQE =
(3− 4H2)(r2

+ + r2
−)− 2r−r+

24G3 L
p

1− 2H2
,

JQE =
r2
+ + r2

− − 2(3− 4H2)r+r−
24G3 L

p
1− 2H2

,

(27)

and the Wald entropy is

SQE =
π

6G3
p

1− 2H2
((3− 4H2)r+ − r−) . (28)

Here the superscript “QE” denotes quadratic ensemble. As expected these quantities satisfy a
first law, which reads

dMQE = T QEdSQE +ΩQEdJQE , (29)

where the Hawking temperature and angular velocity are

T QE =
r2
+ − r

2
−

2πLr+
, ΩQE = −

r−

r+
. (30)

As we did in Sec. 2.1, we will next review how to capture the thermodynamic properties
of the quadratic ensemble solution holographically. Starting with the phase space, boundary
conditions containing the WBH in the quadratic ensemble, and their symmetry algebra, have
been identified in [36]. The asymptotic vector fields that enter in this construction, to leading
order, are given by

ℓ̃n = einx+(∂+ −
1
2

inr∂r) , p̃n = einx+∂− , (31)

with x± = t
L ± ϕ and n ∈ Z. Each of these generators has an associated conserved charge,

which we coin Ln and Pn. The relation of the zero modes (n = 0) to the mass and angular
momentum is

MQE =
1
L
(L0 +P0) ,

JQE =L0 −P0 .
(32)

The corresponding charge algebra is then found to be

[Ln,Lm] = (n−m)Ln+m +
c

12

�

n3 − n
�

δn+m ,

[Ln,Pm] = −mPm+n ,

[Pn,Pm] = −2nP0δm+n ,

(33)

with central charge c given by (18), which in terms of the variables used here is

c =
2(1−H2)
p

1− 2H2

L
G3

. (34)

The algebra (33) resembles a Virasoro-Kac-Moody algebra, but with a key twist. The level
of the affine u(1) generators is controlled by P0: this makes the algebra non-local. Another
curious, and useful, observation is that the algebras (17) and (33) are related though the
redefinition

Ln = Ln −
2
k

P0Pn +
1
k

P2
0δn , Pn = −

2
k

P0Pn +
1
k

P2
0δn . (35)
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This transformation is the reason why we refer to solutions in this classical phase space as
being in a “quadratic ensemble.”

Despite the undesirable non-local aspects it is possible to extract information about the
density of states for Hilbert spaces described by (33). As shown in [11], starting from the
partition function

ZWCFT-QE(βR,βL) = Tr e−βRP0−βLL0 , (36)

it is possible to extract a universal behaviour at high temperatures, analogous to the Cardy
behaviour in a CFT2. More concretely, the relation (35) allows to relate properties of (36) to
those of a regular WCFT, which leads to the following entropy formula

SWCFT-QE = 4π
q

−Pvac
0 P0 + 4π
q

−Lvac
0 L0 . (37)

Despite the absence of full conformal invariance of the system, one obviously cannot help but
notice the similarity between (37) and the Cardy formula of a CFT2; but we stress that Pvac

0
and Lvac

0 are not fixed by symmetries. One simple, and interesting, check is to notice that
SWCFT-QE is equivalent to SWCFT-CE in (20), due to (35).

We can now proceed to compare (37) to the Wald entropy (28). The key is to choose a
vaccum state. We will use (10) and (35); with this we infer that in the quadratic ensemble the
vacuum charges are

Lvac
0 = −

c
24

, Pvac
0 =

1

36kG2
3

, (38)

where c and k are defined in (18). With this choice, and using (32), it is simple to check that
SWCFT-QE = SQE. In this comparison, it is also useful to report how the potentials (30) are related
to WCFT variables. We have

1
T QE
=

1
2
(βR + βL) ,

ΩQE

T QE
=

1
2
(βL − βR) , (39)

where the left and right moving potentials have a very simple expression,

βL =
2πL

r+ − r−
, βR =

2πL
r+ + r−

. (40)

2.3 Ties between canonical and quadratic ensemble

Until now we have been treating (8) and (23) as two distinct black hole solutions of TMG.
Here we will review how they are intimately related, and fit it with the relation among the
generators in (35). The basic observation is that the metrics are related by the following
change of coordinates7

t

L
= −

k

4MCE
t ,

ϕ = θ +
k

4MCE
t ,

r2 =
(ν2 + 3)

4ν2

�

R(r)2 −
3
4
(ν2 − 1)(r − r+)(r − r−)

�

,

(41)

where

MCE = −
k

4

�

(r+ + r−)ν−
Æ

(ν2 + 3)r+r−
�

, (42)

7The radial component of the diffeomorphism is such that the radial function in (9) and (24) report the same
value, i.e., R(r)2 = RQE(r)2. For more details see [68].
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which is just a re-writing of (11) in terms of the level k. Since the mass, MCE, enters here this
is a state-dependent transformation between the two solutions.

The coordinate transformation would also lead to the relation between the generators
(35). We also note that SCE = SQE, that is the entropy of the CE and QE WBH match; this is
expected from the perspective of the WCFT, and also it is expected since the Wald entropy is
diffeomorphism invariant. It will be useful to record for later derivations the relations between
the thermodynamic potentials, which reads

βCEΩCE = βL , βCE = −
2π

3kG3

�

1+
βR

βL

�

. (43)

Here βCE = 1/T CE and the potentials are defined in (14) and (40) for each ensemble. At first
glance the diffeomorphism (41) seems trivial and should indicate that the dual description in
the canonical and quadratic ensemble is simply a choice. However we also have reviewed that
the implications of this transformation gives a non-local algebra in one case, which is dramatic.
In the following sections our task will be to analyse and contrast the solutions starting from
their near-extremal limit. With this we aim to decode differences and similarities among these
two ensembles.

3 Near-extremal warped black holes: Canonical ensemble

Our analysis starts with the WBH solution, casted in the canonical ensemble (CE). Building
on the general features reviewed in the previous section, we will focus on three aspects of
the solution near-extremality: the response of thermodynamic quantities, the shape of the
near horizon geometry, and the scattering of massive scalar fields. For BTZ black holes, these
aspects have been addressed in various works including [69–72].

3.1 Thermodynamics

An important aspect of our work is to consider the extremal version of the metrics (8), and
look at small deviations away from it. In the following we will introduce these concepts for the
CE warped black hole and define the concept of “near-extremality” from the thermodynamic
perspective.

The extremal black hole is defined as the solution of (8) for which

Extremality: r+ = r− ≡ r0 . (44)

It is important to remark that the potentials (14) are only well defined in this limit if in addition
ν ̸= 1. This means that the extremal CE solution is not smoothly connected to the extremal
BTZ black hole. For this reason, we stress that in the following equations we always assume
ν > 1. At extremality, the potentials (14) take the values

T CE
�

�

�

r±=r0

= 0 ,

ΩCE
�

�

�

r±=r0

=
2

�

2ν−
p
ν2 + 3
�

r0

≡ ΩCE
ext ,

(45)
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while the charges (11) become

MCE
ext ≡ MCE
�

�

�

r±=r0

=
ν2 + 3

12νℓG3

1
ΩCE

ext
,

JCE
ext ≡ JCE
�

�

�

r±=r0

=
ν2 + 3

24νℓG3

1
(ΩCE

ext)2
,

SCE
ext ≡ SCE
�

�

�

r±=r0

=
π

3G3

1
ΩCE

ext
.

(46)

Near extremality is a small deviation from extremality leading to a non-vanishing temper-
ature, while keeping the angular momentum JCE

ext fixed.8 This can be achieved by modifying
(44) as

Near-extremality: r+ = r0 + ε� , r− = r0 − ε� . (47)

Here ε≪ 1, that is a small parameter that introduces the small deviation from extremality; �
is a parameter that will remain fixed as one takes ε→ 0 and was chosen to keep JCE

ext fixed at
leading order in ε. The leading order response in ε of the temperature is linear, and reads

T CE =
ν2 + 3
4πℓ

ΩCE
ext �ε+O(ε

2) . (48)

The mass on the other hand increases quadratically

∆ECE = MCE −MCE
ext =

(T CE)2

MCE
gap

+O(ε3) , (49)

where the commonly coined mass gap [73–75] is given by

MCE
gap ≡

6G3

π2ℓ

ν(3+ ν2)
(3+ 5ν2)

ΩCE
ext =

3
π2c

√

√

√ −k
JCE

ext
. (50)

In the last equality we used (18) and (46) to cast the mass gap in terms of the central extensions
that enter in the holographic description. Note that since ν > 1 (ΩCE

ext > 0) the mass gap is
always positive.9

It then also follows that the entropy responds linearly in temperature as we deviate from
extremality with the slope inversly proportional to the mass gap:

SCE = SCE
ext + 2

T CE

MCE
gap

+O(ε2) . (51)

This is the universal response of the entropy based on general grounds: that is, the compliance
of the Wald entropy to a first law of thermodynamics and that extremality only involves two-
coincident horizons. In our subsequent sections we will compare this analysis to the QE warped
black hole, provide a derivation of the entropy via a holographic analysis, and match it to near-
extremal limits of WCFTs.

