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Abstract

The strict definition of positive geometry implies that all maximal residues of its canoni-
cal form are ±1. We observe, however, that the loop integrand of the amplitude in planar
N = 4 super Yang-Mills has maximal residues not equal to ±1. We find the reason for this
is that deep in the boundary structure of the loop amplituhedron there are geometries
which contain internal boundaries: codimension one defects separating two regions of
opposite orientation. This phenomenon requires a generalisation of the concept of posi-
tive geometry and canonical form to include such internal boundaries and also suggests
the utility of a further generalisation to ‘weighted positive geometries’. We re-examine
the deepest cut of N = 4 amplitudes in light of this and obtain new all order residues.
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1 Introduction

The amplituhedron is a geometrical object introduced in [1, 2] and was discovered to yield a
beautiful intrinsic definition of the perturbative expansion of planar amplitudes in N = 4 super
Yang-Mills (SYM), allowing for entirely novel expressions for amplitudes to be found (see [3]
for a review). In this framework, amplitude integrands are obtained as a differential form,
called the canonical form, of the amplituhedron. The boundary structure of the amplituhe-
dron then encodes the full singularity structure of the integrand. More precisely, residues of
the amplitude are the canonical forms of the corresponding amplituhedron boundaries, which
recursively give further residues as boundaries of the boundaries etc. Thus the amplituhedron
provides a fascinating way to analyse the singularity structure of amplitude integrands, which
in turn is intimately connected to the branch cut structure of the integrated amplitude [4,5].
In this paper, we investigate multiple residues of amplitudes and the corresponding ampli-
tuhedron boundary structure. In particular, we point out new features which have not been
appreciated previously.

First, we note that a direct consequence of amplitudes arising from positive geometries
is that the amplitude should have unit maximal residues. This arises geometrically simply
from the fact that maximal residues correspond to dimension 0 geometries, ie points, which
can only differ by their orientation. Tree-level amplitudes indeed appear to have unit maximal
residues. The tree level superamplitudes can be computed by summing a certain set of on-shell
diagrams [6] arising from the BCFW recursion relation [7]. The on-shell diagrams manifestly
have only logarithmic singularities and non-vanishing maximal residues equal to ±1 and have
a natural geometric interpretation in amplituhedron space [1]. It was recently proven that
they provide a tessellation of the amplituhedron [8] and it would be interesting to see if the
details of this proof can also be used to prove that the non-vanishing maximal residues only
equal ±1.1

What we will observe however is that, unlike at tree level, the maximal residues of the loop
amplitude integrand take many different values in Z. Examining the corresponding geometry,
the loop amplituhedron, we find starting from 2 loops that it contains a novel feature, namely
internal boundaries, deep within its boundary structure and find these are the geometric source

1It does not automatically follow since there are simple examples of geometries which can be tessellated with
positive geometries but which themselves are not positive geometries, as we will see.
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of the non-unit residues. By an internal boundary we mean a codimension 1 surface separating
two regions of opposite orientation, as below:

internal boundary:

We emphasise that such internal boundaries do not appear in the amplituhedron itself, but
deep within its boundary structure. That is, we claim that a certain boundary component of a
boundary component of a...of the amplituhedron will contain an internal boundary.

We find that the internal boundaries appear to be closely associated with ‘composite sin-
gularities’ (see [9]). A simple example of a composite singularity is given by 2/(z(z + x y)).
This only has two factors, but when taking the residue at z = 0 the irreducible factor z + x y
factorises to x y . Indeed the above is the canonical form of the ordinary looking geometry
given by points in 3d satisfying z > 0, z + x y > 0, which pictured from below looks like the
following:

This geometry contains a boundary (nearest to the viewer in the above picture) at z = 0,
which is given by x y > 0; two opposite quadrants of a plane. This 2d boundary in turn has
a boundary at y = 0, consisting of two 1-dimensional regions x > 0, x < 0 with opposite
orientation. Finally, this 1d region contains a 0-dimensional internal boundary at x = 0. This
type of structure appears in the boundaries of the loop amplituhedron, implying that the loop
amplituhedron is not a ‘positive geometry’ in the sense usually understood [10].2

There has been tremendous progress in understanding the geometry of the tree level am-
plituhedron and its canonical form [8, 12–15]. The loop amplituhedron and its tilings on the
other hand are much less well understood. A first exploration of the boundaries of the MHV
loop amplituhedron was started in [2], where the 2-loop MHV amplitude was computed by
triangulating the amplituhedron and several cuts were discussed. Then a systematic inves-
tigation of the boundaries of the MHV loop amplituhedron was carried out up to four loops
in [16] and extended to negative mutual positivity conditions in [17]. Internal boundaries,
however, appear to have been missed in the construction of the stratification of the loop am-
plituhedron in previous works. One possible reason for this is that these boundaries cannot
be labelled by the Plücker coordinates that are naturally used to describe the amplituhedron:
〈Y i jkl〉, 〈ABi j〉 and 〈AiBiA jB j〉. For example, internal boundaries arise when computing the
all-in-one-point cut of [18] via consecutive single residues. By carefully looking at the bound-
ary corresponding to three loop lines (A1B1), (A2B2), (A3B3) all intersecting the point A, one
finds that 〈AB1B2B3〉= 0 represents an internal boundary.

2Note that maximal residues differing from ±1 have been observed previously in the square of the super am-
plitude, where they appear already at tree level [11]. In fact, there they appear in a less subtle way geometrically:
the tree squared amplituhedron interior is disconnected and internal boundaries correspond to boundaries shared
between the different connected components, whereas the loop amplituhedron interior is connected.
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We conclude that we need to generalise the definition of ‘positive geometry’ to allow for
such internal boundaries and to incorporate the loop amplituhedron. Thus, we define gen-
eralised positive geometries (GPGs) which include internal boundaries. Then we introduce a
corresponding extension of the recursive definition of the canonical form, by adding an addi-
tional term for internal boundaries which should appear with a factor of 2. In doing so, the
loop level amplitude can still be obtained as the canonical form of the amplituhedron geometry.

In practise, the most convenient way to compute canonical forms of positive geometries
is via tessellation (eg via cylindrical decomposition) rather than explicit use of the recursive
definition. It is important to note that tessellations work for these generalised positive geome-
tries (GPGs) just as for positive geometries. The canonical form of a GPG can be computed
simply by summing over the canonical forms of the tiles in a tessellation. Indeed, the space
of GPGs is closed under the disjoint-union: any geometry that can be tiled in GPGs is itself a
GPG. This differs from positive geometries, which are incomplete under tessellation. We will
see examples of geometries that can be tessellated in positive geometries, but which are not
themselves a positive geometry.

While the above generalisation of positive geometry to include internal boundaries is per-
fectly adequate to deal with the loop amplituhedron, it immediately suggests an even more
general type of geometry which may be of wider use, namely ‘weighted positive geometry’.
Any oriented geometry is defined by specifying a region (the geometry) together with its ori-
entation form. However, in order to compute the canonical form of a geometry containing
internal boundaries, such as the loop amplituhedron, one needs some extra information en-
coding which points belong to an external boundary and which belong to an internal boundary.
It then seems very natural to define a new object called the weighted geometry (WG). A WG is
given by a pair (w, O), where w is an integer valued function we call the weight function and O
is the orientation form. The value of the weight function on a point intuitively represents the
number of coinciding oriented geometries at that point. For example, an ordinary oriented
geometry X≥0 can be described as a weighed geometry with weight function w(x) = 1 for
all x ∈ X≥0 and zero elsewhere, while an internal boundary will have w(x) = 2 instead (an
internal boundary can be viewed as two external boundaries coinciding).

The space of weighted geometries is naturally equipped with two key operators: a sum and
a projection onto boundary. The sum generalizes the union of disconnected oriented geome-
tries by allowing for overlaps (the weights on the overlap simply sum). The projection onto
boundary operator instead allows one to define the induced weight function and orientation
on the boundary of a WG. As a consequence, boundaries of WGs are WGs. This construc-
tion allows for a recursive definition of the canonical form and weighted positive geometries
(WPG), that treats internal and external boundaries on the same footing and makes the tiling
properties of the canonical form trivial. In fact, the canonical form turns out to be a linear
operator with respect to the sum of WPGs. Then, because a tiling of a geometry X≥0 in this
new language is nothing but a sum of WPGs, it follows trivially that the canonical form of a
sum (union) of WPGs is equal to the sum of the canonical forms.

Another feature of the geometry of the amplituhedron which seems to have not been em-
phasised in the literature previously is the geometrical equivalent of the fact that multiple
residues are not in general uniquely defined. One way to define multiple residues is via the
residue form [19] (see also [9]) which essentially defines it via a sequence of single residues.
However, taking these in different orders can give completely different results. There is a di-
rect analogue of this fact in terms of taking boundaries of the corresponding geometry. Rather
than talking about codimension 2 boundary components, instead it is the precise boundary
component of the boundary component which will give the multiple residue defined by taking
the corresponding simple poles in sequence. Taking these boundary components in different
orders can give different results.
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Consider the solid 3d geometry below, which will serve as a very simple example to illus-
trate the dependence on the order of taking boundaries.

Here we have a 3d shape which looks like a house with a flat roof on the left and an angled
roof on the right. The planes in which the two roofs lie intersect along the top of the front wall
which we will call the ‘front eaves’. While one might wish to talk about the codimension two
boundary component corresponding to the entire front eaves, taking appropriate boundaries of
boundaries can give results which differ from this. One could first take the flat roof boundary
component and then take the front eave boundary of that. This results in only the left half
of the front eaves. If on the other hand we first take the slanted roof boundary component
and then the font eaves boundary of that, we obtain the right half of the front eaves. Finally
we could instead first take the boundary component on the front wall, and then the boundary
component of that at the top, resulting in the entire length of the front eaves. We thus arrive
at three different results from taking a sequence of boundary components.

