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Abstract

It was recently found that the classical 3d O(N) model in the semi-infinite geometry can
exhibit an “extraordinary-log” boundary universality class, where the spin-spin correla-
tion function on the boundary falls off as 〈S⃗(x ) · S⃗(0)〉 ∼ 1

(log x )q . This universality class
exists for a range 2 ≤ N < Nc and Monte-Carlo simulations and conformal bootstrap
indicate Nc > 3. In this work, we extend this result to the 3d O(N) model in an infinite
geometry with a plane defect. We use renormalization group (RG) to show that in this
case the extraordinary-log universality class is present for any finite N ≥ 2. We addition-
ally show, in agreement with our RG analysis, that the line of defect fixed points which
is present at N =∞ is lifted to the ordinary, special (no defect) and extraordinary-log
universality classes by 1/N corrections. We study the “central charge” a for the O(N)
model in the boundary and interface geometries and provide a non-trivial detailed check
of an a-theorem by Jensen and O’Bannon. Finally, we revisit the problem of the O(N)
model in the semi-infinite geometry. We find evidence that at N = Nc the extraordinary
and special fixed points annihilate and only the ordinary fixed point is left for N > Nc.
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1 Introduction

Recent interest in the physics of boundaries and defects has been driven in part by the field of
topological phases, in which such defects often expose protected modes. While the implica-
tions of bulk topological physics for defect modes are well-understood for a gapped bulk, less
is known about behavior of defects and boundaries in the presence of a critical bulk. Even in
the classical 3d O(N) model, the phase diagram in the presence of a boundary or defect is not
fully settled. [1]

Let us briefly review recent developments in the boundary physics of the 3d O(N) model.

K
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K
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Plane Defect

Figure 1: The geometry of the boundary defect (left) and plane defect (right) for the
3d O(N) model.
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Figure 2: Left: phase diagram of the 3d O(N) model with N = 1, 2 in the presence
of a boundary/plane defect. BO stands for bulk ordered, SO - surface ordered, BD
- bulk disordered, SD - surface disordered. For N = 2 the BD/SO phase only has
quasi-long-range order.
Right: phase diagram of the 3d O(N) model with a boundary for 2 < N < Nc or for
a plane defect with N > 2.

Consider a system of classical N -component spins S⃗i of length one on sites of a semi-infinite
3d cubic lattice coupled via the nearest neighbour interaction

βH = −
∑

〈i j〉

Ki j S⃗i · S⃗ j . (1)

If both sites i and j belong to the surface layer, we set Ki j = K1, otherwise, Ki j = K (see Fig. 1,
left). For N = 1,2 the boundary phase diagram has the schematic shape shown in Fig. 2,
left. When the system is tuned to the bulk critical point K = Kc it admits three boundary
universality classes:

• the “ordinary” universality class, where the bulk and boundary order at the same bulk
coupling,

• the “extraordinary” universality class, where the onset of bulk order occurs in the pres-
ence of (quasi) long-range boundary order,

• the “special” universality class, the multicritical point in Fig. 2, left.

The presence of a (quasi)long-range ordered boundary phase for K < Kc and large K1/K
mandates the existence of these three classes.

For N > 2, the boundary has a finite correlation length for K < Kc . Thus, the existence of a
separate extraordinary boundary universality class is not required. Nevertheless, per Ref. [1],
the extraordinary boundary universality class actually survives in the range 2< N < Nc , where
the phase diagram has the shape in Fig. 2, right. Here, Nc > 2 is an a priori unknown critical
value of N . Furthermore, in the range 2 ≤ N < Nc the extraordinary universality class has a
boundary spin correlation function that falls off as

〈S⃗x · S⃗y〉 ∼
1

(log |x− y|)q
, (2)

with q(N) a universal power. Thus, in this range of N the extraordinary boundary universality
class is labeled as “extraordinary-log”. The universal properties of this class, including the
power q and the critical value Nc , are determined by certain universal amplitudes of the “nor-
mal” boundary universality class, where an explicit symmetry breaking field is applied to the
boundary. For N = 3, recent Monte Carlo simulations find a special fixed point and behavior
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Figure 3: The ordinary, special, and normal fixed points of the 3d O(N) model with a
plane defect. The ordinary fixed point corresponds to two copies of the semi-infinite
ordinary (ord) fixed point. The special fixed point corresponds to a bulk with no
defect plane. The normal fixed point corresponds to two copies of the semi-infinite
normal (norm) fixed point.

at large K1 consistent with the extraordinary-log class [2].1 This indicates Nc > 3. For N = 2,
the extraordinary-log character of the large K1 region was also verified by Monte Carlo sim-
ulations. [5] Furthermore, the normal universality class was recently studied by Monte Carlo
in Ref. [6] and the prediction of Ref. [1] for the relation between the extraordinary-log and
normal classes was verified for N = 2,3. Finally, Ref. [7] used numerical conformal bootstrap
to estimate Nc ∼ 5. Several scenarios for the evolution of the phase diagram for N > Nc were
discussed in Ref. [1]: the simplest possibility is that only the ordinary universality class re-
mains for N > Nc for all values of K1. Part of this paper presents analytical evidence in favour
of this simple scenario.

The primary part of the present paper extends the methods of Ref. [1] to the problem of
a 2d plane defect2 embedded in a 3d bulk O(N) model. As a representative Hamiltonian,
we consider Eq. (1) on an infinite cubic lattice, where the nearest neighbour interaction is
set to K1 for spins belonging to a plane z = 0 and to K otherwise (see Fig. 1, right). While
this problem has been considered in the past, [8–10] the precise phase diagram for N > 2, in
particular the behavior in the region K1 > K , has not been studied carefully.3 In this paper,
we claim that while the phase diagram for N = 1, 2 has the expected shape in Fig. 2, left, for
all finite N > 2 the phase diagram has the shape in Fig. 2, right. In other words, the ordinary,
special and extraordinary universality classes all exist for N ≥ 1. Furthermore, for N ≥ 2, the
extraordinary universality class is of extraordinary-log character, with properties (including
the exponent q in Eq. (2)) again determined by those of the normal universality class in a
semi-infinite geometry. Thus, unlike in the semi-infinite O(N) model, there is no critical value
Nc above which the extraordinary-log class ceases to exist.

We can argue that the ordinary and extraordinary classes exist for all N for the plane defect
as follows. Consider a critical bulk model with no defect, K1 = K = Kc , and then turn on a
small K1 − Kc . The resulting continuum action is

S = Sinf + c

∫

d2x ε(x, z = 0) . (3)

Here Sinf is the uniform continuum action in the 3d infinite geometry and ε is the relevant

1Prior Monte Carlo evidence for the existence of a special transition and an extraordinary phase at N = 3 had
appeared in [3]. See also [4] for a related study at N = 4.

2We also refer to this as an interface defect.
3Another related problem considered in the past is the interface between the free theory and the interacting

O(N) model. [11] We do not address this problem in the present manuscript.
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bulk O(N) singlet scalar (the so-called “thermal” operator.) The coupling c is proportional to
Kc−K1. It is believed that the scaling dimension∆ε < 2 for all finite N ≥ 1. [12,13] Thus, the
coupling c is relevant around the c = 0 fixed point. All other O(N) singlet defect perturbations
are irrelevant.4 Thus, we have found a special fixed point for all N that simply corresponds
to the model with no defect. [8] It is natural to guess that the universality classes on the two
sides of the special fixed point c < 0 and c > 0 are distinct.

For c > 0, the model is expected to flow to the ordinary fixed point, which corresponds to
the defect plane “cutting” the system into two disconnected halves with each half realizing the
semi-infinite ordinary universality class. [8] Indeed, for the semi-infinite ordinary universality
class, the most relevant operator is the boundary order parameter φ̂a whose dimension is
believed to satisfy ∆ord

φ̂
> 1 for all N ; Monte Carlo simulations for N = 1,2, 3 are consistent

with this [3] and large-N calculations give ∆ord
φ̂
= 1+ 2

3N +O(N−2). [14] Thus, the action of

the ordinary fixed point for the defect plane together with the leading perturbation is

S = S1
ord + S2

ord + u

∫

d2x φ̂1
aφ̂

2
a . (4)

Here S1,2
ord is the action of the semi-infinite ordinary fixed point for each half-space. By the

discussion above the perturbation u is irrelevant for all finite N , so the ordinary fixed point is
stable.

The nature of the extraordinary fixed point realized for c < 0 is the main question we
address in this paper. Motivated by Ref. [1], we approach this fixed point through study of the
normal universality class. For N = 1, we expect long range boundary order at the extraordinary
fixed point. Due to the rigidity of the Ising order, we expect the extraordinary class to be
identical to the normal defect universality class, where an explicit symmetry breaking field is
applied on the defect. For all N , the normal defect class corresponds to the system cut into
two disconnected halves with each half realizing the semi-infinite normal universality class:

S = S1
norm + S2

norm . (5)

Indeed in the N = 1 case, the lowest dimension boundary operator at the semi-infinite nor-
mal fixed point is believed to be the displacement D with dimension ∆D = 3, [15] so the
perturbation δLbound ∼ D1D2 coupling the two halves is highly irrelevant. For N ≥ 2, the
lowest dimension boundary operator at the semi-infinite normal fixed point is believed to be
the O(N − 1) vector ti , with dimension ∆t = 2, [8] so the coupling δLbound ∼ t1

i t2
i is again

irrelevant.
Starting with this picture of the normal defect universality class for N ≥ 2, we remove

the explicit symmetry breaking boundary field and access the extraordinary universality class
using the RG approach of Ref. [1]. We find that an extraordinary-log class is realized for all
N ≥ 2.

Our discussion presently applies to general finite N . Further analytical control appears in
the large-N limit. When N =∞, the model possesses a line of defect fixed points. [10] Along
this line the lowest dimension defect operators are O(N) vectors of even (odd) parity under
z → −z with dimensions ∆S = 1− µ (∆A = 1+ µ), where 0 ≤ µ ≤ 1 is a coupling constant
tuning the system along the line of fixed points. The value µ = 0 corresponds to the ordinary
fixed point, µ= 1/2 to the special fixed point (no defect) and µ= 1 to the normal fixed point.5

4The next lowest one is expected to be ∂zε, which is odd under the reflection symmetry z→−z, thus disallowed
in the model (1), but allowed in more general models.

5Once N is finite, µ flows under RG and the approach µ → 1 gives rise to the extraordinary-log universality
class.
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Figure 4: β-function for the defect coupling constant µ at O(1/N), Eq. (6). µ = 0
corresponds to the ordinary universality class, µ = 1/2 to the special universality
class and the approach µ→ 1 — to the extraordinary-log universality class.

The existence of a line of fixed points is expected to be a peculiarity of the strict N =∞ limit.
In this paper, we compute the β-function for the coupling constant µ to O(1/N) obtaining:6

dµ
dℓ
= −β(µ) =

16(µ2 − 1/4)
3Nπ2

sin2µπ

µ
. (6)

Thus, at large finite N the line of fixed points disappears and only the ordinary, special and
extraordinary-log universality classes are left, see Fig. 4. The form of the β-function (6) for
µ close to these fixed points is in agreement with results obtained using other methods. In
particular, the behavior of β(µ) for µ → 1 that controls the extraordinary-log universality
class exactly agrees with results obtained using the RG approach of Ref. [1] and provides a
non-trivial check of the latter. In addition, the analysis of β(µ) near the special (uniform bulk)
fixed point µ = 1/2 confirms that the bulk OPE coefficient λεεε vanishes to O(1/N3/2), as
found by a direct computation in Ref. [16].

We additionally discuss our results in the context of general theorems for 3d CFTs. It is
known that a general conformal boundary of a 3d CFT is characterized by certain “central
charges” describing its response to gravity [17–19]:

Tµµ =
δ(x⊥)
24π

�

aR̂+ bK trK̂2
�

. (7)

Here R̂ is the boundary Ricci scalar, K̂ is the traceless part of the extrinsic curvature associated
to the boundary, and x⊥ is the coordinate perpendicular to the boundary. Jensen and O’Bannon
in Ref. [17] proved that the coefficient a of the Ricci scalar decreases under boundary RG flow.7

In particular, a is constant along a line of fixed points. Ref. [22] computed a for the O(N)model
with a boundary for both the ordinary and normal fixed points to leading order in N . Here we
extend their result to first subleading order in N :

aO
bound = −

1
16
+O
�

N−1
�

, aN
bound = −

N
2
−

1
16
+O
�

N−1
�

, (8)

where aO
bound (aN

bound) stands for the central charge at the ordinary (normal) boundary fixed
point. We further consider the central charge for the plane defect. The RG structure of the

6Here increasing the RG scale ℓ corresponds to the flow to the IR.
7See also Refs. [20], [21] for alternative proofs.
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Figure 5: Phase diagram of the semi-infinite classical O(N)model in 3d with N ≥ 2 at
K = Kc proposed in Ref. [1]. Left: scenario I. Right: scenario II. The dashed lines are
a guide to eye and do not denote phase transitions. Solid lines are phase transitions.
The red curve marks the special transition.

ordinary, extraordinary-log and special interface fixed points implies

aO
int = 2aO

bound = −
1
8
+O
�

N−1
�

, aeo
int = 2aN

bound + N − 1= −
9
8
+O
�

N−1
�

, asp
int = 0 ,

(9)
where the subscript “int” denotes the interface central charge and superscripts O, eo and sp
stand for ordinary, extraordinary and special. The result for the central charge at the special
interface fixed point asp

int = 0 is exact. In addition, we find by an explicit computation that at
N =∞, a/N = 0 along the whole line of interface fixed points 0 ≤ µ ≤ 1, consistent with
the theorem of Jensen and O’Bannon. Further, to next order in N , we find that the differences
aO

int − asp
int and aeo

int − asp
int in Eq. (9) are in agreement with the detailed form of the a-theorem

of Jensen and O’Bannon, see Eq. (95).
Finally, as already noted, we return to the problem of the O(N) model in a semi-infinite

geometry. In Ref. [1] two scenarios for the evolution of the boundary phase diagram past the
critical value N = Nc were proposed. In the first scenario, Fig. 5 (left), the special fixed point
approaches the extraordinary fixed point as N → N−c and annihilates with it at N = Nc , such
that only the ordinary universality class remains for N > Nc . In the second scenario, Fig. 5
(right), the extraordinary universality class survives for some range Nc < N < Nc2, where it
becomes a true boundary conformal fixed point with a non-trivial scaling dimension ∆φ̂ > 0.
This universality class was labeled as “extraordinary-power.” Since large-N calculations find
only the ordinary universality class in the semi-infinite geometry, the extraordinary-power
fixed point would have to annihilate with the special fixed point at some higher critical value
of N = Nc2, so that only the ordinary fixed point would be left for N > Nc2. The correct of
the two scenarios is determined by the sign of a higher order term b in the β-function of the
surface spin-stiffness at N = Nc . The computation of b for general N is challenging as it almost
certainly requires the knowledge of the four-point function of the tilt operator t̂i at the normal
fixed point. In this paper, we compute b for N →∞. Assuming that b(Nc) has the same sign
as b(N →∞), we find that the scenario in Fig. 5 (left) is realized.

This paper is organized as follows. In Sec. 2, we first use RG to show the existence of the
extraordinary-log universality class for the 3d O(N) model with a defect plane for all N ≥ 2.
We then study how the line of defect fixed points present at N =∞ is lifted by 1/N corrections
in Sec. 3. Next in Sec. 4, we study the boundary and interface central charge a. Finally in Sec.
5, we return to the semi-infinite 3d O(N)model and compute the coefficient b(N =∞) in the
β-function of the surface spin-stiffness. Some remarks on line defects in 2+1D quantum spin
models are made in Sec. 6.
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norm

norm

NLΣM

Extraordinary-Log

Figure 6: The extraordinary-log fixed point of the 3d O(N) model with a plane de-
fect. The extraordinary-log fixed point corresponds to two copies of the semi-infinite
normal (norm) fixed point, with each boundary coupled to a 2D nonlinear sigma
model (NLΣM).

2 RG analysis of the plane defect extraordinary fixed point

In this section, we generalize the RG analysis of Ref. [1] to the O(N) model with a plane
defect. We are interested in the large K1 limit of the model (1) where the interface has a
strong tendency to local O(N) order. In this limit, we may describe the defect layer by a
non-linear σ-model for the defect order parameter n⃗:

Sn⃗ =
1

2g

∫

d2x
�

∂µn⃗
�2

, n⃗2 = 1 . (10)

When K1 is large, the bare coupling g is small and fluctuations of n⃗ are suppressed at least
on short distance scales. Then, n⃗ acts like a boundary symmetry breaking field for the semi-
infinite regions on the two sides of the defect. Thus, there is an intermediate length scale at
which the defect is described by the normal fixed point with an additional term that restores
O(N) symmetry at the defect:

S = Sn⃗ + S1
norm + S2

norm − s

∫

d2xπi

�

t1
i + t2

i

�

. (11)

As in the introduction, S1
norm and S2

norm are the actions of the normal fixed points of the semi-
infinite regions on each side of the defect. We have also included the leading coupling between
the fluctuations of n⃗ = (π⃗,

p
1− π⃗2) and the boundary operators of the normal fixed points.