8In many setups, such as Reissner-Nordstrom or Myers-Perry black holes, the prescription is to keep the con-
served charge that controls the AdS2 radius fixed, for reasons that will be more transparent in Sec. 5.2. In three
dimensions this is not necessary, but it facilitates the analysis to keep one of the conserved charges fixed.

9Also recall that k< 0 (18), so the mass gap is real.
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3.2 Decoupling limit

In this portion we will report on the geometrical effects of the near-extremal limit. In this
context a WBH behaves similarly to their AdS3 counterparts: at extremality the near horizon
geometry develops an AdS2 throat. Here we show this limiting procedure explicitly, and also
incorporate the near-extremal contributions. This will quantify the notion of near-AdS2 for
the WBH in the canonical ensemble.

As it is common practice, we start by introducing a coordinate transformation catered to
zoom into the horizon of the black hole. First, in the context of the near-extremal limit (47),
we introduce a new coordinate system (ρ,τ,ψ) which redefines the coordinates (r, t,θ ) used
in (8). The transformation reads

r = r0 + ε

�

eρ/ℓ2 +
�2

4
e−ρ/ℓ2

�

,

t = 2R0
ℓ2

ℓ

τ

ε
,

θ =ψ+ 2
ℓ2

ℓ

τ

ε
,

(52)

where ε and � are defined around (47). In this context, ε implements extremality, and it is
also the decoupling parameter that takes us to the near-horizon region, i.e., near to r → r0;
a finite value of � quantifies a deviation away from extremality. We have also introduced two
constants in (52) which are defined as

ℓ2
2 ≡

ℓ2

ν2 + 3
, R0 ≡ R(r0)
�

�

�

r±=r0

=
r0

2

�

2ν−
p

ν2 + 3
�

. (53)

As we will see momentarily, ℓ2 is the AdS2 radius. It is also worth remarking that ΩCE
ext = R−1

0 ,
which is just a coincidence for the CE warped black hole. More significantly, R0 is the size of
the extremal horizon, and controls the extremal Wald entropy in (46).

The near-horizon region is defined by using (52) on (8) and taking the limit ε→ 0, while
keeping all other parameters fixed. The resulting line element is

ds2
CE =dρ2 − e2ρ/ℓ2

�

1−
�2

4
e−2ρ/ℓ2

�2

dτ2

+ R2
0

�

dψ+
2ν
R0

ℓ2

ℓ
eρ/ℓ2

�

1+
�2

4
e−2ρ/ℓ2

�

dτ

�2

+O(ε) .

(54)

As expected the result is finite, resulting into a non-degenerate metric, referred to as self-dual
warped AdS3 space [8,76]. This is the warped version of the near-horizon geometry of extremal
BTZ black holes – self-dual AdS3 space [77] –, and a constant polar angle section of the NHEK
geometry [12, 13]. The first line reflects that the near-horizon geometry contains an AdS2
factor: for � = 0, it is AdS2 in Poincare coordinates, while for � ̸= 0 the metric is locally
AdS2.10 The later is usually coined “near-AdS2”. The second line reflects that the total space
time is a fibration of a circle over AdS2. The resulting local symmetries of the near-horizon
region is therefore sl(2,R)× u(1).

As we further explore the holographic properties of this black hole, it will also be important
to quantify how the solution responds to first order away from extremality. With some foresight
to the subsequent sections, we will parametrize the first order response in ε as

ds2
CE =
�

ḡµν + εhµν
�

dxµdxν +
�

R2
0 + εY
�

�

dψ+ (Āµ + εAµ)dxµ
�2
+ · · · , (55)

10More specifically it is a Rindler (thermal) patch of AdS2, where � controls the acceleration of the observer. This
geometry is also at times refered to as an “AdS2 black hole.”
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that is, there is a response from the AdS2 metric (hµν), the size of the U(1) circle (Y), and the
fiber (Aµ). Here the variables with a bar are those in (54): ḡµν is the locally AdS2 background,
and Āµ is the background component of the fibration. It is straightforward to read the values
of these responses by keeping the first correction in ε of the coordinate transformation, where
one finds

Y = 2νR0 eρ/ℓ2

�

1+
�2

4
e−2ρ/ℓ2

�

,

A = −
ℓ2

2ℓR2
0

(3+ 5ν2) e2ρ/ℓ2

�

1+
�4

16
e−4ρ/ℓ2

�

dτ−
�2

R0r0

νℓ2

ℓ
dτ ,

hττ =
2ν
R0

e3ρ/ℓ2

�

1−
�2

4
e−2ρ/ℓ2

�2�

1+
�2

4
e−2ρ/ℓ2

�

, hρρ = hτρ = 0 .

(56)

As is persistent in many other black hole backgrounds, the responses grow rapidly as one
reaches the boundary of AdS2 at ρ→∞. This reflects that deviations away from extremality
should be interpreted holographically as irrelevant deformations, and we will comment more
on this in Sec. 5.

3.3 Two-point function

The behaviour of probes, and in particular its two-point function, is a useful way to encode
properties of a black hole. Here we will analyse a massive probe around the CE warped black
hole focusing on its near-extremal limit. The aim is to contrast the results against the analo-
gous treatment for the BTZ black hole and the QE warped black hole; this comparison will be
discussed in Sec. 6.1. Our derivations follow the analysis in, e.g., [72,78].

We start by solving the Klein-Gordon equation of a scalar field with mass m in the CE black
hole background,

∇2Φ(t, r,θ ) = m2Φ(t, r,θ ) , (57)

where ∇2 is the Laplace-Beltrami operator for the metric (8). Using a separable ansatz for Φ,
and further decomposing it into Fourier modes, we will write

Φ(t, r,θ ) =
∑

k

∫

dω e−i ωℓ t+ikθΨ(r) , (58)

for which the wave equation then reads

∂

∂ r

�

(r − r+)(r − r−)
∂

∂ r

�

Ψ(r)

+
1

ν2 + 3

�

1
N(r)2
�

ω− Nθ (r)ℓk
�2 −

ℓ2k2

R(r)2

�

Ψ(r) =
ℓ2m2

ν2 + 3
Ψ(r) . (59)

The functions N(r)2, R(r)2, and Nθ (r) are defined in (8). Note that we have chosen to nor-
malise time in (58) with respect to ℓ, which makes ω dimensionless.

Our main task in the following is to extract the two-point function by solving (59).11 We
are mainly interested in the behaviour near extremality, which implies that we are exploring
the low-temperature and low-frequency limit of the correlation function. In this context the
quantity that is interesting to report on is the relation between the two-point function evaluated
in the UV region (r → ∞) and the one evaluated in the IR region (r → r+). That is, the
relation between the two-point function evaluated near the WAdS3 boundary and the one in
the near-AdS2 region in Sec. 3.2.

11In our setups, a two-point function is equivalent to a greybody factor (up to an overall normalization).
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To implement the near-extremal limit we will introduce very similar variables as in Sec. 3.2,
with some small adjustments to avoid clutter. We define the dimensionless parameters

x ≡
r − r+

r+
, τH ≡

r+ − r−
r+

. (60)

Notice that near-extremality, as defined in (47), implies that τH ∼ ε ≪ 1. In terms of these
variables, (59) becomes

∂x(x(x +τH)∂x)Ψ(x)−
4R2
τH

τH r2
+

ℓ4
2

ℓ4

�

ω−
kℓ

RτH

−
νr+
RτH

τHω

�2
1

(x +τH)
Ψ(x)

+
4R2
τH

τH r2
+

ℓ4
2

ℓ4

�

ω−
kℓ

RτH

�2
1
x
Ψ(x)− ℓ2

2m2
CEΨ(x) = 0 , (61)

where
RτH
≡

r+
2

�

2ν−
Æ

(ν2 + 3)(1−τH)
�

, (62)

which is the non-extremal version of (53), and

m2
CE = m2 +

3ℓ2
2

ℓ4
(1− ν2)ω2 , (63)

with ℓ2 given by (53). mCE is an effective mass with a non-trivial frequency dependence—
this is reminiscent of Kerr/CFT [78]. Note that in the BTZ limit, where ν = 1, the frequency
dependence drops from (63). It is also interesting to note that mCE enters in (61) measured in
units of the AdS2 radius, and not AdS3.

To extract the two-point function, it is common to divide the wave equation into two zones,

Far region: x ≫ τH ,

Near region: x ≪ 1 ,
(64)

as one takes τH → 0. The far zone reaches to the asymptotically warped AdS3 portion of
the geometry, far from the horizon of the black hole. The near zone covers the area close to
the horizon, and near extremality, it corresponds to the near-AdS2 portion of the geometry
described in Sec. 3.2. In the near-extremal limit, these two regions overlap at

Matching region: 1≫ x ≫ τH . (65)

As it is common in this sort of analysis, one solves the wave equation separately in the far and
near region, and then overlaps them in the matching region. This gives a connection between
the correlation functions in the UV (far) and IR (near) regimes.