This is completely consistent with what we get from multiple residues. Indeed, this ex-
ample can be made completely precise and the corresponding canonical form and residues
taken. We choose coordinates such that the flat roof lies on the plane z = 0, the slanted roof
on y = z and the front wall y = 0 (we also put the two side walls at x = −1, x = 1, the back
wall at y = 1 and the floor at z = −1). The corresponding canonical form, which can easily
be obtained by summing the canonical form of the living space and the roof, is

Ω=
1

(x − 1)x(y − 1)z(y − z)
−

2
(x − 1)(x + 1)(y − 1)yz(z + 1)

. (1)

The residue corresponding to the front boundary of the flat roof is
Resy=0Resz=0Ω = −d x/(x(x + 1)) = Ω[−1, 0], which is the canonical form of the one di-
mensional interval −1 ≤ x ≤ 0. On the other hand, the residue corresponding to the front
boundary of the slanted roof is Resy=0Resz=yΩ = −d x/(x(x − 1)) = Ω[0,1], the canonical
form of the one dimensional interval 0 ≤ x ≤ 1. Finally, the residue corresponding to the top
boundary of the front wall is Resz=0Resy=0Ω = 2d x/((x − 1)(x + 1)) = Ω[1,−1]. All cases
correspond in the end to the codimension two line z = 0, y = 0 but the precise way we get
there gives different results.

Another example of this phenomenon is the case of all l loop lines intersecting in a single
point, which is a configuration closely related to the deepest cut of [18]. At 4 points, from 4
loops onward, different orderings of single residues give algebraically different results, as we
will show in section 4.3. With this in mind, we do a detailed analysis of the all-in-one-point
cut and find quite a complicated structure in general, although it seems one can always keep
taking further loop loop residues to reduce to the 3 loop all-in-one-point-and-plane cut.

This paper is structured as follows. In section 2 we present a simple example of a maximal
residue at two loops equal to ±2 rather than ±1, and give its geometrical interpretation as an
internal boundary. In section 3 we formally define generalized positive geometries (GPGs),

5

https://scipost.org
https://scipost.org/SciPostPhys.15.3.098


SciPost Phys. 15, 098 (2023)

which allow internal boundaries, and their canonical forms. We discuss tilings of GPGs and
the key property that any geometry that can be triangulated by GPGs is a GPG, a property not
shared by positive geometries. We describe the algebraic cylindrical decomposition algorithm,
originally presented in [20], to compute the canonical form, and use it to identify a class of
GPGs. Then, we introduce a generalisation of GPGs which we call weighted positive geome-
tries. In section 4 we turn our attention to a specific boundary of the loop amplituhedron, that
is the all-in-one-point cut, and we compute its geometry and discuss its internal boundary.
Finally, in section 5 we take further cuts on the result of the all-in-one-point cut and obtain a
new all loop formula.

2 Two loop maximal cuts and internal boundaries

The purpose of this section is to show that the loop level amplitude can have maximal residues
which are not±1, 0 and give the geometrical interpretation of this fact. Consider the four point
two-loop MHV amplitude integrand written as a volume form in momentum twistor space

MHV(2) =
〈A1B1d2A1〉〈A1B1d2B1〉〈A2B2d2A2〉〈A2B2d2B2〉〈1234〉3

〈A1B1A2B2〉〈A1B114〉〈A1B112〉〈A2B223〉〈A2B234〉

×
�

1
〈A1B134〉〈A2B212〉

+
1

〈A1B123〉〈A2B214〉

�

+ A1B1 ↔ A2B2 . (2)

Here we have external momentum twistors Z1, .., Z4 ∈ C4 and loop integration variables
AiBi ∈ C4 which define a plane through the origin aAi+bBi ∈ C4 i.e. a line in projective twistor
space. The bracket notation denotes the determinant of the 4×4 matrix formed by taking the
four twistors inside as columns. We also surpress the Zs, so eg 〈A1B112〉 := det(A1, B1, Z1, Z2).

Now we compute the multi-residue corresponding to taking a sequence of residues on

〈A1B112〉= 0 , 〈A1B134〉= 0 , 〈A2B212〉= 0 , 〈A2B234〉= 0, 〈A1B1A2B2〉= 0 , (3)

followed by a residue on a hidden pole which appears at 〈12B1B2〉 = 0. To do this we first
parametrise the 4×4 Z = (Z1Z2Z3Z4) matrix as the identity and the loops as

�

Ai
Bi

�

=

�

1 ai 0 −bi
0 ci 1 di

�

. (4)

For this choice, the brackets read

〈AiBi12〉= bi , 〈AiBi23〉= di , 〈AiBi34〉= ci , 〈AiBi14〉= ai ,

〈A1B1A2B2〉= −(b1 − b2)(c1 − c2)− (a1 − a2)(d1 − d2) , 〈1234〉= 1 , (5)

〈AiBid
2Ai〉〈AiBid

2Bi〉= daidbidciddi .

Omitting the differentials, the amplitude (2) in these coordinates reads

MHV(2) = −
a2d1 + a1d2 + b2c1 + b1c2

a1a2 b1 b2c1c2d1d2 ((a1 − a2) (d1 − d2) + (b1 − b2) (c1 − c2))
. (6)

Now we take the first four residues in (3), namely b1 = 0, c1 = 0, b2 = 0, c2 = 0. We see that
the complicated factor in the denominator factorises thus revealing a new pole,3 giving

−
a2d1 + a1d2

a1a2d1d2 (a1 − a2) (d1 − d2)
. (7)

3Such poles have been observed in the amplitude previously, and have been dubbed composite residues [9].
See also the example in the introduction.
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Then we take the residue in a1 at a1 = a2, obtaining

−
(d1 + d2)

a2d1d2 (d1 − d2)
. (8)

We continue by taking the residue in d1 at d1 = d2, obtaining

−
2

a2d2
, (9)

up to an overall sign due to the ordering of the differential d2aid
2 bid

2cid
2di . From (9), it is

clear that this form has maximal residues equal to ±2, contradicting the consequence of this
being the canonical form of a positive geometry.

Geometrical interpretation

Let’s try to understand how this factor of two appears geometrically from the
amplituhedron. First we take boundaries corresponding to the four residues at
{〈A1B112〉 = 0, 〈A1B134〉 = 0, 〈A2B212〉 = 0, 〈A2B234〉 = 0}. The order in which these are
performed is not important and the resulting geometry has each loop line (AiBi) described
by a point Ai in the segment 12 and a point Bi in 34, together with a further mutual positiv-
ity condition 〈A1B1A2B2〉 > 0. It is natural then to parametrise Ai , Bi as Ai = Z1 + ai Z2 and
Bi = Z3 + di Z4, so that the geometry is described by the inequalities

ai > 0 , di > 0 , −(a1 − a2)(d1 − d2)> 0 . (10)

Notice that the mutual positivity inequality factorizes in to the product of two terms
a1 > a2, d1 < d2 or a1 < a2, d1 > d2. This is just the geometrical version of composite residues
mentioned in the introduction and above (7). The factorisation results in a corresponding
geometry given by two regions

R1 := {a1, a2, d1, d2 | a1 > a2 > 0∧ d2 > d1 > 0} ,
R2 := {a1, a2, d1, d2 | a2 > a1 > 0∧ d1 > d2 > 0} .

(11)

This geometry is illustrated in the following picture,

R1

R2

•

(12)

where the x axis corresponds to increasing a1 − a2 and the y axis increasing d2 − d1.
The two regions share only a codimension 2 boundary that is contained on the surface

(a1 − a2) = 0, (d1 − d2) = 0. Both regions R1,R2 come equipped with an orientation induced
by the bulk geometry, which in this case is the same for both regions. Each of the two regions
is clearly a positive geometry, with canonical forms

Ω(R1) = −
1

a1d2(a1 − a2)(d1 − d2)
,

Ω(R2) = −
1

a2d1(a2 − a1)(d2 − d1)
.

(13)
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The sum of these correctly reproduces the corresponding residue of the amplitude (7). Since
the two regions share a lower codimension boundary we have to see what happens on this
boundary to decide if the union is or isn’t a positive geometry. We can consider for example
the (d2−d1) = 0 boundary by sending d2→ d1. This corresponds to projecting onto the x axis
of (12) and thus looks as

•
R′1R′2 (14)

We again get two regions

R′1 := {a1, a2, d1 | d1 > 0∧ a1 > a2 > 0} ,
R′2 := {a1, a2, d1 | d1 > 0∧ a2 > a1 > 0} , (15)

but since we approach the boundary from two different directions, the two induced orienta-
tions are opposite (see appendix A for a detailed explanation). The region R′1 and R′2 share
a codimension 1 boundary (a1 − a2) = 0 where the orientation changes sign. We call this an
internal boundary.

We see that this boundary is in fact not oriented (rather it flips orientation on the internal
boundary a1 = a2). Part of the definition of positive geometry in [10] is that it is oriented
and, by the recursive nature of the definition, so are all boundaries etc. We conclude that a
generalisation of the concept of positive geometry is needed to accommodate the loop ampli-
tuhedron.

Since both R′1 and R′2 by themselves are positive geometries on the other hand, their
respective residues at (a2 − a1) = 0 are equal to the canonical form of this. Therefore the
residue on the internal boundary of Ω(R′1)+Ω(R′2) will be equal to twice the canonical form
of a positive geometry. Note that if R′1 and R′2 instead had the same orientation as each other
then (a2 − a1) = 0 would be a spurious boundary and the resulting residue would vanish.

We have thus seen that the loop amplitude has non-unit maximal residues and the geomet-
rical origin of this is that the amplituhedron contains internal boundaries. In the next section
we will see how to formalize what we have observed in this simple example and generalize
the definition of the canonical form to geometries with internal boundaries, which will then
accommodate the loop amplituhedron.

3 Generalized positive geometries and weighted positive geome-
tries

3.1 Positive geometry and its canonical form

First we recall the definition of a positive geometry, X≥0, and its canonical form, Ω, as defined
recursively in [10], before we generalise this to accommodate internal boundaries. A positive
geometry X≥0 is an oriented region in some space (an algebraic variety) whose boundary
consists of a set of positive geometries of one dimension less, with their orientation inherited
from that of the neighbouring bulk geometry. Each component in this set lies inside some
region of the form f (x i) = 0 for some non-factorisable polynomial f . Then the associated
canonical form, Ω, of X≥0 is related to the associated canonical form, ω, of this boundary
component via the residue form on f (x i) = 0

d f ∧Res f=0Ω= lim
f→0

f Ω= d f ∧ω . (16)
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Since the dimension of the boundary component f = 0 is one dimension less than the dimen-
sion of X , this gives a recursive definition which stops when we reach dimension 0 positive
geometries, which are just single points. These points are then defined to have canonical form
±1 according to their orientation inherited from the original geometry. In the appendix A we
review how the induced orientation is defined and the convention we use for the signs.

