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Abstract

We show that, in addition to the counting of canonical dimensions, a counting of loop
orders is necessary to fully specify the power counting of Standard Model Effective Field
Theory (SMEFT). Using concrete examples, we demonstrate that considering the canon-
ical dimensions of operators alone may lead to inconsistent results. The counting of
both, canonical dimensions and loop orders, establishes a clear hierarchy of the terms
in SMEFT. In practice, this serves to identify, and focus on, the potentially dominating
effects in any given high-energy process in a meaningful way. Additionally, this will lead
to a consistent limitation of free parameters in SMEFT applications.
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4.2 Bottom-up SMEFT calculation 19

5 Conclusions 20

References 21

1

https://scipost.org
https://scipost.org/SciPostPhys.15.3.088
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.3.088&amp;domain=pdf&amp;date_stamp=2023-09-11
https://doi.org/10.21468/SciPostPhys.15.3.088


SciPost Phys. 15, 088 (2023)

1 Introduction

The Standard Model (SM) of particle physics can be viewed as the low-energy approximation
of a more fundamental theory at higher energies that is yet to be discovered. The success
of the SM and the absence of new resonances in the experiments at the Large Hadron Col-
lider (LHC) indicate a mass gap separating the new physics from the electroweak scale. The
bottom-up construction of an effective field theory (EFT) based on the SM particle content
and symmetries (SMEFT) is, therefore, a well-motivated and widely adopted framework for a
model-independent description of new-physics effects [1–6]. Generally speaking, such effects
are encoded in operators of canonical dimension higher than four in the EFT Lagrangian.

Including or omitting any specific operator in a bottom-up EFT calculation has to rely
on a clear power-counting prescription. The power counting rests on (generic) assumptions
about the underlying physics at shorter distances. The assumptions, and the resulting power
counting, are not unique, but this is unavoidable. Necessarily, a choice has to be made to fix
this power counting in a consistent way. This holds in particular for SMEFT.

Commonly SMEFT is organized in terms of the canonical dimension of operators. The
coefficient of an operator of canonical dimension d scales as Λ4−d with a new-physics scale Λ,
leading to increasing suppression with increasing operator dimension.

We will argue that a power counting for SMEFT based on canonical dimensions alone is in-
complete. It needs to be supplemented by specifying whether SM fields are weakly or strongly
coupled to the new-physics sector. This assumption is effectively described by a counting of
loop orders. Keeping track of loop counting not only provides a consistent treatment of higher-
dimensional operators in a given process; it also leads to a systematic combination of SMEFT
corrections with calculations in perturbation theory. We are not suggesting that SMEFT with
a power counting based on canonical dimensions (with order one operator coefficients) is in-
consistent as an EFT under perturbative renormalization. Rather, we point out that SMEFT
organized in such a way would fail to match a large class of weakly coupled UV models and,
in any case, would still call for a reasoning to assign a power-counting size to the coefficients.

The basic rules of power counting on which we rely are by no means new. However, their
implications are not always consistently applied, and they are often not spelled out explicitly.
We will review the organizing principle of SMEFT, emphasizing in particular the role of loop
counting. The relevance and use of the latter will be demonstrated with concrete examples
and calculations.

The fact that canonical dimensions alone do not provide the full information needed for
the power counting of SMEFT is already illustrated by the Higgs-mass operator φ†φ in the
SM Lagrangian. Carrying a canonical dimension of two, it would appear, at face value, to be
dominant over the remaining SM terms of dimension four, which is certainly not the case. We
will see how the missing information can be provided by loop counting.

This paper is organized as follows. In Sec. 2 we introduce the toy scenario of a heavy
scalar coupled to top quarks t and discuss the process e+e− → t t̄ within an EFT where the
heavy scalar is integrated out. Using this top-down example, we demonstrate how a magnetic-
moment type operator mt t̄σµν t Fµν and a four-fermion operator t̄ t t̄ t contribute at the same
order in the EFT, even though the former enters the scattering amplitude at tree level, but the
latter only at one loop. We show that loop counting explains and clarifies this observation,
and generalize the discussion to a bottom-up EFT treatment. In Sec. 3 we address the issues
highlighted in Sec. 2 within the general context of SMEFT. We review the SMEFT power
counting, emphasizing the need to include the counting of loop orders, conveniently expressed
using the notion of chiral dimensions dχ , in addition to canonical dimensions dc . The general
counting scheme is illustrated with the example of Higgs production in gluon fusion g g → h,
which nicely displays the combined role of canonical dimensions and loop orders in the SMEFT
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expansion. In Sec. 4 we return to the topic treated with a toy model in Sec. 2, generalizing it
to the more realistic case of SMEFT, analyzing uū→ t t̄ via gluon exchange within a decoupling
Two-Higgs Doublet Model (2HDM) as the UV completion. We finally conclude in Sec. 5.

2 Toy model analysis of e+e−→ t t̄

We consider a toy model with an electron ψ of mass me ≈ 0 and a heavy fermion t of mass m,
both coupled to electromagnetism. In addition to this “standard” physics, we introduce a real
scalar field S with mass M , which has renormalizable self-interactions and a Yukawa coupling
to the “top-quark” t.1 The Lagrangian reads

L=ψ̄(i ̸D−me)ψ+ t̄(i ̸D−m)t −
1
4

FµνFµν

+
1
2
(∂ S)2 −

1
2

M2S2 −
b
3!

S3 −
λ

4!
S4 − g t̄ tS , (1)

where

Dµ = ∂µ + ieq f Aµ , qe = −1 , qt =
2
3

, Fµν = ∂µAν − ∂νAµ . (2)

The first line of (1) is quantum electrodynamics with two different fermions. The “non-
standard” physics of the scalar in the second line is assumed to be governed by a scale M ,
which is taken to be much larger than m and the typical energies (

p
s ∼ few times m) acces-

sible in experiment. We allow b ∼ M and take the dimensionless couplings in (1) of order
unity, unless specified otherwise. The heavy scalar S modifies the dynamics of the top quark
and leads at energies of order

p
s to “new-physics” effects, suppressed by powers of s/M2.

As an example, we take the process e−(k1)e+(k2) → t(p1) t̄(p2). To lowest order, within
the model of eq. (1), the amplitude for this process arises from s-channel photon exchange,
shown in Fig. 1 (a). It is given by

ALO = −i
e2qt

q2
v̄(k2)γµu(k1) ū(p1)γ

µv(p2) , (3)

where q = p1 + p2 = k1 + k2, s ≡ q2. We are interested in the leading corrections to this
amplitude from the heavy sector in the second line of (1). In terms of the t-quark vertex
function

Γµ ≡ γµ +δΓµ , (4)

the amplitude can be written as

A≡ALO +δA= −i
e2qt

q2
v̄(k2)γµu(k1) ū(p1)Γ

µv(p2) , (5)

where δΓµ contains the effect of S-boson exchange on the t t̄-photon vertex.

2.1 Full theory

We first determine δΓµ in the full theory (1) up to order g2. The relevant diagram is displayed
in Fig. 1 (b). Fig. 1 (c) is used to fix the necessary counterterm. With on-shell renormalization
of the t-quark and expanding to first order in 1/M2, we obtain

δΓµ = −
g2

16π2

1
M2

��

ln r
3
+

4
9
+ h1(z)
�

q2γµ +
�

ln r +
7
6
+ h2(z)
�

iσµνqνm
�

. (6)

1A similar model has also been considered e.g. in [7].
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Figure 1: e+e−→ t t̄ in a toy model. (a): Lowest-order amplitude. (b), (c): Leading
corrections from S-scalar exchange (mass M) in the full theory. (d), (e): Contri-
butions needed to reproduce the 1/M2 corrections of the full theory within the EFT.
The black dots represent local operators of dimension 6. They contribute at tree level
(Q2, Q3 in (d)) and at one loop (Q1 in (e)). See text for further explanation.