For AdS3 and WAdS3, this matching procedure is very simple to implement. The reason
being that the singularity structure in x of the Klein-Gordon operator on (W)AdS3 and AdS2
is exactly the same. The difference between the near region and the whole geometry is the
behaviour of the coefficients governing the poles. That is, the radial wave equation in the far,
near and matching region has the general structure

∂x(x(x +τH)∂x)Ψ(x)−
a(ω, k)
(x +τH)

Ψ(x) +
b(ω, k)

x
Ψ(x)− ℓ2

2m2
CEΨ(x) = 0 , (66)

which is manifest in (61). The difference between each region arises from frequency depen-
dence of a(ω, k) and b(ω, k); this reflects the details of an AdS2 background versus (W)AdS3,
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which we will discuss in detail below.12 The differential equation (66) can be solved exactly,
and its solutions are governed by hypergeometric functions.

Within the generality of (66), we can report on the behaviour of the two-point function.
In the far zone, where the variable x is large, the solutions to the wave equation (66) reduces
to

Ψ(x) =ψ1(ω, k) x∆CE−1 +ψ2(ω, k) x−∆CE , (67)

where

∆CE ≡
1
2
+

1
2

q

1+ 4ℓ2
2m2

CE
, (68)

and ψ1,2 are independent of x . Note that ∆CE plays the role of a conformal dimension in
AdS, although here it is frequency-dependent due to (63). We will impose in-going boundary
conditions at the horizon, i.e., for x ≪ 1 we fix

Ψ(x) = x−i
p

b/τH (1+ · · · ) . (69)

This then implies that in the far region the terms in (67) are

ψ1(ω, k) = τ
1−∆CE−i
r

b
τH

H

Γ (2∆CE − 1) Γ
�

1− 2i
Ç

b
τH

�

Γ
�

∆CE − i
Ç

b
τH
− i
q

a
τH

�

Γ
�

∆CE − i
Ç

b
τH
+ i
q

a
τH

� ,

ψ2(ω, k) = τ
∆CE−i
r

b
τH

H

Γ (1− 2∆CE) Γ
�

1− 2i
Ç

b
τH

�

Γ
�

1−∆CE − i
Ç

b
τH
− i
q

a
τH

�

Γ
�

1−∆CE − i
Ç

b
τH
+ i
q

a
τH

� .

(70)

From this we can read off the two-point function to be

GCE(ω, k) =
ψ2(ω, k)
ψ1(ω, k)

. (71)

Up to an overall normalization, the dependence on gamma functions in (71) agrees with a
WCFT retarted Green’s function reported in [26]. Here we are selecting a simple normalization
of the correlator, that we will be consistent between the CE and QE WBH. It is worth remarking
that this not the standard normalization used for free fields in AdSd+1, see for example [79,80],
nor the equivalent derivation done in [72].

The next step is to report on the low-temperature and low-frequency behaviour of (71).
Implementing the decoupling limit (52) on the frequency and momenta we find,

kir = k , εωir = 2
ℓ2

ℓ2
R0

�

ω−
kℓ
R0

�

, (72)

where (ωir, kir) are conjugate to (τ,ψ). Note that in the limit ε → 0 one holds ωir and kir
fixed.13 The coefficients in (66) then become

a(ωir, kir) =
τH

4�2
ℓ2

2

�

ωir − 2ν�
ℓ2

R0
kir

�2

,

b(ωir, kir) =
τH

4�2
ℓ2

2

�

ωir + 2ν�
ℓ2

R0
kir

�2

,

∆CE =
1
2
+

1
2

√

√

√

1+ 4ℓ2
2m2 + 12

ℓ4
2

R2
0ℓ

2
(1− ν2)k2

ir ,

(73)

12It is important to stress that this is due to a local sl(2,R) factor present in all of these spaces. In higher
dimensions this is no longer true, and the matching procedure is more delicate.

13It is useful again to compare with [72]. There the authors take R0 ≫ 1 and this suppresses the momentum
dependence in (72). To keep the discussion more general, we will take R0 large but fixed. In this context, we are
following [78], which is a near to superradiance limit.
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where we are reporting on their leading behaviour in the limit ε→ 0. It is important to mention
that these are exactly the coefficients one would obtain in (66) when the Klein-Gordon operator
is evaluated on the near-horizon background (54); this is part of matching procedure, which
works easily in this geometry. With this, the two-point function in the near-AdS2 regime is

GCE(ωir, kir) = τ
2∆CE−1
H

Γ (1− 2∆CE)
Γ (2∆CE − 1)

Γ
�

∆CE − i ℓ2
� ωir

�

Γ
�

∆CE − i2ν
ℓ2

2
R0

kir

�

Γ
�

1−∆CE − i ℓ2
� ωir

�

Γ
�

1−∆CE − i2ν
ℓ2

2
R0

kir

� . (74)

At kir = 0, or alternatively R0≫ 1, this expression reduces to

GCE(ωir) = τ
2∆CE−1
H

Γ (1− 2∆CE)Γ (∆CE)
Γ (2∆CE − 1)Γ (1−∆CE)

Γ
�

∆CE − i ℓ2
� ωir

�

Γ
�

1−∆CE − i ℓ2
� ωir

�

∼
�

8π
ℓ2

2

ℓ2

R0

r0

ℓ

βCE

�2∆CE−1

GAdS2
(ωir) ,

(75)

where now∆CE is independent of the momentum; R0 was defined in (52) and the temperature
βCE = 1/T CE and level are defined in (14) and (18) respectively. Since we have been zooming
into extremality to derive (75) it only makes sense as long as ν ̸= 1, as we also remark below
(44). GAdS2

(ωir) is the greybody factor one would obtain in thermal AdS2. In the last line
we are being cavalier about the normalization of GAdS2

, but any ambiguity here is frequency
independent. The relation (75) is in accordance with similar results obtained for BTZ in [72].

4 Near-extremal warped black holes: Quadratic ensemble

In this section we turn to the warped black hole metric in the quadratic ensemble (QE), de-
scribed in Sec. 2.2. The analysis mirrors the canonical ensemble (CE) in Sec. 3. We perform a
similar near-horizon analysis. The contrast between CE and QE is delegated to Sec. 6.

4.1 Thermodynamics

In the following we will introduce the concepts of “extremality” and “near-extremality” for the
QE black hole from a thermodynamic perspective. Our analysis follows the structure in the CE
ensemble—see Sec. 3.1.

The extremal black hole is defined as the solution (23) for which

Extremality: r+ = r− ≡ r0 . (76)

At extremality, the values of the potentials (30) is

T QE

�

�

�

r±=r0

= 0 ,

ΩQE

�

�

�

r±=r0

= −1 ,
(77)

while the charges (27) become

MQE

ext ≡ MQE

�

�

�

r±=r0

=
r2

0

6G3 L

p

1− 2H2 ,

JQE

ext ≡ JQE

�

�

�

r±=r0

= −
r2

0

6G3 L

p

1− 2H2 ,

SQE

ext ≡ SQE

�

�

�

r±=r0

=
πr0

3G3

p

1− 2H2 .

(78)

17

https://scipost.org
https://scipost.org/SciPostPhys.15.3.083


SciPost Phys. 15, 083 (2023)

Near extremality is a small deviation from extremality leading to a non-vanishing temper-
ature, while keeping the angular momentum JQE

ext fixed. This can be achieved by modifying
(76) as

Near-extremality: r+ = r0 + ε� , r− = r0 − ε� . (79)

Similar to the CE black hole, here ε≪ 1, that is a small parameter that introduces the small
deviation from extremality; � is a parameter that will remain fixed as one takes ε → 0 and
was chosen to keep JQE

ext fixed at leading order in ε. The leading order response in ε of the
temperature is linear, and reads

T QE =
2

Lπ
ε�+O(ε2) . (80)

The mass on the other hand increases quadratically

∆EQE = MQE −MQE

ext =
(T QE)2

MCE
gap

+O(ε3) , (81)

where the commonly coined mass gap is given by

MQE

gap ≡
6G3
p

1− 2H2

π2 L(1−H2)
=

12
π2c

. (82)

Here we have used (34) to relate the mass gap to the central charge associated to the asymp-
totic symmetry group in the quadratic ensemble. It also follows that the entropy responds
linearly in temperature as we deviate from extremality with the slope inversly proportional to
the mass gap:

SQE = SQE

ext + 2
T QE

MQE
gap

+O(ε2) . (83)

4.2 Decoupling limit

In this portion we will report on the geometrical effects of the near-extremal limit. Again, the
analysis is very analogous to Sec. 3.2, therefore we will only present the main equations and
minimal commentary.