Apart from the 0-dimensional oriented points, the simplest examples of positive geometries
are 1-dimensional. The most general 1d positive geometry is a disjoint union of intervals of
arbitrary orientation. The canonical form of the interval from a to b is

[a, b] = •

a
•

b Ω([a, b]) =
d x

x − b
−

d x
x − a

. (17)

The boundaries of this segment are given by f (x) = x − b = 0 and f (x) = x − a = 0, and we
see from (16) that b has canonical form 1 and a has canonical form -1. The canonical form of
the disjoint union of such intervals is simply the sum of the canonical forms of the intervals.

Notice that two intervals of the same orientation which share a common boundary point
are equivalent to the larger interval

[a, b]∪ [b, c] = •

a
•

b
•
c = •

a
•
c (18)

with the shared boundary point absent. This is reflected in the addition of the corresponding
canonical forms

Ω([a, b]) +Ω([b, c]) = Ω([a, c]) . (19)

In this case, the point b is sometimes called a spurious boundary.
However, two intervals of different orientations sharing a common boundary point

[a, b]∪ [c, b] = •

a
•

b
•
c (20)

does not constitute a positive geometry (for example, it is not oriented). Nevertheless, it is
natural to associate to this geometry the corresponding canonical form

Ω([a, b]) +Ω([c, b]) = 2
d x

x − b
−

d x
x − a

−
d x

x − c
. (21)

The point b is then special, separating two regions of opposite orientation, and we refer to this
as an ‘internal boundary’. It has residue twice that of each of the two individual boundaries
there. This is exactly what we observed occurring for the two loop amplitude in the previous
section.

3.2 Generalised positive geometry and its canonical form

The discussion above motivates a generalisation of the concept of positive geometry to incor-
porate internal boundaries. Internal boundaries separate two regions of opposite orientation.
So, we define a generalised positive geometry as one whose internal and external boundaries
are both generalised positive geometries. Both external and internal boundaries must lie inside
a space defined by f (x i) = 0 for some non-factorisable polynomial f . A particular subspace
f (x i) = 0 could contain both internal and external boundaries, each of which must be a (gen-
eralised) positive geometry with canonical form ωint and ωext respectively. Then we define
the canonical form recursively as

Res f=0Ω=ωext + 2ωint , (22)
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or equivalently,
lim
f→0

f Ω = d f ∧ (ωext + 2ωint) . (23)

We see an extra term compared to the original canonical form for positive geometries (16),
giving the factor of 2 associated with internal boundaries. The starting point for the recursion
is the same as before; the 0-dimensional geometries, oriented points, with canonical form ±1
according to their orientation. Note that the orientation of the interior boundary is unambigu-
ously inherited from that of the bulk just as for the exterior boundaries.

So consider the 1d example in (20). This has external boundaries (with negative orien-
tation) at fa(x) = x − a = 0 and fc(x) = x − c = 0 and an internal boundary with positive
orientation at fb(x) = x − b = 0. One can see that the canonical form (21) satisfies the
recursive relation (22) at all three points.

Now consider a 2d example.

R1 =

(24)

Here the x axis contains both an external boundary and an internal boundary. The canonical
form can be obtained straightforwardly by simply adding together the canonical forms of the
two triangles,4 giving

Ω(R1) =
d x d y

x y(x + y − 1)
+

2d x d y
y(x + y + 1)(x − y − 1)

. (25)

Now we can see how this satisfies the recursive definition (22) along the x axis. Taking the
residue of (25) at y = 0 gives

Resy=0Ω= d x
�

1
x
−

1
x+1

�

+2d x
�

1
x−1
−

1
x

�

= Ω([−1, 0]) + 2Ω([0, 1]) , (26)

which is exactly as predicted by (22) with f = y since the external boundary on the x axis is
the interval [−1,0] and the internal boundary is [0,1].

Note that internal boundaries give a contribution to the canonical form of twice that of
a standard external boundary. One might think therefore that a leading singularity of any
such a generalised positive geometry must be 0,±1 (as for a positive geometry) or ±2 if there
is an internal boundary present. However, there can be internal boundaries inside internal
boundaries, leading to higher maximal residues. A very simple example of this is the region

4This key tessellation feature of positive geometries and the canonical forms is inherited by (and is indeed more
powerful for) the generalised positive geometries as we will see.
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consisting of the entire plane, but with the four quadrants having alternating orientations

R2 =

(27)

Here, each quadrant has exactly the same canonical form d x d y/(x y) and so the geometry
has non-zero canonical form

Ω(R2) =
4d x d y

x y
. (28)

Taking the residue on the (internal) boundary x = 0 gives lim
x→0
(xΩ) = 2d x ∧
�

2d y
y

�

= 2d x ∧ωint

withωint =
2d y

y , satisfying (22). Here the internal boundary in x = 0 is (−∞, 0)∪(∞, 0) and

this itself has an internal boundary at y = 0. Thus it has canonical form 2d y
y (as we get directly

from (21) by taking b→ 0, a, c→∞ and x → y). So the leading singularity at x = y = 0 is
4.

It is also possible to get a leading singularity 3. Simply take three of the four quadrants
from the previous example

R3 =

(29)

This geometry has canonical form

Ω(R2) =
3d x d y

x y
. (30)

Here taking the residue on the boundary x = 0 gives limx→0(xΩ) = d x ∧
�

d y
y

�

+ 2d x ∧
�

d y
y

�

in agreement with (22). This time x = 0 contains the external boundary (−∞, 0) as well as
the internal boundary (0,∞) both of which have canonical forms d y

y . Therefore, the leading
singularity at x = 0 then y = 0 is 3.

Note that in [11], in the context of the squared amplituhedron, another generalisation
of positive geometry was considered, and the associated canonical form called the globally
oriented canonical form was defined. These geometries are in fact also examples of GPGs and
we discuss this relation in more detail in appendix B.

3.3 Weighted positive geometry and its canonical form

Although the definition of the canonical form (22) is extremely compact, it has the downside
of treating external and internal boundaries on a different footing. On the right hand side we
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have a weighted sum of canonical forms, so it’s tempting to rewrite this as the canonical form
of a weighted sum of geometries. In this section we make this intuition precise by generalising
what we mean by a geometrical region slightly, to include a weight taking arbitrary integer
values. This articulates the idea of having multiple coinciding geometries which we naturally
have when two regions meet on an internal boundary. This concept will allow us to give an
explicit formula for maximal residues.

Firstly, recall that orientation on a space can be described by a top form where we are only
really interested in the sign of the top form. So orientation is the equivalence class of real top
forms modulo positive rescaling, O ∈ Ωd/ ∼ where O ∼ λO for any λ > 0. Now we extend
this to define the weighted orientation as a pair (w, O) : X →

�

Z,Ωd(X )
�

/ ∼ where here the
equivalence relation involves positive or negative rescaling with the negative case also flipping
the weight w

(w, O)∼ (sign(λ)w,λO′) , λ ̸= 0 . (31)

Thus changing the orientation is equivalent to flipping the sign of w. In practise we can of
course always choose coset representatives of (31) such that w> 0 and we will mostly assume
this from now on.

Weighted geometries have a natural additive structure. At any point x ∈ X we define the
sum of two weighted geometries (w1, O1)⊕ (w2, O2) as

(w1, O1)⊕ (w2, O2) = (w1 + sign(λ)w2, O1) , (32)

where λ is such that O1 = λO2.5 Notice, that because of (31) this sum is symmetric and the
identity element (0, O) is unique.

So now we define a weighted geometry entirely by specifying its weight function and its
orientation, rather than directly defining a region X≥. The region X≥ can be reconstructed
by simply defining it as the set of points where w ̸= 0. Boundaries are then places where
the weighted orientation is discontinuous and they divide regions inside which the weighted
orientation is continuous (and therefore w is constant). We will shortly define a canonical
form for weighted geometries, the existence and uniqueness of which will define weighted
positive geometries (WPG). For multivariate residues to be well defined, we insist that these
boundaries must be subsets of algebraic varieties – so these regions are semi-algebraic sets.

A key aspect of this construction is that both weights and orientation on the boundaries are
uniquely induced from those in the bulk. This happens as follows. Any boundary component,
C can be defined through a polynomial p(x) = 0. Then one side of the boundary is p(x) > 0,
with weight and orientation (w+, O+), whereas the other side is p(x)< 0 with (w−, O−). Now
the region p(x)> 0 naturally induces the orientation O+|C on the boundary of the region p > 0
in the standard way (see appendix A), so O+ = dp ∧O+|C . The region p(x) < 0 on the other
hand naturally induces the orientation O−|C on the boundary, where O− = −dp ∧O−|C .6

Given a codimension-1 variety C ∈ X , then we define a projection operator ΠC that maps
weighted orientations (w, O) on X to weighted orientations on C as

ΠC(w, O) = (w+|C , O+|C)⊕ (w−|C , O−|C) . (33)

Choosing representatives such that w> 0, we can give the following two dimensional illustra-

5Note that the x dependence is suppressed in the equation and that the function sign(λ(x)) is negative if the
two orientations O1(x) and O2(x) are opposite and positive if they match.

6The minus sign arises from the fact that the normal vector pointing inward the region p < 0 is −∂p.

12

https://scipost.org
https://scipost.org/SciPostPhys.15.3.098


SciPost Phys. 15, 098 (2023)

tion of the induced weights and orientations (denoted with arrows):

w

w′

w

w′

w

w′

w+w′ w−w′ w′−w

(w> w′) (w< w′)

(34)

Note that w or w′ could have been zero in which case we have a conventional external bound-
ary. This definition implies that, for w(x) = 1 in X>0 and 0 otherwise, w|C will be equal to
2 on internal boundaries, to 1 on external boundaries and 0 otherwise. In this formulation
internal and external boundaries are not distinguished. Furthermore note that if w+ = w−

and λ < 0 then there are equivalent weighted orientations on both sides (meaning the in-
duced orientations are opposite) and thus there is no genuine boundary there (it is a spurious
boundary).