Note that we are taking n⃗ to fluctuate about êN , so the symmetry breaking field of the normal
fixed points is also along êN . The operators t1

i , t2
i , i = 1 . . . N − 1 are the “tilt” operators of the

normal fixed points, which appear in the boundary OPE of the bulk order parameter as

Normal Fixed Point:







φ
1,2
N (x, x3)∼

aσ
(2x3)∆φ

+ bD(2x3)3−∆φD1,2(x) + . . . , x3→ 0 , (12a)

φ
1,2
i (x, x3)∼ bt (2x3)2−∆φ t1,2

i (x) + . . . , x3→ 0 . (12b)

Here ∆φ is the bulk scaling dimension of the order parameter and D1,2 are the displacement

operators. All the bulk and boundary operators are normalized as 〈Oa(x)Ob(y) = δab

(x−y)2∆O
,

〈ÔM (x)ÔN (y) = δMN

(x−y)2∆Ô
. The OPE coefficients aσ, bt and bD are universal constants of the
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⇡ ⇡

Figure 7: A contribution to the two-point function of πi from coupling to the tilt
operators t⃗1,2

i .

semi-infinite normal fixed point. By the argument applied in Ref. [1] to the semi-infinite sys-
tem, the parameter s in (11) is fixed by the O(N) symmetry to be

s =
1

4π
aσ
bt

. (13)

This is exactly the same value of s as in the semi-infinite system. As explained in the intro-
duction, direct coupling between the operators of S1

norm and S2
norm is irrelevant. Just as in the

semi-infinite geometry, coupling of t1,2 to higher powers of π⃗ is expected to be present and
fixed by the O(N) symmetry in terms of the data of the normal fixed point; such higher order
terms won’t affect our RG analysis to the leading order in g considered here.

Thus, the coupling g is the only free parameter in the defect action. The perturbative
calculation of the β-function of g proceeds in exactly the same manner as for the semi-infinite
system by considering the first correction in g to the one-point function of nN and the two-point
function of π⃗. [1] We obtain:

d g
dℓ
= −β(g) = −αplane g2 +O

�

g3
�

, αplane = πs2 −
N − 2

2π
. (14)

The second term inαplane gives the standard β-function of the 2d non-linearσ-model (10). The
first contribution originates from the coupling s in Eq. (11) that enters the two-point function
of π⃗ via the diagram in Fig. 7. Note that for a semi-infinite system one has the same form of
β(g) but with αbound =

πs2

2 −
N−2
2π , i.e. the contribution to the β-function from coupling to the

tilt operators is two times larger for the plane defect compared to a semi-infinite system — a
straightforward consequence of the coupling to both sides of the plane. This has important
physical implications. In the large N limit aσ and bt have been computed [1] and give:

πs2 =
N
2π
+O(1/N) , (15)

so for the plane defect in the large-N limit

αplane =
1
π
+O(1/N) . (16)

Thus, for the plane defect αplane is positive both for N = 2 and for N →∞, suggesting that
αplane remains positive for all N ≥ 2. Truncated conformal bootstrap estimates of aσ(N) and
bt(N) support this conclusion. [7] Thus, we expect the extraordinary-log class to be realized
for all values of N ≥ 2. Here g flows to zero in the IR as g−1(ℓ) ≈ g−1 + αplaneℓ. This is
in contrast to the case of a semi-infinite system, where αbound = −

N−4
4π + O(1/N) becomes

negative for large enough N , so the extraordinary-log class is only realized in a finite range
2 ≤ N < Nc . Predictions for αplane for N = 2,3 based on the Monte-Carlo results for aσ and
bt [6] are given in Table 1.

As for the case of the semi-infinite system, the anomalous dimension of n⃗, which can be
read off from the one-point function of nN in a symmetry breaking field, is not affected by the
coupling s to leading order in g:

ηn⃗(g) =
(N − 1)g

2π
+O
�

g2
�

. (17)
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Table 1: Values of the coefficient α characterizing the extraordinary-log class for
N = 2,3 for the semi-infinite (αbound) and plane defect (αplane) geometries obtained
from Monte Carlo results for the OPE coefficients aσ, bt of the semi-infinite normal
fixed point. [6]

N αbound αplane

2 0.300 (5) 0.600(10)
3 0.190(4) 0.540(8)

Here ηn⃗ enters the Callan-Symaczik equation for the m-point function of n⃗ as
�

Λ
∂

∂Λ
+ β(g)

∂

∂ g
+

m
2
ηn⃗(g)
�

Dm
n⃗ (g,Λ) = 0 , (18)

with Λ — the UV cut-off. Integrating the Callan-Symanczik equation for the two-point func-
tion, we obtain

〈n⃗(x) · n⃗(0)〉 ∝
1

(logx)q
, x→∞ , (19)

with
q =

N − 1
2πα

. (20)

3 The plane defect in the large-N expansion

Now that we have given evidence for the existence of the extraordinary-log fixed point for
2 ≤ N <∞, we show how the ordinary, special and extraordinary-log fixed points are recov-
ered at large N . Recall that the bulk continuum action for the O(N) model is

Sinf =

∫

d3 x
�

1
2
(∂µφ⃗)

2 +
iλ
2

�

φ⃗2 −
1

gbulk

��

, (21)

where φ⃗ is the continuum O(N) field, iλ is a Lagrange multiplier that fixes the norm of φ⃗, and
the coupling gbulk is tuned to the critical point. In the presence of a plane defect at x3 = 0,
we label fields on either side of the plane defect φ⃗1 and φ⃗2, as well as λ1,λ2. Then, the bulk
action can be written as

Sinf =

∫

x3≥0

d3 x
∑

m=1,2

�

1
2
(∂µφ⃗

m)2 +
iλm

2

�

(φ⃗m)2 −
1

gbulk

��

. (22)

Here, we label the coordinates x = (x, x3), where the last component corresponds to the
direction normal to the plane defect.

At N =∞, we need to solve the saddle-point equation for 〈iλ〉 and the φ propagator,
〈φm

a (x)φ
n
b(x
′)〉= δabGmn(x , x ′), m, n= 1,2:

�

−∂ 2
x + 〈iλ(x)〉
�

Gmn(x , x ′) = δmnδ3(x − x ′) , G11(x , x) = G22(x , x) =
1

N gc
. (23)

The last condition can be understood from the bulk OPE,
∑

aφ
a × φa ∼ 1 + iλ + . . ., from

which

G11(x , y) = G22(x , y) =
1

4π|x − y|
+O(|x − y|) . (24)
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Conformal invariance dictates that iλ, a field with dimension 2, acquires an expectation value
parametrized by a coupling constant µ:

〈iλ(x)〉=
µ2 − 1/4
(x3)2

. (25)

Similarly, conformal invariance fixes




φ1
a(x)φ

1
b(x
′)
�

= δab
g11(v)
p

x3 x ′3
,



φ1
a(x)φ

2
b(x
′)
�

= δab
g12(v)
p

x3 x ′3
, (26)

v =
(x3)2 + (x ′3)2 + r2

2x3 x ′3
, r = |x− x′| . (27)

Then Eq. (23) implies Dg11(v) =Dg12(v) = 0, apart from contact terms at v→ 1. Here

D = µ2 − 1− 3v
d
dv
− (v2 − 1)

d2

dv2
. (28)

There are two linearly independent solutions of the equation Dg(v) = 0,

sS/A(v) =
(v +
p

v2 − 1)±µ
p

v2 − 1
, (29)

and g11(v), g12(v) are particular linear combinations of these:

g11(v) =
sS(v) + sA(v)

8π
, g12(v) =

sS(v)− sA(v)
8π

. (30)

g11 is fixed by the OPE (24). g12 is fixed by i) the requirement that it be non-singular as
v→ 1 (since φ1 and φ2 live on opposite sides of the defect, their OPE is nonsingular); ii) the
requirement that g11, g12 have the same asymptotic in the boundary limit v →∞, i.e. the
bulk to boundary OPE of φ1 and of φ2 is dominated by the same operator.

Given these solutions, we require that µ be real, in which case, without loss of generality
it can be chosen to be positive. Further, µ < 1 so that g11, g12 go to zero for large v, i.e. the
O(N) symmetry is not broken and clustering is obeyed. Defining symmetric/anti-symmetric
fields from the two φ⃗m fields is convenient for the rest of the paper:

φS/A
a =

1
p

2
(φ1

a ±φ
2
a) . (31)

Then,




φS
a (x)φ

S
b(x
′)
�

=
δabsS(v)

4π
p

x3 x ′3
,



φA
a(x)φ

A
b(x
′)
�

=
δabsA(v)

4π
p

x3 x ′3
,



φS
a (x)φ

A
b(x
′)
�

= 0 .

(32)
Thus, at N =∞ we find a line of boundary fixed points parameterized by 0 ≤ µ ≤ 1. We
recall that for a (normalized) bulk scalar conformal primary O(x) of dimension ∆O,

〈O(x)O(x ′)〉=
1

(4x3 x ′3)∆O

∑

n

b2
n fbr y(∆̂n, v) , (33)

where the sum runs over the operators appearing in the bulk to boundary OPE of O(x) with
∆̂n - the boundary operator scaling dimension and bn – the OPE coefficient. In spacetime
dimension D = 3,

fbr y(∆̂, v) = 22∆̂−1 (v +
p

v2 − 1)1−∆̂
p

v2 − 1
. (34)
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Thus, we see that at this order in N , the bulk to boundary OPE of φS (φA) is saturated by a
single boundary operator with dimension ∆̂S = 1−µ, (∆̂A = 1+µ).

The ordinary, special, and normal fixed points are all visible in the range µ ∈ [0, 1]. At the
ordinary fixed point µ= 0, the plane defect action is equivalent to two copies of the half-space
action (evident in Eq. (4) for u = 0). Thus, as expected, the propagators at µ = 0 match the
N =∞ result from Ref. [14] for the ordinary fixed point for an O(N) model on a 3D half-
space. At the special fixed point µ = 1/2, there is effectively no defect plane, the model is
translationally invariant, and the propagators, as expected, take the form

¬

φ1
a(x)φ

1/2
b (x

′)
¶

sp
=

δab

4π
Æ

|x′ − x|2 + (x ′3 ∓ x3)2
. (35)

Finally, at the normal fixed point µ = 1, the plane defect action is again equivalent to two
copies of the half-space normal action. Indeed, for a half-space normal fixed point with the
magnetic field pointing along the N th direction, we have [1]

〈φN (x)〉2norm =
N

4πx3
, 〈φN (x)φN (x

′)〉norm,c ∼ O
�

N0
�

,

〈φi(x)φ j(x
′)〉norm =

δi j

4π(x3 x ′3)1/2

�

v
p

v2 − 1
− 1
�

, i, j = 1 . . . N . (36)

Here and below the subscript c stands for the connected part of the two-point function. Then
the O(N) invariant combinations

∑N
a=1〈φ

1
a(x)φ

1/2
a (x ′)〉norm for two decoupled normal half-

space actions exactly match Eqs. (29), (30) with µ→ 1.

3.1 The λ Propagator

We now study the plane defect for large but finite N . We specifically compute the renormal-
ization group (RG) flow for the coupling constant µ using the 1/N correction to 〈iλ(x)〉. To
compute the RG flow, we first compute




λ(x)λ(x ′)
�

c, which is nonzero only to order 1/N .
Recall that the bulk partition function is

Zbulk =

∫

Dφ⃗Dλexp

�

−
∫

d3 x
�

1
2
(∂µφ⃗)

2 +
iλ
2

�

φ⃗2 −
1

gbulk

��

�

. (37)

We now add

−
∫

d3 x d3 x ′
1
2
λ(x)K(x , x ′)λ(x ′) +

∫

d3 x d3 x ′
1
2
λ(x)K(x , x ′)λ(x ′) (38)

to the action, such that upon integrating out the φ fields, the second order term in λ in the
original action cancels with the first new term [23]. Then,

K(x , x ′) =
NG(x , x ′)2

2
,

∫

〈λ(x)λ(y)〉c K(y, z)d3 y = δ3(x − z) . (39)

The method for finding a solution to Eq. (39) is explained in Ref. [24]. We detail the specific
computation in App. A and present the results of the computation here for both sides of the
defect plane:




λ1(x)λ1(x ′)
�

c =
2

(4x3 x ′3)2N
h11(v) , h11(v) =

32cos2(µπ)
(v + 1)2π2

−
32

(v − 1)2π2
, (40)




λ1(x)λ2(x ′)
�

c =
2

(4x3 x ′3)2N
h12(v) , h12(v) = −

32 sin2(µπ)
(v + 1)2π2

. (41)

12

https://scipost.org
https://scipost.org/SciPostPhys.15.3.090


SciPost Phys. 15, 090 (2023)

(a) (b)

Figure 8: (a): The diagram for the order 1/N correction to 〈iλ〉.
(b): The diagram required for computing the bubble in the left diagram. In each
diagram, the dashed line is the λ propagator, the solid line is the φ propagator, and
the solid vertex inserts iλ.

As expected, the two-point function of λ at µ = 0 and µ = 1 matches the result for the
ordinary, [14] and normal fixed point, [25]while at µ= 1/2 we recover the two-point function
without the plane defect.

We similarly define symmetric and anti-symmetric analogues of λ:

λS/A(x) =
1
p

2

�

λ1(x)±λ2(x)
�

. (42)

Then,




λS(x)λS(x ′)
�

c =
2

(4x3 x ′3)2N
hS(v) , hS(v) =

32cos(2µπ)
(v + 1)2π2

−
32

(v − 1)2π2
, (43)




λA(x)λA(x ′)
�

=
2

(4x3 x ′3)2N
hA(v) , hA(v) =

32
(v + 1)2π2

−
32

(v − 1)2π2
. (44)

Expanding these two-point functions in boundary conformal blocks (33), (34), we find oper-
ators with dimension ∆̂ = 2, 3,4, 5, . . . in the bulk to boundary OPE of λS and operators with
dimension ∆̂ = 3,5, 7,9, . . . in the bulk to boundary OPE of λA.8 The operator with ∆̂ = 2
in the λS OPE is the marginal operator that tunes the boundary along the line of fixed points
parameterized by µ, while the operators with ∆̂= 3 in the λS and λA OPEs correspond to the
symmetric/antisymmetric combinations of displacement operators.

3.2 Renormalization Group Flow for µ

We now compute the renormalization group flow for µ via the Callan-Symanzik equation for
〈iλ(x)〉. The diagrams required for computing 〈iλ(x)〉 to order 1/N are shown in Fig. 8. We
evaluate the diagram in Fig. 8(b) at coincident points, after subtracting off bulk divergences,
to compute the bubble in diagram Fig. 8(a).

We detail the evaluation of Fig. 8(b) at coincident points in App. B and present the results
here. The full form of Fig. 8(b) has both a conformal and nonconformal component. The
conformal component, at coincident points, evaluates to

G11,(b)
conf., sub.(x , x) = −

2
3πN x3

(µ2 − 1/4) (45)

8Of course, the boundary identity operator is also present in the bulk to boundary OPE of λS , see Eq. (25).
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after subtracting off bulk divergences. Then, the 1/N contribution to 〈iλ(0, z)〉 is

δconf

¬

iλ
�

0, x ′3
�¶

=
1
2

∫

R3+

d2r dx3

×
�¬

λ1
�

0, x ′3
�

λ1
�

r, x3
�

¶

c
+
¬

λ1
�

0, x ′3
�

λ2
�

r, x3
�

¶

c

�

G11,(b)
conf., sub.(x , x) .

(46)
All integrals here and below are over half-space. Following the methods of Ref. [1], this inte-
gral, to logarithmic accuracy, simplifies to

δconf

¬

iλ
�

0, x ′3
�¶

=
16(µ2 − 1/4)

3Nπ2

d
dz

∫ ∞

0

dx3
�

cos(2µπ)
x ′3 + x3

−
P

x ′3 − x3

�

1
x3

=
32sin2(µπ)(µ2 − 1/4)

3Nπ2(x ′3)2
log
�

Λx ′3
�

, (47)

where P denotes principal value, and 1/Λ is a lattice cutoff.
The full nonconformal component of Fig. 8(b) is

G11,(b)
nconf (x , y) =

32(µ2 − 1/4)
3Nπ2

∫

d3w
log
�

Λ′w3
�

(w3)2
�

G11(x , w)G11(w, y) + G12(x , w)G12(w, y)
�

−
4

3Nπ2
log
�

4x3 y3Λ′′
2
�

G11(x , y) .