To zoom into the horizon in the near-extremal regime, we introduce a new coordinate
system (ρ,τ,ψ) which redefines the coordinates (r, t,θ ) used in (23). The transformation
reads

r = r0 + ε

�

eρ/ℓ2 +
�2

4
e−ρ/ℓ2

�

,

t = ℓ2
τ

ε
,

ϕ =ψ+
ℓ2

L
τ

ε
,

(84)

where ε and � are defined around (79). Here the AdS2 radius is also given by (53), and it is
interesting to note that in the nomenclature of QE, we have

ℓ2 ≡
L
2

, (85)

where L is the effective AdS3 radius, defined in (25). The near-horizon region is defined by
using (84) on (23) and taking the limit ε→ 0, while keeping all other parameters fixed. The
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resulting line element is

ds2
QE
=dρ2 − e2ρ/ℓ2

�

1−
�2

4
e−2ρ/ℓ2

�2

dτ2

+ R2
0

�

dψ+
1
R0

p

1− 2H2 eρ/ℓ2

�

1+
�2

4
e−2ρ/ℓ2

�

dτ

�2

+O(ε) ,

(86)

where we have defined
R0 ≡ R(r0)
�

�

�

r±=r0

= r0

p

1− 2H2 , (87)

which is equivalent to (53) due to the ties in (41). This locally AdS2 solution is exactly the
same as (54).

As we remarked for the CE black hole, it will also be important to quantify how the solution
responds to the first order away from extremality. We again parametrize the first response in
ε as

ds2
QE
=
�

ḡµν + εhµν
�

dxµdxν +
�

R2
0 + εY
�

�

dψ+ (Āµ + εAµ)dxµ
�2
+ · · · . (88)

For the QE black hole the responses are given by

Y = 2R0

p

1− 2H2 eρ/ℓ2

�

1+
�2

4
e−2ρ/ℓ2

�

,

A =
1

2R2
0

(3− 2H2) e2ρ/ℓ2

�

1+
�4

16
e−4ρ/ℓ2

�

dτ+
1

4R2
0

(1− 6H2)dτ ,

hττ =

p
1− 2H2

R0
e3ρ/ℓ2

�

1−
�2

4
e−2ρ/ℓ2

�2�

1+
�2

4
e−2ρ/ℓ2

�

,

hρρ =

p
1− 2H2

R0
eρ/ℓ2

�

1+
�2

4
e−2ρ/ℓ2

�

, hτρ = 0 .

(89)

An obvious difference relative to (56) is that we are not preserving the radial gauge: hρρ is
non-zero. Conceptually this is not a problem. It can be restored by doing a re-definition of the
radial coordinate.

4.3 Two-point function

Following the analysis in Sec. 3.3, in this section we discuss the Klein-Gordon equation of a
massive scalar field when the background is given by the near-extremal QE black hole (23).
More explicitly, we will solve

∇2Φ(t,r,ϕ) = m2Φ(t,r,ϕ) , (90)

and report on the behaviour at low energies. To solve this equation, we use a separable ansatz
for Φ to further decompose it into Fourier modes; we will write

Φ(t,r,ϕ) =
∑

k

∫

dω e−i ωL t+ikϕΨ(r) . (91)

Here, we are using L = 2ℓ2 as the unit of time since it is the parameter that naturally enters in
the QE ensemble. Notice that we are abusing the notation here to avoid clutter: (ω, k) in (91)
are not equal to those used in (58), since the notion of time is different for each geometry—see
(41). Using (91), we obtain the wave equation

1
r

∂

∂ r

�

(r2 − r2
+)(r

2 − r2
−)

1
r

∂

∂ r

�

Ψ(r)

+

�

1
NQE(r)2

(ω+ Nϕ(r)Lk)2 −
L2k2

RQE(r)2

�

Ψ(r) = L2m2Ψ(r) .
(92)
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The functions NQE(r)2, RQE(r)2 and Nϕ(r) are defined in (24). To analyse the greybody factors,
we will introduce very similar variables as in Sec. 3.3. We define

x ≡
r2 − r2

+

r2
+

, τH =
r2
+ − r

2
−

r2
+

, (93)

where again, to avoid clutter, the notation is abused relative to (60). Notice that for the QE
ensemble, we have τH =

2πL
r+

T QE, where T QE is the temperature of the QE black hole. With
these definitions, (92) becomes

∂

∂ x

�

x(x +τH)
∂

∂ x

�

Ψ(x) +
L2

4τHr
4
+

(r+ω− r−k)2

x
Ψ(x)−

L2

4τHr
4
+

(r−ω− r+k)2

x +τH
Ψ(x)

=
L2

4
m2

QE
Ψ(r) , (94)

with

m2
QE
≡ m2 +

2H2

(1− 2H2)
(ω+ k)2

(r+ + r−)2
. (95)

There are a few features that are worth highlighting. First the left-hand side of (94) is the wave
equation of BTZ, which appears in (26). In that context the effects of the warping appear all
in the right-hand side as a distortion of the mass of the probe. Note that this shift in the mass
vanishes when H2 = 0, i.e., in the limiting BTZ case.

Another key feature is that (92) has the same structure as (66), and hence it is straight-
forward to report on the grebody factors. The steps between (66)-(71) are exactly the same,
and hence we have

GQE(ω, k) =
ψ2(ω, k)
ψ1(ω, k)

, (96)

with

ψ1(ω, k) = τ
1−∆QE−i
r

b
τH

H

Γ
�

2∆QE − 1
�

Γ
�

1− 2i
Ç

b
τH

�

Γ
�

∆QE − i
Ç

b
τH
− i
q

a
τH

�

Γ
�

∆QE − i
Ç

b
τH
+ i
q

a
τH

� ,

ψ2(ω, k) = τ
∆QE−i
r

b
τH

H

Γ
�

1− 2∆QE

�

Γ
�

1− 2i
Ç

b
τH

�

Γ
�

1−∆QE − i
Ç

b
τH
− i
q

a
τH

�

Γ
�

1−∆QE − i
Ç

b
τH
+ i
q

a
τH

� ,

(97)

and a(ω, k) and b(ω, k) are the coefficients of (x + τH)−1 and x−1 in (94), respectively. We
have also introduced

∆QE ≡
1
2
+

1
2

q

1+ L2m2
QE

, (98)

which is a frequency and momentum dependent “conformal dimension”.
Next, we can take the near-extremal limit. From (84), we have that

k = kir , εωir =
1
2
(ω− k) , (99)

in combination with (79). We will taking the limit ε→ 0 while keeping ωir and kir fixed. In
this limit we have

a(ωir, kir) =
τH

16�2
L2
�

ωir −
�

r0
kir

�2

,

b(ωir, kir) =
τH

16�2
L2
�

ωir +
�

r0
kir

�2

,

∆QE =
1
2
+

1
2

√

√

√1+ L2m2 +
2H2

(1− 2H2)
L2

r2
0

k2
ir .

(100)
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It is important to notice that a/τH , b/τH and∆QE here exactly agree with those in the canonical
ensemble in (73); a useful identity to check this is

r2
0 =

ν2 + 3
4ν2

R2
0 =

ℓ2

ℓ2
2

R2
0

4ν2
, (101)

which arises from (41). This is also what we expect, since the near-horizon geometry in the
canonical ensemble (54) is the same as the one in the quadratic ensemble (86). And hence
our definitions of ωir and kir are the same in both cases.

Finally, we report on the greybody factor when kir = 0, which reads

GQE(ωir) = τ
2∆QE−1
H

Γ (1− 2∆QE)Γ
�

∆QE

�

Γ (2∆QE − 1)Γ
�

1−∆QE

�

Γ
�

∆QE − i ℓ2
� ωir

�

Γ
�

1−∆QE − i ℓ2
� ωir

�

∼
�

2πL
r0

1
βQE

�2∆QE−1

GAdS2
(ωir) .

(102)

This follows in a straightforward way from the derivations in the canonical ensemble around
(75). The temperature βQE ≡ 1/T QE in (102) is defined in (30).

5 A two-dimensional perspective of warped black holes

Until now we have explored near-extremal properties of WBH starting from the non-extremal
solutions. That is, we have captured the near zero temperature behaviour by taking appro-
priate limits of the finite temperature black hole. In this section we will set up the stage to
reverse this logic: we want to capture the near-extremal behaviour by deforming away from
the extremal, zero temperature black hole.

A systematic way to proceed is to view these black holes from a two-dimensional perspec-
tive. More explicitly, we will perform a dimensional reduction along a compact direction. The
way we will decompose our three-dimensional spacetime is as follows,

ds2
3 = gMN dx M dxN = gµνdxµdxν + e−2φ

�

dz + Aµdxµ
�2

, (103)

where the Greek indices run along the two-dimensional directions, µ,ν = 0,1, and z is a
compact direction with z ∼ z + 2π. We will be trading the three-dimensional metric gMN for
the two-dimensional variables: a two-dimensional metric gµν, a gauge field Aµ and a dilaton
field φ. The working assumption is that all the variables are independent of z, which is a
truncation of the three-dimensional theory, but it will suffice to describe the near-extremal
system.