Here we have defined

r =
m2

M2
, z =

q2

4m2
, (7)

and ( x̄ ≡ 1− x)

h1(z) =

∫ 1

0

d x 2x x̄ ln(1− 4x x̄z − iη) =
�

1
3
+

1
6z

�

h2(z) +
1
9

, (8)

h2(z) =

∫ 1

0

d x ln(1− 4x x̄z − iη) = −2+

√

√

1−
1
z

ln

q

1− 1
z + 1
q

1− 1
z − 1

. (9)

The second expression for h2(z) is immediately applicable in the Euclidean region z < 0. For
z > 0 it holds with the prescription z→ z + iη.

2.2 Top-down EFT

The result for δΓµ in (6) can be reproduced within a low-energy effective field theory of the
heavy sector. The EFT takes the form of the first line in (1), supplemented by local operators
of dimension 6,

∆L6 =
1

M2

∑

i

CiQ i , (10)

when we neglect higher orders in 1/M2. Here we assume that the heavy sector is known.
The EFT can then be constructed by explicitly integrating out the scalar S. This scenario is
commonly refered to as a top-down EFT. The relevant operators are given by

Q1 = t̄ t t̄ t , Q2 = ∂µFµν t̄γν t , Q3 = mt̄σµν t Fµν . (11)
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Q1 arises when the scalar S is integrated out (removed as a propagating degree of freedom
from the theory) at tree level with C1 = g2/2. Q2 and Q3 are generated at one loop and
correspond to local terms in (6). The coefficients Ci are found by matching the full-theory
result for δΓµ to its EFT counterpart. The matching condition reads

−ieqtδΓ
µ = −ieqtδΓ

µ
Q1
+

C2

M2
(−i)q2γµ +

C3

M2
(−2)σµνqνm , (12)

equating the full-theory vertex function on the left with its EFT representation on the right.
The latter consists of the one-loop contribution from Q1 in Fig. 1 (e)

δΓ
µ
Q1
= −

1
16π2

2C1

M2

��

1
3

ln
m2

µ2
+ h1(z)

�

q2γµ +

�

ln
m2

µ2
+ h2(z)

�

iσµνqνm

�

, (13)

and the tree-level contributions from Q2 and Q3 in Fig. 1 (d). We have renormalized the vertex
function in (13) using MS subtraction. Condition (12) then implies

C1 =
g2

2
, C2 = −eqt

g2

16π2

�

1
3

ln
µ2

M2
+

4
9

�

, C3 = eqt
g2

16π2

�

1
2

ln
µ2

M2
+

7
12

�

. (14)

Together with (4) and (5), eqs. (12) – (14) reproduce the leading 1/M2 corrections to the
e+e−→ t t̄ amplitude within the EFT.

Let us summarize a few relevant aspects of this result.

i) As is well known, the EFT formulation achieves a factorization of large (∼ M) and small
(∼ m) scales. Contributions from large scales are encoded in the Wilson coefficients
(14), from small scales in the matrix elements of local operators, as seen in (13). The two
regions are separated by a renormalization scale µ, which cancels in the full amplitude.

ii) Within our approximation, operator Q1 mixes into Q2 and Q3 under renormalization.
The corresponding renormalization-group functions can be read off from (14):

βi ≡ 16π2 dCi

d lnµ
⇒ β2 = −

4
3

eqt C1 , β3 = 2eqt C1 . (15)

The coefficients of the local operators Q2, Q3 also provide the one-loop counterterms
necessary to renormalize the UV divergences originally contained in (13).

iii) Using the equations of motion, operator Q2 may be eliminated in favour of the 4-fermion
operator

Q′2 = −eψ̄γνψ t̄γν t + eqt t̄γν t t̄γν t , (16)

which gives an equivalent contribution to the e+e−→ t t̄ amplitude.

iv) The one-loop contributions from Q1 in (13) are essential to reconstruct the complete
1/M2 corrections within the EFT, including the non-local terms expressed by the (com-
plex) functions h1(z) and h2(z). Such terms cannot arise from the local operators Q2
and Q3.

v) We note that all three operators yield corrections of the same order to the amplitude,
∼ g2/16π2M2. This is the case even though Q1 contributes only at one-loop, whereas
Q2 and Q3 contribute at tree level, as illustrated in Fig. 1 (d) and (e). The distinction is
clearly not captured by the canonical dimension of these operators, which is six in each
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case. To make the difference explicit, it is instead necessary to employ chiral dimensions
dχ , which count loop orders.2 We have

dχ[C1Q1] = 4 , dχ[C2Q2] = dχ[C3Q3] = 6 . (17)

Q2 and Q3 enter (10) with two units of dχ , or one loop order, higher than Q1. A one-loop
insertion of Q1 thus contributes at the same loop order as Q2 and Q3 at tree level.

2.3 Bottom-up EFT

We next imagine a scenario in which the standard physics at energy scales∼ m is still described
by the first line in (1), but we do not know the physics of the heavy sector, assumed to reside at
M ≫ m. To order 1/M2 this physics is given by an effective Lagrangian of the form (10), where
the Q i represent a basis of dimension-6 operators, with coefficients Ci treated as unknown
parameters. This scenario is the analogue of SMEFT, applied to our toy model. In the present
case, using the field content ψ, t and Aµ and the U(1) gauge symmetry, the operators Q i may
be chosen as follows.

First, there are several (hermitian) 4-fermion operators, which can be written as

QS1 = t̄ t ψ̄ψ , QS2 = i t̄ t ψ̄γ5ψ , QS3 = i t̄γ5 t ψ̄ψ , QS4 = t̄γ5 t ψ̄γ5ψ , (18)

QV1 = t̄γµ t ψ̄γµψ , QV2 = t̄γµ t ψ̄γµγ5ψ ,

QV3 = t̄γµγ5 t ψ̄γµψ , QV4 = t̄γµγ5 t ψ̄γµγ5ψ , (19)

QT1 = t̄σµν t ψ̄σµνψ , QT2 = i t̄σµν t ψ̄σµνγ5ψ , (20)

and, with η= t, ψ,

QηS1 = η̄η η̄η , QηS2 = iη̄η η̄γ5η , QηS4 = η̄γ5ηη̄γ5η , (21)

QηV1 = η̄γ
µηη̄γµη , QηV2 = η̄γ

µηη̄γµγ5η . (22)

Fierz identities have been used to remove redundant structures.
There are no independent operators of dimension 6 built only from Fµν and derivatives.

Finally, operators with a fermion bilinear and Fµν are (assuming CP conservation)

Q t F = mt̄σµν t Fµν , QψF = meψ̄σµνψ Fµν . (23)

In the model of Sec. 2.2, only three operators from this basis were generated: Q1 =Q tS1,
Q3 =Q t F and Q′2 = −eQV1 + 2/3eQ tV1.