(48)

Here, Λ′ and Λ′′ are two UV cutoffs that are lattice-dependent (they are not necessarily equal,
but they both inversely scale with the lattice spacing, as does Λ). Then, the contribution from
this term to 〈iλ(0, z)〉 is

δnconf

¬

iλ
�

0, x ′3
�¶

=
16(µ2 − 1/4)

3π2

∫

d3w d3 x
log
�

Λ′w3
�

(w3)2
�

G11(x , w)2 + G12(x , w)2
�

×
�¬

λ1(0, x ′3)λ1(x)
¶

c
+
¬

λ1(0, x ′3)λ2(x)
¶

c

�

. (49)

Note that we drop the contribution from the term proportional to log
�

x3Λ′′
�

G11(x , x) because
together with the subtraction implicit in (45) it contributes to a shift of the critical value of
gbulk. Using that the λ propagator is, up to a constant, the inverse of the squaredφ propagator,
Eq. (39), we obtain a contribution

δnconf

¬

iλ(0, x ′3)
¶

=
32(µ2 − 1/4)

3Nπ2

log
�

Λ′x ′3
�

(x ′3)2
. (50)

Combining Eqs. (47), (50), we obtain to logarithmic accuracy

〈iλ(0, z)〉=
µ2 − 1/4

z2

�

1+
32

3Nπ2
(sin2(µπ) + 1) log

�

Λx ′3
�

�

. (51)

Per the Callan-Symanzik equation,
�

β(µ)
d

dµ
+Λ

d
dΛ
+ γλ

�

¬

iλ(0, x ′3)
¶

= 0 , (52)

where β(µ) = − dµ
dℓ is the beta function, or RG flow, of µ, and γλ ≈ −

32
3π2N is the anomalous

dimension of λ. We thus find

β(µ) = −
16(µ2 − 1/4)

3Nπ2

sin2(µπ)
µ

. (53)

A plot of the beta function is shown in Fig. 4. Thus, for large but finite N , we indeed have
three fixed points corresponding to the normal, special, and extraordinary-log phases, with
the special fixed point unstable and the other two fixed points stable in the IR.
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3.3 Renormalization Group Flow Near Fixed Points

As we explain below, the RG flow of µ near the ordinary, special, and normal fixed points for
the plane defect system confirms nontrivial results in the literature for the O(N) model with
different boundary conditions. Most importantly, β(µ) near the normal fixed point agrees with
the RG treatment of section 2.

Let us begin near the normal fixed point, µ→ 1. From (53), we have

β(µ)≈
4
N

�

−(1−µ)2 +
5
3
(1−µ)3
�

+ . . . , µ→ 1 . (54)

We relate 1 − µ to the coupling constant g in (10) by matching the scaling dimension
∆̂S = 1 − µ = ηn⃗(g)

2 and arriving at 1 − µ = N g
4π + O(g2). Note that we’ve kept only the

leading order term in N . From this,

β(g)≈
g2

π
−

5
12π2

N g3 +O
�

g4
�

, N →∞ . (55)

The leading O(g2) term agrees with (16). Note that the coefficient of the O(g3) term is in-
sensitive to the re-parameterization g → g +O(g2), and thus can be extracted reliably in the
N →∞ limit.

Next, we discuss the special fixed point, µ→ 1/2. We would like to compare our results to
the treatment based on the action (3). We take ε(x) to be normalized 〈ε(x)ε(y)〉 = 1

(x−y)2∆ε ,

∆ε = 2− 32
3π2N +O(N−2). Using the OPE

ε(x)ε(0) =
1

x2∆ε
+
λεεε
x∆ε

ε(0) + . . . , (56)

we obtain the RG flow of coupling c = Λ2−∆ε c̃ in (3):

β(c̃) = −(2−∆ε)c̃ +πλεεε c̃2 +O
�

c̃3
�

, N →∞ . (57)

While in general dimension D the coefficientλεεε ∼ O(N−1/2), it has been known for some time
that in D = 3 the leading N term inλεεε vanishes. [26]Actually, a recent calculation of Ref. [16]
shows that for D = 3 the first subleading term in N vanishes as well, so λεεε ∼ O(N−5/2). We
verify this result here by comparing (57) to Eq. (53),

β(µ)≈
32

3Nπ2

�

−(µ− 1/2) + (µ− 1/2)2 +O
�

(µ− 1/2)3
��

, N →∞ . (58)

We need the relation between µ and c̃. To leading order in N , this can be read-off by computing
〈ε(x)〉 using perturbation theory in c and relating it to 〈iλ(x)〉, (25). We have

〈ε(x)〉= −c

∫

d2y 〈ε(x)ε(y, 0)〉bulk +
c2

2

∫

d2yd2z 〈ε(x)ε(y, 0)ε(z,0)〉bulk +O
�

c3
�

. (59)

Using the normalization of bulk λ two-point function (43), to leading order in 1/N ,
iλ(x) = 4Λ2−∆ε

π
p

N
ε(x), where we introduce a power of the cut-off Λ to make dimensions match.

Then performing the first integral in (59),

c̃ = −
p

N
4
(µ− 1/2) +O(µ− 1/2)2 , N →∞ , (60)

and the leading (linear) terms in β(µ) and β(c̃) match. To compare subleading (quadratic)
terms, we need a relation between µ− 1/2 and c̃ to quadratic order. We have

〈ε(x)ε(y)ε(z)〉bulk =
λεεε

(x − y)∆λ(y − z)∆λ(z − x)∆λ
. (61)
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S3

N

S

S2

N ⊗ S

S2

HS3

Figure 9: A 2D projection of the folding trick. Instead of considering one field that
lives on S3, we consider two fields that live on HS3 and are coupled at the boundary
S2.

Using the old result [26], λεεε ∼ O(N−3/2), the O(c2) term in (59) is suppressed by 1/N
compared to the O(c) term. Thus, matching to (25),

c̃ = −
p

N
4

�

(µ− 1/2) + (µ− 1/2)2 +O((µ− 1/2)3)
�

, N →∞ . (62)

Then comparing (57), (58), we conclude that λεεε = 0 to O(N−3/2), in agreement with
Ref. [16]. We note that the calculation of λεεε to O(N−3/2) in [16] involved multi-loop dia-
grams, whereas here we reproduce their result with just a one-loop calculation in the presence
of a plane defect.

We finally discuss the ordinary fixed point µ→ 0. Here, Eq. (53) gives

β(µ)≈
4

3N
µ+O(µ3) . (63)

We would like to connect this result to the treatment (4). We have

β(u) = 2(∆ord − 1)u+O(u3) , (64)

where∆ord = 1+ 2
3N +O(N−2). [14] This agrees with β(µ) provided that dµ

du is finite for u→ 0.
In appendix C, we verify this fact.

4 Boundary and interface central charge

In this section, we study the central charge a in Eq. (7) for the boundary and interface defects.
This section is structured as follows. In section 4.1 we explicitly show that at N =∞ the cen-
tral charge aint/N = 0 along the entire line of interface fixed points 0 ≤ µ ≤ 1, in agreement
with the a-theorem of Jensen and O’Bannon. [17] In sections 4.2 and 4.3 we compute the cen-
tral charge for the ordinary and normal boundary fixed points to O(N−1) obtaining the result
(8). This immediately yields the interface central charge for the ordinary and extraordinary-
log interface fixed points (9). Finally, in section 4.4 we compare the result for the interface
central charge (9) to a detailed form of the a-theorem of Jensen and O’Bannon relating the
difference of a between the IR and UV fixed points to a particular two point function of the
stress-energy tensor, Eq. (95). This gives a highly non-trivial check of the details of the RG
flow from the special to ordinary/extraordinary-log interface fixed points at large finite N , and
of the full β-function (53) in particular.

4.1 Interface central charge at N =∞

We first verify explicitly that at N =∞, aint/N = 0 along the entire line of interface fixed
points as expected by the monotonicity theorem in [17]. We extract the coefficient aint from
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Q

P

Figure 10: A 2D depiction of the stereographic projection of HS3 onto R3
+. The

boundary S2 is mapped to the plane x3 = 0. Any point P in R3
+ is mapped to the

point Q on HS3 that lies on the line segment connecting P to the north pole, as
depicted by the blue line in the figure.

the free energy of the system on a sphere S3 with the defect along its equator S2 [17] (see
Fig. 9, left):

FS3,int = − log Z = −
aint

3
log R/ε , (65)

where R is the radius of the sphere and ε is a UV cut-off. Equivalently, we can use the “folding
trick” to think of the system as a “doubled” theory on a hemisphere HS3, where the two copies
of the theory are decoupled in the bulk, but generally coupled on the boundary (see Fig. 9,
right).

We begin by pointing out that for the special fixed point, asp
int = 0 for any N .9 Indeed, the

special fixed point corresponds to a trivial interface. Thus, in the unfolded picture we simply
have the O(N) model on the sphere S3 with no defect. The partition function of a CFT on S3

is a universal number independent of the sphere radius R. Thus, we conclude asp
int = 0. Then

by the theorem of [17], at finite N , aO
bound < 0 for the ordinary boundary fixed point (i.e. for

a single copy of the O(N) model). Indeed, in the interface model, there is a flow from the
special to the ordinary fixed point, and the interface ordinary fixed point is equivalent to two
decoupled boundary ordinary fixed points for each side of the interface (see discussion around
Eq. (4)).

We now proceed to the explicit computation of the sphere with defect free energy at
N =∞. Our calculation follows Refs. [22,27]. We consider the action

S =
1
2

∫

HS3

dD x
p

g
2
∑

m=1

�

∂µφ
m
a gµν∂νφ

m
a + iλm
�

φm
a φ

m
a −

1
g

�

+
(D− 2)

4(D− 1)
Rφm

a φ
m
a

�

. (66)

We work in the “folded” picture: the theory lives on a hemisphere of radius R, the index m
runs over two copies of the O(N)model, g is the metric, and R is the Ricci scalar. We’ve added
the conformal coupling to curvature (which ensures that iλ transforms as a conformal primary
for N =∞). The metric is given by

ds2
HS3 = R2
�

dα2 + sin2αdΩ2
2

�

. (67)

Here dΩ2
2 = dθ2 + sin2 θdϕ2 is the metric of a two-sphere, with θ and ϕ the usual polar

coordinates, and α ∈ [0,π/2]. α = π/2 gives the boundary of HS3, which is just S2. This

9We thank Yifan Wang for pointing out the argument below.
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metric is conformally equivalent to flat semi-infinite space, parametrized as (x1, x2, x3) with
x3 ≥ 0. Indeed, let

x1 =
sinα sinθ cosϕ
1− sinα cosθ

, x2 =
sinα sinθ sinϕ
1− sinα cosθ

, x3 =
cosα

1− sinα cosθ
. (68)

This is just the stereographic projection of S3 onto R3, with the half-sphere HS3 mapping to
the half-space x3 ≥ 0, which we label R3

+ (see Fig. 10). The boundary of HS3 maps to the
x3 = 0 plane plus the point at infinity. The metric thus is

ds2
HS3 = Ω2(x)
∑

i

�

d x i
2
�

, Ω(x) = R
2

(x1)2 + (x2)2 + (x3)2 + 1
= R(1− sinα cosθ ) . (69)

Now in the semi-infinite geometry 〈iλm(x)〉R3
+
= µ2−1/4

(x3)2 , see Eq. (25). Therefore, performing
a Weyl transformation yields

〈iλm(x)〉HS3 = Ω−∆λ(x)〈iλm(x)〉R3
+
= R−2(µ2 − 1/4) sec2α , (70)

where we used ∆λ = 2 for N =∞. Since 〈iλm〉 is m independent, we simply denote it by
〈iλ〉 below. We perform a transformation to symmetric and anti-symmetric components of φ,
see Eq. (31). Then at N =∞,

FS3,int =
N
2

�

TrS log
�

−∆+ 〈iλ〉+
3

4R2

�

+ TrA log
�

−∆+ 〈iλ〉+
3

4R2

��

. (71)

The subscripts S/A on the trace indicate that the trace should be performed over eigenstates
with boundary conditions appropriate to φS and φA respectively. The constant of 3

4R2 in brack-

ets comes from the conformal coupling (R = D(D−1)
R2 on a D sphere of radius R). In appendix

D, we repeat the calculation of the trace in Ref. [27] to obtain to logarithmic accuracy:

1
2

TrS/A log
�

−∆+ 〈iλ〉+
3

4R2

�

= ∓
1
6
µ3 log R , (72)

where the + sign corresponds to φA (boundary field exponent ∆̂= 1+µ) and the − sign to φS
(∆̂= 1−µ). This agrees, as expected, with the result of Ref. [22] for the free energy of a free
scalar of mass m2 = µ2 − 1

4 on AdS3 with a spherical boundary. (Indeed, AdS3 is conformally
equivalent to HS3 and 〈iλ(x)〉HS3 (70) maps to a constant 〈iλ〉= µ2− 1

4 on AdS3 of radius 1.)
The advantage of performing the calculation of the free-energy on HS3 rather than on AdS3 to
extract the central charge a is that on HS3 the calculation of the free-energy for the “irregular”
symmetric (S) modes comes on the same footing as for the “regular” antisymmetric (A) modes,
while on AdS3 the result for the “irregular” modes was obtained by analytic continuation in
∆̂− 1. [22]

With these remarks in mind, combining the contributions of S and A modes to (71) we
find that FS3,int contains no log R term, i.e. aint/N = 0 for all µ at N =∞. As already noted,
this matches the expectation aint = 0 at the special interface fixed point µ = 1/2. The µ→ 0
limit (ordinary interface fixed point) also matches the value aO

int = 2aO
bound , where aO

bound/N
was found to vanish at N =∞ in Ref. [22]. Finally, we can understand the limit µ → 1 in
the following way. At finite N the extraordinary-log phase (µ→ 1) is described by Eq. (11).
Ignoring the coupling term s, this corresponds to N−1 copies of a free boson π⃗ and two copies
of the normal boundary fixed point. Thus, to leading order in the radius R, we expect the free
energy FS3,int for the extraordinary-log phase to have the form (65), with

aeo
int = 2aN

bound + N − 1 , (73)
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where aN
bound is the a-coefficient for the normal fixed point in the boundary geometry and the

second term comes from the central charge of N − 1 free 2d bosons. Ref. [22] found that

aN
bound = −

N
2

, N →∞ , (74)

so Eq. (73) again confirms that aeo
int(N)/N is 0 for N =∞. We leave the question of corrections

to Eq. (65) in the extraordinary-log phase coming from the logarithmically running coupling
g to future work.

4.2 Central charge at the ordinary fixed point at O(N 0)

We now directly compute the central charge aO
bound for the ordinary boundary fixed point to

O(N0) (i.e. to first subleading order in N) by computing the partition function ZHS3 . From
this, we can obtain the central charge at the ordinary interface fixed point aO

int = 2aO
bound . We

begin with the action:

S =
1
2

∫

HS3

dD x
p

g
�

∂µφa gµν∂νφa + iλ
�

φaφa −
1
g

�

+
(D− 2)

4(D− 1)
Rφaφa

�

. (75)

We work around the large-N saddle point iλ= iλ0 +δλ,

iλ0 = −
1
4

R−2 sec2α . (76)

This is the right-hand-side of (70) with µ= 0. To order N0,

ZHS3,bound =
�

det
�

−∆+ iλ0 +
3

4R2

��−N/2∫

Dδλ

× exp

�

−
1
2

∫

d3 xd3 y
p

gx
p

g yδλ(x)Kλ(x , y)δλ(y)

�

.

(77)

Here Kλ(x , y) = N
2 G2

0(x , y) and G0(x , y)δab = 〈φa(x)φb(y)〉HS3 at N =∞. Thus,

FO
HS3,bound =

N
2

Tr log
�

−∆+ iλ0 +
3

4R2

�

+
1
2

Tr log Kλ = −
1
2

Tr log Dλ , (78)

where we used Eq. (72). Here, the operator Dλ = K−1
λ

is the λ propagator to O(1/N),

Dλ(x , y) = 〈λ(x)λ(y)〉HS3,c = Ω
−2(x)Ω−2(y)〈λ(x)λ(y)〉R3

+,c

= −
1

π2NR4
(x2 + x2

3 + 1)2(y2 + y2
3 + 1)2 (79)

×
�

1
((x− y)2 + (x3 − y3)2)2

−
1

((x− y)2 + (x3 + y3)2)2

�

. (80)

Thus,
Dλ(x , y) = D0

λ(x , y)− D0
λ(x , R3 y) , (81)

where D0
λ
(x , y) is the propagator on the full sphere S3:

D0
λ(x , y) = −

16
π2N

1
s(x , y)4

, s(x , y)2 = 4R2 (x − y)2

(x2 + 1)(y2 + 1)
. (82)

Here, s(x , y) is the chord distance on the sphere. In Eq. (81), R3(y, y3) = (y,−y3) is the
reflection across the equator of S3. Interestingly, the λ propagator, Eq. (81), takes a simple
Dirichlet-like form to leading order in N – we use this fact shortly.
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To compute the trace in (78) we find eigenvalues of Dλ on HS3. Due to the Dirichlet-like
form of (81), this is equivalent to finding eigenfunctions of D0

λ
on the full S3 which are odd un-

der the reflection R3. By rotational symmetry, eigenfunctions of D0
λ

are angular harmonics Ynℓm
on S3. Here −∆Ynℓm = n(n+2)Ynℓm, n= 0,1, 2, . . ., and ℓ= 0,1, 2, . . . n, m= −ℓ,−ℓ+1, . . .ℓ.
The eigenvalue of Ynℓm under the reflection R3 is (−1)n+ℓ.10 It was shown in Ref. [28] that

1
s(x , y)2∆

=
1

R2∆

∑

nℓm

gnYnℓm(x)Y
∗
nℓm(y) , (83)

where the eigenvalue

gn = π
D/22D−∆ Γ (D/2−∆)

Γ (∆)
Γ (n+∆)
Γ (D+ n−∆)

→−4π2(n+ 1) , (84)

where we have substituted dimension D = 3 and ∆= 2. Thus,

FO
HS3,bound = −

1
2

∞
∑

n=0

dn log En , (85)

where En =
64
NR(n+1) and dn =

1
2 n(n+1) is the degeneracy of level n eigenstates with R3 = −1.