The effects of this dimensional reduction on the three-dimensional action (1) are known
[81,82], and we will follow the conventions in [71]. The resulting two-dimensional theory is

I2D = IEMD + IrCS . (104)

IEMD is a two-dimensional Einstein-Maxwell-Dilaton theory whose couplings are dictated by the
dimensional reduction of the Einstein-Hilbert term in (1); it reads

IEMD =
1

8G3

∫

d2 x
p

−g e−φ
�

R+
2
ℓ2
−

1
4

e−2φ FµνFµν
�

. (105)

In this expression, R is the two-dimensional Ricci scalar associated to the metric gµν, and the
field strength is given by Fµν = ∂µAν − ∂νAµ. IrCS, the ‘reduced Chern-Simons’ term, contains
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the information from the dynamics of the gravitational Chern-Simons term in (1), and it is
given by

IrCS =
1

32G3µ

∫

d2 x e−2φεµν
�

FµνR+ FµρFρσFσν e−2φ − 2Fµν∇2φ
�

. (106)

Here εµν is the epsilon symbol, where ε01 = 1, and∇µ is the covariant derivative with respect
to the two-dimensional metric gµν.

The equations of motion one obtains from (104) are given by

εαβ∂β

�

e−3φ f +
1

2µ
e−2φ
�

R+ 3 e−2φ f 2 − 2∇2φ
�

�

= 0 ,

e−φ
�

R+
2
ℓ2
+

3
2

e−2φ f 2
�

+
1
µ

e−2φ f
�

R+ 2 e−2φ f 2 − 2∇2φ
�

+
1
µ
∇2
�

e−2φ f
�

= 0 ,

gαβ

�

∇2e−φ −
1
ℓ2

e−φ +
1
4

e−3φ f 2
�

−∇α∇β e−φ

+
1

2µ

�

(∇αe−2φ f )∇βφ + (∇β e−2φ f )∇αφ −∇α∇β(e−2φ f )
�

+
1

2µ
gαβ
�1

2
e−2φ f R− e−2φ f∇2φ −∇µ(e−2φ f )∇µφ +∇2(e−2φ f ) + e−4φ f 3

�

= 0 ,

(107)

where we have introduce the auxiliary scalar

f ≡
1

2
p
−g
εαβ Fαβ . (108)

As stressed in [71,81,82], the action (104) is a consistent truncation of the three-dimensional
theory. That is, all solutions to the equations of motion (107), when uplifted via (103), are
solutions to (3).

The solutions that will serve as our base in the subsequent analysis are those that have
a constant dilaton background. As shown in [71], the equations of motion (107) admit two
branches of solutions when we set φ(x) = φ0 constant. The first branch is characterised by
being a solution that is independent of the TMG coupling µ; that is, it is determined by the
equations that arise from the EMD action, and hence it automatically satisfies also (107). The
Ricci scalar and auxiliary scalar f (108) are

EMD Branch : R0 = −
8
ℓ2

, f 2
0 =

4
ℓ2

e2φ0 . (109)

The second branch is a solution that relies on a balance between the EMD and rCS contributions
to (107), and hence is intrinsic to the TMG dynamics. The corresponding Ricci scalar and
auxiliary scalar read

TMG Branch : R0 = −
6
ℓ2
−

2µ2

9
, f0 = −

2µ
3

eφ0 . (110)

For both branches the subscript “0” simply denotes the background values when we set the
dilaton to be a constant. For both of these branches, the Ricci scalar is constant, and negative,
indicating the two-dimensional metric is locally AdS2, as expected. From here we will identify
the AdS2 radius via the relation

R0 = −
2

ℓ2
2

. (111)

The EMD branch is the appropriate solution to describe the near-horizon geometry of the
extremal BTZ black hole, as is explained in [71]. The TMG branch is the appropriate solution
to describe the near-horizon of extremal WBH, both in the canonical and quadratic ensemble.
We will show this explicitly below, and at this stage we just remark that the radius of the AdS2
space in (110) agrees with (53) as it should.
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5.1 Near-AdS2: Linear response

We are interested in small fluctuations about our AdS2 background solution (110). We will
parametrize these fluctuations as follows,

e−2φ = e−2φ0 +Y ,

f = f0 +F ,

gαβ = gαβ + hαβ .

(112)

Here the fields (φ0, f0, gαβ) will correspond to the TMG branch in (110); in particular gαβ is a
locally AdS2 metric whose curvature is given by R0. In the following we will describe the dy-
namics of the fluctuations (Y,F, hαβ), whose support is on the two-dimensional coordinates
xµ, at the linearized level. We will describe the equations of motion and the effective action
that describes this leading order response.

By expanding the equations of motion (107) around (112), the linearized equations of
motion read

e2φ0

�

∇2
+

4µ2

9
−

6
ℓ2

�

Y − 2µe−φ0F +δR= 0 ,

4e2φ0

�

∇2
+µ2 −

3
4ℓ2

�

Y −
3
µ

e−φ0

�

∇2
+

4
9
µ2 −

6
ℓ2

�

F −δR= 0 ,

e2φ0

�

∇α∇β + gαβ
¦5µ2

9
−

3
ℓ2

©

�

Y +
3
µ

e−φ0

�

∇α∇β − gαβ
¦

∇2
+

5µ2

9
−

3
ℓ2

©

�

F

+gαβ δR= 0 ,

(113)

where ∇ stands for the covariant derivative with respect to the background metric gαβ . The
fluctuation of the Ricci scalar, δR, which contains the terms depending on hαβ , is

δR=∇α∇βhαβ −∇
2
hαα +

1

ℓ2
2

hαα . (114)

The equations in (113) couple our three fluctuations, but it is possible to decouple the system
systematically. First, we can use the first two equations in (113) to solve for δR and replace
in the third equation. This gives the following equation

∇α∇βΦ(x)− gαβ∇
2
Φ(x) +

1

ℓ2
2

gαβΦ(x) = 0 , (115)

where
Φ(x)≡ 3F(x) + e3φ0µY(x) . (116)

This is the characteristic equation for Jackiw-Teitelboim (JT) gravity [40,41]. For this reason
we will refer to Φ(x) as the “dilaton.” However, in sharp contrast to other instances of JT
gravity, Φ does not parametrize the size of the black hole horizon (Y plays that role). With this,
we can rewrite (113) in terms of (Φ(x),F, hµν); the first equation is (115) and the remaining
two are

�

∇2 −
1

ℓ2
2

+
4µ2

9

�

F −
1
3

�

1

ℓ2
2

+
2
9
µ2
�

Φ= 0 ,

δR+
e−φ0

µ

�

�

8µ2

3
− 3ℓ−2

2

�

F +

�

−
4µ2

9
+ ℓ−2

2

�

Φ

�

= 0 .

(117)

It is worth analysing the physical interpretation of these fluctuations. From (115), we see
that the conformal dimension of Φ is ∆Φ = 2. The solution to the first equation in (117)
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contains a homogeneous and inhomegenous part, i.e.,

F(x) =Fhom(x) +
1
3

�

9+ 2ℓ2
2µ

2

9+ 4ℓ2
2µ

2

�

Φ(x) , (118)

with the homogenous part satisfying
�

∇2 −
1

ℓ2
2

+
4µ2

9

�

Fhom(x) = 0 . (119)

Fhom is an independent degree of freedom, and it can be tracked to the extra degree of freedom
due to the appearance of a massive graviton that is characteristic to TMG. It is useful to further
interpret this field in the usual AdS/CFT dictionary. From (119) we can relate the mass of the
field to its conformal dimension; this gives

∆F(∆F − 1) = 1−
4
9
µ2ℓ2

2 =
3(1− ν2)

3+ ν2
, (120)

where ν= µℓ
3 as before, and we used (53). The solutions are

∆±F =
1
2

�

1±

√

√15− 11ν2

3+ ν2

�

. (121)

As we saw in Sec. 2, our WBH solutions have the restriction that ν2 ≥ 1, making the mass
squared negative. We also have the Breitenlohner-Freedman (BF) bound [83]: this restricts
ν2 ≤ 15

11 such that ∆F ≥ 0. Therefore, we have a linear stable mode when

1≤ ν2 ≤
15
11

:
1
2
≤∆+F ≤ 1 , 0≤∆−F ≤

1
2

. (122)

Altogether, this makes Fhom(x) a relevant perturbation, and being marginal when ν2 = 1,
around the AdS2 background. This mode, and its non-trivial bounds, were also found in [42];
an interesting contrast is that here we detected it from an analysis of the IR (AdS2) background
rather than from the fluctuations around Warped AdS3.