In the bottom-up version of the EFT we are interested in parametrizing the leading correc-
tions (in 1/M2) to the e+e−→ t t̄ amplitude (3). Let us use (10) and assume a power counting
based just on canonical dimensions. This amounts to taking all coefficients Ci = O(1).3 The
dominant corrections to ALO would then become (v̄ = v̄(k2), etc.)

δA=
i

M2

∑

i

Ci〈Q i〉=
i

M2
v̄γµu ūσµνv 2ie

mqν
q2

Ct F +
i

M2
v̄γµu ūγµv CV1 + . . . (24)

2Loop orders can be conveniently counted by assigning chiral dimensions dχ to fields and weak couplings:
dχ = 0 for bosons, and dχ = 1 for each derivative, fermion bilinear and weak coupling. The total chiral dimension
of a term is then related to its loop order L through dχ ≡ 2L + 2, see [8] and Sec. 3.2.

3They may be smaller, or even zero, in reality, but they are not arbitrary. In particular, they must be small
compared to M2/m2, otherwise the term CiQ i/M

2 ∼Q i/m
2 would be of the same order as the leading, dimension-

4 Lagrangian, spoiling the EFT expansion.

6

https://scipost.org
https://scipost.org/SciPostPhys.15.3.088


SciPost Phys. 15, 088 (2023)

where 〈Q i〉 denotes the matrix element of Q i . Here we show CV1 as representative for the
terms from all the 4-fermion operators of the type (ψ̄ . . .ψ)( t̄ . . . t) that contribute at tree
level. On the other hand, 4-top-quark operators such as Q tS1 = t̄ t t̄ t will contribute to δA at
one-loop order. Assuming CtS1 =O(1), this implies δAtS1 ∼ 1/16π2M2, which appears to be
subleading with respect to the terms ∼ 1/M2 in (24). This would leave the latter terms as the
dominant corrections in the bottom-up EFT.

However, the example in Sec. 2.2 shows that such an approximation would be inconsistent.
In fact, the tree-level terms in (24) are unable to reproduce the leading corrections (6) of the
model with the heavy scalar in (1), because the nonlocal terms encoded in h1,2(z) from the
one-loop matrix element of t̄ t t̄ t are absent.

Clearly, information on the loop counting is missing in the consideration above. This in-
formation is necessary to tell us that e.g. Q t F and Q tS1 do in general contribute to δA at the
same order, in both 1/16π2 and 1/M2, even though Q t F enters at tree level and Q tS1 at one
loop. Canonical dimensions alone cannot provide this information, as discussed at the end of
Sec. 2.2.

We emphasize the following points:

i) Although the model in (1) is only a specific realization of the heavy-sector physics, it
serves as a strict counterexample to the validity of only counting canonical dimensions:
Since the bottom-up EFT is constructed in the most general, model-independent way, it
must be able to reproduce any concrete model of the physics at scale M , to a given order
in the EFT approximation.

ii) While the scalar-exchange model in (1) is only a specific scenario, its implications are
generic: Any heavy boson coupled to the top quark will, in general, have the effect of
inducing 4-top interactions at tree level and Q t F at one loop.

iii) The systematic connection between 4-top operators and Q t F is independent of the cou-
pling strength: In the example of (14), with t̄ t t̄ t ≡ Q1 and Q t F ≡ Q3 the ratio of coef-
ficients is C3/C1 =O(1/16π2), independent of g. For weak coupling, g ∼ 1, the coeffi-
cient of the magnetic-moment operator is loop suppressed, C3 =O(1/16π2). C3 =O(1)
is possible, but only at the price of strong coupling g ∼ 4π. In this case the 4-fermion
coefficient would also become strong C1 =O(16π2).

We can be more specific about the strong-coupling case. Here we assume that the top-
quark is strongly coupled to the new physics at scale M . In full generality, the top-quark
vertex function t̄Γµ t from (4) can be expressed in the standard way as

Γµ = γµG1(q
2) +

iσµνqν
2m

G2(q
2) , (25)

with form factors G1,2. To lowest order, G1 = 1, G2 = 0. The leading new-physics effects
are described by expanding the form factors to first order in 1/M2. This can be accomplished
within a bottom-up EFT, which we may write as

∆L6 =
1

M2

�

C1 t̄ t t̄ t + C2 ∂µFµν t̄γν t + C3 mt̄σµν t Fµν + . . .
�

. (26)

Here the ellipsis denotes the remaining contributions from the 4-fermion operators in the full
basis. One then finds

G1(q
2) = 1+

q2

M2

�

C2

eqt
−

C1

8π2

�

1
3

ln
m2

µ2
+ h1(z)

�

+ . . .

�

, (27)

G2(q
2) = −

m2

M2

�

4C3

eqt
+

C1

4π2

�

ln
m2

µ2
+ h2(z)

�

+ . . .

�

. (28)
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We note that C2,3 have to come with at least a factor of e that is necessarily associated with Fµν

in Q2,3. In contrast to (14), no weak couplings are associated with C1 if the top quark is strongly
coupled. Hence, the chiral dimension is 2 for the first term in (26), and 4 for the second and
third. C2,3 then have a loop suppression relative to C1 and all coefficients contribute at the same
order in (27) and (28). A similar consideration applies to the remaining terms in (26). Four-
top operators ( t̄ . . . t)( t̄ . . . t) contribute in analogy to Q1. Finally, the physical amplitude for
e+e−→ t t̄ also receives contributions from operators of the type (ψ̄ . . .ψ)( t̄ . . . t), in addition
to the photon-exchange amplitude with the form-factor term t̄Γµ t from (25), (27) and (28).

3 SMEFT

Any bottom-up EFT of unknown physics at short distances has to be defined by specifying

a) its low-energy degrees of freedom (particle content),

b) the relevant local and global symmetries,

c) its power counting.

The power counting rests on general assumptions about the underlying dynamics, whose de-
tails are necessarily left undetermined. The assumptions concern, in particular, the existence
of a mass gap between the known particles and the scale of the new dynamics, and whether
these particles are weakly or strongly coupled to the new sector. The power counting is needed
to define a hierarchy among the new-physics corrections. It then allows for a systematic ap-
proximation scheme based on a consistent expansion and truncation.

Quite generally, any relativistic quantum EFT is governed by expansions in both, inverse
powers of a large mass scale Λ, and the number of loops. In the case of SMEFT, the corre-
sponding expansion parameters can be taken as

E2

Λ2
and

1
16π2

, (29)

with E the energy scale of a given process and 1/16π2 the loop factor in four dimensions.
Typically, E will be a few times the electroweak scale v = 246GeV.

Usually in writing the SMEFT Lagrangian, only the expansion in 1/Λ is made explicit.
Including terms up to order 1/Λ2, and assuming baryon- and lepton-number conservation,
the Lagrangian can be written as

LSMEFT = LSM +
∑

i

Ci

Λ2
Q i , (30)

where LSM is the SM Lagrangian (terms of dimension 4), Q i are operators of dimension 6
[1,2] and Ci are dimensionless coefficients. This EFT is defined with the particle content and
the gauge symmetry of the SM, the baryon- and lepton-number conservation assumed here,
and possibly further simplifying (symmetry) assumptions about the flavour structure in the
dimension-6 terms with fermions.

We will now consider the power counting of SMEFT in more detail.