Using ζ-function regularization, we obtain to logarithmic accuracy in R

FO
HS3,bound =

1
2

d
ds

∞
∑

n=0

dn(En)
−s =

1
2

log R
∞
∑

n=1

dn

(n+ 1)s
=

1
4

log R
∞
∑

n=0

n(n+ 1)1−s

=
1
4

log R(ζ(s− 2)− ζ(s− 1))→
1
48

log R , (86)

where the limit s→ 0 is understood throughout. Thus,

aO
bound = −

1
16
+O
�

N−1
�

, (87)

and

aO
int = 2aO

bound = −
1
8
+O
�

N−1
�

. (88)

4.3 Central charge at the normal fixed point at O(N 0)

We now directly compute the central charge at the normal boundary fixed point to O(N0). We
follow Refs. [1, 22, 25]. We choose the symmetry breaking field on the boundary to be along
the N -th direction. We first recall a few facts about the normal fixed point on R3

+. At N =∞
we have

〈iλ(x)〉R3
+
=

3
4(x3)2

,

〈φN 〉R3
+
=

a0
σp

2x3
,
�

a0
σ

�2
=

N
2π

,

〈λ(x)λ(y)〉R3
+,c = −

16
π2N

�

1
((x− y)2 + (x3 − y3)2)2

−
1

((x− y)2 + (x3 + y3)2)2

�

. (89)

10These results can be straightforwardly obtained from the discussion around Eqs. (D.3), (D.4), (D.5) by setting
µ= 1/2.
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Note that the λ propagator at the normal boundary fixed point is the same as at the ordinary
boundary fixed point. Making a conformal transformation to HS3, at N =∞

iλ0(x)≡ 〈iλ(x)〉HS3 = Ω(x)−2〈iλ(x)〉R3
+
=

3
4R2

sec2α ,

σ0(x)≡ 〈φN (x)〉HS3 = Ω(x)−1/2〈φN 〉R3
+
=

a0
σp
2R
(secα)1/2 . (90)

The connected λ two-point function on HS3 at N =∞ is given by the same expression as
for the ordinary fixed point (80). To compute the partition function on HS3, we expand
λ(x) = λ0(x) +δλ(x), φN (x) = σ0(x) +δσ(x),

S =

∫

dd x
p

g

�

1
2

N−1
∑

i=1

φi(−∆+ iλ0 +
3

4R2
+ iδλ)φi +

1
2
δσ(−∆+ iλ0 +

3
4R2
+ iδλ)δσ

+
iσ2

0

2
δλ+ iσ0δλδσ

�

. (91)

Integrating φi and δσ out, to first subleading order in N we obtain Eq. (77), where now
Kλ(x , y) = N

2 G2
0(x , y) +σ0(x)G0(x , y)σ0(y) and G0(x , y) = (−∆+ iλ0 +

3
4R2 )−1 is the two-

point function of φi , i = 1, 2 . . . N − 1. Furthermore, Kλ = D−1
λ

, with Dλ given by Eq. (80).
Therefore,

F N
HS3,bound =

N
2

Tr log
�

−∆+ iλ0 +
3

4R2

�

−
1
2

Tr log Dλ =
1
6

�

N +
1
8

�

log R . (92)

Here, we use Eq. (72) with µ= 1 to evaluate the first trace (we use the A branch to recover the
correct correlation functions at the normal fixed point) and Eq. (86) to evaluate the second
trace. Therefore,

aN
bound = −

N
2
−

1
16
+O
�

N−1
�

. (93)

From this, we obtain the interface central charge at the extraordinary-log fixed point to O(N0):

aeo
int = 2aN

bound + N − 1= −
9
8
+O
�

N−1
�

. (94)

4.4 Interface central charge and the a-theorem

Finally, we compare the results of the explict calculation of the central charge at the ordinary
(88) and extraordinary-log (94) interface fixed points to a detailed form of the a-theorem
by Jensen and O’Bannon. [17] Through this comparison, we verify our result for the full β-
function (53).

As shown in Ref. [17], for an interface RG flow between a UV and an IR fixed point,

aUV − aIR = 3π

∫

d2x x2〈T (x)T (0)〉c . (95)

Here we are in a configuration with a planar interface at z = 0, the integral is over the z = 0
plane and the trace of the energy momentum tensor is

Tµµ = δ(z)T . (96)

The correlator in (95) is evaluated in a theory slightly perturbed from the interface UV fixed
point. If we write

S = SUV + g

∫

d2x Ô(x) , (97)
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with Ô(x) - the operator perturbing the theory away from the UV interface fixed point, then

T = β(g)Ô(x) , (98)

where β(g) is the β-function for the parameter g. We note that Eq. (95) has the same form
as the usual Zamolodchikov’s c-theorem in a purely 2d theory.

To apply the theorem (95) to our set up, consider the flow from the special interface fixed
point (UV) to the ordinary fixed point or the extraordinary-log fixed point (IR). We have al-
ready explicitly computed the central charges on the left hand side of (95) to O(N0), see
Eq. (9). We now confirm by an explicit calculation that the right hand side of (95) reproduces
the same central charge difference.

To do this, we first consider a slightly more general situation. Imagine a theory with a small
expansion parameter κ (in our case κ = 1/N). Suppose that at κ = 0 the theory possesses a
line of interface fixed points with the action (97). At κ= 0 the coupling g parameterizing the
line of fixed points is exactly marginal and

〈Ô(x)Ô(0)〉c =
C(g)

x4
, κ= 0 . (99)

Here C(g) is the Zamolodchikov metric. At small κ, the coefficient of the β-function β(g)
is O(κ) and the line of fixed points is lifted so that only several isolated fixed points survive.
Let us consider the flow from gUV to gIR and use (95) to compute the change of the central
charge along this flow. The operator Ô in (97) acquires an anomalous dimension along the
flow. Under an RG scale transformation by dℓ, Ô(x)→ (1− β ′(g)dℓ)Ô((1− dℓ)x). Thus, the
two point function GÔ(x) = 〈Ô(x)Ô(0)〉c satisfies the Callan-Symanzik equation:
�

Λ
d

dΛ
+ β(g)

d
d g
+ 2γÔ(g)
�

GÔ(g,Λ, x) = 0 , γÔ(g) = β
′(g) , (100)

where Λ is the UV cut-off. Solving the Callan-Symanzik equation, to leading order in κ,

GÔ(g0,Λ, x)≈
1
x4

Z2(ℓ)C(g(ℓ)) , ℓ= logΛx , (101)

where C(g) is given by Eq. (99) and

d g
dℓ
= −β(g(ℓ)) , g(0) = g0 ,

log Z(ℓ) = −
∫ ℓ

0

dℓ′β ′(g(ℓ′)) =

∫ g(ℓ)

g0

d g ′
β ′(g ′)
β(g ′)

= log
β(g(ℓ))
β(g0)

. (102)

Evaluating Eq. (95) in a theory slightly perturbed from the interface UV fixed point,

aUV − aIR ≈ 3π

∫

Λ|x|>1

d2x
x2
β(gUV)

2Z2(logΛx)C(g(logΛx)) (103)

= 3π

∫

Λ|x|>1

d2x
x2
β(g(logΛx))2C(g(logΛx))

= 6π2

∫ ∞

0

dℓβ(g(ℓ))2C(g(ℓ)) = −6π2

∫ gIR

gUV

d g ′β(g ′)C(g ′) . (104)

Let’s consider re-parameterizing g → g(u), with u – a new coupling constant. If we make an
infinitesimal change, u→ u+δu,

δS = δu
d g
du

∫

d2x Ô(x) . (105)
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Thus, the operator conjugate to u is d g
du Ô(x), which has the Zamolodchikov norm

Cu =
�

d g
du

�2
C(g(u)). Likewise, βu = (

d g
du )
−1β(g(u)). Thus, Eq. (104) is invariant under re-

parametrization:

aUV − aIR ≈ −6π2

∫ uIR

uUV

duβu(u)Cu(u) . (106)

It can be checked that Eq. (104) reproduces the correct aUV−aIR for the case of short RG flows
analyzed in Ref. [22], where C(g) is, to leading order in κ, constant along the flow.

Let us now apply (104) to our problem of the interface in the O(N) model. At N =∞ we
have the coupling µ parametrizing the line of fixed points. We already know the β-function,
β(µ), Eq. (53), to O(1/N). It remains to compute the Zamolodchikov norm of the operator
conjugate to µ. The marginal operator that tunes the system along the line of fixed points is
just iλS(x3 = 0) (recall its bulk to boundary OPE contains an operator of dimension ∆̂ = 2,
see section 3.1). Upon varying µ, we have

δS = δµ · ξ(µ)
∫

d2x iλS

�

x, x3 = 0
�

, (107)

where ξ(µ) is a to be determined function. From (25), we know the response of



iλS(x3)
�

to
variations in µ:

δ〈iλS(x
3)〉=

2
p

2µδµ
(x3)2

. (108)

Performing perturbation theory in δµ,

δ〈iλS(x
3)〉= −δµ · ξ(µ)

∫

d2x 〈iλS(0, x3)iλS(x,0)〉c . (109)

Using (43), we get

ξ(µ) = −
p

2πNµ

16 sin2πµ
, C(µ) =

32sin2πµ

π2N
ξ2(µ) =

N
4

µ2

sin2πµ
. (110)

Now, substituting C(µ) above and β(µ) into Eq. (104), we obtain

asp
int − aO

int ≈ −6π2

∫ 0

1/2

dµβ(µ)C(µ) =
1
8
+O
�

N−1
�

,

asp
int − aeo

int ≈ −6π2

∫ 1

1/2

dµβ(µ)C(µ) =
9
8
+O
�

N−1
�

. (111)

As previously discussed, asp
int = 0. Thus, we recover the results (88) and (94) obtained by an

explicit calculation.

5 β-function in the semi-infinite geometry

In this section, we return to the problem of the O(N) model in a semi-infinite geometry. As
we mentioned in the introduction, two scenarios for the evolution of the phase diagram past
N = Nc were proposed in Ref. [1], see Fig. 5. Which scenario is realized is determined by the
sign of a higher order term in the β-function for the surface spin-stiffness. In this section, we
determine this higher order term in the limit N →∞. Instead of computing the β-function
directly, we extract the higher order term by matching the RG treatment of Ref. [1] to known
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large-N results on the special boundary fixed point in bulk dimension D > 3. [14] Thus, we
consider a d dimensional boundary of a d + 1 dimensional bulk. We begin with the action

S = Snorm + Sn⃗ − s

∫

ddxπiti , (112)

with

Sn⃗ =

∫

ddx
�

1
2g

�

(∂µπ⃗)
2 +

1
1− π⃗2

(π⃗ · ∂µπ⃗)2
�

− h⃗ · n⃗
�

. (113)

Here, we’ve added a symmetry breaking field h⃗ = hêN as an infra-red regulator. Here and
below, d = 2+ε denotes the surface dimension, while D = d+1 stands for the bulk dimension.
We are interested in the limit ε≪ 1. An argument analogous to that in Ref. [1] gives

s2 =
Γ (d)2

(4π)dΓ (d/2)2
a2
σ

b2
t

, (114)

in terms of the OPE coefficients aσ, bt of the normal boundary universality class:

φN (x, x3)∼
aσ

(2x3)∆φ
+ bD(2x3)d+1−∆φD(x) + . . . , x3→ 0 , (115)

φi(x, x3)∼ bt (2x3)d−∆φ ti(x) + . . . , x3→ 0 . (116)

Note that s2 depends on d.
As discussed in Ref. [1], the leading terms in β(g) are:

β(g)≈ εg +αbound g2 + bg3, αbound =
πs2(d = 2)

2
−

N − 2
2π

. (117)

αbound(N) changes sign at N = Nc > 2 from positive at N < Nc to negative at N > Nc . For
D = 3 and N < Nc , g flows logarithmically to zero and the extraordinary-log fixed point is
realized. The evolution of the phase diagram in D = 3 past N = Nc depends on the sign of the
coefficient b in (117).

1. If b < 0, then for N → N−c , we have a perturbatively accessible IR unstable fixed point
at g∗ ≈

αbound
|b| . It is natural to identify this fixed point with the special transition between

the extraordinary-log and ordinary phases. At N = Nc the special fixed point annihilates
with the extraordinary fixed point at g = 0 and only the ordinary fixed point remains
for N ≥ Nc , see Fig. 11 (left).

2. If b > 0, then for N → N+c , the extraordinary fixed point moves away from g = 0 to

g∗ ≈
|αbound|

b . Thus, we find an IR stable conformal fixed point for N just above Nc , which
we term the extraordinary-power fixed point. Since only the ordinary fixed point is
found by large-N calculations in D = 3, the extraordinary-power fixed point presumably
annihilates with the special fixed point at some larger value of N = Nc2, see Fig. 11
(right).

From the form of the action (112), a direct computation of the coefficient b in β(g) requires
the knowledge of the four-point function of the tilt operator ti at the normal fixed point. (This
should be compared to the computation of the coefficient αbound, which relies only on the
two-point function of ti and the knowledge of the coefficient s.) In addition, a number of
higher order counter-terms in the action, omitted in Eq. (112), such as e.g. δLbound ∼ π⃗2πiti ,
would have to be fixed by the requirement of O(N) invariance. We do not pursue this route
to computing b here.
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N

Nc

2

ordinary

extra-ord
log

g0 1

special

N

Nc
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ordinary

extra-ord
log

g0 1

special

extra-ord
power

Nc2

Figure 11: Conjectured RG flows of the semi-infinite O(N) model in D = 3. Left -
scenario I. Right - scenario II. Blue dashed arrows indicate the direction of RG flow.
Black dashed lines are guide to eye.

Instead, we compute b(N) for N →∞ by considering the special transition in D = 3+ ε.
Here, the g = 0 fixed point is always stable — it describes an extraordinary phase with true
long range boundary order. For N ≳ Nc , (117) gives an IR unstable fixed point at

gspec
∗ ≈

ε

|αbound|
+ b

ε2

|αbound|3
+O
�

ε3
�

. (118)

We identify this fixed point with the special transition separating the extraordinary and the
ordinary phases. The scaling dimension of the boundary order parameter at this fixed point is
given by

∆
spec
n⃗ =

ηn⃗

�

gspec
∗
�

2
, (119)

with

ηn⃗(g) =
(N − 1)g

2π
+O
�

g2
�

(120)

the anomalous dimension of n⃗. At the same time, the special fixed point is accessible with
the large-N expansion for any dimension D in the range 3 < D < 4, in particular, the scaling
dimension of the surface order parameter ∆spec

n⃗ has been computed to O(1/N) [14],

∆
spec
n⃗ = D− 3+

1
N

2(4− D)
Γ (D− 3)

�

(6− D)Γ (2D− 6)
DΓ (D− 3)

+
1

Γ (5− D)

�

+O
�

1
N2

�

= ε+
1
N
(3ε−

5
3
ε2 +O(ε3)) +O

�

N−2
�

. (121)

Thus, for ε → 0 and N → ∞, we can compare the predictions of our RG analysis to the
direct large-N expansion. To leading order in ε, this was already done in Ref. [1]: ∆spec

n⃗ found
from (15), (118), (120) matches exactly with (121) to O(ε), including the subleading O(1/N)
term. We aim to match (121) with the RG analysis to O(ε2) and O(1/N). More specifically,
we compute the anomalous dimension ηn⃗(g) to order g2. This can be computed without any
extra data for the normal transition, besides the coefficient s2(d). Then, we substitute our
expression for gspec

∗ from (118) into (119) and compute b in the limit N →∞ by matching
to (121).