An important observation now is that the projection Π is a linear operator

ΠC
�

(w1, O1)⊕ (w2, O2)
�

= ΠC(w1, O1)⊕ΠC(w2, O2) , (35)

which can be easily proven from the definitions.
Now we can define a weighted positive geometry as a weighted geometry possessing a

canonical form. The definition of the canonical form of a weighted geometry is defined recur-
sively such that the residue of the canonical form on C is the canonical form of the geometry
projected on C:

ResCΩ(w, O) = Ω(ΠC(w, O)) . (36)

The recursion starts by defining the canonical form of a zero dimensional weighted geometry
(for which O is a 0 form, simply a scalar) as the product of w with the sign of O

Ω(w, O) = w sign(O) (In zero dimensions) . (37)

In zero dimensions therefore the canonical form is a linear operator

Ω
�

(w1, O1)⊕ (w2, O2)
�

= Ω
�

w1 + sign(λ)w2, O1

�

= (w1 + sign(λ)w2)× sign(O1)

= w1sign(O1) +w2sign(O2) = Ω(w1, O1) +Ω(w2, O2) , (38)

where recall O1 = λO2. It follows by induction from the recursive definition (36) and linearity
of the projection operator Π (35) that this linearity property of Ω then holds for spaces of
arbitrary dimension:

Ω
�

(w1, O1)⊕ (w2, O2)
�

= Ω(w1, O1) +Ω(w2, O2) . (39)

Remarkably we have the feature that we can freely sum arbitrary (even overlapping) WPGs!
It also follows directly from this that

Ω
�

(λw, O)
�

= λΩ(w, O) . (40)

Now given a sequence of boundaries {C1, · · · ,Cn}, we can follow n steps of the recur-
sion (36) and write the multi-residue of a canonical form as the canonical form of the multiply
induced boundary

ResC1,··· ,Cn
Ω(w, O) = Ω(ΠC1,··· ,Cn

(w, O)) . (41)
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Then taking n = d, the dimension of X , we obtain an expression for the maximal residues in
terms of the canonical form at a point (37)

ResC1,··· ,Cd
Ω(w, O) = wC1,··· ,Cd

× sign
�

OC1,··· ,Cd

�

, (42)

where (wC1,··· ,Cd
, OC1,··· ,Cd

) = ΠC1,··· ,Cd
(w, O). This last equation can also be used as a direct,

non-recursive, definition of the canonical form by giving all its maximal residues (the canonical
form is completely determined by its maximal residues).

Note that generalised positive geometries, defined in previous subsections, should simply
be WPGs for which the weight function (in the bulk) is w = ±1,0 everywhere. Similarly
positive geometries are WPGs for which the weight function w = ±1, 0 everywhere (so they
are also GPGs) but also the induced weight function on all nested boundary components is
also always ±1, 0.

To check this we need to show that the canonical form for the GPGs defined by (22) and
that for the WPGs (36) are equivalent. By equivalent we mean that given any GPG X≥0 with
orientation O we associate a weighted geometry with orientation O and weight w such that
w(x) = 1 for all x ∈ X≥0 and zero otherwise, and then

Ω(X≥0) = Ω(w, O) . (43)

Now notice that the projection of (w, O) onto C (described in (33) and above) will have induced
weight 1 or 2, depending on whether it is an external or internal boundary. So we can write
ΠC(w, O) = (wext, Oext)⊕(wint, Oint)where wext = 1 on external boundaries and zero elsewhere
whereas wint = 2 on internal boundaries and zero elsewhere. Then, it follows that if we
apply (36) we get

ResCΩ(w, O) = Ω
�

ΠC(w, O)
�

= Ω((wext, Oext)⊕ (wint, Oint)) = Ω(wext, Oext) + 2Ω
�wint

2
, Oint

�

. (44)

Now since wext and 1
2 wint are both functions respectively equal to 1 on internal and exter-

nal boundaries and equal to 0 otherwise, they represent with their orientations the external
and internal boundaries as GPGs. This is then precisely the original defining equation of the
canonical form (22). Since we showed that the recursion (36) and (22) have the same form
it follows that the two definitions of the canonical form give the same result.

Finally, let us illustrate with a slightly more involved example, returning to the case con-
sidered in (29) from this new perspective

R3 =

11

10

2

1

21

(45)

Here we see the induced weights 2,1 on the codimension 1 boundaries x = 0, y = 0. Consid-
ering these boundaries themselves they then induce the weight 2 + 1 = 3 at the origin with
positive orientation on the y axis, negative on the x axis. This is in line with (42) and the
corresponding maximal residue Resy=0,x=0ΩR3

= −Resx=0,y=0ΩR3
= 3.

Note that in [10] a generalisation of positive geometries was defined, the Grothendieck
group of pseudo-positive geometries, consisting of the formal sum of positive geometries mod-
ded out by geometries with vanishing canonical form. The Grothendieck group of pseudo-
positive geometries and the WPGs are closely related but different. The Grothendieck group
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of pseudo-positive geometries is presumably equivalent to the space of WPGs after modding
out by elements with zero canonical form. This equivalence relation implies that

Ω((w1, O1)) = Ω((w2, O2)) ⇒ (w1, O1)∼ (w2, O2) . (46)

3.4 Uniqueness of the canonical form

The uniqueness of the canonical form for GPG/WPGs is equivalent to the statement that the
algebraic variety on which the positive geometry lives has geometric genus zero ie has no
non-zero holomorphic volume forms, just as for PGs [10]. Since holomorphic forms have no
poles, they could be added to any canonical form to obtain a new canonical form satisfying
all the requirements and thus we would not have a unique canonical form. Conversely, under
the assumption that GPGs/WPGs have no holomorphic forms, we can proceed by induction
assuming that the canonical form in d−1 dimensions is always unique. Consider two canonical
forms Ω1,Ω2 for the same GPG or WPG. By definition, both forms have poles only on the
boundary components. The residue on a boundary component is the canonical form of the
boundary component, by the recursive definition of the canonical form. But since by induction
we assumed that the canonical form in d − 1 dimensions is unique then we conclude that for
any residue Res(Ω1 −Ω2) = 0, and so Ω1 −Ω2 has no poles and is thus a holomorphic form
and so must vanish. We conclude that Ω1 = Ω2 and so the canonical form is unique.

3.5 Tilings

A fundamental property of the canonical form is that given a positive geometry X≥0 and a set
of positive geometries X (i)≥0 tiling X≥0,7 then the canonical form of X≥0 is the sum of that of the
tiles

Ω(X≥0) =
∑

i

Ω
�

X (i)≥0

�

. (47)

However it can happen that a non positive geometry can be triangulated by positive geometries
- so the space of positive geometries is not closed under the union. This is because even if the
orientation of the X (i)≥0 tiling X≥0 matches on codimension 1 boundaries this does not imply
that they will necessarily match on the boundaries of boundaries etc. This can then give rise
to internal boundaries. As examples consider the following two geometries:

32

1

5

4

1 2

34

5
6

7 8

9

(48)

Both can be triangulated by positive geometries. The first can be triangulated as the oriented
union of two triangles while the second as the oriented union of 4 rectangles with matching
orientation. Both examples are not positive geometries themselves however. This can be seen
graphically observing the orientation of the boundary, the edge 14 in the first example and 59
in the second look like (20) and have an internal boundary.

7By a tiling we mean the X (i)≥0 cover X≥0 with non-overlapping regions. We will often also call such a tiling a
triangulation.
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Both of these examples are generalised positive geometries however. And we claim more
generally that if X≥0 is triangulated by a set of generalized positive geometries X (i)≥0 tiling X≥0
then X≥0 is a generalized positive geometry and its canonical form is given by (47). Thus the
space of GPGs is closed under the disjoint-union. This is essentially trivial from linearity of the
WPG canonical form and the definition of a GPG as a WPG with weight 0,±1 everywhere.

A beautiful consequence of the WPG formalism is that it also yields a simple proof of the
tiling property of positive geometries (47). Indeed this follows trivially from the fact that the
canonical form is a linear operator for weighted positive geometries (39). Translating (47)
into WPG language, on the right hand side we have the canonical form of a region which is
equivalently a weight function (w, O) with w= 1 in the region and 0 outside. This region has
a tesellation with tiles (wi , Oi) with

(w, O) =
⊕

i

(wi , Oi) . (49)

Now linearity of WPGs give

Ω(w, O) =
∑

i

Ω(wi , Oi) , (50)

which proves (47).

3.6 Speculations on an explicit characterisation of GPGs / WPGs

In the previous subsection we gave an implicit (recursive) definition of generalised positive
geometry and weighted positive geometries. Here we consider whether it is possible to give
more explicit characterisations, so we can know in advance if a particular region is a GPG/WPG
or not. The fact that GPGs/WPGs are closed under union (or sum for WPGs) as discussed in
the previous subsection already suggests they ought to be more amenable to a direct charac-
terisation than PGs. For example any characterisation of PGs would have to exclude the two
examples in (48).

We first note that if we restrict ourselves to a specific class of geometry which we call
multi-linear geometries then the characterisation is very simple. Multi-linear geometries are
geometries defined by multi-linear inequalities in some coordinates. Note that although this
may be a big restriction of the full space of positive geometries it nevertheless provides a very
wide class of cases. Crucially it is straightforward to see that the amplituhedron is a multi-
linear geometry. The defining inequalities of the amplituhedron are given in terms of either
minors of a C matrix, or alternatively determinants of the form 〈Y Li ...〉. Thus by choosing
components of either the C matrix, and/or the Y, Li as coordinates, the resulting inequalities
will be multi-linear in those coordinates (simply because the determinant is a multi-linear
function of its components).

Note here that it is important not to confuse multi-linear geometries with linear geometries.
Many of the toy examples one considers are linear geometries where defining inequalities can
be given which are linear in all variables. These then have straight edges, flat planes etc.
Multi-linear geometries can however be curvey. For example in 2d, boundaries of multi-linear
geometries have the form ax y + bx + c y + d = 0 (in some coordinates) which correspond to
hyperbolas as well as straight lines. On the other hand circles or ellipses would include the
non multi-linear terms x2, y2 and are not multi-linear. They can however be boundaries of
positive geometries [10]. We will shortly return to this point.