Finally, it is worth reporting on the effective action that captures the linear response. The
equations of motion obtained from

Ieff =
e−4φ0

48G3

∫

d2 x
p

−g Φ

�

R+
2

ℓ2
2

�

−
9e−3φ0

16µG3

∫

d2 x
p

−g

�

∇µF∇
µ
F +

1

ℓ2
2

∆F(∆F − 1)F2

�

+
e−3φ0

48µG3

∫

d2 x
p

−g

�

1
3

�

µ2 +
9

ℓ2
2

�

Φ2 − 4

�

µ2 −
3

ℓ2
2

�

FΦ+ 15∇µF∇
µ
Φ

�

,

(123)

exactly match (115) and (117) at linear order in the fields. There is an overall factor in Ieff
that we fix such that the action here matches the normalization in (104) at the linear level.
The first line of (123) is the renown JT action, and for this reason several components of our
analysis will agree with the universal properties advocated in [37,38]; the second line contains
the kinetic and mass terms for F (which captures the relevant/marginal operator); and third
line of (123) captures the non-trivial interactions among the fields.

For the purposes of capturing dynamics in the near-AdS2 region, the effective action (123)
is much simpler to manipulate relative to (105)-(106), since the latter is a higher derivative
theory and the former is a two-derivative action. In Sec. 5.2, we will use Ieff to discuss holo-
graphic renormalization and thermal properties in the near-AdS2 background.
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5.1.1 Solutions

In this last portion we will construct explicit solutions to the linear equations (115)-(117);
this follows very closely [71,84], which we refer to for further details. It will be convenient to
work in a radial gauge, where we introduce coordinates xµ = (ρ,τ) and we set

ds2 = gµνdxµdxν = γττdτ2 + dρ2 , Aρ = 0 . (124)

In this gauge, the background AdS2 metric and the gauge field are

ḡµνdxµdxν = γ̄ττdτ2 + dρ2 , A0 = A0
τdτ , (125)

with
γ̄ττ = −
�

α(τ)eρ/ℓ2 + β(τ)e−ρ/ℓ2
�2

,

A0
τ = χ(τ)− f0ℓ2

�

α(τ)eρ/ℓ2 − β(τ)e−ρ/ℓ2

�

.
(126)

Here α(τ), β(τ) and χ(τ) are arbitrary functions. The constant f0 and the AdS2 radius, ℓ2,
are given by (110).

With this choice of gauge and background solution, the solution to the JT equation (115)
reads

Φ(x) = λ(τ) eρ/ℓ2 +σ(τ) e−ρ/ℓ2 , (127)

where

σ(τ) = −
ℓ2

2

4λ

�

(∂τλ)2

α2
+ c0

�

,

β(τ) = −
ℓ2

2

4
α

∂τλ
∂τ

�

1
λ

�

(∂τλ)2

α2
+ c0

��

=
α

∂τλ
∂τσ .

(128)

Here c0 is an arbitrary constant. Using the standard AdS/CFT terminology, from (127) we
interpret λ(τ) as the source and σ(τ) as the vacuum expectation value. In (128) we have
chosen to solve for the vacuum expectation values (β ,σ) in terms of the sources (α,λ).

Solving the two equations in (117) is straightforward, and we start with the first equation.
As described in (118), the field F has two components. The inhomogeneous solution is

Fin−hom(x) =
ν2 + 1

5ν2 + 3
Φ(x) , (129)

with Φ(x) given by (127). The homogeneous solution has the standard behaviours of fields in
AdS, whose radial behaviour near the boundary is

Fhom(x) = e−∆Fρ/ℓ2( f1(τ) + · · · ) + e(∆F−1)ρ/ℓ2( f2(τ) + · · · ) , (130)

with ∆F defined in (120). Since this mode is relevant or marginal, it depends on its quanti-
zation conditions if f1, or f2, is the source, or a vacuum expectation value.

The second equation in (117) determines the metric perturbation. Recall that we are
working in the radial gauge (124), and hence the only metric perturbation in the game is hττ;
the resulting equation is therefore

1
γ̄ττ
∂ρ

�

γ̄ττ∂ρ (γ̄
ττhττ)
�

=
e−φ0

νℓ

��

7ν2 − 3
�

F +
�

1− ν2
�

Φ
�

. (131)

The solutions to hττ also split into a homogeneous and inhomogeneous solution. The homo-
geneous solution is the same as the background solution and can be absorbed in γ̄ττ. The
inhomogeneous solution is determined by the on-shell values we have already determined
for F and Φ. For concreteness, let us take F = Fin−hom(x), i.e., turn off the homogeneous
solution in (130). With this, the inhomogeneous solution to the metric pertubation reads

hττ =
2νℓ
3

1
5ν2 + 3

e−φ0

�

γ̄ττΦ− 2ℓ2
2

p

−γ̄∂τ
�

∂τλ

α

��

. (132)
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Comparison with warped black holes. In this last portion we compare the solutions de-
scribed here with the black hole background: the near-AdS2 background in the canonical
ensemble Sec. 3.2 and the quadratic ensemble Sec. 4.2. Since they are stationary black holes,
they will be matched with static (τ-independent) solutions described in the two-dimensional
language used in this section.

The background AdS2 solutions for both black holes are exactly the same, and in terms of
the language used in this section it corresponds to

e−φ0 = R0 , α(τ) = 1 , β(τ) = −
�2

4
, (133)

where we used (54) and (86) for the canonical and quadratic solution, respectively. From here
we see that β is tied to the near-extremal parameter �.

One small subtlety between the canonical and quadratic ensemble comes from the specific
values of the sources in the JT field, Φ(x). For the canonical black hole we have

λCE(τ) =
3(3+ 5ν2)
ℓR2

0

ε , (134)

which is obtained by reconstructingΦ from (116) and the on-shell values in (56).14 In contrast,
the quadratic black hole has

λQE(τ) =
12(1−H2)
ℓ2R2

0

ε , (135)

which again uses (116) and the black holes values in (89). To relate (135) to (134) we need
to incorporate that the decoupling parameter ε is not the same for the canonical and quadratic
ensembles. By relating (52) and (84) via (41), one finds

εCE = 2
ℓ2

ℓ
εQE ⇒ λQE(τ) = λCE(τ) . (136)

The subleading component of the JT field is simple to read off, and for both cases we have

σCE,QE(τ) =
�2

4
λCE,QE(τ) . (137)

Finally, for the massive vector field we find

FCE,QE =
ν2 + 1

5ν2 + 3
ΦCE,QE , (138)

which shows that, for both black hole backgrounds, the fields on-shell only have the inhomo-
geneous solution to (117). The remaining fields listed in (56) and (89), i.e., hµν and Aµ, will
follow from the values listed here, in accordance to the dynamics described in this section.

5.2 Boundary analysis

In this final portion, we return to thermodynamic aspects of the warped black holes, but now
with the perspective of near-AdS2. We will perform some of the basic computations to read off
the entropy of near-AdS2 via a boundary analysis of the system. In a nutshell, we will construct
an effective boundary action via the traditional tools of holographic renormalization. From
there, we will identify the Schwarzian sector of the theory and report on its contribution to
the entropy.

14Recall that ε is the decoupling parameter used to obtained the near-horizon geometry. In this context, it
controls the smallness of Φ(x) which will use in Sec. 5.2.
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The derivations here follow very closely again [71, 84], and conceptually there is no de-
viation from those references. For that reason we will keep the presentation brief and to the
point.

A holographic analysis around the near-AdS2 background requires some care. We are
interested in renormalizing the theory when the source of Φ(x), λ(τ), is turned on; this means
we are doing conformal perturbation theory in the presence of irrelevant couplings. In more
practical terms for our purposes, we have to specify what are the allowed divergences and the
regime of validity of the procedure. Following [84], at a specified cutoff ρ = ρc →∞ we will
have

λ(τ) eρc/ℓ2 ≪ 1 , e−2φ0 ≫Y . (139)

The setup of the variational problem will be standard. Our bulk action is Ieff in (123), and
for this action we construct a functional that is well-defined for Dirichlet boundary conditions
on the field. With this we will see that the responses of the functional under the variations

δγττ = −2α(τ)e2ρc/ℓ2δα , δΦ= eρc/ℓ2δλ (140)

are finite and integrable. Note that we will only turn on the sources for the metric and JT field,
α and λ respectively; for simplicity we are setting Fhom = 0, which suffices to discuss semi-
classical aspects of the thermodynamics of the system that connects to JT gravity. However, it
should be stressed that it is of interest to investigate in more details the effects of the massive
degree of freedom Fhom. In particular, we expect this mode to lead to instabilities similar to
those advocated recently in [85] for higher-dimensional extremal AdS black holes.

The functional that renders a well-defined variational problem for our system is

Iren = Ieff + IGH + Ict . (141)

The bulk term is given by Ieff in (123). The second term is the usual Gibbons-Hawking term,
which in our context reads

IGH = 2µeφ0

∫

dτ
p

−γΦK . (142)

Here, K = ∂ρ log
p
−γ is the extrinsic curvature. The third term in Iren are local boundary

counterterms, whose functionality is to remove divergences in the action (and its variation).
The counterterms for our setup are

Ict = −
e−2φ0

24G3µℓ2

∫

dτ
p

−γΦ+
e−3φ0ℓ2

48G3(9+ 4µ2ℓ2
2)

∫

dτ
p

−γΦ2 . (143)

Although the second term is quadratic in Φ, and hence subleading according to (139), it is
needed to render finite the variation of the action with respect to (140).