We now compute ηn⃗ to order g2. The coefficient of the g2 term in ηn⃗ is scheme dependent.
We use dimensional regularization with the following conventions:

g̃ = µ−εZg( g̃r) g̃r , n⃗= Z1/2
n⃗ n⃗r , h⃗= Z−1/2

n⃗ h⃗r , (122)
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with

Zg = 1+
∞
∑

m=1

m
∑

k=1

Zm,k
g

εk
g̃m

r , Zn⃗ = 1+
∞
∑

m=1

m
∑

k=1

Zm,k
n⃗

εk
g̃m

r , (123)

and

g̃ =
2

(4π)d/2Γ (d/2)
g . (124)

The β-function, β( g̃) and anomalous dimension ηn⃗ are obtained from renormalization con-
stants Zg , Zn⃗ using

β( g̃r) = µ
∂

∂ µ
g̃r

�

�

�

�

g,Λ
= ε
�

d
d g̃r

log
�

g̃r Zg( g̃r)
�

�−1

, (125)

ηn⃗( g̃r) = µ
∂

∂ µ
log Zn⃗

�

�

g,Λ = β( g̃r)
d

d g̃r
log Zn⃗( g̃r) . (126)

The renormalized correlation function of m n⃗ fields, Dm
r = Z−m/2

n⃗ Dm, then satisfies,

�

µ
∂

∂ µ
+ β( g̃r)

∂

∂ g̃r
+

m
2
ηn⃗( g̃r)
�

Dm
r ( g̃r ,µ) = 0 . (127)

The constants Zg , Zn⃗ can be found by computing the two-point function of π⃗ and the
one-point function of nN . Let 〈πi(x)π j(0)〉= δi j D(x). Then to order g2,

D(p) = D0(p) +δNLΣMD(p) +δsD(p) +O
�

g3
�

. (128)

D0(p) =
g

p2+m2 , with m2 = gh, is the free propagator. δNLΣMD(p) is the standard contribution
from the leading non-linear terms in Sn⃗, while δsD(p) is the leading contribution from the
coupling s to the operators of the normal fixed point. Evaluating these, we obtain

δNLΣMD(p) = −
Γ (1− d/2)
(4π)d/2

g2md−2

p2 +m2

�

1+
(N − 3)m2

2(p2 +m2)

�

, (129)

δsD(p) =
s2Γ (−d/2)πd/2

2dΓ (d)
g2pd−2

p2 +m2

�

1−
m2

p2 +m2

�

. (130)

Extracting Zg ,

Zg = 1− α̃
g̃r

ε
+O
�

g̃2
r

�

, α̃= π2s2(d = 2)− (N − 2) , (131)

β( g̃r) = ε g̃r + α̃ g̃2
r + b̃ g̃3

r + . . . (132)

Note that our normalization for the coefficient α̃ here differs by a factor of 2π from that of α
in (117). Our goal is to compute b̃ in the large-N limit. The value of α̃ starts positive at N = 2
and eventually becomes negative for N > Nc > 2. [1,7] In particular, in the large-N limit [1]:

π2s2(d = 2) =
N
2
+O(N−1) , α̃= −

N − 4
2
+O(N−1) . (133)

When α̃ < 0 (i.e. for N > Nc) and ε > 0 is small, the system has an IR-unstable fixed point at

g̃∗r =
ε

|α̃|
+ b̃

ε2

|α̃|3
+O(ε3) . (134)

We identify this fixed point with the special transition in d = 2+ ε.
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We next proceed to compute ηn⃗( g̃r). We compute the one-point function of
nN ≈ 1− 1

2 π⃗
2 − 1

8(π⃗
2)2,

〈nN 〉= 1−
N − 1

2
D(x= 0)−

N2 − 1
8

D0(x= 0)2 +O
�

g3
�

. (135)

Fourier transforming D(p) back to real space,

D0(x= 0) =
gΓ (1− d/2)
(4π)d/2

md−2 , (136)

δNLΣMD(x= 0) = −
g2Γ (1− d/2)2m2d−4

(4π)d

�

1+
N − 3

2
(1− d/2)
�

, (137)

δsD(x= 0) = −
g2s2π csc(π(d − 2))Γ (−d/2)m2d−4

22dΓ (d − 1)Γ (d/2)
. (138)

Expressing 〈nN 〉 in terms of g̃r and hr , we obtain

Zn⃗ = 1+
Z1,1

n⃗

ε
g̃r +

�

Z2,2
n⃗

ε2
+

Z2,1
n⃗

ε

�

g̃2
r +O
�

g̃3
r

�

, (139)

with

Z1,1
n⃗ = N − 1 , Z2,2

n⃗ = (N − 1)

�

N −
3
2
−
π2s2(d = 2)

2

�

, (140)

Z2,1
n⃗ =

(N − 1)π2

2

�

d
dε

�

2πd−2s2(d)
dΓ (d − 1)

��

�

�

�

ε=0
− s2(d = 2)

�

, (141)

so the anomalous dimension
ηn⃗ = (N − 1) g̃r + 2Z2,1

n⃗ g̃2
r . (142)

Thus, to obtain Z2,1
n⃗ , we need to know the value of s2(d) and its derivative at d = 2. For

a general value of N , we don’t know s2. However, in the large N limit, using the results of
Ref. [8],

2πd−2s2(d)
dΓ (d − 1)

=
N(d − 1)

2π2 cos(πε/2)

�

1+
f (d)
N
+O
�

N−2
�

�

, (143)

where we have introduced a yet unknown next correction in N , parametrized by the function
f (d). Then

Z2,1
n⃗ =

N
4

f ′(d = 2) +O(N0) . (144)

Thus, to determine the leading order in N contribution to Z2,1
n⃗ , we need to know f ′(2). In

Ref. [1], we analytically found f (2) = 0. In appendix E, we follow the procedure of Refs. [1,25]
to compute f (d) in 1< d < 3. We were not able to obtain an analytic expression for f (d) and
had to resort to numerical integration. We then fitted f (d) near d = 2 to find

f ′(2) =
11
3
± 10−2 , (145)

where the estimated uncertainty is due to numerical integration. We don’t currently know if
f ′(2) = 11

3 exactly. Thus, we obtain

ηn⃗( g̃r) = (N − 1) g̃r +
�

f ′(2)
2

N +O(N0)
�

g̃2
r +O
�

g̃3
r

�

. (146)
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non-dangling edge

dangling edge

JD

J

Figure 12: Left: The quantum spin model in Eq. (149) terminated above and below.
The red couplings have strength JD and the black couplings have the strength J . The
top edge is termed “non-dangling” while the bottom edge is termed “dangling”.
Right: The quantum spin model (149) with no edges and an inserted row of spins in
the third to last shown row.

From the Callan-Symanzik equation, the dimension of n⃗ at the special transition in d = 2+ ε
is given by Eq. (119) with g̃∗r given by Eq. (134).

Now, we can match our renormalization group result to that obtained using direct large-N
expansion for the special transition, Eq. (121). Matching this to Eqs. (119), (146), (134), we
obtain

b̃ =
�

−
5

12
−

f ′(2)
4

�

N +O(N0) =
�

−
4
3
± 2.5 · 10−3
�

N +O
�

N0
�

. (147)

Thus, b̃ is negative for large N . Assuming that b̃ remains negative down to N = Nc , scenario
I discussed in section 1 for the evolution of the phase diagram in d = 3 as a function of N
is favored. Note that for the nonlinear σ-model, i.e. Sn⃗ alone (without the coupling to Snorm
through the tilt operator), b̃ = −(N −2). [29,30] Thus, the coupling to the bulk only makes b̃
more negative for large N . Note that for the plane defect geometry, from Eq. (55),

β( g̃)≈ 2 g̃2 −
5
3

N g̃3 , (148)

i.e. for N →∞, b̃ is shifted by −N/3 in the semi-infinite geometry compared to the pure 2d
model, and by −2N/3 in the plane defect geometry.

6 Future directions: quantum models

In this paper we have focused on boundary and interface behavior in the classical O(N)model.
What happens in the quantum generalization of this problem, i.e, quantum spin systems in two
spatial dimensions that undergo an O(3) transition in the bulk? A prototypical Hamiltonian
exhibiting such a transition is given by a spin S Heisenberg model on a rectangular lattice

H =
∑

〈i j〉

Ji j S⃗i · S⃗ j , (149)

with the nearest neighbour couplings Ji j dimerized as in Fig. 12 (left). As one increases the
strength of the red bonds relative to the black bonds, the system goes from a Néel antiferro-
magnet to a trivial paramagnet. The transition between these phases lies in the classical 3D
O(3) universality class as confirmed by numerical calculations. [31]
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ordinary+VBS

VBS

VBS

K�1

K�1
c

1/g

BD

BO

SU(2)1

extra-ordinary-log

Figure 13: Candidate phase diagram for both the dangling edge and inserted row of
spins of a half-integer spin quantum dimer model. The vertical axis corresponds to
the bulk coupling and the horizontal axis to the defect coupling.

Boundary behavior in the model (149) (and in similar models) at the bulk critical point has
been studied both numerically [32–40] and analytically [1, 41]. This model has two possible
kinds of edges, “dangling” and “non-dangling”, see Fig. 12 (left). When the spin S is an inte-
ger, one theoretically expects the universal properties of both the dangling and non-dangling
edges to coincide with those of the classical 3D O(3)model. However, when the spin S is a half-
integer, one expects only the non-dangling edge to be described by classical O(3) boundary
universality. On the paramagnetic side of the phase diagram, the dangling edge is described
by a 1d spin-S chain and should either be gapless or break the translational symmetry along
the edge by the Lieb-Schultz-Mattis theorem. Such an edge feature is clearly absent in the
classical O(3) model. One theoretical possibility for the phase diagram of the dangling edge
for half-integer S is shown in Fig. 13. Here the extraordinary-log phase has the same universal
properties as for the classical O(3)model, and the ordinary+VBS phase corresponds to the or-
dinary universality class of the classical O(3) model coexisting with valence bond solid (VBS)
boundary order. The “special” transition between these boundary phases is, in principle, dif-
ferent from the special transition in the classical O(3) model, although the critical exponents
for the two can be numerically close.11 We note, however, that current numerical simulations
of the model (149) and of similar models do not fully agree with the above theoretical picture
for either the dangling or the non-dangling edge. We do not attempt to reconcile the analytical
picture above with numerics.

Instead, we briefly comment on a 1d interface defect in the quantum model (149). One
way to obtain such a defect is to change the couplings Ji j for several rows of spins. This should
correspond to perturbing the O(3) model by a local operator along a 2d space-time slice, so
we expect the same phase diagram and universal properties as for an interface in the classical
3D O(3) model. A different type of defect arises when one inserts a row of spins along the
interface, see Fig. 12 (right). This is the interface analogue of a dangling edge. If the inserted
spins are half-integer, the interface again is gapless or breaks translational symmetry even
when the bulk is in the paramagnetic phase. Thus, the interface universality must again be
distinct from that in a classical model. A possible phase diagram is again given by Fig. 13. The
extraordinary-log phase is described by Eq. (11) where the NLΣM action Sn is supplemented

11Strictly speaking, it is not known whether a continuous special transition exists.
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by a topological θ -term:

Sθ =
iθ
4π

∫

dx dτ n⃗ · (∂x n⃗× ∂τn⃗) , θ = π . (150)

Since the θ term does not affect the perturbative expansion in coupling g of (10), and g runs
logarithmically to zero in the extraordinary-log phase, we expect the universal features at the
bulk critical point to remain the same as for the interface in the classical model. Likewise,
the ordinary+VBS phase is essentially the same as for the ordinary interface in the classical
model, apart from an overall two-fold degeneracy of the ground state. However, the transi-
tion between the ordinary+VBS and the extraordinary-log interface phases must be different
from the special interface fixed point in the classical model. Indeed, let’s begin with a decou-
pled spin-1/2 Heisenberg chain described by a SU(2)1 Wess-Zumino-Witten (WZW) model.
Inserting this spin-chain into the bulk of an O(3) model, we find a relevant coupling

δS = u

∫

dx dτ N a(x ,τ)φa(x ,τ) , (151)

where N a is the Neel order parameter on the Heisenberg chain and φa is the bulk order pa-
rameter. Using ∆N = 1/2, ∆φ = 0.518936(67) [42], we see that the coupling u is relevant:
the spin-1/2 chain does not decouple from the bulk.

We may also proceed analogously to Ref. [41]: start with the ordinary interface fixed point
of the O(3) model, corresponding to the two ordinary boundary fixed points for the two sides
of the 1d chain interface in Fig. 12 (right), and couple in the Heisenberg chain. We obtain:

S = S1
ord + S2

ord + SWZW +

∫

dx dτ
�

λJ a J̄ a + uN a(φ̂1
a + φ̂

2
a) + vφ̂1

aφ̂
2
a

�

, (152)

with φ̂1,2
a – the boundary order parameters of the ordinary fixed points and J a, J̄ a – the

left/right SU(2) currents of the WZW model. For simplicity, we have assumed reflection sym-
metry across the inserted chain. The coupling λ is marginal at tree level. Using∆φ̂ = 1.187(2),
[3] the coupling u is slightly relevant: dim[u] = 3/2 −∆φ̂ = 0.313(2). The coupling v is
slightly irrelevant: dim[v] = −2(∆φ̂ − 1) ≈ −0.374(4). We attempt to directly perform con-
formal perturbation theory in u, v. Since dim[u] and dim[v] are not infinitesimal, the results
are somewhat scheme dependent. We use the scheme in Ref. [43]. We have the following
OPE’s:

J a(z)J̄ a(z̄)J b(w)J̄ b(w̄) =
3

4|z −w|4
−

2
|z −w|2

J c(w)J̄ c(w̄) + . . . ,

N a(z, z̄)N a(w, w̄) =
3

2|z −w|

�

1+
1
3
|z −w|2J b(w)J̄ b(w̄) + . . .

�

,

J a(z)J̄ a(z̄)N b(w, w̄) =
1

4|z −w|2
N b(w, w̄) + . . . ,

φ̂1
a(z, z̄)φ̂1

b(w, w̄) =
δab

|z −w|2∆φ̂
+ . . . , φ̂2

a(z, z̄)φ̂2
b(w, w̄) =

δab

|z −w|2∆φ̂
+ . . . ,

φ̂1
a(z, z̄)φ̂2

b(w, w̄) = φ̂1
aφ̂

2
b(w, w̄) + . . . (153)
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Here we’ve set the velocity of the 1d chain equal to the bulk velocity and only included
terms in the OPE with zero Lorentz spin. We obtain the following RG equation for the couplings
λ, u, v:

dλ
dℓ
≈ π
�

2λ2 − u2
�

, (154)

du
dℓ
≈
�

3
2
−∆φ̂

�

u−π
�

λ

2
+ 2v
�

u , (155)

dv
dℓ
≈ 2
�

1−∆φ̂
�

v −πu2 . (156)

Compared to Ref. [41], the coefficient of u2 in (154) is doubled; in addition there is an extra
contribution from the coupling v to the flow of u, and a flow equation for v. Inserting the
value of ∆̂φ , we find no real fixed points with u ̸= 0. Thus, the present RG approach fails to
describe the extarordinary-log to ordinary+VBS interface transition in Fig. 13. We cannot rule
out that this transition is first order.

We conclude by noting that it would be interesting to study both 3d classical and 2d quan-
tum spin models with interfaces using Monte Carlo simulations.

Note Added: We would like to point out several papers that relate to this work that have
appeared after the arXiv publication of this manuscript.

• Refs. [44–46] study a related problem of a two-dimensional surface defect in the O(N)
model in general dimension d.

• Ref. [47] shows that under reasonable assumptions on the defect RG flow, spontaneous
breaking of continuous symmetry (true long range order) on a two-dimensional defect in
a d-dimensional CFT is not allowed. Instead, depending on the CFT and the symmetry,
one may find a non-linear σ-model on the surface whose “radius” logarithmically flows
to infinity under RG, giving rise to surface order parameter correlation functions falling
off logarithmically. This is a generalization of the extraordinary-log universality class
beyond the O(N) CFT.

• Ref. [48] studies an interface in the classical 3d O(2) model through Monte Carlo simu-
lations. The findings of Ref. [48] are consistent with the interface realizing the extraor-
dinary-log universality class in the regime of large interface coupling. In particular, the
value of the β-function coefficient α extracted numerically from the interface stiffness
is found to be αplane(N = 2) = 0.56(3) and the value of the exponent q of the interface
two-point function, Eq. (2), is found to be qplane(N = 2) = 0.29(2). This agrees with
our prediction in table 1, αplane(N = 2) = 0.600(10) and with the corresponding value
of qplane = 0.265(4), see Eq. (20).
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A Computation of the λ Propagator

We now solve Eq. (39) for the λ propagator. We again split our analysis into two half-planes.
Let K11(y, z) correspond to when y and z are on the same half-plane, and let K12(y, z) corre-
spond to when y and z are on opposite half-planes. Then, the system of equations we must
solve are
∫

R3+

d3 y



λ1(x)λ1(y)
�

c K11(y, z) +



λ1(x)λ2(y)
�

c K12(y, z) = δ3(x − z) , (A.157)

∫

R3+

d3 y



λ1(x)λ2(y)
�

c K11(y, z) +



λ1(x)λ1(y)
�

c K12(y, z) = 0 .