We first claim that any multi-linear geometry is a (generalised) positive geometry. We can
show this by explicitly and uniquely computing the canonical form for multi-linear geometries.
Given a multi-linear geometry, first use cylindrical decomposition (see also [20]) which recasts
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any region as a disjoint union of regions Ri of the form

Ri := {x1, · · · , xd} , st



















a1 < x1 < b1 ,

a2(x1)< x2 < b2(x1) ,
· · · ,

ad(x1, · · · , xd−1)< xd < bd(x1, · · · , xd−1) ,

(51)

for some functions a j , b j . Now changing variables to:

x ′j = −
x j − a j

x j − b j
, (52)

then Ri becomes

Ri := {x ′1, · · · , x ′d} , st x ′j > 0 , for all j . (53)

In the new coordinates Ri is thus a simplex-like positive geometry with canonical form

Ω(Ri) =
d
∏

j=1

d x ′j
x ′j

. (54)

But as discussed in [10] under a rational map the canonical forms map to each other. So as
long as the change of variables (52) is rational then we have that in the original coordinates

Ω(Ri) =
d
∏

j=1

�

1
x j−a j

−
1

x j−b j

�

d x j , (55)

and the canonical form of the full region can then be obtained by summing the contributions
from all the Ri . We see how multi-linearity is crucial here. The inequalities in (51) must
arise from the defining inequalities of our region which are multi-linear. This ensures that the
resulting functions ai and bi will be rational functions and thus the change of variables (52)
is rational.

Let us illustrate some of these points now with a couple of examples shown in figure 1.

0 2 4 6 8
0

2

4

6

8

R1

−1 0 1
−1

−0.5

0

0.5

1

R2

Figure 1: Two examples of positive geometries obtained by sandwiching a conic and
a straight line. The first, involving a hyperbola, is a multi-linear geometry whereas
the second is not multi-linear, but is still a positive geometry.

Firstly we have a region R1 sandwiched between a hyperbola and a line. It is defined by
the inequalities x > 0, x y > 7, x + y < 8. Cylindrical decomposition rewrites this as a single
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region written in the form of (51) as 1< x < 7 7
x < y < 8− x . Then the simple replacement

rule of (55) yields the canonical form

Ω(R1) =
�

d x
x − 1

−
d x

x − 7

�

�

d y

y − 7
x

−
d y

x + y − 8

�

= −
6 d x d y

(x + y − 8)(x y − 7)
. (56)

The second example R2, found in [10], is not a multi-linear geometry. This is the region
between a circle and a line and is defined by the inequalities x2+ y2 < 1, y > 1/10. Let us see
what happens if we attempt the same procedure to obtain its canonical form. Here cylindrical
decomposition rewrites the region as

−
3
p

11
10

< x <
3
p

11
10

,
1
10
< y <
p

1− x2 . (57)

But now we encounter a problem. We see that, due to the square root
p

1− x2, the change of
variables needed in (52) will no longer be rational and the above procedure no longer works.

So we have seen that cylindrical decomposition gives the unique canonical form as long
as all the resulting functions ai , bi in (51) are rational. This is clearly the case for multi-linear
geometries, but could also be the case for more general geometries. Further it may be possi-
ble to change coordinates so that only in the new coordinates the cylindrical decomposition
map (52) is rational. So in general we can characterise generalised positive geometries to be
those for which there exist coordinates and an ordering of these coordinates such that cylin-
drical decomposition yields a map (52) which is rational.

For example let us return to the region R2 in figure 1 for which the cylindrical decomposi-
tion method of obtaining the canonical form didn’t work as it produces an irrational map (52).
Now the circle is the classic example of a rational variety. This is a variety that has a parametri-
sation t i in terms of which its embedding coordinates x i(t j) are rational functions and there
is a rational inverse map t i(x j). In this case it has a rational parametrisation given by

x(t) =
2t

1+ t2
, y(t) =

1− t2

1+ t2
, (58)

with an inverse map from R onto the circle embedded in R2 which is also rational

t(x , y) =
x

1+ y
. (59)

Here the parameter t has the geometrical interpretation of the projection of a point on the
circle, from the point (0,−1) to the x axis. But this projection can clearly be extended to any
point in R2 not just those points on the circle. So consider the change of variables from x
to t, (t, y)→ (x , y) = (t(1+ y), y). In the new variables the region R2 then has cylindrical
decomposition

−
3
p

11
< t <

3
p

11
,

1
10
< y <

1− t2

t2 + 1
, (60)

which is now rational. The replacement rule (55), then gives the canonical form

Ω(R2) = −
6
p

11d t d y
(10y − 1) (t2(y + 1) + y − 1)

= −
6
p

11d xd y
(10y − 1) (x2 + y2 − 1)

, (61)

which is in precise agreement with the canonical form for this geometry found in [10] (see
figure 1) using the recursive definition of the canonical form.

18

https://scipost.org
https://scipost.org/SciPostPhys.15.3.098


SciPost Phys. 15, 098 (2023)

In general, if a codimension 1 boundary of a region is a rational variety, then changing
coordinates from x i to t i , xn will rationalise the final step in the cylindrical decomposition
involving that boundary. In other words cylindrical decomposition in those variables will give
the boundary in the form xn < xn(t i) which is a rational function as we saw in the above
example which gave y < y(t) = (1−t2)/(1+t2)). This all suggests there should be a more
intrinsic definition of a GPG/WPG in terms of rational varieties.

4 All-in-one-point cut

We now look at a particular boundary of the loop amplituhedron related to a set of cuts on
the integrand of MHV amplitudes explored in [18, 21], referred to as the deepest cut. This
provides another example of an internal boundary as well as illustrating the other important
point mentioned in the introduction, namely that the order of taking residues (or going to
boundaries) can yield completely different results.

In general the deepest cut places all internal propagators on-shell



(AB)α(AB)β
�

= 0 , ∀ α,β = 1, ..., l , (62)

while leaving all external propagators 〈(AB)αii + 1〉 generic. Geometrically there are two pos-
sible final configurations which solve (62): first, all loop lines passing through a single point
A, or second, all loop lines lying on the same plane. In [18] the canonical form corresponding
to these two solutions was found at any loop order. We find that this form can not be repro-
duced from any sequence of single residues (or any linear combination of such) acting on the
amplitude and so some more complicated operation is presumably needed to reproduce it.8

Furthermore there are many inequivalent ways of approaching this final all-in-one-point con-
figuration via different sequences of single residues, as becomes especially apparent starting at
four loops. In this section we systematically investigate all cuts ending in the all-in-one-point
configuration.

We will begin by discussing the three loop all-in-one-point cut, computing its geometry
and discussing the internal boundary that arises, before considering higher loops. Although
we will limit the discussion to the 4-point MHV amplituhedron geometry, the derivation of
the geometry is completely independent of the tree level inequalities 〈Y i jkl〉 and 〈ABi j〉. The
results obtained in section 4.3 for the loop-loop inequalities of the all-in-one-point cut hold
for any multiplicity and any NMHV degree by simply promoting the brackets 〈ABiB jBk〉 to
〈YABiB jBk〉.

4.1 Three-loop all-in-one-point cut

The first case of an all-in-one-point cut is at two loops. Although we saw above that this con-
tains a previously undetected internal boundary, since the all-in-one-point cut is this boundary
it doesn’t affect anything and the corresponding residue is simply the canonical form of two
lines satisfying 1 loop inequalities as predicted in [18]. We will return to this in section 5.1.

We thus turn to three loops. The integrand of the three-loop MHV amplitude is given by

MHV(3)=

∏3
i=1〈AiBid

2Ai〉〈AiBid
2Bi〉〈1234〉3

〈A1B114〉〈A1B112〉〈A1B134〉〈A2B212〉〈A2B223〉〈A3B334〉〈A1B1A3B3〉〈A2B2A3B3〉

×
�

1
2

〈1234〉
〈A3B312〉〈A2B234〉

+
〈A1B123〉

〈A3B323〉〈A1B1A2B2〉

�

+ symmetry .

(63)

8We thank Nima Arkani-Hamed and Jaroslav Trnka for valuable discussions on this point.
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•A1

• B1

• A3=A1+a3B1

•
B3

•
B2

• A2=A1+a2B1

Figure 2: A geometrical depiction of the third residue taken when calculating the
three loop all-in-one-point cut. Note the lines that pass through the points B2 and B3
do not in general lie on the same plane, but they do not (yet) intersect.

Here the ‘+ symmetry’ is a sum of 23 more terms: the 3! terms generated by permutation
symmetry over the loop variables (simultaneous permutation of Ai and Bi) together with the
four terms from cyclic symmetry of the external twistors, giving 24 terms in total in the sum.
The first term in square brackets is the three-loop ladder integrand, and after summing it
generates 12 unique terms (all with coefficient 1), while the second term is the so-called 3-
loop ‘tennis court’ diagram generating 24 unique terms (again all will have coefficient 1).

In order to achieve an all-in-one-point final configuration – with three loop lines passing
through a single point A – we must take three residues at 〈AiBiA jB j〉 = 0 (62). By inspection,
one can see that the first term in square brackets in (63) (the ladder integral) does not contain
all three poles 〈AiBiA jB j〉 and therefore vanishes after taking these residues. From this point
forward then we will only concern ourselves with the second term.

The key factor which all surviving terms contain is

F =

∏3
i=1〈AiBid

2Ai〉〈AiBid
2Bi〉

〈A1B1A2B2〉〈A2B2A3B3〉〈A1B1A3B3〉
. (64)

We will then first consider the residue at 〈A1B1A2B2〉 = 0 followed by 〈A1B1A3B3〉 = 0. This
corresponds geometrically to first intersecting the line A2B2 with A1B1 and then A3B3 with
A1B1 (see 2). To do this, we parametrise A2 and A3 as

A2 = A1 + a2B1 + b2Z∗ ,

A3 = A1 + a3B1 + b3Z∗ ,
(65)

where Z∗ is an arbitrary twistor. In this parametrisation, the limits b2 → 0 and b3 → 0
correspond to the points A2 and A3 moving to lie on the line A1B1 respectively. Using this
parametrization, we have for example that 〈A2B2d2A2〉 = db2da2〈A1B2Z∗B1〉 etc. and the
factor (64) produces db2db3/(b2 b3). Taking the residue then gives

Res
〈A1B1A2B2〉=0
〈A1B1A3B3〉=0

F =
da2da3〈A1B1d2A1〉

∏3
i=1〈AiBid

2Bi〉
〈A2B2A3B3〉

. (66)

With the parametrisations (65), with b2 = b3 = 0 we see that the remaining singularity
of F factorises into two terms 〈A2B2A3B3〉 = (a2−a3)〈A1B1B2B3〉. This is another example
of composite residues discussed in the introduction and section 2. The first factor a2−a3 = 0
corresponds to the three loop lines intersecting in one point, while 〈A1B1B2B3〉= 0 corresponds
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to the three lines lying in the same plane (and thus intersecting pairwise). We focus on the all-
in-one-point case (a2−a3)→ 0 (intersecting A3B3 with A2B2 by sliding the intersection point
A3 along the line A1B1 to meet the intersection point A2 see figure 2). We change variables
from (a2, a3) to (a2,ξ) where ξ = (a2−a3), so da2da3 = dξda2 and the residue at ξ → 0 of
(66) is

Res
ξ=0

�

dξda2

ξ

〈A1B1d2A1〉
∏3

i=1〈AiBid
2Bi〉

〈A1B1B2B3〉

�

=
〈Ad3A〉
∏3

i=1〈ABid
2Bi〉

〈AB1B2B3〉
. (67)

On the right-hand side we have written the expression manifestly as a function of the common
intersection point of all three lines A= A1 + a2B1, thus da2〈A1B1d2A1〉= 〈Ad3A〉.