3.1 Example: Higgs production in gluon fusion

We start by considering the case of Higgs-boson production through gluon fusion, one of the
most important processes in Higgs physics at the LHC. The lowest-order amplitude in SM

8
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(1) (2) (3)

(a)
(c)(b)

(d) (e) (f) (g)

Figure 2: Higgs production through gluon fusion. (a): SM amplitude to lowest order
(two diagrams with opposite fermion flow in the loop are understood). (b) – (g):
Sample diagrams with insertions of dimension-6 operators (black dots) in SMEFT.
(1) – (3): Examples of radiative corrections to the diagrams shown before.

perturbation theory is shown in Fig. 2 (a). We are interested in the corrections to this process
of order 1/Λ2 in SMEFT. As illustrated in Fig. 2 (b) – (g), dimension-6 operators of almost all
the classes defined in the Warsaw basis [2] do contribute to the process g g → h. In particular
(in the notation of [2])

(b) : QϕG = φ
†φ GA

µνGAµν

(c) : Quϕ = φ
†φ q̄uφ̃

(d) : QuG = q̄σµνTAu φ̃GA
µν

(e) : Quu = ūγµu ūγµu , . . . (4 - fermion operators with top)

( f ) : Qϕ = (φ
†φ)3 , Qϕ□ = φ

†φ□φ†φ

(g) : QG = f ABC GAν
µ GBρ

ν GCµ
ρ (31)

A central question is: Which of these effects need to be included in a systematic treatment of
the 1/Λ2 corrections? We see that the contributions in Fig. 2 (b) – (g) arise from diagrams
with zero, one and two loops. This already suggests that loop counting should play a role in
organizing the corrections in SMEFT. The counting of loops becomes unavoidable when we
consider that, in practice, any amplitude, whether in the pure SM or in SMEFT, is computed
in perturbation theory, which is an expansion in loop orders (equivalent to an expansion in
powers of weak couplings). In fact, as illustrated in Fig. 2 (1) – (3), the perturbative expansion
and the EFT expansion have to be combined in a certain way, consistent with the adopted
power-counting rules.
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The key to answering the above question therefore has to be based on a consideration of
loop counting in SMEFT. Before we enter a discussion of this topic, we add a few remarks on
trying to apply SMEFT without a systematic counting of loops.

• Suppose that, in order to be completely general, we want to take into account all possible
effects from dimension-6 operators, as shown in Fig. 2 (b) – (g). To justify this despite
the different loop orders, we think of the coefficients Ci as arbitrary (dimensionless)
numbers. However, such an approach would not be consistent: If arbitrary coefficients
are allowed, there is no reason why e.g. some dimension-8 operator with a very large
coefficient could not yield equally important effects as the dimension-6 corrections in
Fig. 2. In this case the EFT treatment would break down. Specific power-counting
assumptions about the Ci are thus unavoidable.

• The most obvious choice of power counting would seem to be the one solely based
on the canonical dimensions of the operators Q i in (30). The terms of dimension 6
are suppressed by two powers of the new-physics scale Λ, with coefficients taken to be
Ci =O(1). Based on the explicit loop factors, diagram 2 (e) could therefore be neglected
as subleading with respect to 2 (d). However, as we have demonstrated in Sec. 2, such
a truncation would fail to correctly account for generic new-physics effects in the top
sector. Specifically, the impact of any heavy resonance (weakly or strongly) coupled to
top quarks would not be properly described by an EFT treatment that is supposed to
be model-independent. Similarly, a strict application of Ci = O(1) would tell us that
Fig. 2 (b) alone gives the leading correction for g g → h in the SMEFT because it is the
only tree-level contribution at dimension 6. This is again in contradiction with typical
scenarios of new physics [9,10]. We conclude that the simple assignment Ci =O(1) for
all coefficients in (30) is likewise not adequate as a consistent scheme to organize SMEFT.
The missing ingredient is loop counting. The latter is part of a general power-counting
prescription, to which we turn next.

3.2 Power counting

In this section we review the general power-counting rules for a relativistic EFT, which we can
use for a systematic formulation of SMEFT. As stated at the beginning of Sec. 3 and illustrated
with the example in 3.1, we need to count both powers of E2/Λ2 and loop factors 1/16π2 in
general.

A convenient way to do this is to employ the canonical dimensions as well as the chiral
dimensions of the terms in the EFT Lagrangian. This has been discussed in [11] and shown to
be equivalent to well-known results on power counting in the literature [8,12–14].

We consider a general relativistic EFT of scalars ϕ, gauge fields A and fermions ψ and
assume that the theory has a cut-off scale Λ (the scale of new physics). The EFT is valid at
energies sufficiently below Λ. Let us define an energy scale f ,

f ≡
Λ

4π
. (32)

We can view this as a reference scale, at which the EFT is a valid description of the relevant
physics ( f ≪ Λ). For energies E = f the parameter of the energy expansion, E2/Λ2, becomes
f 2/Λ2 = 1/16π2, identical to a loop factor. We emphasize that the low-energy expansion
is governed by E2/Λ2, with E the actual energy of the process. This parameter is of course
independent of the loop factor and E may be several times larger or smaller than f . Introducing
a reference energy f simply amounts to a bookkeeping device, which treats the expansions
in E2/Λ2 and 1/16π2 nominally on the same footing. The convenience of this will become
apparent below.
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Consider a general term in the EFT Lagrangian, schematically

∂ NpϕNϕANAψNψ κNκ . (33)

It is composed of a number of fields ϕ, A and ψ, derivatives ∂ , and some factors of weak
couplings, generically denoted by κ.

The task of power counting is to estimate the size of the coefficient in front of (33). For
this purpose both the canonical and the chiral dimension of (33), dc and dχ , are needed:
The Lagrangian has canonical dimension 4, so the coefficient contains a factor f 4−dc . Factors
of 1/16π2 are counted by the loop order L = (dχ − 2)/2 (from the definition of dχ). The
coefficient is therefore given by

C(dc , dχ) =
f 4−dc

(4π)dχ−2
. (34)

By inspection of (33), the values of dc and dχ are (see footnote 2)

dc = Np + Nϕ + NA+
3
2

Nψ , (35)

dχ = Np +
1
2

Nψ + Nκ . (36)

We remark that the result (34) for the coefficient holds in general and independently of
whether the EFT has a weakly or strongly coupled UV completion. However, the interpretation
of f is different in the two cases. For a weakly coupled UV completion f is just the reference
scale f ≡ Λ/4π, derived fromΛ. In the case of strongly coupled UV physics, on the other hand,
f corresponds to a dynamical scale with its own physical meaning. For example, in chiral
perturbation theory for pions in QCD, f = fπ is the pion decay constant. Here f is related to
the QCD resonance scale Λ through the NDA relation Λ = 4π f [13], in correspondence with
(32).

In the following, we will mostly focus on the application of (34) to SMEFT. It is then
convenient to rewrite the coefficient (34) as

C(dc , dχ) =
1
Λdc−4

�

1
16π2

�(dχ−dc)/2+1

. (37)

Obviously, both dc and dχ are required to obtain the power-counting estimate of a general
operator coefficient. Powers of 1/Λ are simply dictated by the canonical dimension of the
operator. Additionally, explicit loop factors are instead counted by

2+ dχ − dc

2
=

2+ Nκ − NF

2
, (38)

where we used (35) and (36), and introduced NF ≡ Nϕ + NA+ Nψ, the total number of field
factors in the operator. Thus, the loop factors are given by the difference of chiral and canonical
dimension or, equivalently, the difference between the numbers of weak couplings and fields.