We define



λ1(x)λ1(x ′)
�

c =
2
N

H11(x , x ′) =
2
N

h11(v)
(4x3 x ′3)2

,




λ1(x)λ2(x ′)
�

c =
2
N

H12(x , x ′) =
2
N

h12(v)
(4x3 x ′3)2

.
(A.158)

Then, we equivalently have to solve
∫

R3+

d3 x H11(x1, x)G11(x , x2)
2 +H12(x1, x)G12(x , x2)

2 = δ3(x1 − x2) , (A.159)

∫

R3+

d3 x H11(x1, x)G12(x , x2)
2 +H12(x1, x)G11(x , x2)

2 = 0 ,

with G11 and G12 defined as in Eq. (23). We follow the method of Ref. [24]. Let

G2
11/12(x , x ′) =

ḡ11/12(v)

4x3 x ′3
, ḡ11/12(v) =

1
16π2

(v +
p

v2 − 1)2µ ± 1+ (v +
p

v2 − 1)−2µ

v2 − 1
.

(A.160)
Furthermore, let

ĝ11/12(ρ) =
π

2

∫ ∞

2ρ+1

ḡ11/12(v)dv , ĥ11/12(ρ) =
π

2

∫ ∞

2ρ+1

h11/12(v)dv , (A.161)

and ρi =
(x3−x3

i )
2

4x3 x3
i

. Then, Eq. (A.159) reduces to

∫ ∞

0

dx
x

ĝ11(ρ1)ĥ11(ρ2) + ĝ12(ρ1)ĥ12(ρ2) = 4x3
1δ
�

x3
1 − x3

2

�

, (A.162)

∫ ∞

0

dx
x

ĝ11(ρ1)ĥ12(ρ2) + ĝ12(ρ1)ĥ11(ρ2) = 0 .

Finally, we define F{ f }(k) as the Fourier transform of f (sinh2 θ ). Then, Eq. (A.162) becomes

F{ ĝ11}(k)F{ĥ11}(k) + F{ ĝ12}(k)F{ĥ12}(k) = 1 ,

F{ ĝ12}(k)F{ĥ11}(k) + F{ ĝ11}(k)F{ĥ12}(k) = 0 . (A.163)
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Thus, solving this equation for F{ĥ11/12}(k) allows us to compute h11/12(v).
In carrying out this procedure, we find that

ĝ11/12(ρ) =
1

16π(1− 2µ)
z2µ−1F(1,1/2−µ, 3/2−µ, 1/z2)±

1
8π

arctanh(1/z)+

1
16π(1+ 2µ)

z−2µ−1F(1,1/2+µ, 3/2+µ, 1/z2) , (A.164)

where z = 2ρ + 1+
p

(2ρ + 1)2 − 1. Then,

F{ ĝ11/12}(k) =
sinh(kπ/2)

16k(cos(2µπ) + cosh(kπ/2))
±

1
16k

tanh(kπ/4) . (A.165)

We note that strictly speaking the integral (A.161) for ĝ11/12(ρ) is only convergent for µ < 1/2.
Also, the Fourier transform (A.165) of (A.164) only exists for µ < 1/2. We analytically con-
tinue Eq. (A.165) to µ > 1/2. Notice that the result is invariant under µ→ 1−µ. Now solving
Eqs. (A.163),

F{ĥ11}(k) = 4k csch (kπ/2) (1+ cos(2µπ) + 2cosh(kπ/2)) ,

F{ĥ12}(k) = 4k csch(kπ/2)(cos(2µπ)− 1) ,
(A.166)

ĥ11(ρ) =
−8(ρ sin2(µπ) + 1)

ρ(1+ρ)π
, ĥ12(ρ) =

−8sin2(µπ)
(1+ρ)π

. (A.167)

After taking a derivative of Eq. (A.161) with respect to ρ, we find




λ1(x)λ1(x ′)
�

c =
2

(4x3 x ′3)2N
h11(v) , h11(v) =

32cos2(µπ)
(v + 1)2π2

−
32

(v − 1)2π2
, (A.168)




λ1(x)λ2(x ′)
�

c =
2

(4x3 x ′3)2N
h12(v) , h12(v) = −

32sin2(µπ)
(v + 1)2π2

. (A.169)

Again, the resulting λ two-point function is invariant under µ→ 1−µ.

B Evaluation of Fig. 8(b) at Coincident Points

B.1 Conformal Contribution

To compute Fig. 8(b) at coincident points, we evaluate the diagram for two points on the same
side of the interface:

G(b)11 (x , y) = −
2
N

∫

d3w d3zG11(x , w)G11(w, z)H11(w, z)G11(z, y)+ (B.1)

G11(x , w)G12(w, z)H12(w, z)G12(z, y)+

G12(x , w)G12(w, z)H12(w, z)G11(z, y)+

G12(x , w)G11(w, z)H11(w, z)G12(z, y) .

Here, we use the definition of H11/12 from Eq. (A.158). We now define the differential opera-
tors

Lx =

�

−∇2
x +

µ2 − 1/4
(x3)2

�

, Ly =

�

−∇2
y +

µ2 − 1/4
(y3)2

�

. (B.2)

Then,

LxLy G(b)11 (x , y) = −
2
N

G11(x , y)H11(x , y) . (B.3)
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To the order we are interested, the diagram has the form

G(b)11 (x , y) =
g(b)11 (v)
p

x3 y3
+ G(b)nconf.(x , y) , (B.4)

where the latter term arises because of the UV divergence in −2/NG11(x , y)H11(x , y). As we
check in App. B.2, the latter term vanishes under the application of LxLy . Now, let

D = µ2 − 1− 3v
d
dv
− (v2 − 1)

d2

dv2
. (B.5)

Then,

LxLy G(b)11 (x , x ′) =
1

(x3)5/2(x ′3)5/2
D2 g(b)11 . (B.6)

Then, Eq. (B.3) reduces to

D2 g(b)11 (v) = −
(v +
p

v2 − 1)µ + (v +
p

v2 − 1)−µ

2π3N
p

v2 − 1

�

cos2(µπ)
(v + 1)2

−
1

(v − 1)2

�

. (B.7)

For simplicity in future notation, we define g(b)11 (v) = −
1

2π3N c(v).
For later convenience, we split up our analysis into symmetric and antisymmetric channels.

We do this as follows. Note that

LxLy G(b)12 (x , y) = −
2
N

G12(x , y)H12(x , y) . (B.8)

Then, if we define (note the normalization)

G(b)S/A(x , y) =
1
2

G(b)11 ±
1
2

G(b)12 , (B.9)

and we define g(b)S/A analogously to our definition of g(b)11 , we find that

D2 g(b)S (v) = −
1

4π3N
sS(v)
�

cos(2µπ)
(v + 1)2

−
1

(v − 1)2

�

−
1

4π3N
sA(v)
�

1
(v + 1)2

−
1

(v − 1)2

�

,

(B.10)

D2 g(b)A (v) = −
1

4π3N
sA(v)
�

cos(2µπ)
(v + 1)2

−
1

(v − 1)2

�

−
1

4π3N
sS(v)
�

1
(v + 1)2

−
1

(v − 1)2

�

,

(B.11)
where sS(v) and sA(v) are defined in Eq. (29). If we define cS(v) and cA(v) analogously to c(v),
we find

c(v) = cS(v) + cA(v) . (B.12)

There are four independent homogenous solutions to D2 f = 0: two symmetric solu-

tions sS(v) and − sS(v) cosh−1(v)
2µ , and two antisymmetric solutions sA(v) and sA(v) cosh−1(v)

2µ . The
advantage of splitting our analysis into symmetric and antisymmetric channels is that only
the symmetric homogenous solutions are allowed to enter cS(v) and only the antisymmetric
homogenous solutions are allowed to enter cA(v). One way to argue this is by noting that
the spectrum of boundary operators in the symmetric/antisymmetric channels should not be
drastically changed by 1/N corrections. Our strategy is thus to compute the inhomogenous
solutions for the cS/A differential equations, to use boundary conditions to constrain cS(v) and

cA(v), and to use these expressions to find G(b)11, conf.(x , x)−G(b)11, bulk(x , x) (where the latter term
represents the bulk divergences).
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B.1.1 Inhomogenous Solution

We use the method of variation of constants to compute the inhomogenous solution to cS and
cA. Note that sS(v) and sA(v) are the two homogenous solutions to the differential operator D.
Let

DcS/A = cint
S/A . (B.13)

Let us label the right hand side of the symmetric and antisymmetric differential equations for
cS(v) and cA(v) as fS/A(v). We first start with the inhomogenous symmetric solution.

cint
S (v) = sS(v)

∫ ∞

v

fS(v′)sA(v′)
p

v′2 − 1
2µ

dv′ − sA(v)

∫ ∞

v

fS(v′)sS(v′)
p

v′2 − 1
2µ

dv′ . (B.14)

We expand this as

cint
S (v) =

sS(v)
4µ

∫ ∞

v

dv′
p

v′2 − 1

�

cos(2µπ)
(v′ + 1)2

−
1

(v′ − 1)2

�

+ (B.15)

sS(v)
4µ

∫ ∞

v

dv′(v′ −
p

v′2 − 1)2µ
p

v′2 − 1

�

1
(v′ + 1)2

−
1

(v′ − 1)2

�

−

sA(v)
4µ

∫ ∞

v

dv′
p

v′2 − 1

�

1
(v′ + 1)2

−
1

(v′ − 1)2

�

−

sA(v)
4µ

∫ ∞

v

dv′(v′ +
p

v′2 − 1)2µ
p

v′2 − 1

�

cos(2µπ)
(v′ + 1)2

−
1

(v′ − 1)2

�

.

We substitute v = coshθ again and get

cint
S (coshθ ) =

eµθ

4µ sinhθ

∫ ∞

θ

dα
�

cos(2µπ)
(coshα+ 1)2

−
1

(coshα− 1)2

�

+ (B.16)

eµθ

4µ sinhθ

∫ ∞

θ

dαe−2µα
�

1
(coshα+ 1)2

−
1

(coshα− 1)2

�

−

e−µθ

4µ sinhθ

∫ ∞

θ

dα
�

1
(coshα+ 1)2

−
1

(coshα− 1)2

�

−

e−µθ

4µ sinhθ

∫ ∞

θ

dαe2µα
�

cos(2µπ)
(coshα+ 1)2

−
1

(coshα− 1)2

�

.

Let us define

I±(q,θ ) =

∫ ∞

θ

dα
eqα

(coshα± 1)2
, Ĩ±(q,θ ) =

∫ ∞

θ

dα
αeqα

(coshα± 1)2
. (B.17)

The closed forms of these integrals are in Appendix F. Then,

cint
S (coshθ ) =

eµθ

4µ sinhθ
(cos(2µπ)I+(0,θ )− I−(0,θ ) + I+(−2µ,θ )− I−(−2µ,θ )) (B.18)

−
e−µθ

4µ sinhθ
(I+(0,θ )− I−(0,θ ) + cos(2µπ)I+(2µ,θ )− I−(2µ,θ )) .

The inhomogenous symmetric solution is

cinhomog.
S (v) = sS(v)

∫ ∞

v

cint
S (v

′)sA(v′)
p

v′2 − 1

2µ
dv′ − sA(v)

∫ ∞

v

cint
S (v

′)sS(v′)
p

v′2 − 1

2µ
dv′ .

(B.19)
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We compute this function by integrating by parts. Namely, we use that

∫ ∞

θ

dβ f2(β)

∫ ∞

β

dα f1(α) =

∫ ∞

θ

dα f1(α)

∫ α

θ

dβ f2(β) . (B.20)

Then,

cinhomog.
S (coshθ ) =−

cschθ
8µ3

�

e−µθ (µθ + 1)(I+(0,θ ) + cos(2µπ)I+(2µ,θ ))

+ eµθ (µθ − 1)(I+(−2µ,θ ) + cos(2µπ)I+(0,θ ))
�

(B.21)

+
cschθ
8µ3

�

e−µθ (µθ + 1)(I−(0,θ ) + I−(2µ,θ ))

+ eµθ (µθ − 1)(I−(−2µ,θ ) + I−(0,θ ))
�

(B.22)

+
cschθ
8µ2

�

e−µθ ( Ĩ+(0,θ ) + cos(2µπ) Ĩ+(2µ,θ ))

+ eµθ ( Ĩ+(−2µ,θ ) + cos(2µπ) Ĩ+(0,θ ))
�

(B.23)

−
cschθ
8µ2

�

e−µθ ( Ĩ−(0,θ ) + Ĩ−(2µ,θ )) + eµθ ( Ĩ+(−2µ,θ ) + Ĩ−(0,θ ))
�

.

We analogously compute

cint
A (coshθ ) =

eµθ

4µ sinhθ
(I+(0,θ )− I−(0,θ ) + cos(2µπ)I+(−2µ,θ )− I−(−2µ,θ ))− (B.24)

e−µθ

4µ sinhθ
(cos(2µπ)I+(0,θ )− I−(0,θ ) + I+(2µ,θ )− I−(2µ,θ )) ,

cinhomog.
A (coshθ ) =−

cschθ
8µ3

�

e−µθ (µθ + 1)(cos(2µπ)I+(0,θ ) + I+(2µ,θ ))

+ eµθ (µθ − 1)(cos(2µπ)I+(−2µ,θ ) + I+(0,θ ))
�

(B.25)

+
cschθ
8µ3

�

e−µθ (µθ + 1)(I−(0,θ ) + I−(2µ,θ ))

+ eµθ (µθ − 1)(I−(−2µ,θ ) + I−(0,θ ))
�

(B.26)

+
cschθ
8µ2

�

e−µθ (cos(2µπ) Ĩ+(0,θ ) + Ĩ+(2µ,θ ))

+ eµθ (cos(2µπ) Ĩ+(−2µ,θ ) + Ĩ+(0,θ ))
�

(B.27)

−
cschθ
8µ2

�

e−µθ ( Ĩ−(0,θ ) + Ĩ−(2µ,θ )) + eµθ ( Ĩ+(−2µ,θ ) + Ĩ−(0,θ ))
�

.

We are after the value of c(1) after subtracting off the bulk divergences. Thus, we expand
c(coshθ ) = cS(coshθ ) + cA(coshθ ) for θ ≪ 1 using App. F and extract the constant term:

cinhomog.
S (1) + cinhomog.

A (1)
�

�

�

subtracted
=

π sec2(µπ)
�

2µ(4µ2 − 1)π(2+ cos(2µπ)) + (12µ2 − 1) sin(2µπ)
�

24µ
.

(B.28)
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B.1.2 Boundary Conditions

The full solutions to the differential equation are

cS(v) = cinhomog.
S (v) + C1ss(v)−

C3sS(v) cosh−1(v)
2µ

, (B.29)

cA(v) = cinhomog.
A (v) + C2sA(v) +

C4sA(v) cosh−1(v)
2µ

.

We constrain the coefficients of the homogenous solutions using the following boundary con-
ditions: (i) the difference between cS(v) and cA(v) does not have a pole at v = 1, (ii) the
difference between cS(v) and cA(v) has no

p
v − 1 term in its series expansion around v = 1.

Boundary condition (i) arises because G(b)12 = G(b)S − G(b)A , and at coincident points, G(b)12 must
be nonsingular (the two points are on different half-planes). Boundary condition (ii) arises
because the self-energy for G(b)12 , i.e., LxLy G(b)12 (x , y) or the RHS of Eq. (B.8), has no delta
function. These two boundary conditions are sufficient for computing c(1)|subtracted, the value
of c(1) after subtracting off bulk divergences.

Boundary condition (i) directly gives us the value of C1 − C2. We can express C1 − C2
both in terms of integrals and explicitly – both forms are useful for this computation. Let
∆cint = cint

S − cint
A . Then,

cS(v)− cA(v) = sS(v)

∫ ∞

v

∆cint(v′)sA(v′)
p

v′2 − 1
2µ

dv′−

sA(v)

∫ ∞

v

∆cint(v′)sS(v′)
p

v′2 − 1
2µ

dv′+ (B.30)

C1sS(v)− C2sA(v)−
C3

2µ
sS(v) cosh−1(v)−

C4

2µ
sA(v) cosh−1(v) .

Now, note that

∆cint(coshθ ) =
eµθ sin2(µπ)

2µ sinhθ
(I+(−2µ,θ )− I+(0,θ )) +

e−µθ sin2(µπ)
2µ sinhθ

(I+(0,θ )− I+(2µ,θ )) .

(B.31)
Importantly, per the expressions in App. F, ∆cint(coshθ ) does not diverge for small θ , and
sS/A(v)

p
v2 − 1 does not diverge as v → 1, so none of the integrands in Eq. (B.30) diverge as

v→ 1. Thus, all possible divergences arise because both sS(v) and sA(v) are singular as v→ 1.
Matching the singular behavior of the first two terms in Eq. (B.30) with the next two terms in
Eq. (B.30) gives us that

C1 − C2 =

∫ ∞

1

∆cint(v′)s−(v′)
p

v′2 − 1
2µ

dv′ , (B.32)

where s−(v) = sS(v)−sA(v). We can also directly compute C1−C2 using Eqs. (B.21) and (B.25)
along with the series expansions in App. F:

C1 − C2 =
− sec2(µπ)(−1+ 4µ2(1− 4µ2)π2 cos(2µπ) + cos(4µπ) + 2(µ+ 4µ3)π sin(2µπ))

48µ3
.