We can now easily very that the response of Iren is finite and integrable. First we compute
the one-point functions dual to our two sources in (140); this gives

Π̂α = lim
ρc→∞

δ

δα
(Ieff + IGH + Ict) = −

e−2φ0

12G3ℓ2
σ(τ) ,

Π̂λ = lim
ρc→∞

δ

δλ
(Ieff + IGH + Ict) = −

e−2φ0

12G3ℓ2
β(τ) ,

(144)

which is clearly finite. Thus, the variation of the renormalised effective action is

δIren =

∫

dτ(Π̂αδα+ Π̂λδλ)

=
ℓ2e−2φ0

48G3µ

∫

dτ
�

q(τ)
λ(τ)

δα+
α(τ)
∂τλ(τ)

∂τ

�

q(τ)
λ(τ)

�

δλ

�

,

(145)
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where we used (128) and defined

q(τ)≡
�

(∂τλ)2

α2
+ c0

�

. (146)

This expression is integrable over the phase space (α,λ). After performing this integration
over (145), we get

Iren =
ℓ2

48G3µ
e−2φ0

∫

dτ
α(τ)
λ(τ)

�

c0 −
�

∂τλ(τ)
α(τ)

�2�

. (147)

Hence we have obtained a finite and well-defined on-shell action for the system at hand.

Schwarzian effective action. It is useful to re-cast (147) in a way that the Schwarzian ef-
fective action is manifest. To do so, we first make manifest the re-parametrization mode as
follows. Take α= 1 and β = 0

ds2 = dρ2 − e2ρ/ℓ2dτ2 . (148)

This is what we coin an “empty” AdS2 background. Next, consider the following diffeomor-
phism

τ→ f (τ) +
ℓ2

2

2
f ′′(τ)

e2ρ/ℓ2 − ℓ
2
2
4

f ′′(τ)2
f ′(τ)2

,

eρ/ℓ2 →
e−ρ/ℓ2

f ′(τ)

�

e2ρ/ℓ2 −
ℓ2

2

4
f ′′(τ)2

f ′(τ)2

�

,

(149)

where f (τ) is an arbitrary function of time representing boundary time reparametrizations.
Under these diffeomorphisms, the line element becomes

ds2 = dρ2 −
�

eρ/ℓ2 +
ℓ2

2
{ f (τ),τ}e−ρ/ℓ2

�2

dτ2 , (150)

where { f (τ),τ} =
�

f ′′

f ′

�′
− 1

2

�

f ′′

f ′

�2
is the Schwarzian derivative. We see that these diffeo-

morphisms preserve the radial gauge while ensuring that the asymptotic form of the metric is
the same as that of empty AdS2 in (148). So, these are the asymptotic symmetries of AdS2.
Comparing with (125), we have

α(τ) = 1 , β(τ) =
ℓ2

2

2
{ f (τ),τ} . (151)

It is now also simple to re-examine (147) in the view of (151). Substituting for c0 in terms of
β in (147) by using (128), we get

Iren =
ℓ2

24G3µ
e−2φ0

∫

dτ

�

λ(τ){ f (τ),τ} −
λ′

2(τ)
λ(τ)

�

. (152)

In this expression we used (151); we have also ignored total derivatives, since shortly the
time direction will be periodic (in Euclidean signature). This is the well-known Schwarzian
effective action that is characteristic of JT gravity [38].
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Near-extremal entropy. Finally, we turn to extracting some thermodynamic information
from (152). For this, we take a static background where all functions are independent of
τ. In particular we take15

λ(τ) = λ0 , β(τ) = β0 . (153)

For this configuration, the background AdS2 solution has a horizon at e2ρh/ℓ2 = −β0. The
temperature associated to this horizon is

T2d =
1

2π
∂ρ
p

−γ̄ττ
�

�

�

ρ=ρh

=
1
πℓ2

Æ

|β0| . (154)

To extract the entropy, we take an Euclidean approach, for which we evaluate the renormalized
action (152) in Euclidean signature. By Wick rotating time, τ = iτE with τE ∼ τE + T−1

2d , the
action (152) reads

I E
ren =

ℓ2

48G3µ
e−2φ0

∫
1

T2d

0

dτE λ0 (2πT2d)
2 =

π2ℓ2

12G3µ
e−2φ0 λ0 T2d , (155)

where we used (153) and (154). We take the usual relation between the on-shell action and
entropy dictated by thermodynamics, which gives

S2d = (1+ T2d∂T2d
)I E

ren =
π2ℓ2

6G3µ
e−2φ0 λ0 T2d . (156)

The entropy we have derived here, S2d, is the entropy of the near-AdS2 background. That is,
the entropy as a deviation away from the fixed IR point, which is controlled by λ0. It excludes
the zero temperature residual entropy, since Ieff and Iren do not capture that contribution. In
our next and final section we will make comparisons with the warped black hole backgrounds
in the canonical and quadratic ensemble.

6 Comparing perspectives and ensembles

Having done independent analyses in the three previous sections, we now turn to our main task
of comparing and contrasting our findings. We will be able to take three different perspectives:
in the three-dimensional arena, we will contrast the responses of the WBHs in its two different
ensembles; from the two-dimensional dual, where the lamppost is a warped CFT, we will
contrast their thermodynamic response; and from the IR perspective of near-AdS2 dynamics
we will disentangle how these come together or apart.

6.1 Comparing ensembles

In this first portion, we will scrutinise and contrast the analysis done in Sec. 3 and Sec. 4. This
contrast will not involve a holographic component yet, just how the black hole responds in the
near-extremal limit from the bulk perspective. To this end, we will be emphasising similarities
and differences between the canonical and quadratic ensemble.

Mass gap. The response we found for both ensembles is generic: upon moving away from
extremality by slightly increasing the temperature, the mass and entropy of the black hole
increases quadratically and linearly in the temperature respectively. More explicitly, we have

M• = M•ext +
(T •)2

M •
gap

+O(ε3) ,

15In terms of the time reparametrization mode, we have f (τ) = e f0τ, and hence β0 = −
ℓ22
4 f 2

0 .
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S• = S•ext + 2
T •

M•
gap

+O(ε2) , (157)

where the • indicates either CE or QE, and

MCE
gap ≡

6G3

π2ℓ

ν(3+ ν2)
(3+ 5ν2)

ΩCE
ext , MQE

gap ≡
6G3
p

1− 2H2

π2 L(1−H2)
=

2
ΩCE

ext
×MCE

gap . (158)

For the second equality of the quadratic ensemble mass gap we used the relation (25) between
H and ν. From (43), very near to extremality we also find

T QE = 2
T CE

ΩCE
ext
+O(ε2) . (159)

Therefore, in agreement with the ties discussed at the end of Sec. 2.2, the entropies are report-
ing the same answer: SQE = SCE in (157).

A very interesting difference between the ensembles comes in the parameter (scale) that
controls the thermodynamic response. Note that the mass gap for the canonical ensemble
depends on the angular potential at extremality (45); for the quadratic ensemble this potential
is unity at extremality according to (77). This is significant since the expansions in (157)
assume large extremal entropy, and therefore from (46) we have

SCE

ext≫ 1 ⇒ G3Ω
CE

ext≪ 1 . (160)

That is the angular potential is small in Planck units. This brings some tension to (159): both
temperatures differ by big factors making both ensembles fall into different regimes of near-
extremality. The canonical ensemble is cooler than the quadratic ensemble.

In the limit ν → 1 (H2 → 0) the mass gap of the canonical ensemble diverges, due to
ΩCE

ext. However, in this limit the mass gap for the QE remains finite. Another interesting limit
is ν → 0 (H2 = 1/2); here we find that for both ensembles M•gap = 0. This is not surprising
since when ν → 0 (H2 = 1/2), we get pure Chern-Simons theory and WBHs are no longer
valid solutions.

Two-point function. Next we compare the two-point functions (75) and (102). We have

GCE(ωir) =

�

8π
ℓ2

2

ℓ2

R0

r0

ℓ

βCE

�2∆CE−1

GAdS2
(ωir) ,

GQE(ωir) =
�

2πL
r0

1
βQE

�2∆QE−1

GAdS2
(ωir) ,

(161)

where, for concreteness, we are defining the AdS2 two point function as

GAdS2
(ωir) =

Γ (1− 2∆•)Γ (∆•)
Γ (2∆• − 1)Γ (1−∆•)

Γ
�

∆• − i ℓ2
� ωir

�

Γ
�

1−∆• − i ℓ2
� ωir

� , (162)

and recall that ∆CE =∆QE in the near-extremal limit.
The contrast between the two expressions in (161) is similar to our thermodynamic re-

sponse. All the scales appearing in GCE(ωir) are roughly order one since ℓ2 ∼ ℓ and R0 ∼ r0.
However, in GQE(ωir) we have that r0 ≫ L; recall that r0 controls the extremal entropy in
(78) which should be large. If we also take into account the relation (159), we see that
GQE(ωir)∼ GCE(ωir). In other words, for GQE(ωir) to be non-negligible it is natural to scale T QE

with r0.
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6.2 Comparing perspectives

In this final portion we will take the task of comparing the two-dimensional perspective of
Sec. 5, and its own holographic interpretation, against the three-dimensional perspective, and
its holographic interpretation in terms of a WCFT.