Substituting (67) into (63) gives the all-in-one-point cut of the three loop amplitude :

〈Ad3A〉
∏3

i=1〈ABid
2Bi〉

〈AB1B2B3〉

�

〈1234〉3〈AB123〉
〈AB114〉〈AB112〉〈AB134〉〈AB212〉〈AB223〉〈AB323〉〈AB334〉

+ symmetry

�

,

(68)

where the sum occurs by applying cyclic symmetry of the external momenta and permutation
symmetry of the Bis. We see that after taking the three consecutive residues required to reach
this final configuration, a new pole 〈AB1B2B3〉 appears explicitly in the denominator of the
integrand. This is not the same as the result given for the all-in-one-point cut in [18] which
is instead the canonical form of the intersection of the hyperplane 〈AiBiA jB j〉 = 0 with the
amplituhedron.9 Taking further residues of this all-in-one-point cut, starting with the pole
〈AB1B2B3〉 one ends up with a maximal residue of 2 (see appendix C for this computation)
which, as discussed in section 2 suggests the existence an internal boundary.

In the next subsection we therefore look at the geometrical region corresponding to taking
the above all-in-one-point cut. We will find that the pole at 〈AB1B2B3〉= 0 indeed corresponds
geometrically to an internal boundary of the codimension 3 boundary of the four-point three-
loop amplituhedron corresponding to the all-in-one-point cut.

4.2 Geometric all-in-one-point cut

We now look to derive the geometry of the all-in-one-point cut. Following precisely the residues
taken in section 4.1, we first intersect line L1 with L2, then intersect L3 with L1, and finally
intersect L2 and L3 by sliding A3 along L1.

The four-point loop level amplituhedron is defined as the set of loop lines Li = (AiBi) with
i = 1, .., L satisfying

A(L) =
¦

AiBi : 〈AiBi k̄l̄〉> 0 , 〈AiBiA jB j〉> 0 , 1≤ i, j ≤ L, 1≤ k < l ≤ 4
©

. (69)

Here for each loop we have the inequalities of the one loop amplituhedron

〈AiBi12〉> 0 , 〈AiBi13〉< 0 , 〈AiBi14〉> 0 ,

〈AiBi23〉> 0 , 〈AiBi24〉< 0 , 〈AiBi34〉> 0 ,
(70)

which can all be conveniently rewritten in terms of the conjugate planes as [18]

〈AiBi j̄ k̄〉> 0 , 1≤ j < k ≤ 4 , (71)

9Note that if one instead takes an antisymmetric sum over the Bi permutations in (68), the result produces a
zero in 〈AB1B2B3〉, cancelling the pole and reproducing the deepest cut given in [18]. We can not obtain this via
an operation acting on the amplitude however but rather one would have to take a different operation on each
contributing diagram.
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where j̄ ≡ ( j−1 j j+1) and 〈AiBi j̄ k̄〉 ≡ 〈AiBi( j−1 j j+1)∩(k−1kk+1)〉. We then also have the
loop-loop inequalities, 〈AiBiA jB j〉> 0. The all-in-one point configuration occurs when all loop
lines Li pass through a single point A, so we simply set Ai = A. Then the loop-loop inequalities
trivialise and this all-in-one-point cut geometry is

A(L)dc =A(L)|Ai=A =
¦

A, Bi : 〈ABi k̄l̄〉> 0 , 1≤ k < l ≤ 4
©

. (72)

This is the codimension 3 configuration of the amplituhedron corresponding to all loop lines
intersecting in one point.

We now however wish to examine in detail what happens when we take a sequence of codi-
mension 1 boundaries in order to reach such a configuration. Using the same parametrisation
as (65), A2 = A1+a2B1+b2Z∗, A3 = A1+a3B1+b3Z∗ the loop-loop inequalities become

〈A1B1A2B2〉= −b2〈A1B1B2Z∗〉> 0 ,

〈A1B1A3B3〉= b3〈A1B1Z∗B3〉> 0 ,

〈A2B2A3B3〉= (a2−a3)〈A1B1B2B3〉+ (b2−b3)〈A1Z∗B2B3〉> 0 .

(73)

We then consider the boundary at a2 = a3 of the boundary at b3 = 0 of the boundary at b2 = 0,
which corresponds precisely to taking the consecutive residues of (66) and below. Here Z∗ is
chosen arbitrarily and we can arrange it so that 〈A1B1B2Z∗〉< 0 and 〈A1B1Z∗B3〉> 0 and thus
b2, b3 > 0. Notice that the third inequality factorises when b2, b3 → 0. This is the geometric
version of the factorisation discussed below (66), related to composite residues and reducible
varieties. Thus the boundary at b2, b3→ 0 is the union of two disconnected regions R1 ∪R2

R1 : a2 > a3 , 〈AB1B2B3〉> 0 ,

R2 : a2 < a3 , 〈AB1B2B3〉< 0 ,
(74)

where A = A1 + a2B1. The inequalities, (74), carve out a region consisting of two almost
disconnected pieces of the same orientation. This geometry is illustrated in the picture (the
same as for the two-loop internal boundary case (12))

R1

R2

•

(75)

where the x axis corresponds to the region a2 = a3 and the y axis corresponds to 〈AB1B2B3〉= 0.
The all-in-one-point cut corresponds to the boundary a2=a3 (so the x axis). We can then
clearly see that the all-in-one-point cut consists of two regions, 〈AB1B2B3〉 ≶ 0, with opposite
orientation separated by an (internal) boundary at 〈AB1B2B3〉= 0:

•
〈AB1B2B3〉> 0〈AB1B2B3〉< 0 (76)

Geometrically the two regions arise from the intersection point A3 approaching A2 from
two different directions along the line A1B1 (see figure 2). Importantly, after approaching
the all-in-one-point cut, the mutual positivity conditions between the loops of (73) do not
trivialise, but instead new inequalities emerge dictated by the sign of 〈AB1B2B3〉.
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So altogether then, incorporating the inequalities resulting from (70) (rewritten as in (71))
we see that the the full geometry of the three-loop all-in-one-point cut is given by the two
regions with opposite orientation

Rdc =Rdc
1 ∪R

dc
2 ,

Rdc
1 =A(3)dc ∩ {〈AB1B2B3〉> 0} , positive orientation,

Rdc
2 =A(3)dc ∩
¦

〈AB1B2B3〉< 0
©

, negative orientation.

(77)

Note that the deepest cut geometry A(3)dc is the union of these two regions with the same ori-
entation, but the actual result of taking boundaries of boundaries of boundaries requires the
regions to have opposite orientation separated by an internal boundary. Also note that we
made a choice of which loop lines to intersect first and which to slide etc. and one might
expect different choices to give different results. This is indeed the case at higher loops. At
three loops however the resulting geometry (77) is the unique geometry one obtains from
approaching the all-in-one-point cut.

So to summarise we find that the all-in-one-point cut as computed as a residue corresponds
to two regions of opposite orientation separated by an internal boundary. At higher loops it
turns out that the all-in-one-point cut is no longer even unique but depends on the precise
sequence of codimension 1 boundaries taken to reach it.

4.3 Higher loop all-in-one-point cut

We commented that at three loops the multiple residue leading to the all-in-one-point cut is
unique and the corresponding geometry given by (77). For higher loops, however, there are
a number of inequivalent resulting geometries depending on the sequence of single residues
taken. Here, we generalise the discussion of the previous section to give the inequalities asso-
ciated to any all-in-one-point cut for any loop. We show that while the final configuration is
always the same – that is L lines intersecting in a point – distinct paths to reach this configu-
ration can carve out different oriented regions.

Enforcing that a line in 3d (which has four degrees of freedom) intersects a specified point
kills two degrees of freedom. Thus making all L lines go through a specified point would
reduce by 2L degrees of freedom. However the intersection point itself A is not fixed and has
3 degrees of freedom, thus only 2L − 3 degrees of freedom are lost, corresponding to taking
2L − 3 single residues. We distinguish between two types of residue, each of which has a
different geometrical interpretation. The first is the intersection of two loop lines which are
currently not connected by any set of intersecting lines (see figure 3 on the left). Taking the
maximal possible number of such intersections results in a maximal tree configuration.10 These
we will refer to simply as intersections. The second type occurs when we merge two separate
intersection points along a line (see figure 3 on the right) which we shall call a sliding. An
all-in-one-point cut then consists of (L−1) intersections and (L−2) slidings to make a total of
2L − 3.

To perform an intersection, for example (AiBi) ∩ (A jB j) depicted on the left in figure 3,
we parameterise the point A j as A j = Ai + aBi + bZ∗ and take the residue b = 0. Similarly
to the discussion at three loops leading to (66), any such intersection saturates one positivity
condition, 〈AiBiA jB j〉 = 0, and does not generate any new inequalities. The order in which
these are performed is also not important. The all-in-one-point cut consists of L − 1 intersec-
tions, therefore (L−1) of the (2L−3) mutual positivity conditions are trivialised and no new
inequalities arise.

10More precisely the graph obtained by replacing each loop line with a vertex joined by edges if and only if the
respective loop lines intersect should be a maximal tree on L vertices.
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Li

L j•

•

Lk

Li1

Li2

Lin
L j1

L j2

L jm

•

•

Figure 3: A graphical representation of the two types of residues discussed here. On
the left is an intersection between lines Li and L j , which we label as (i, j). On the
right is a sliding between the sets of lines Li1 , Li2 , ..., Lin and L j1 , L j2 , ..., L jm , which we
label as (I , J)≡ (i1i2...ink, j1 j2... jmk).