(B.33)
For boundary condition (ii), we need the

p
v − 1 terms in the series expansions of the first

four terms in Eq. (B.30). First note that

sS(v)≈
1
p

2(v − 1)
+µ+

(µ2 − 1/4)
p

v − 1
p

2
+ · · · , (B.34)
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sA(v)≈
1
p

2(v − 1)
−µ+

(µ2 − 1/4)
p

v − 1
p

2
+ · · · (B.35)

We begin with the series expansion of the integrals. First, note that

1
2µ
∆cint(v)sA(v)
p

v2 − 1≈
(2µπ− 8µ3π− sin(2µπ)) tan(µπ)

12µ2
p

2(v − 1)
+ iA(µ) + · · · , (B.36)

where,

iA(µ) =
1

12µ

�

4µπ(4µ2 − 1) + (2+µ− 4µ2 + 2µ(4µ2 − 1)(−H(µ− 1/2) +H(µ))) sin(2µπ)
�

tan(µπ) ,

(B.37)

and H is the harmonic number. Then, the contribution from

sS(v)

∫ ∞

v

1
2µ
∆cint(v

′)sA(v
′)
p

v′2 − 1 dv′ (B.38)

to the
p

v − 1 term is

−
iA(µ)
p

v − 1
p

2
−
(µ2 − 1/4)

p
v − 1

p
2

∫ ∞

1

1
2µ
∆cint(v

′)sA(v
′)
p

v′2 − 1dv′ (B.39)

−
2 tan(µπ)(2µπ− 8µ3π− sin(2µπ))

p
v − 1

12
p

2µ
.

Likewise,

1
2µ
∆cint(v)sS(v)
p

v2 − 1≈
(2µπ− 8µ3π− sin(2µπ)) tan(µπ)

12µ2
p

2(v − 1)
+ iS(µ) + · · · , (B.40)

where

iS(µ) =
1

12µ

�

− 4µπ(4µ2 − 1)+

�

− 2+µ+ 4µ2 + 2µ(4µ2 − 1)
�

−H(−µ− 1/2) +H(−µ)
��

sin(2µπ)
�

tan(µπ) .

(B.41)

Then, the contribution from

−sA(v)

∫ ∞

v

1
2µ
∆cint(v

′)sS(v
′)
p

v′2 − 1 dv′ (B.42)

to the
p

v − 1 term is

iS(µ)
p

v − 1
p

2
−
(µ2 − 1/4)

p
v − 1

p
2

∫ ∞

1

1
2µ
∆cint(v

′)sS(v
′)
p

v′2 − 1dv′ (B.43)

−
2 tan(µπ)(2µπ− 8µ3π− sin(2µπ))

p
v − 1

12
p

2µ
.

Summing these two contributions and simplifying gives

−
(µ2 − 1/4)

p
v − 1

p
2

∫ ∞

1

1
2µ
∆cint(v

′)s−(v
′)
p

v′2 − 1 dv′

−
tan(µπ)(2µπ− 8µ3π− sin(2µπ))

p
v − 1

6
p

2µ
. (B.44)
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Per Eq. (B.32), the contribution from C1sS(v)− C2sA(v) is

(µ2 − 1/4)
p

v − 1
p

2

∫ ∞

1

∆cint(v′)s−(v′)
p

v′2 − 1
2µ

dv′ . (B.45)

Then, the two integrals cancel, and to eliminate the coefficient of
p

v − 1 we require

C3 − C4 = −
tan(µπ)(2µπ− 8µ3π− sin(2µπ))

6µ
. (B.46)

B.1.3 Final Result

Using that c(v) = cS(v) + cA(v), we arrive at

c(1)|subtracted = cinhomog.
S (1)
�

�

�

subtracted
+ cinhomog.

A (1)
�

�

�

subtracted
+µ(C1 − C2)−

C3 − C4

2µ
. (B.47)

This simplifies to

c(1)|subtracted =
4π2

3
(µ2 − 1/4) . (B.48)

Thus,

G(b)11, conf.(x , x) = −
2

3πN
(µ2 − 1/4) . (B.49)

B.2 Nonconformal Contribution

The nonconformal contribution arises from a UV divergence in the self-energy of the diagram
in Fig. 8(b). Thus, we are interested in the terms in Eq. (B.1) where w and z are on the same
side of the interface:

G(b)ss,11(x , y) = −
2
N

∫

|w−z|≥a
d3w d3z

[G11(w, z)H11(w, z)][G11(x , w)G11(z, y) + G12(x , w)G12(z, y)] .
(B.50)

Here, a is a lattice cutoff. We follow the method of Ref. [1] to compute the effect of the
lattice cutoff. Note that G11(w, z)H11(w, z) has the form of a two-point function of a confor-
mal scalar of dimension 5/2. Then, we know that under a small conformal transformation
xµ→ xµ + εµ(x),

δεG
(b)
ss,11(x , y)≈ −

2
N

∫

d3w d3z
(w− z) · (ε(w)− ε(z))

|w− z|
δ(|w− z| − a)(G11(w, z)H11(w, z))

(B.51)

· (G11(x , w)G11(z, y) + G12(x , w)G12(z, y)) .

Now, recall that if s = z −w,

G11(w, z) =
1

8π
p

w3z3
p

v2 − 1

�

(v +
p

v2 − 1)µ − (v +
p

v2 − 1)−µ
�

, v =
s2

2w3z3
+ 1 ,

(B.52)

H11(w, z) =
2

π2(z3w3)2

�

cos2(µπ)
(v + 1)2

−
1

(v − 1)2

�

. (B.53)
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Then, we can expand the self-energy and propagators in the small s limit:

G11H11 ≈ −
1

4π3

�

8
s5
+

4µ2 − 1
s3(w3)2

+ · · ·
�

, (B.54)

G11/12(z, y) = (1+ sµ∂ w
µ + (1/2)s

µsν∂ w
µ ∂

w
ν + · · · )G11/12(w, y) . (B.55)

We now see how δεG
(b)
11 transforms under the two types of conformal transformations:

scale transformations and special conformal transformations. First, consider a scale transfor-
mation: εµ(x) = εxµ. Then,

δεG
(b)
11 (x , y)≈ −

ε

2π3N

∫

d3w

�

8
a2
+

4µ2 − 1
(w3)2

�

∫

sinθdθdφ(G11(x , w)G11(z, y) + G12(x , w)G12(z, y)) (B.56)

≈ −
2ε
π2N

∫

d3w

�

8
a2
+

4µ2 − 1
(w3)2

��

G11(x , w)
�

1+
1
6

a2∂ 2
w G11(w, y)
�

+ G12(x , w)
�

1+
1
6

a2∂ 2
w G12(w, y)
�

�

. (B.57)

We drop a term that diverges as a−2 because it is canceled by a shift in the expectation value,
〈δλ〉, at the critical point. The constant term is

δεG
(b)
11 (x , y)
�

�

�

const
≈ −

2ε
π2N

∫

d3w
�

4
3

�

G+(x , w)∂ 2
w G+(x , w) + G−(x , w)∂ 2

w G−(y, w)
�

(B.58)

+
4µ2 − 1
(w3)2

(G+(x , w)G+(w, y) + G−(x , w)G−(w, y))
�

.

Finally, we have that
�

−∂ 2
w +

µ2 − 1/4
(w3)2

�

G11(w, x) = δ3(w, x) ,

�

−∂ 2
w +

µ2 − 1/4
(w3)2

�

G12(w, x) = 0 . (B.59)

Then,

δεG
(b)
11 (x , y)
�

�

�

const
≈

8ε
3π2N

G11(x , y)

−
8ε

3π2N

∫

d3w
�

4µ2 − 1
(w3)2

(G11(x , w)G11(w, y) + G12(x , w)G12(w, y))
�

.

(B.60)

Now, consider a special conformal transformation: εµ = bµx2 − 2(b · x)xµ. Now,

(w− z) · (ε(w)− ε(z))
|w− z|

= 2(b ·w) s+ (b · s) s . (B.61)

Substituting gives

δεG
(b)
11 (x , y)≈

1
2π3N

∫

d3w

�

8
a2
+

4µ2 − 1
(w3)2

�∫

sinθdθdφ(2b ·w+ b · s)

· (G11(x , w)G11(z, y) + G12(x , w)G12(z, y)) . (B.62)
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The first term in (2b ·w+ b · s) acts a constant, whereas the second term fixes b parallel to the
first derivative in the Taylor expansion of G11/12(z, y). Then,

δεG
(b)
11 (x , y)≈

4
π2N

∫

d3w G11(x , w)

�

(b ·w)
�

4
3
∂ 2

w +
4µ2 − 1
(w3)2

�

+
4
3

bµ∂ w
µ

�

G11(w, y)+

G12(x , w)

�

(b ·w)
�

4
3
∂ 2

w +
4µ2 − 1
(w3)2

�

+
4
3

bµ∂ w
µ

�

G12(w, y) .

(B.63)

Then,

δεG
(b)
11 (x , y)≈−

8
3Nπ2

b · (x + y)G+(x , y) +
16(4µ2 − 1)

3π2N

×
∫

d3w
�

b ·w
(w3)2

(G11(x , w)G11(w, y) + G12(x , w)G12(w, y))
�

.
(B.64)

Thus, we need an expression for G(b)nconf(x , y) that vanishes under LxL† and transforms as
described above for both scale transformations and special conformal transformations. The
below expression satisfies both constraints (it vanishes under LxLy up to contact terms):

G(b)nconf(x , y) =
32(µ2 − 1/4)

3Nπ2

∫

d3w
log
�

Λ′w3
�

(w3)2
�

G11(x , w)G11(w, y) + G12(x , w)G12(w, y)
�

−
4

3Nπ2
log
�

4x3 y3Λ′′
2
�

G11(x , y) .

(B.65)

Here, Λ′ and Λ′′ are two UV cutoffs that are lattice-dependent. They are not necessarily equiv-
alent, but they both inversely scale with the lattice spacing.

C Perturbation theory around the ordinary fixed point

In this section we perform perturbation theory in the coupling u, Eq. (4), around the ordi-
nary fixed point for the interface. Our goal is to match u to µ, Eq. (25), in the µ, u → 0
limit. We set N =∞ throughout. We consider the anomalous dimension of the boundary
operators φ̂S , φ̂A to first order in u and match it to ∆̂S = 1 − µ, ∆̂A = 1 + µ. We have
〈φ̂1

a(r)φ̂
1
b(0)〉ord = 〈φ̂2

a (r)φ̂
2
b(0)〉ord =

δab
r2 , 〈φ̂1

a(r)φ̂
2
b(0)〉ord = 0. Then to first order in u,

〈φ̂1
a(x)φ̂

2
b(y)〉= −u

∫

d2r〈φ̂1
a(x)φ̂

1
c (r)〉ord〈φ̂2

b(y)φ̂
2
c (r)〉ord

= −uδab

∫

d2r
1

(r− x)2(r− y)2

= −4πuδab
logΛ|x− y|
|x− y|2

. (C.1)

The first order correction in u to 〈φ̂1
a(x)φ̂

1
b(y)〉, 〈φ̂

2
a(x)φ̂

2
b(y)〉 is zero. Thus,

〈φ̂S/A,a(x)φ̂S/A,b(y)〉 ≈
δab

|x− y|2
(1∓ 4πu logΛ|x− y|) , (C.2)

from which we read off ∆̂S = 1+ 2πu, ∆̂A = 1− 2πu. Thus, to leading order µ= −2πu.
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D Free energy on HS3

For a single scalar in the background of 〈iλ〉 in Eq. (70) the free energy on HS3 is

FHS3 = − log Z =
1
2

Tr log
�

−∆+ 〈iλ〉+
3

4R2

�

. (D.1)

In this appendix, we repeat for completeness the calculation of the trace (D.1) presented in
Ref. [27].

We need to know the spectrum of −∆+ 〈iλ〉. We have

−∆+ 〈iλ〉= −∂ 2
α − 2 cotα∂α + csc2α(−∆S2) + (µ2 − 1/4) sec2α , (D.2)

where we have temporarily set the radius R to one. Going to sectors of fixed angular momen-
tum ℓ, −∆S2 → ℓ(ℓ+ 1) we find eigenfunctions

(−∆+ 〈iλ〉)φ±ℓ = (−1+ k2)φ±ℓ , k > 0 , (D.3)

φ±ℓ (α) = (cosα)
1
2±µ(sinα)ℓ 2F1

�

3
4
−

k
2
+
ℓ

2
±
µ

2
,
3
4
+

k
2
+
ℓ

2
±
µ

2
,1±µ, cos2α

�

. (D.4)

Note that as α → π
2 , φ±

ℓ
(α) → (π2 − α)

1
2±µ. The “+” solution gives rise to the boundary

fixed point with ∆̂φ = 1+µ, and the “−” solution gives rise to the boundary fixed point with
∆̂φ = 1 − µ, which we have encountered in section 3. Note also that φ− can be obtained
from φ+ by substituting µ → −µ. Thus, we work with φ+ throughout and use µ > 0 for
∆̂φ = 1+ |µ| and µ < 0 for ∆̂φ = 1− |µ|.

In order for φ+ to be finite at α= 0, the first index of the hypergeometric function must be
equal −n, n= 0,1, 2 . . .. (Then the hypergeometric function is just a finite degree polynomial
in cos2α.) Thus, we must have

k =
3
2
+µ+ ℓ+ 2n , n= 0,1, 2 . . . , (D.5)

and the eigenvalues of −∆+ 〈iλ〉+ 3
4 are

Ep = −
1
4
+
�

3
2
+µ+ p
�2

, p = 0,1, 2 . . . (D.6)

Here p = ℓ + 2n and the degeneracy of level Ep is g(p) = (p+1)(p+2)
2 . Note that we are only

interested in µ > −1, so Ep > 0. The free energy

FHS3 =
1
2

∞
∑

p=0

g(p) log
Ep

R2
. (D.7)

Here, we have re-instated the radius of the hemisphere R, since we are interested in the log-
arithmic term ∼ log R in the free energy. We now apply the ζ-function regularization to the
above formal sum:

FHS3 = −
1
2

d
ds



R2s
∞
∑

p=0

g(p)E−s
p



∼ − log R
∞
∑

p=0

g(p)E−s
p . (D.8)
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Analytic continuation to s = 0 is understood throughout and in the last step we’ve dropped a
constant term. Writing Ep = (p+µ+ 1)(p+µ+ 2), we use the Feynman trick:

FHS3 = −
1
2

log R
Γ (2s)
Γ (s)2

∞
∑

p=0

∫ 1

0

du us−1(1− u)s−1 (p+ 1)(p+ 2)
(p+µ+ 1+ u)2s

= −
1
2

log R
Γ (2s)
Γ (s)2

∫ 1

0

duus−1(1− u)s−1X (s, u,µ) , (D.9)

with

X (s, u,µ) = ζ(−2+ 2s,µ+ u+ 1) + (1− 2µ− 2u)ζ(−1+ 2s,µ+ u+ 1)

− (µ+ u)(1−µ− u)ζ(2s,µ+ u+ 1) .
(D.10)

Here ζ(s, a) is the Hurwitz ζ-function (analytic continuation of ζ(s, a) =
∑∞

p=0
1

(p+a)s ). X (s, u)
is analytic near s = 0 in the interval u ∈ [0,1]. Therefore, the only singularities in the integral
(D.9) occur at u→ 0, u→ 1. These give 1/s poles as s→ 0, which compensate the Γ -function
prefactor in (D.9). Thus,

FHS3 = −
1
4

log R× (X (s = 0, u= 0,µ) + X (s = 0, u= 1,µ)) =
1
6
µ3 log R . (D.11)

E Normal fixed point at large-N in 2< D < 4

We begin with the non-linear σ-model

Sinf =

∫

xD≥0

dD x
�

1
2
(∂µφ⃗)

2 +
iλ
2

�

φ⃗2 −
1

gbulk

��

(E.1)

at its normal boundary fixed point. We summarize the results of Ref. [25] that studied the
following bulk two-point function at large-N :

Gm(x , y) =
1
N

�

〈φ i(x)φ i(y)〉+ 〈φN (x)φN (y)〉conn

�

. (E.2)

It was shown that

Gm(x , y) =
Λ−η

(4x D y D)∆φ

�

g0(v) +
1
N

g1(v) +O(N−2)
�

. (E.3)

So far we have not normalized Gm. η is the bulk anomalous dimension of the φ field,
∆φ = (D− 2+η)/2,

η=
1
N

2(4/D− 1)Γ (D− 1)
Γ (D/2− 1)Γ (2− D/2)Γ (D/2)2

+O
�

N−2
�

. (E.4)