To start, let us reconcile the semi-classical entropy (157), with the two-dimensional coun-
terpart obtained in Sec. 5.2. From (156), we obtained that the entropy in near-AdS2 is given
by

S2d =
π2ℓ2

6G3µ
e−2φ0 λ0 T2d . (163)

Deriving this expression relies on an on-shell analysis of the effective action (123); after renor-
malizing it, one finds that the entropy comes from the boundary contribution of the Schwarzian
action (152). In the following we will write this entropy in terms of the WBH parameters via
the dictionary we decoded in (133)-(135). First, it is instructive to relate the ensemble tem-
peratures with T2d in (154); we find

e−2φ0λ0T2d =
12G3µ

π2ℓ2

T •

M•
gap

, (164)

which holds for both the canonical and quadratic ensemble. In checking this relation one uses
in addition, for the canonical ensemble (48) and (50), while for the quadratic ensemble (80)
and (82). With this, it is simple to see that

S2d = 2
T •

M •
gap

, (165)

as expected from the universal behaviour near-extremality of black holes and the expectation
that near-AdS2 holography captures this correction correctly. This is another confirmation
that the two-dimensional effective action (123) captures correctly the near-extremal regime
of warped black holes. At this stage it is also important to remark that our effective theory in
AdS2 also captures the leading quantum correction to (165); this follows from the fact that
in the fixed angular momentum ensemble the effective action is a Schwarzian term and the
results in [38,86] apply. The quantum entropy is therefore

S2d = 2
T •

M •
gap

+
3
2

log T • + · · · , (166)

where the dots are further corrections in T •.
The interesting perspective is to contrast our results on the gravitational side with those

from an expected holographic dual. As we reviewed in Sec. 2, there is evidence that WBHs
should be interpreted as a warped CFT, either in the canonical or quadratic ensemble, depend-
ing on the coordinates used. In particular, we showed that the Wald entropy of non-extremal
black holes agrees with the high-temperature behaviour of the partition function of the WCFT;
see (20), (37) and discussion within. However, in the present context, we are exploring a near
extremal regime, which takes us to low temperatures.

In [29], we derived the near-extremal behaviour of a WCFT, both in the canonical and
quadratic ensemble. The key results we obtained are as follows. Adapting to the notation
used here, for the canonical ensemble, the near-extremal limit of the WCFT partition function
at fixed angular momentum J is

ZCE
J (β) = eS0−βE0 Zw-schw.(β̃) , (167)
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where

Zw-schw.

�

β̃
�

=

�

π

β̃

�3/2

exp

�

π2

β̃

�

(168)

is the thermal partition function of the warped Schwarzian sector in a WCFT, and

β̃ =
3
c

√

√

−
J
k
β . (169)

In (167) we also have the contributions for the extremal states, where we have

E0 = −
p

−kJ + . . . ,

S0 = 4πiPvac
0

√

√

−
J
k
+ . . .

(170)

The expressions (167)-(170) are valid in the large c limit; consistency of these derivations also
requires that β ∼ cα and J ∼ c2(α−1), with 1< α≤ 3/2. The dots in (170) are subleading cor-
rections in J and c. From (167)-(168) we can read off the leading low-temperature behaviour
to be

SCE
near-wcft

(β) = (1− β∂β) ln Zw-schw. = 2
π2c
3

√

√

−
k

J
T +

3
2

log T + · · · (171)

In this expression we are ignoring temperature independent contributions, since they can be
viewed as subleading corrections to S0.

The comparison with the gravitational side is excellent. First, the independent parameters
here are β and J , which we naturally match to the gravitional counterpart in Sec. 3.1: β = βCE

and J = JCE
ext. With this, comparing (170) to the equivalent expressions in (46), we see that

E0 = MCE
ext and S0 = SCE

ext to leading order in the large c limit. The leading temperature response
matches: the first term in (171), linear in temperature, agrees with (165) via (50). And the
logarithmic correction (171) is exactly what we expect from the quantum corrections from
the effective action (152) and (166). All in all, we find perfect agreement between the near-
extremal limit of the CE black hole, the near-AdS2 effective description, and the WCFT partition
function in the canonical ensemble.

Next, we take the perspective from the WCFT in the quadratic ensemble. The analysis
in [29] reports that

ZQE

J (β) = eS0−βE0 Znear-QE(β̃) (172)

is the low temperature partition function at fix J in the quadratic ensemble of a WCFT. Here
we have

Znear-QE(β̃) =

�

π

β̃

�2

exp

�

π2

β̃

�

, β̃ =
12
c
β . (173)

It is crucial to stress that despite some similarities with (168), there is a different power-law
in β . In (172), the extremal energy and entropy are

E0 = J + . . . ,

S0 = 2π
Æ

−〈P0〉vacJ + . . .
(174)

Again the dots are subleading corrections in the large c limit, and these expressions are valid
when β ∼ c−α and J ∼ c2α for α > 0. With this, the low-temperature behaviour of the entropy
is

SQE

near-wcft
(β) = (1− β∂β) ln Znear-QE = 2

π2c
12

T + 2 log T + · · · (175)
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The comparison with the gravitional side is however problematic. Provided we identify
β = βQE and J = −JQE

ext, we will find some agreement. More specifically, from (174) and (78),
it is straightforward to check that E0 = MQE

ext and S0 = SQE
ext. And it is also simple to check that

the linear dependence in entropy in (175) completely agrees with (165) via (82). However,
the logarithmic correction in (175) does not match those in the Schwarzian effective action in
(152) and (166), and this is a problem. Basically, the near-AdS2 effective theory tells us that the
logarithmic corrections in the fixed (β , J) ensemble at low temperature should be 3/2 log T ,
and the same correction in the quadratic ensemble of the WCFT does not reproduce this.
Although classically the quadratic ensemble seems like a valid choice to setup a holographic
dictionary, we are encountering an inconsistency since it is not accounting correctly for the
near-extremal entropy. We take this as evidence that at the quantum level the quadractic
ensemble does not provide a consistent description of warped black holes.

7 Conclusions

We have described several aspects of the near-extremal limit of warped black holes in TMG.
Our aim was to contrast any differences or similarities between the canonical and quadratic
ensemble. In this context, Sec. 3 and Sec. 4 show compatible results at the classical level, once
(41) is taken into account.

One of our main results is to carefully and in full detail construct the near-AdS2 IR effective
field theory description of the warped black holes, which contains the JT sector as expected.
This is the same theory for both the quadratic and canonical ensemble black hole. The appeal
of this theory is that, in addition to accounting correctly for classical aspects, it also accounts for
the quantum corrections to the black hole entropy which depend on log T . These corrections
can be contrasted with the field theoretic analysis done for WCFT in [29]: only the canonical
ensemble of the WCFT reproduces this answer. We find this a useful diagnostic to discriminate
between the plethora of ensembles, and asymptotic symmetry groups, that have appeared in
the context of three-dimensional black holes.

It is also interesting to comment on how the WAdS/CFT2 proposal stands against this test.
In a fixed J and T ensemble we would find agreement between the near-extremal partition
function of a CFT2 with (166): both a WCFT and CFT2 report the same answer. The key test
here is to analyse the grand canonical ensemble at fixed Ω and T : here is where a WCFT and
a CFT2 give a different log T correction, which is explained in [29]. Along the lines of [59],
it would be interesting to work out carefully the boundary conditions in the near-AdS2 region
to disentangle carefully what is the near-extremal partition function at fixed Ω and T . In this
ensemble we expect the analysis of [64] might be relevant.

Finally, we would like to remark on the unstable mode we have in the near-AdS2 region.
This is described around (118)-(122). Our interest here was to highlight the effects of the
JT sector on the thermodynamics near extremality, and hence this operator was turned off. It
would be interesting to determine if other theories that contain WBHs as solutions also have
this unstable mode or not. It is quite possible that this mode is due to instabilities and patholo-
gies of TMG, and absent in other contexts. When the mode is stable in TMG, it corresponds
to a relevant operator in the dual theory; it would be interesting to understand what could a
WCFT predict about the fate of the system under the presence of a relevant deformation. As
argued in [38] there could be instances where it dominates over the JT sector, but the precise
effect and at which scale it enters needs to be investigated.
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