Some examples may serve to illustrate how (37) works. For instance, all terms in the SM
Lagrangian (including µ2φ†φ) have dc = 4 and dχ = 2. Their coefficients are C(4,2) = 1 by
power counting, as has to be the case. We note that this assigns, in particular, a consistent
power-counting size for the Higgs-mass operator in the SM Lagrangian. As mentioned in
the Introduction, considering that φ†φ has dc = 2 is insufficient in this regard. We have to
associateφ†φ with a weak coupling carrying dχ = 2 to specify it as a leading-order term. Then
its coefficient becomes C(2,2) = Λ2/16π2 = f 2≪ Λ2, rather than the cutoff Λ2, which would
be inconsistent. As another example, a term like g2ψ̄ ̸Dψ has a coefficient C(4,4) = 1/16π2,
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in agreement with its appearance as a self-energy counterterm for fermion ψ at one loop.
Further examples can easily be constructed.

When we deal with SMEFT corrections of dimension 6, (37) specializes to

C(6, dχ) =
1
Λ2

�

1
16π2

�(dχ−4)/2
. (39)

In order to determine the coefficient in (34), we need information about the number of
weak couplings Nκ associated with the operator in (33). Otherwise the power counting is
incomplete. This is also evident from the fact that a SMEFT-like expansion and chiral pertur-
bation theory have a different power counting, although formula (34) is valid for both.

To find Nκ in (33), and therefore dχ in (34), the power-counting prescription has to in-
clude a generic statement as to whether a field is weakly or strongly coupled to the heavy
sector.4 Different scenarios may be considered, but the corresponding assumptions should be
formulated explicitly. In the following section, we will address this point and outline several
possibilities.

3.3 Loop counting in SMEFT

We consider a generic extension of the SM by new physics at a scale Λ≫ v, which is weakly
coupled to the SM fields and approximated by a Lagrangian that is renormalizable (in the
traditional sense) at scale Λ. Weak coupling implies that the typical mass scale of heavy par-
ticles coincides with Λ. We take this as the standard scenario for SMEFT, which emerges at
electroweak scales upon integrating out the large scale Λ.

It is conceivable that the assumption of weak coupling to the new physics is not fulfilled.
However, this will have to be reflected in a modified power counting. For instance, if the
Higgs sector is strongly coupled to the new physics, such as in composite-Higgs scenarios
with a characteristic scale f , the electroweak-scale EFT will, in general, take the form of an
electroweak chiral Lagrangian [8, 16–28]. When this EFT is explicitly expanded in v/ f , a
SILH-type [29] version of SMEFT is obtained [30]. In any case, the power counting of the EFT
will be affected.

We now focus on the case of SMEFT under the assumption of weak coupling to the new-
physics sector. This will, in part, amount to a review of results already obtained in [31] from an
analysis of the weak-coupling case in SMEFT. We present it here using the convenient notion
of chiral dimensions. A general discussion including operators of dimension 8 has been given
in [32].

We assume that the UV completion of the SM at a scale Λ is given by a renormalizable
theory of bosons (scalars or gauge-fields) and fermions. The fields include the fermions f and
the bosons b of the SM, as well as new, heavy fermions F and bosons B, with mass of order Λ.
The key assumption now is that f and b are weakly coupled to F and B, that is with coupling
strength of order unity. It is immaterial whether there exist nonrenormalizable interactions of
F and B suppressed by scales parametrically still larger than Λ.

Denoting a generic fermion (boson) by Ψ = f , F (β = b, B), only a limited number of
renormalizable interactions exist at scale Λ, schematically Ψ̄Ψβ , β3, β4, and β2∂ β . Listing

4The exactly solvable model discussed in [15] gives an example of a heavy sector that may be either weakly
or strongly coupled. Both cases are governed by the power-counting rules described here and illustrate their
application.
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the terms that couple light fields f , b to heavy fields F , B we have

Ψ̄Ψβ: f̄ f B f̄ F b F̄ f b f̄ FB F̄ f B F̄ F b [κ]
β3: b2B bB2 [κµ]
β4: b3B b2B2 bB3 [κ2]

β2∂ β: b∂ bB B∂ Bb [κ]

(40)

In square brackets, we show for the terms in each line the factor of generic weak couplings
κ. For the triple-boson terms µ indicates the mass scale required by dimensional analysis.
This parameter may be a heavy or a light scale. From (40) we read off the number of weak
couplings associated to fields and currents as building blocks of composite operators. We use
the notation A ∼ κn if a building block A comes with (at least) n powers of weak couplings.
We see that

b ∼ κ , b2 ∼ κ , b∂ b ∼ κ , b3 ∼ κ2 . (41)

For fermion bilinears, only scalar or vector currents can appear in the renormalizable vertices
in (40) and hence may come with a single weak coupling. Therefore

f̄ Γ f ∼ κ for Γ = 1, γµ, f̄ σµν f ∼ κ2 . (42)

We next write down the different classes of dimension-6 operators in SMEFT, following the
notation of [2]. Supplementing the operators with the minimum number of weak coupling
factors, according to the considerations above, we find

κ4(φ†φ)3 , κ2(φ†Dφ)2 , κ3φ†φ ψ̄φψ , κ2φ†Dφ ψ̄ψ , κ2(ψ̄ψ)2 . (43)

For the first term, a minimum of four weak couplings is required, e.g. two factors of κ2,
one for each b3 part, or else three κs from three b2 terms coupled to heavy scalars, times
another κ from the coupling of those three heavy fields. The assignment of weak couplings to
the remaining four operators is obvious. Finally, the operator classes with SM field strength
factors read

κ3X ν
µ X λ

ν X µ

λ
, κ4φ†φ XµνXµν , κ4ψ̄σµνXµνφψ . (44)

Here the first operator comes with three gauge couplings, connecting the gauge fields to the
heavy sector that has been integrated out. Similarly, the second operator has two gauge cou-
plings associated to the two field strengths, two more weak couplings are needed to connect
the φ†φ part. In the third operator, κ2 comes with the fermionic tensor current, and one κ
each from Xµν and φ.

The chiral dimension of the SMEFT operators can now be read off immediately: dχ = 4
for all terms in (43) and dχ = 6 for the terms in (44). Using the power-counting formula (39),
this implies coefficients of order 1/Λ2 for the operators in (43) and of order 1/16π2Λ2 for
those in (44). In short, assuming weak coupling to the heavy sector, the SMEFT operators of
the Warsaw basis with gauge field strength factors carry an extra loop suppression [2,31].

This loop-counting hierarchy among the operator coefficients fits naturally with the or-
ganization of SMEFT corrections in terms of both canonical and chiral dimensions. As an
example, let us again consider Higgs production in gluon fusion discussed in Sec. 3.1. Com-
bining the power-counting size of the operator coefficients, 1/Λ2 for the coefficients of (43)
and 1/16π2Λ2 for the coefficients of (44), with the explicit loop factor from the diagram topol-
ogy, we find a clear ordering of the contributions to g g → h shown in Fig. 2 (a) – (g):

1
16π2

: (a) ,
1

16π2Λ2
: (b), (c) ,

1
(16π2)2Λ2

: (d), (e), ( f ) ,
1

(16π2)3Λ2
: (g) . (45)
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The dominant contribution is the SM amplitude, Fig. 2 (a). It comes with a loop factor but is
unsuppressed in 1/Λ. The remaining terms in (45) are SMEFT corrections from the dimension-
6 Lagrangian. They all carry a factor of 1/Λ2 but enter, effectively, at different loop orders.
Note that (b) and (c) enter at the same order, even though the former is a tree and the latter a
loop diagram. Similarly, (d) – ( f ) have the same power-counting size, despite their different
topology. On the other hand, (e) and (g) have the same (two-loop) topology, but count at
different orders. We also remark that the magnetic-moment type vertex correction in Fig. 2 (d)
and the 4-fermion contribution in (e) entering at the same order is in accordance with the
detailed discussion in Sec. 2 and Sec. 4 below.