Here, the leading order transverse correlation function is expressed in terms of,

g0(v) =
2D−3Γ (D/2)
πD/2

k(v) , k(v) =
v−(D−1)

D− 1 2F1

�

D− 1
2

,
D
2

,
D+ 1

2
,

1
v2

�

. (E.5)
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The leading order correction in 1/N to Gm is expressed in terms of g1(v),

g1(v) =− 2

∫ ∞

v
dv1(v

2
1 − 1)−D/2

∫ ∞

v1

dv2(v
2
2 − 1)D/2−1

×
∫ ∞

v2

dv3(v
2
3 − 1)−D/2

∫ ∞

v3

dv4(v
2
4 − 1)D/2−1ν(v4)

�

g0(v4) +
(A0
σ)

2

N

�

=− 2

∫ ∞

v
dv1(v

2
1 − 1)D/2−1(k(v1)− k(v))

×
∫ ∞

v1

dv2(v
2
2 − 1)D/2−1(k(v2)− k(v1))ν(v2)

�

g0(v2) +
(A0
σ)

2

N

�

. (E.6)

Here one goes from the first to the second line using integration by parts. The function ν(v)
is related to the λ propagator via:

Dλ(x , y) = 〈λ(x)λ(x ′)〉conn =
2
N

1
(x D y D)2

ν(v) +O
�

N−2
�

, (E.7)

and

ν(v) =
2DΓ ((D− 1)/2)

p
πΓ (D/2− 1)Γ (2− D/2)Γ (D/2− 2)

�

Q(2)D−1(v)

v2 − 1
+

D
D− 4

Q(1)D−2(v)p
v2 − 1

�

. (E.8)

The associated Legendre functions Q are expressed in terms of hypergeometric functions

Q(1)ν (v) = −
Γ (ν+ 2)

p
π

2ν+1Γ (ν+ 3/2)
(v2 − 1)1/2v−ν−2

2F1

�

ν

2
+

3
2

,
ν

2
+ 1,ν+

3
2

, v−2
�

, (E.9)

Q(2)ν (v) =
Γ (ν+ 3)

p
π

2ν+1Γ (ν+ 3/2)
(v2 − 1)v−ν−3

2F1

�

ν

2
+ 2,

ν

2
+

3
2

,ν+
3
2

, v−2
�

. (E.10)

The constant A0
σ is related to the one-point function of φN (not normalized) via:

〈φN (x)〉=
A0
σ

(2x D)(D−2)/2
+O(N−1/2) , (E.11)

and is given by
(A0
σ)

2

N
= −
Γ (D− 1)Γ (1− D/2)

4πD/2
. (E.12)

Our goal is to extract a2
σ, b2

t and, thereby, s2 from Gm(x , y). Based on the bulk OPE,

φa
norm(x)φ

a
norm(y) =

N

(x − y)2∆φ
�

1+λφφε(x − y)∆εε(y) + . . .
�

, (E.13)

we have

Gm(x , y) =
CΛ−η

(4xD yD)
∆φ

1

((v − 1)/2)∆φ

×
�

1−
�

v − 1
2

�∆φ a2
σ

N
+λφφεaε

�

v − 1
2

�∆ε/2

+ . . .

�

, v→ 1 ,

(E.14)

where 〈ε(x)〉= aε
(2x D)∆ε . The unnormalized field φ appearing in (E.2) is related to the normal-

ized field φnorm via φ =
p

CΛ−η/2φnorm. Thus, the normalization constant C and a2
σ can be
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read-off from the v→ 1 limit of Gm. We write,

C = C0

�

1+
c1

N
+O
�

N−2
�

�

, C0 =
Γ (D/2− 1)

4πD/2
,

a2
σ = (a

0
σ)

2
�

1+
r
N
+O
�

N−2
�

�

, (a0
σ)

2 = −
NΓ (D− 1)Γ (1− D/2)

Γ (D/2− 1)
. (E.15)

with c1 and r - to be determined.
Based on the boundary OPE, (115), (116),

Gm(x , y) =
CΛ−η

(4xD yD)
∆φ

�

1−
1
N

� 2D−1 b2
t

vD−1
, v→∞ . (E.16)

We note that g1(v) decays as 1/vD for v→∞, thus,

b2
t =

D/2− 1
D− 1

�

1+
1
N
(1− c1) +O
�

N−2
�

�

. (E.17)

We perform the integral in (E.6) numerically for v → 1 in order to extract c1 and r. We
begin by discussing the behavior of g1(v) for v→ 1. We have

g0(v) +
(A0
σ)

2

N
= 2D−2C0(v

2 − 1)1−D/2v−1
2F1

�

1,1/2, 2− D/2,1− v−2
�

. (E.18)

Then

(v2 − 1)D/2−1ν(v)

�

g0(v) +
(A0
σ)

2

N

�

=
q−2

(v − 1)2
+

q−1

v − 1
+ . . . , v→ 1 , (E.19)

with

q−2 =
22D−5Γ ((D− 1)/2)

π(D+1)/2Γ (2− D/2)Γ (D/2− 2)
, q−1 = −

(D− 1)(D− 2)2

2(D− 4)
q−2 . (E.20)

The v4 integral in the second line of (E.6) then gives

∫ ∞

v3

dv4(v
2
4 − 1)D/2−1ν(v4)

�

g0(v4) +
(A0
σ)

2

N

�

=
q−2

v3 − 1
− q−1 log(v3 − 1) + p+ . . . , v3→ 1 ,

(E.21)
where p is a constant that we can only determine numerically. Performing the integrals over
v3 and v2 in (E.6)

∫ ∞

v1

dv2(v
2
2 − 1)D/2−1

∫ ∞

v2

dv3(v
2
3 − 1)−D/2

∫ ∞

v3

dv4(v
2
4 − 1)D/2−1ν(v4)

�

g0(v4) +
(A0
σ)

2

N

�

=

∫ ∞

v1

dv2(v
2
2 − 1)D/2−1

∫ ∞

v2

dv3(v
2
3 − 1)D/2−1(k(v3)− k(v2))ν(v3)

�

g0(v3) +
(A0
σ)

2

N

�

=
1
2

�

−
2q−2

D
log(v1 − 1) + p′ −

�

1
D/2− 1

�

p−
q−2D

4
−

q−1(D− 4)
D− 2

�

+
q−2(D/2− 1)

D

�

(v1 − 1) +
q−1

D/2− 1
(v1 − 1) log(v1 − 1)

�

+ . . . , v1→ 1 . (E.22)
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p′ is a constant that we can only determine numerically. Finally,

g1(v) =− 2−D/2(v − 1)1−D/2

�

−
2q−2

D(D/2− 1)
log(v − 1) +

1
D/2− 1

�

p′ −
2q−2

D(D/2− 1)

�

+
(v − 1) log(v − 1)

D/2− 2

�

q−1

D/2− 1
+

q−2

2

�

+
(v − 1)
D/2− 2

�

−
1

D/2− 1

�

p−
q−2D

4
−

q−1(D− 4)
D− 2

�

+
1

D/2− 2

�

q−1

D/2− 1
+

q−2

2

�

−
q−2(D/2− 1)

D
−

p′D
4

��

+ p′′ . (E.23)

Again, p′′ is a constant to be determined numerically. Matching to (E.14),

c1 = −
p′

(D− 2)C0
−
ηN
2

�

1
D/2− 1

+ log2
�

, (E.24)

r = −
p′′

(A0
σ)2/N

− c1 , (E.25)

where r determines the 1/N correction to a2
σ, Eq. (E.15), while c1 determines the 1/N correc-

tion to b2
t , Eq. (E.17). Finally, for the constant s2, (114),

s2 = s2
0

�

1+
f
N

�

, f = −
p′′

(A0
σ)2/N

− 1 , s2
0 = −

NΓ (D)
4πD−1 sin(πD/2)

, (E.26)

where f is the function we introduced in (143). We want to determine f ′(D = 3).
We proceed by first evaluating the integral (E.21) numerically for v→ 1 to determine p. We

then evaluate the integral in the second line of (E.22) to determine p′. Finally, we evaluate the
integral (E.6) to determine p′′. The resulting values of the coefficients of 1/N corrections to a2

σ,
Eq. (E.15), b2

t , Eq. (E.17), and s2, Eq. (E.26), are shown in Fig. 14. The numerical results are in
good agreement with the analytical result at D = 3: r(D = 3)= 1−c1(D = 3) = 1−η(D = 3)/2,
so that f (D = 3) = 0. [1] They are also in good agreement with the results of 2+ ε and 4− ε
expansions [1,49]:

a2
σ = N

�

1+
π2

12
N − 1
N − 2

ε2 +O(ε3)

�

, (E.27)

b2
t =

εN
2(N − 2)

�

1− ε
N − 1
N − 2

+O(ε2)
�

, D = 2+ ε ,

a2
σ =

4(N + 8)
ε

�

1−
N2 + 31N + 154
(N + 8)2

ε+O(ε2)

�

, (E.28)

b2
t =

1
3

�

1− ε
N + 9

6(N + 8)
+O(ε2)
�

, D = 4− ε . (E.29)

To determine f ′(D = 3)we fit f (D) in the window 2.95< D < 3.05 to a quadratic function.
We obtain f ′(D = 3) = 3.67(1). Here, the error bar is conservatively estimated by increasing
the range of the fit to 2.9< D < 3.1.
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Figure 14: a) The coefficient r of the 1/N correction to a2
σ, Eq. (E.15).

b) The coefficient 1− c1 of the 1/N correction to b2
t , Eq. (E.17). For both of a) and

b) the red lines are asymptotes expected from 2+ ε and 4− ε expansions; the solid
dot at D = 3 is the analytical calculation.
Bottom: c) The coefficient f of the 1/N correction to s2, Eq. (E.26). Inset: a quadratic
fit to f (D) for D near 3.

F Useful Integrals

The following integrals are used in this work:

I+(q,θ ) =

∫ ∞

θ

eqαdα
(coshα+ 1)2

=−
2
3

e(1+q)θ (q− 1+ eθ (1+ q))
(1+ eθ )3

+
2
3
πq(1− q2) csc(πq) (F.1)

+
2
3
(q− 1)e(1+q)θ

2F1

�

2,1+ q, 2+ q,−eθ
�

,

I−(q,θ ) =

∫ ∞

θ

eqαdα
(coshα+ 1)2

=
2
3

�

q(q2 − 1)β(e−θ ,−1− q, 0)+ (F.2)

e(3+q)θ ((−2q+ 1)(q− 1) + (3− 3q+ 2q2) coshθ + (q− 3) sinhθ )
(eθ − 1)3

�

,

Ĩ+(q,θ ) =

∫ ∞

θ

αeqαdα
(coshα+ 1)2

(F.3)

=
2
3
π csc(πq)(1− 3q2 +πq(q2 − 1) cot(πq))−

2
3

2θ − (1+ eθ )(1+ θ (3+ q)) + (1+ eθ )2(1+ q(2+ θ + θq))
e−θq(eθ + 1)3

−

2eθq

3

�

q(q2 − 1)Φ(−eθ , 2, q) + (1+ q(θ − 3q− θq2))Γ (q)2 F̃1(1, q, 1+ q,−eθ )
�

,
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Ĩ−(q,θ ) =

∫ ∞

θ

αeqαdα
(coshα− 1)2

(F.4)

=
2
3
(−1)−qπ(1− 3q2 + iπq(q2 − 1) +πq(q2 − 1) cot(πq)) csc(πq)−

1
3

eqθ
�

1
q
− q− θ + q2θ +

sinhθ (θ − q(2+ qθ ))− θ (q+ coth(θ/2))− 1
coshθ − 1

�

−

1
3
(1− 3q2)β(eθ , 1+ q, 0)−

1
3
(1+ q(2θ − q(3+ 2qθ )))β(eθ , q, 0)−

2
3

q(q2 − 1)Φ(eθ , 2, q)eqθ .

The latter two integrals were evaluated using results from App. G.
We now compute the behavior of these integrals as θ → 0:

I+(q,θ )≈
1
6

�

2+ q(3+ 2q) + 2q(q2 − 1)[H(1/2− q/2)−H(−q/2)]
	

−
θ

4
, (F.5)

I−(q,θ )≈
4

3θ3
+

2q
θ2
+

2q2

θ
−

2
3θ
−

2
3

q(q2 − 1) logθ+ (F.6)

1
18
(−6+ q(−25+ 2q(9+ 11q))− 12(q3 − q)H(−q− 2))−

1
180
(11+ 30q2(q2 − 2))θ , (F.7)

Ĩ+(q,θ )≈
1
6

�

3+ 4q+ (2− 6q2)ψ(1− q/2) + (−2+ 6q2)ψ(3/2− q/2)+ (F.8)

q(−1+ q2)(ψ(1)(1− q/2)−ψ(1) (3/2− q/2))
�

,

Ĩ−(q,θ )≈
2
θ2
+

4q
θ
− (2/3)θq(−1+ q2)− (F.9)

1
18

�

13− 12γE + 12q+ 6(−11+ 6γE)q
2−

12π2q(−1+ q2) csc2(πq) + 12π(3q2 − 1) cot(πq)+ (F.10)

12(−1+ 3q2) logθ + 12(−1+ 3q2)ψ(q) + 12q(−1+ q2)ψ(1)(q)
�

.

G Asymptotic Behavior of Hurwitz Lerch Transcendent

We are interested in the asymptotic behavior of

Φ(z, 2, q) ,

where z→±∞. There are four cases to consider per our calculations.

G.1 Case 1

Consider 0< q < 2 and z > 0. Per Ref. [50],

Φ(eα, 2, q) =
1
Γ (s)

� ∞
∑

n=0

An(eα, 2, q)
e(n+1)α

+ e−q(α+iπ) (B0(2, q)(α+ iπ) + B1(2, q))

�

, (G.1)
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where

An(z, 2, q) =
Γ (2, (q− n− 1) log(−z))− 1

(q− n− 1)2
, (G.2)

B0(2, q) =
ψ(q/2+ 1/2)−ψ(q/2)

2
, B1(2, q) =

ψ(1)(2, q/2)−ψ(1)(2, q/2+ 1/2)
4

. (G.3)

Note that

An(eα, 2, q)
e(n+1)α

≈
−e−(n+1)α − (−1)ne−q(a+iπ)(1− (α+ iπ)(1+ n− q))

(q− n− 1)2
. (G.4)

Using that 0< q < 2, the sum is asymptotically
∞
∑

n=0

An(eα, 2, q)
e(n+1)α

≈
−e−α

(q− 1)2
−

e−2α

q2
+ e−q(α+iπ) [B1(2,1/2− q/2)− (α+ iπ)B0(2, 1/2− q/2)] .

(G.5)
Then,

Φ(eα, 2, q)≈ −
e−α

(q− 1)2
−

e−2α

q2
+ e−q(α+iπ)π(α+ iπ+π cot(πq)) csc(πq) . (G.6)

G.2 Case 2

Now consider −2 < q < 0 and z > 0. We know that 2 + q > 0, so we can apply Eq. (G) to
Φ(eα, 2, 2+ q). Then, from the series definition of Φ,

Φ(eα, 2, q) =
1
q2
+

eα

(1+ q)2
+e2αΦ(eα, 2, 2+q)≈ e−q(α+iπ)π(α+iπ+π cot(πq)) csc(πq) . (G.7)

G.3 Case 3

Consider 0< q < 2 and z < 0. We again use Ref. [50]:

Φ(−eα, 2, q) =
1
Γ (s)

�

(−1)n+1
∞
∑

n=0

An(−eα, 2, q)
e(n+1)α

+ e−qα (B0(2, q)α+ B1(2, q))

�

, (G.8)

where

An(z, 2,−eα) =
Γ (2, (q− n− 1)α)− 1

(q− n− 1)2
, (G.9)

B0(2, q) =
ψ(q/2+ 1/2)−ψ(q/2)

2
, B1(2, q) =

ψ(1)(2, q/2)−ψ(1)(2, q/2+ 1/2)
4

. (G.10)

Note that

(−1)n+1An(−eα, 2, q)
e−(n+1)α

≈
(−1)ne−(n+1)α + (−1)n+1e−αq(1−α(1+ n− q))

(q− n− 1)2
. (G.11)

Using that 0< q < 2, the sum is asymptotically
∞
∑

n=0

(−1)n+1An(−eα, 2, q)
e(n+1)α

≈
e−α

(q− 1)2
−

e−2α

q2
+ e−qa[αB0(2, 1/2− q/2)− B1(2,1/2− q/2)] .

(G.12)
Then,

Φ(−eα, 2, q)≈
e−α

(q− 1)2
−

e−2α

q2
+ e−qαπ(α+π cot(πq)) csc(πq) . (G.13)
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G.4 Case 4

Finally, consider −2< q < 0 and z < 0. Using the series expansion,

Φ(−eα, 2, q)≈ e−qαπ(α+π cot(πq)) csc(πq) . (G.14)
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