The remaining (L − 2) mutual positivity conditions are handled by slidings. However,
unlike the residues corresponding to the intersections, here new inequalities are generated.
Let us begin by determining what happens when a residue is taken corresponding to a single
sliding, for example the one depicted on the right in figure 3. We start off with two sets of lines
intersecting at two different points, with one common loop that the two intersection points lie
on.

Let I and J be the sets of labels of the two groups of intersecting lines, k = I ∩ J labels the
line in common, and A, A

′
label the intersection points of the groups of lines I and J respectively,

so

A=
⋂

i∈I

Li = Ak + c1Bk ,

A
′
=
⋂

j∈J

L j = Ak + c2Bk .
(78)

In this parametrization the mutual positivity relation between loops in I and J reads

〈AiBiA jB j〉= (c2−c1)〈AkBiBkB j〉> 0 , for all i ∈ I , j ∈ J . (79)

As in the three loop case, the brackets factorize, giving rise to two almost disconnected regions
(see (77). The geometric sliding residue is then calculated by taking the limits (c2− c1)→ 0±,
leaving two regions with opposite orientation. A “positive” region for which 〈AkBiBkB j〉 > 0
for all i ∈ I , j ∈ J and a “negative” region for which 〈AkBiBkB j〉< 0 for all i ∈ I , j ∈ J .

To compute an all-in-one-point cut we must take L−2 sliding residues, each of which splits
the geometry of the boundary in two parts. If we label slidings by the index a = 1, ..., L−2
then we can identify a sub region with fixed orientation through the string s⃗ = {s1, · · · , sL−2},
where sa = ±1 and keeps track of the signs of positively and negatively oriented regions. The
resulting geometry is the union of these regions

Rdc =
⋃

s⃗

Rdc
s⃗ ,

Rdc
s⃗ =A(L)dc ∩
�

A, Bi : sa〈ABiBka
B j〉> 0, a = 1, .., L−2 , i ∈ Ia , j ∈ Ja

	

, (80)

orientation of Rdc
s⃗ =
∏

a

sa ,
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L1

L4

L2

L3•

•

•

c2

c1

L1

L3

L2

•

•
c1

L4

•c2

D1 D2

Figure 4: Graphical representation of the four loop all-in-one-point cut labelled
in (81). The all-in-one-point cut corresponds to drawing a tree configuration, and
collapsing the graph so that only one intersection point remains. The intersections
are given by pairs of intersecting lines Li , L j . The slidings are labelled in the order
they should be done, c1, ..., cL−2. Each slide corresponds to moving one intersection
point along a line in the direction dictated by the red arrow until it meets another
intersection point.

where we recall that A(L)dc is the deepest cut geometry, obtained by trivialising the loop-loop
inequalities of the amplituhedron and sending Ai → A (72). In particular this region depends
explicitly on the sequence of boundaries we took to approach the geometry through the sets
Ia, Ja.

Note that (80) generalises directly to describe the all-in-one-point cut geometry for ampli-
tuhedrons at any number of points. One just needs to add a Y ∈ Gr(k, k+4) into each bracket
and modify A(L)dc appropriately.

Example: Four loop all-in-one-point cuts

Let us illustrate (80) by giving an explicit example at four loops. Each 4 loop all-in-one-point
cut is given by 3 intersections and 2 sidings. Denoting the intersection between lines Li and
L j by (i, j) and a sliding between the sets of lines I and J as (I , J), we explore the cut

{(1,2), (1,3), (1,4) ; (12, 13), (123,14)} , (81)

represented in Figure 4a. From (80), the resulting geometry is given by a union of four regions:

R1(D1) = A(L)dc ∧ 〈AB2B1B3〉> 0 ∧ 〈AB2B1B4〉> 0∧ 〈AB3B1B4〉> 0 , + ,

R2(D1) = A(L)dc ∧ 〈AB2B1B3〉< 0 ∧ 〈AB2B1B4〉> 0∧ 〈AB3B1B4〉> 0 , − ,

R3(D1) = A(L)dc ∧ 〈AB2B1B3〉> 0 ∧ 〈AB2B1B4〉< 0∧ 〈AB3B1B4〉< 0 , − ,

R4(D1) = A(L)dc ∧ 〈AB2B1B3〉< 0 ∧ 〈AB2B1B4〉< 0∧ 〈AB3B1B4〉< 0 , + ,

(82)

where A denotes the final point that all loops intersect, and the orientation of the regions is
indicated on the right by a ‘+′ or ‘−′. In particular, R1, R4 have the same orientation and R2,
R3 have the same orientation but opposite to R1, R4.

We see that this four loop all-in-one-point cut geometry has an internal boundary at
〈AB2B1B3〉= 0 and external boundaries at 〈AB2B1B4〉= 0, 〈AB3B1B4〉= 0. The corresponding
multiple residue has poles in these positions.
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Recall that at 3 loops all possible ways of reaching the all-in-one-point cut configuration
result in the same geometry (77). At 4 loops on the other hand there are twelve different
possible geometries. They are all equivalent to each other up to permutations. That is they are
all given by (82) after permuting the Bi (permuting B2, B3 in (82) gives back the same geometry
up to swapping the overall orientation and so there are only 12 inequivalent permutations
rather than 24).11 Thus the corresponding action of taking residues on a permutation invariant
object such as the loop integrand yields the same result for all twelve four-loop all-in-one-point
cuts. From 5 loops however there are genuinely different all-in-one-point cuts giving different
results when the corresponding residues are taken on a permutation invariant object.

5 All-in-one-point-and-plane cuts

One of the attractive features of the deepest cut defined in [18] was that its canonical form
was defined by a simple formula at all loops. This was because the all-in-one-point configura-
tion (72) consists of L independent one loop inequalities and no loop-loop inequalities and the
resulting geometry thus factorises. We have seen however that any action of taking consecu-
tive boundary components to reach the deepest cut configuration gives non-unique geometries
which are more involved than (72) and in particular new loop-loop inequalities of the form
〈ABiB jBk〉> 0 are generated, spoiling this factorisation. The presence of these brackets makes
the computation of the canonical form much more challenging and also dependent on the
particular sequence off boundaries taken to reach all-in-one-point configuration.

In this section we will show that despite this complication it can still be possible to find
fairly simple all loop geometries by taking further residues after reaching the all-in-one-point
cut configuration that trivialize all the new 〈ABiB jBk〉 inequalities. The further cuts constrain
the loop lines to all lie in the same plane as well as going through the same point. They are thus
simultaneously all-in-one-point and all-in-one-plane cut configurations. We will thus refer to
them as all-in-one-point-and-plane cuts or point-and-plane cuts for short. They are defined in
terms of the point A which all loop lines go through together with the plane (AP1P2) which all
loop lines lie on. It is useful also to project through the point A and thus reduce the geometry
to 2d, in which case we refer to the plane P instead as a line.

If we project through the common intersection point A, the geometry of the cut correspond
to L points Bi on an oriented line P in P2. Starting at 4 loops, the 〈ABiB jBk〉 inequalities force
some ordering between the points on P. As a practical consequence, this implies that an all-
in-one-point-and-plane cut can itself also have further loop-loop type boundaries at Bi = B j .
Thus taking the residues / boundaries on these effectively reduces the number of free loop
variables further. We call a cut for which we have exhausted all loop-loop type residues a
maximal loop-loop cut. All the maximal loop-loop cuts that we have considered correspond
– up to a permutation of the Bs and an integer factor arising from the number of internal
boundaries taken in reaching there – to the three loop maximal loop-loop cut (which is also
the unique all-in-one-point-and-plane cut)

AL=3
mll =
�

A, P, Bi = P1 + bi P2 : 〈ABi j̄ k̄〉> 0 : i = 1,2, 3 , 1≤ j < k ≤ 4
	

. (83)

We conjecture this to hold in general, that is the maximal loop loop cut always reduces to the
three loop one, AL

mll =AL=3
mll .

In this section we will show how to compute the geometry and the canonical form of the
all-in-one-point-and-plane cut from the amplituhedron. We will start with the 2 and 3 loop
cases, which contain all the main features of the problem. Then we will look at the geometry

11The choice of all-in-one-point cut D2 = {(1,2), (1,3), (2,4) ; (12, 13), (123, 24)} illustrated in figure 4b looks
like a different case at first sight but in fact results in the same geometry as (82) after permuting B1 and B2.
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of the only 2 independent (up to permutations of the loop lines) all-in-one-point-and-plane
cuts at 4 loops, and finally we will define a particular cut at arbitrary loops and compute its
canonical form.

5.1 All-in-one-point-and-plane canonical form at 2 loops

At higher loops one can take further boundaries of the all-in-one-point configuration so that
the lines all lie in a single plane. But at two loops we only have two lines intersecting in a point
so they automatically lie in the same plane. Thus the all-in-one-point and the all-in-one-point-
and-plane cases are identical. Nevertheless it is useful to rewrite the two loop all-in-one-point
case in the same variables we will use at higher loops, namely in terms of a single line P in P2

(after projection through A) on which the Bis lie (each now with 1 degree of freedom).
At two loops the all-in-one-point cut is obtained simply by taking the residue in 〈A1B1A2B2〉

of (91) and is thus given by

A(2)dc =
〈AB1d2B1〉〈AB2d2B2〉〈1234〉3〈Ad3A〉
〈AB114〉〈AB112〉〈AB223〉〈AB234〉

�

1
〈AB134〉〈AB212〉

+
1

〈AB123〉〈AB214〉

�

+ B1 ↔ B2 .

(84)
The deepest cut formula of [18] is however a completely different-looking yet identical formula
for A(2)dc obtained by computing the canonical form of its corresponding geometry (72) (we
recall that at two loops this correctly reproduces the corresponding residue but not beyond).