The systematic power counting by canonical and chiral dimensions, illustrated in (45),
provides us with a consistent truncation scheme of the SMEFT expansion. For instance, if we
aim for the leading new-physics effects, only the corrections of the same order as (b) and (c)
need to be retained. Those are of order 1/Λ2 relative to the SM term in (a). All others, (d) –
(g), are higher order in the loop counting and can be dropped. We emphasize that all issues
concerning the treatment of the various SMEFT contributions to g g → h mentioned in Sec.
3.1 are resolved in the present scheme. A more detailed description of the leading effects will
be given in Sec. 3.4 below.

Finally, radiative corrections, e.g. those shown in Fig. 2 (1) – (3), may be incorporated to
any desired accuracy if needed, consistently with the counting scheme discussed above.

There are many more processes and observables in high-energy collider physics to which
the above power counting can be applied. It will be of use, in particular, to put the focus
on the potentially leading SMEFT effects. In practice, the consistent truncation of corrections
will also help to reduce the number of free parameters in a SMEFT analysis in a meaningful
way. Examples for possible applications can be found in the literature. Recent studies of
single-Higgs production in SMEFT include [33–37]. Higgs-boson pair production at NLO and
beyond has been investigated in [38–46]. In [43] the systematic loop counting for SMEFT has
already been discussed for this particular application. A study of top-quark pair production
via gluon fusion in SMEFT, following the power counting discussed here, can be found in [47].
The pattern of SMEFT effects in g g → h or h → g g is similar in h → γγ decay. The latter
process has been treated for instance in [48–50]. Detailed calculations of Zh production in pp
collisions including SMEFT corrections have recently appeared in [51,52].

3.4 Amplitude for g g → h with leading dim-6 corrections in SMEFT

In the previous section, we have identified the dimension-6 contributions in Fig. 2 (b) and
(c) as the leading SMEFT corrections to Higgs-boson production in gluon fusion. To be more
specific, we spell out in the following the g g → h amplitude with these corrections included.
In the Warsaw basis [2], the terms relevant to the process g g → h read

∆LWarsaw =
CH□

Λ2
(φ† φ)□(φ†φ) +

CHD

Λ2
(φ†Dµφ)

∗(φ†Dµφ)

+
�

CuH

Λ2
φ†φ q̄Lφ̃ tR + h.c.

�

+
CHG

Λ2
φ†φ GA

µνGA,µν .
(46)

Expanding the Higgs doublet in eq. (46) around its vacuum expectation value and applying
a field redefinition for the physical Higgs boson

h→ h+
v2

Λ2
CH,kin

�

h+
h2

v
+

h3

3v2

�

, where CH,kin ≡ CH□ −
1
4

CHD , (47)

the Higgs kinetic term acquires its canonical form (up to O
�

Λ−4
�

terms).

14

https://scipost.org
https://scipost.org/SciPostPhys.15.3.088


SciPost Phys. 15, 088 (2023)

The Lagrangian for anomalous Higgs couplings relevant to Higgs boson production in gluon
fusion can in general be parametrised by [43]

∆Lh = −mt ct
h
v

t̄ t +
αs

8π
cg gh

h
v

GA
µνGA,µν . (48)

Comparing the coefficients of the corresponding terms in the Lagrangians (46) and (48)
leads to the following relations between the Higgs couplings ct and cg gh and the SMEFT coef-
ficients in the Warsaw basis:

ct = 1+
v2

Λ2
CH,kin −

v2

Λ2

v
p

2mt
CuH ≡ 1+δct

, cg gh =
v2

Λ2

8π
αs

CHG . (49)

In the Warsaw basis, three dimension-6 operators contribute to the coefficient δct
. Note

that both ct and cg gh are invariant under QCD renormalization. This is not the case for the
SMEFT coefficients CuH and CHG [53–55]. We also remark that CH,kin, CuH and CHG have
chiral dimension dχ = 2, 3 and 4, respectively (Sec 3.3). In their usual definition, they are
thus not homogeneous in dχ . On the other hand, dχ = 2 for both δct

and cg gh, assuming
weakly-coupled SMEFT power counting.

For the consistency of the present treatment, amplitudes should be expanded through order
v2/Λ2 and higher orders omitted. Indeed, for a typical value of Λ = 3 TeV, v2/Λ2 ≈ 7 · 10−3.
This is a small parameter, even neglecting possible further suppression from coupling factors.
Fit results for δct

and cg gh that are compatible with zero, but still allow for deviations at the
10 – 20% level, likely suggest that data are not yet sensitive to new-physics effects, rather than
requiring the inclusion of dimension-8 operators.

The amplitude for the process g(p1,µ) + g(p2,ν)→ h(p3) can be decomposed as

MAB = δAB εµ(p1)εν(p2)Mµν ,

Mµν =
αs

8πv
F1 Tµν . (50)

Here A, B are colour indices, εµ,εν are the gluon polarization vectors, and

Tµν = gµν −
pν1 pµ2
p1 · p2

. (51)

The form factor F1 is given by the expression [56–59]

F1 = 2s12

¦

(1+δct
)τt [1+ (1−τt) f (τt)] + cg gh

©

, (52)

where τt = 4 m2
t /s12, s12 = 2p1 · p2 = m2

h for on-shell Higgs boson production and

f (τt) = −
1
2

s12C12 =











arcsin2 1
p
τt

, for τt ≥ 1 ,

−1
4

�

log
1+
p

1−τt

1−
p

1−τt
− iπ
�2

, for τt < 1 ,

C12 =

∫

d4k
iπ2

1

(k2 −m2
t )
�

(k+ p1)2 −m2
t

� �

(k+ p1 + p2)2 −m2
t

� . (53)

At relative order v2/Λ2, in addition to the effects considered so far, the amplitude for
g g → h also receives corrections from the operators Q(3)

ϕl and Q1221
l l [2]. These operators modify

the muon decay rate, from which the Fermi constant GF is extracted in order to determine v in

15

https://scipost.org
https://scipost.org/SciPostPhys.15.3.088


SciPost Phys. 15, 088 (2023)

(50). Defining GF0 = 1/(
p

2v2) and denoting by GF the Fermi constant measured from muon
decay, we may write [50,60]

GF0 = GF (1− 2δG) , (54)

with

2δG =
v2

Λ2

�

C (3)
ϕl,1 + C (3)

ϕl,2 − C l l
1221

�

(55)

in the notation of [2]. Here the numerical subscripts are generation indices. This correction
to (50) from new physics in the first two lepton generations is numerically small. Electroweak
fits constrain 2δG to be safely below the percent level [61]. Neglecting it leaves δct

and cg gh
as the relevant corrections to g g → h at leading order in SMEFT.

4 Example for SMEFT in a UV model:
uū → t t̄ via gluon exchange in the 2HDM

In the following section we generalize the EFT features illustrated with the toy model of Sec.
2 to a more complete scenario in the context of the full SM. For this purpose, we employ
a Two-Higgs-Doublet model (2HDM) [62–64] as the UV completion of SMEFT. In contrast
to the SM, this model features not one, but two independent scalar SU(2) doublets Φ1 and
Φ2. Interpreting the 2HDM as an adequate UV extension of the SM, it should be possible to
match the former to the latter at the electroweak scale in terms of higher dimensional SMEFT
operators.
The potential of the 2HDM is given by the most general expression allowed by symmetries

V (Φ1,Φ2) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −
�

m2
12Φ

†
1Φ2 + h.c.
�

+
1
2
λ1

�

Φ†
1Φ1

�2
+

1
2
λ2

�

Φ†
2Φ2

�2

+λ3

�

Φ†
1Φ1

� �

Φ†
2Φ2

�

+λ4

�

Φ†
1Φ2

� �

Φ†
2Φ1

�

+
§

1
2
λ5

�

Φ†
1Φ2

�2
+
�

λ6

�

Φ†
1Φ1

�

+λ7

�

Φ†
2Φ2

�� �

Φ†
1Φ2

�

+ h.c.
ª

. (56)

Imposing CP-invariance, we take the coefficients m2
12,λ5,λ6 and λ7 to be real. Without loss of

generality, we allow both doublets to pick up a vacuum expectation value vi > 0 (i = 1,2) in
the lower component

Φi =

�

φ+i
1p
2
[vi +ρi + iηi]

�

, (57)

whereφ+i is a complex scalar (φ−i being its hermitian conjugate) and ρi and ηi are real scalars.
We identify the physical states by diagonalizing the mass matrices and find that out of in total
eight scalar degrees of freedom, three are Goldstone modes (G± and G) which subsequently
become the longitudinal degrees of freedom of the W± and Z bosons. In addition, there are
two massive neutral scalars h and H, a massive pseudoscalar A and a massive charged scalar
H± with masses mh, mH , mA and mH± , respectively. In terms of these states, the doublets are
given by

Φ1 =

�

cβG+ − sβH+
1p
2

�

v1 + cαH − sαh+ icβG − isβA
�

�

, (58)

Φ2 =

�

sβG+ + cβH+
1p
2

�

v2 + sαH + cαh+ isβG + icβA
�

�

, (59)
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where the shorthand notations cϕ ≡ cosϕ and sϕ ≡ sinϕ have been introduced. The mixing
angle β is defined via tanβ = v2/v1. Explicit expressions for the non-vanishing masses as well
as for v1, v2 and the mixing angle α in terms of the parameters in (56) can be found in [63].
For the sake of our following arguments, we choose a general type-II Yukawa sector given by
the Lagrangian [62]

LY = −q̄LΦ1Yd dR − q̄LΦ̃2YuuR + h.c. , (60)

where Φ̃i ≡ iσ2Φ
∗
i . The Yukawa-coupling matrices Yd and Yu act in flavour space and q̄L ,

dR and uR are the usual left- and right-handed quark fields with flavour indices suppressed.
Throughout the discussion, we neglect effects of the CKM-matrix. Choosing the couplings be-
tween the scalar sector and the fermions in this manner has the advantage of being particularly
transparent in the so-called decoupling limit (see (63) below).
Rotating the scalar doublets by the angle β , we can shift the vacuum expectation value to only
one doublet. This rotated basis is known as the Higgs basis in the literature [65]. The rotated
doublets H1 and H2 have the explicit form

H1 =

�

G+
1p
2

�

v + cβ−αH + sβ−αh+ iG
�

�

, (61)

H2 =

�

H+
1p
2

�

−sβ−αH + cβ−αh+ iA
�

�

, (62)

where v =
q

v2
1 + v2

2 = 246 GeV can be identified as the electroweak scale.
It is possible to choose the parameters in such a way that the physical masses follow the hier-
archy pattern [63]

m2
h≪ m2

H , m2
A, m2

H± ≃ m2
S , (63)

where mS ≫ v. An explicit expression for mS in terms of β and the parameters in the potential
is given in [63]. The decoupling limit mentioned above implies taking sβ−α→ 1 and cβ−α→ 0.
In this limit, the couplings of h become identical to those of the SM Higgs, which suggests
interpreting H1 as the SM Higgs doublet. The remaining doublet H2 then only contains heavy
fields and can be integrated out to obtain a low-energy theory at the electroweak scale v.
Its effects are then entirely encoded in the Wilson coefficients of higher dimensional local
operators (SMEFT).

4.1 Top-down EFT for uū → t t̄

Similar to the toy model of Sec. 2, we analyze the process u(k1)ū(k2) → t(p1) t̄(p2) via s-
channel gluon exchange. The relevant diagrams are the same as in the toy model in Fig. 1
with the internal photon replaced by a gluon. We take only the top quark as massive, which
implies that Yt =

p
2mt cscβ/v is the only non-vanishing Yukawa coupling matrix element and

that the heavy states couple exclusively to third-generation quarks. Defining g = mt cotβ/v,
the relevant interaction Lagrangian is given by

Lint = g t̄ t H + g t̄ iγ5 t A+
p

2g t̄R bL H+ + h.c. , (64)

where t and b are the Dirac fields of the top- and bottom quarks with tR/L = PR/L t, etc. and
PR/L the right- or left-handed projector, respectively. With the notation of Sec. 2, the correction
to the amplitude can be written as

δA= i
g2

s

q2
v̄(k2)γµTAu(k1)ū(p1)δΓ

µTAv(p2) , (65)
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where TA = λA/2 are the generators of SU(3) withλA the Gell-Mann matrices and gs is the QCD
coupling constant. Here and in the following, we strictly work at order g2

s and subsequently
drop terms of higher order without further comments.
In the full theory, the relevant diagrams are displayed in Fig. 1 (b) and (c), where the dashed
line corresponds to either H, A or H±. Summing up all three contributions, we end up with

δΓµ =
g2

16π2

1

m2
S

�

mt iσ
µνqν +

�

2
9
−

2
3

ln
q2

m2
S

+ i
2π
3

�

q2γµPR

−
�

2
3

ln
m2

t

m2
S

+
8
9
+ 2h1(z)

�

q2γµ
�

, (66)

where on-shell renormalization of the top quark has been employed as in [66] and we ex-
panded to first order in 1/m2

S . Pure gauge terms proportional to qµ have been dropped since
they do not contribute to physical processes.
Expression (66) can be reproduced by an effective field theory specified by the Lagrangian

Le f f = Lt ree
e f f +Lloop

e f f =
4
∑

i=1

Ci

m2
S

Q i , (67)

where

Lt ree
e f f =

C1

m2
S

t̄RqL q̄L tR (68)

arises, with C1 = 2g2, when the heavy fields are integrated out at tree level and

Lloop
e f f =

C2

m2
S

DµGA
µν t̄RTAγν tR +

C3

m2
S

DµGA
µν t̄ TAγν t +

C4

m2
S

mt G
A
µν t̄ TAσµν t (69)

is generated at one loop, where GA
µν is the gluonic field strength tensor and qL the left-

handed third-generation quark doublet. The loop diagram associated with Lt ree
e f f is displayed

in Fig. 1 (e) and gives

δΓ
µ
Q1
=

C1

16π2m2
S

��

5
9
−

1
3

ln
q2

µ2
+ i
π

3

�

q2γµPR −
�

1
3

ln
m2

t

µ2
+ h1(z)

�

q2γµ
�

, (70)

and the tree-contributions from Lloop
e f f in Fig. 1 (d) read

δΓ
µ
Q2−4
=

1
gs

�

C2

m2
S

q2γµPR +
C3

m2
S

q2γµ −
2C4

m2
S

mt iσ
µνqν

�

. (71)

Performing the matching procedure reveals that the coefficients are given by

C1 = 2g2 , C2 = C3 = −
gs g2

16π2

�

2
3

ln
µ2

m2
S

+
8
9

�

, C4 = −
gs g2

16π2

1
2

. (72)

As in Sec. 2.2, the dependence on µ cancels when both contributions are added and the full
result is restored.
Note that the four local operators in (67) – (69) can be matched to the Warsaw basis [2] by
virtue of Fierz identities and the equations of motion for the gluons. Dropping terms that do
not contribute to the process at hand, the relevant expressions are given by (here the upper
indices display generation labels)
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Q1 −→ −
�

Q(8)3333
qu +

1
6

Q(1)3333
qu

�

, (73)

Q2 −→ gs

�

Q(8)1133
qu +

1
4

Q1331
uu +

1
4

Q3113
uu −

1
12

Q1133
uu −

1
12

Q3311
uu

�

, (74)

Q3 −→ gs

�

Q(8)3311
qu +Q(8)1133

qu +
1
4

Q1331
uu −

1
12

Q1133
uu +

1
8

Q(3)1331
qq +

1
8

Q(1)1331
qq

−
1
12

Q(1)1133
qq +

1
4

Q3113
uu −

1
12

Q3311
uu +

1
8

Q(3)3113
qq +

1
8

Q(1)3113
qq −

1
12

Q(1)3311
qq

�

, (75)

Q4 −→
p

2mt

v

�

Q33
uG +Q∗33

uG

�

. (76)

Note that in the Warsaw basis, the operators Q2 and Q3 introduce an extra factor of gs. This
has to be so, as treating the four-fermion operators introduced in this manner on the same
footing as Q1 would spoil the underlying systematic expansion in gs. This is analoguous to
(16) in the toy model. It is now straightforward to identify the relevant Wilson coefficients of
the Warsaw basis operators to order g2

s for the process at hand. The explicit expressions are
given below.

4.2 Bottom-up SMEFT calculation

Without referring to the UV model, we would have started with a new-physics scale Λ and the
complete set of Warsaw basis operators that are relevant for the process under consideration.
We have to distinguish between four-fermion contributions entering at tree or one-loop level,
respectively. The tree contribution is given by the plain four-fermion vertex (here v̄ = v̄(k2),
u= u(k1), ū= ū(p1) and v = v(p2))

δAt ree =
i
Λ2

�

2
�

C (1)1133
qq + C (3)1133

qq

�

v̄γµPLuūγµPLv

− 2
�

C (1)1331
qq + C (3)1331

qq

�

v̄γµPLvūγµPLu

+ 2C (1)1133
uu v̄γµPRuūγµPRv − 2C (1)1331

uu v̄γµPRvūγµPRu

+ C (1)1133
qu v̄γµPLuūγµPRv + C (1)3311

qu v̄γµPRuūγµPLv

− C (1)1331
qu v̄γµPLvūγµPRu− C (1)3113

qu v̄γµPRvūγµPLu

+ C (8)1133
qu v̄TAγµPLuūTAγµPRv + C (8)3311

qu v̄TAγµPRuūTAγµPLv

− C (8)1331
qu v̄TAγµPLvūTAγµPRu− C (8)3113

qu v̄TAγµPRvūTAγµPLu

�

, (77)

whereas the one-loop contribution yields (Fig. 1 (e))

δΓ
µ

loop = −
1

16π2Λ2
(q2γµF1(q

2) +mt iσ
µνqνF2(q

2)) , (78)

with

F1 =

�

5
9
−

1
3

ln
q2

µ2
+ i
π

3

�

��

C (8)3333
ud + C (8)3333

qu

�

PR +
�

C (8)3333
qd + 8C (3)3333

qq

�

PL

�

−
�

1
3

ln
m2

t

µ2
+ h1(z)

�

�

C (8)3333
qu + 4
�

C (1)3333
qq + C (3)3333

qq

�

PL + 4C3333
uu PR

�

−
4
3

��

C (1)3333
qq + 3C (3)3333

qq

�

PL + C3333
uu PR

�

,
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F2 = 2
�

C (1)3333
qu −

1
6

C (8)3333
qu

�

. (79)

In addition, the chromomagnetic operator enters at tree-level as before (Fig. 1 (d)). Its
contribution is given by

δΓ
µ
uG = −

p
2v

gsΛ2
iσµνqν
�

C∗33
uG PL + C33

uG PR

�

. (80)

Note that we have implicitly assumed the new-physics sector to couple to the
third particle generation only as we neglected generation mixing four-fermion op-
erators in the one-loop contribution. For a comparison to the previous section,
it is advantageous to rewrite the four-fermion tree contribution by virtue of Fierz
identities like v̄(k2)γµPLv(p2)ū(p1)γµPLu(k1) = −v̄(k2)γµPLu(k1)ū(p1)γµPLv(p2) and
2TA

abTA
cd = δadδbc −δabδcd/3.

Comparing (77) – (80) with the top-down results in Sec. 4.1 reveals that when identifying
Λ with mS , the non-vanishing SMEFT Wilson coefficients are given by

C (8)3333
qu = 6C (1)3333

qu = −2g2 , (81)

2C1331
uu = 2C3113

uu = −6C1133
uu = −6C3311

uu = C (8)3311
qu =

1
2

C (8)1133
qu = 8C (3)1331

qq

= 8C (3)3113
qq = −12C (1)1133

qq = −12C (1)3311
qq = 8C (1)1331

qq = 8C (1)3113
qq

= −
g2

s g2

16π2

�

2
3

ln
µ2

m2
S

+
8
9

�

, (82)

C33
uG = C∗33

uG = −
gs g2mt

16π2v

1
p

2
. (83)

The µ-dependence matches the known results for the renormalization-group equations in
SMEFT [53–55].

5 Conclusions

The effective field-theory approach to physics beyond the Standard Model requires a minimal
set of assumptions about the relation between the low-energy and high-energy regimes, which
is contained in the EFT power counting rules. While the Lagrangian of non-linear EFTs such
as chiral perturbation theory is systematically ordered based on a loop expansion, the power
counting in effective theories such as SMEFT is organized in terms of canonical dimensions.

We have discussed specific examples to show that a power counting scheme relying on
canonical dimensions alone may lead to inconsistencies within the perturbative expansion.
Starting with a toy model involving a heavy scalar singlet, we have illustrated our arguments
by an explicit calculation, comparing both bottom-up and top-down EFT with the full theory.
Furthermore, we deployed the power counting in combination with loop counting in SMEFT
in detail. We applied it to Higgs production in gluon fusion as well as an example within a
two-Higgs-doublet model. Our formal considerations as well as the examples clearly suggest
that a consistent treatment should include the counting of loop orders, conveniently described
by chiral dimensions, along with the counting of canonical dimensions in SMEFT. Variations of
the counting scheme we propose can, of course, be constructed, but the approximations and
counting rules should always be explicitly specified. For example, the SMEFT may be replaced
by HEFT, which follows a different power counting. In addition, further assumptions, such
as minimal flavour violation, can be used to organize the flavour sector, which however is a
separate topic and beyond the scope of our paper.
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