Following [18], the first step in computing the canonical form is to triangulate the A geom-
etry into regions where the brackets 〈Ai jk〉 have a well defined sign. Let’s derive such a tiling
for the intersection point A = A1B1 ∩ A2B2. Since the intersection point A can occur at any
point along a loop line, the allowed space for A can be computed as the linear combination
A= c1A1 + c2B1, where A1B1 lives in the amplituhedron. Notice, that the intersection point A
is defined up to a sign, so we can fix for example c1 > 0. Solving the inequalities one finds
that the allowed regions for A correspond to 4 twisted cyclic permutations12 of the solution

〈A123〉> 0 , 〈A124〉> 0 , 〈A134〉< 0 , 〈A234〉> 0 . (85)

All these cyclically related A regions are tetrahedra, and their canonical forms ωi(A) (where
we assign the label i = 1 to region (85) and the other values to its cyclic twisted permutations)
can be written as ωi(A) = (−1)iω(A), with

ω(A) =
〈Ad3A〉〈1234〉3

〈A123〉〈A234〉〈A134〉〈A124〉
. (86)

We can now project through A onto a plane not containing A and the remaining geometry
is two dimensional. The configuration of Zi arising from (85) is such that 1,2, 3 form an
anti-clockwise oriented triangle containing 4:

1

3 23∩ 14

4

2

(87)

Now we can analyze the B inequalities

〈AB14〉> 0 , 〈AB23〉> 0 , 〈AB34〉> 0 , 〈AB12〉> 0 , (88)

12Zi → Zi+1 for i = 1,2, 3 and Z4→−Z1.
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which one can see puts B inside the shaded triangle in (87), with vertices {4, 3, (23)∩ (14)}.
For general i after cycling we have that the Bi are in the triangle with edges
(i+2 i+3), (i i+4), (i+1 i+2) and vertices

Wi1 = i+2 ,Wi2 = i+3 , Wi3 = (i+1 i+2)∩ (i i+3) . (89)

For fixed i, our problem now simply reduces to computing the canonical form of two points
B1 and B2 living independently inside the triangle (Wi1Wi2Wi3). Each point Bi thus has the
canonical form of a triangle and we obtain the two loop deepest cut form as

A(2)dc =
4
∑

i=1

(−1)i〈Ad3A〉〈1234〉3

〈A123〉〈A234〉〈A134〉〈A124〉

2
∏

L=1

〈ABLd2BL〉〈AWi1Wi2Wi3〉2

〈ABLWi1Wi2〉〈ABLWi2Wi3〉〈ABLWi3Wi1〉
. (90)

Remarkably, this is indeed equal to (84).
But we now wish to rewrite this further in a way appropriate for the higher loop all-in-

one-point-and-plane cut. So instead of considering the Bi living in 2d, we consider first fixing
a line P and then two points B′1, B′2 living on the 1d line P.

The Jacobian of the transformation from B1, B2 to P, B′1, B′2 is given by

〈AB1d2B1〉〈AB2d2B2〉=
〈AZ∗B

′
1B′2〉〈AZ∗B

′
1dB′1〉〈AZ∗B

′
2dB′2〉〈APdP1〉〈APdP2〉

〈AZ∗P〉3
, (91)

where Z∗ is a fixed element of P3 such that 〈AB1B2Z∗〉 ̸= 0. Notice that the 2-loop deepest cut is
symmetric in B1 and B2, but becomes anti-symmetric in B′1, B′2. This corresponds geometrically
to the fact that switching B1, B2 flips the orientation of the configuration on the right. We will
shortly see how this symmetry is reflected in the amplituhedron geometry in the new variables.
From now on we will drop the primes on the Bis.

The task is now to translate the geometry of two points in a triangle to that of a line through
a triangle and two points on that line. We start by observing that the geometry of a line through
a triangle can be triangulated into 3 regions. These correspond to the combination of the 3
ways in which the line P can intersect the edges of the triangle. However it will turn out
that we also need to consider which side B1 is of B2 (due to the orientation switch mentioned
above) and so we in fact need to split into 6 regions.

Wi,3

Wi,2

Wi,1

B1 B2

P

Wi,3

Wi,2

Wi,1

B2 B1

P

(92)

Let’s consider one of these 6 regions, the one on the left in (92). It is described by the inequal-
ities

〈PWi,1〉> 0 , 〈PWi,2〉< 0 , 〈PWi,3〉> 0 ,

〈BlWi, jWi, j+1〉> 0 , with j = 1, 2,3 , and l = 1, 2 , 〈Wi,2B1B2〉< 0 ,
(93)

with the last inequality ensuring that B1 and B2 are ordered.
Then all 6 configurations can be generated by cyclic permutations of (93) together with

B1↔ B2. We will use p = 1, 2,3 to label the cyclic permutations of (93), with p = 2 corre-
sponding to the case (93).
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The canonical form λi,p(P) corresponding to a line through the triangle is the same for all
p = 1,2, 3 and equal to

λi,p(P) = λi(P) = −
〈PdP1〉〈PdP2〉〈Wi,1Wi,2Wi,3〉
〈PWi,1〉〈PWi,2〉〈PWi,3〉

, with p = 1, 2,3 . (94)

For fixed i and p, the geometry of B1 and B2 corresponds to two points living on the segment
with vertices Ii,p = (Wi,p−1Wi,p)∩ P and Ji,p = (Wi,pWi,p+1)∩ P.

The canonical form of a point B on a segment (I J) in P1 can be written in general as

[I ; B; J] :=
〈JdB〉
〈JB〉

−
〈IdB〉
〈IB〉

=
〈BdB〉〈I J〉
〈BI〉〈JB〉

. (95)

For our application the 1d segment lives in P2 (well really in P3 but we already projected
through A onto P2). We can choose any point to project onto the segment, call this Z∗,

13 then
all the two brackets in the above formula can be viewed as 3-brackets with an additional Z∗
and in turn eventually as 4-brackets with an additional A (so eg 〈BdB〉= 〈Z∗BdB〉= 〈AZ∗BdB〉
etc.)

Then, the canonical form for B1, B2 ordered on the segment (I J), with I < B1 < B2 < J
can be written as

[I ; B1, B2; J] := [I ; B1; J][B1; B2; J] = [I ; B1; B2][I ; B2; J] , (96)

and similarly for arbitrary numbers of ordered Bi on (I J) we define inductively

[I ; B1, .., BL; J] := [I ; B1, .., BL−1; J][BL−1; BL; J] . (97)

Now we claim that the canonical form for two free points B1, B2 in a triangle translates as
follows

2
∏

l=1

〈ABl d
2Bl〉〈AWi1Wi2Wi3〉2

〈ABlWi1Wi2〉〈ABlWi2Wi3〉〈ABlWi3Wi1〉
= λi(P)

3
∑

p=1

�

[Iip; B1, B2; Jip]− [Iip; B2, B1; Jip]
�

.

(98)
Note in particular the minus sign between the canonical forms for the two orderings of B1, B2.
This is because the orientation flips when B1 passes through B2 as discussed below (91).

We can finally put all the pieces together and write the canonical form A(L)dc in terms of
these variables as

A(2)dc =ω(A)
4
∑

i=1

(−1)iλi(P)
3
∑

p=1

�

[Iip; B1, B2; Jip]− [Iip; B2, B1; Jip]
�

. (99)

An interesting aspect of this formula is that each term in the sum has a pole at B1 = B2. For
i, p fixed this represent an internal boundary of the geometry. The sum of the residues over
p though, as expected from (84), is equal to zero, which means that this pole is actually a
spurious one. Geometrically, we have that when the only two points on P coincide the latter
can rotate unconstrained on the pivotal point B1 = B2 and therefore its canonical form will be
zero.

13Note that a natural point to choose for Z∗ is the intersection point of the two edges that P is passing through,
Wi,p. Then the intersection points Iip ∼Wi,p−1 and Jip ∼Wi,p+1 and thus the formulae dramatically simplify.
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5.2 3-loops all-in-one-point-and-plane canonical form

We can now generalize the two loop result to higher loops. To compute the canonical form of
a point-plane cut, we triangulate the A and P geometry in the same way we did for the two
loop case and then we consider the position of Bs on the line P. The general structure of the
canonical form of a specific point-plane cut will depend on the details of how the cut is taken,
but it will always have the general form

A(L)point-plane = 2nIω(A)
4
∑

i=1

(−1)iλi(P)
3
∑

p=1

∑

σ∈SL

cσ × [Iip; Bσ1
, .., BσL

; Jip] , (100)

where cσ = ±1,0 reflecting the orientation (or absence) of a certain ordering of the Bis and
where nI is the number of internal boundaries approached to reach the configuration. So for
example the two loop case (99) takes this form with cid = 1 and c(12) = −1. Turning to the
three loop case then, we find, by direct computation of the residues, that the point-plane cut
is given by (100) with cσ = 1 for all 6 permutations σ ∈ S3. Thus unlike the two loop case, for
this case, the order of the Bls on the line P is not relevant and the canonical form simplifies to
that of the product of three Bls

A(3)point-plane = 2ω(A)
4
∑

i=1

(−1)iλi(P)
3
∑

p=1

3
∏

l=1

[Ii,p; Bl ; Ji,p] . (101)

Let us then see how this arises from the geometry. As we saw in section 4.2, the three loop
all-in-one-point cut geometry is given by (77). In particular, we have a positively oriented
region for 〈AB1B2B3〉 > 0 and a negatively oriented region for 〈AB1B2B3〉 < 0. Now consider
fixing the line P (with B1 and B2 lying on P) and fixing B3. Now consider passing B1 through
B2 on the line P. As we saw in the two loop case the orientation for the geometry involving
B1, B2 will swap, but simultaneously 〈B1B2B3〉 → −〈B1B2B3〉 and so the overall orientation
will also swap (see (77)). The result is no orientation change at all. We are now interested in
the geometry of the internal boundary 〈AB1B2B3〉 = 0 so moving B3 also onto the line P. The
point B3 is free to go anywhere on the line P (inside the triangle). The resulting geometry is
indeed just that of three free points on the line P with the canonical form (101), including the
factor of 2 from taking an internal boundary.

Notice that in this case there are no remaining singularities of the form Bi → B j so A(3)point-plane

also represents what we call a maximal loop-loop cut and 2AL=3
mll :=A(3)point-plane.

5.3 All 4-loop point-plane and maximal loop-loop cuts

We have seen that at 3-loops the all-in-one-point-and-plane cut is unique (101). At 4-loops this
is not true anymore and we can have two types of geometry (modulo permutations) resulting
from approaching the point-plane configuration in different ways. Each will be characterized
algebraically by different coefficients cσ in (100) and geometrically by different ordering con-
straints of the Bs on the line P.

We start with the all-in-one-point cut which is unique up to permutations of the loop lines
and the resulting geometry given by (82). We now consider taking further boundaries of
this geometry so the loops also lie in a plane. There are 3 possible loop-loop boundaries,
〈AB2B1B3〉= 0, 〈AB2B1B4〉= 0 and 〈AB3B1B4〉= 0. We start by looking at the geometry of the
boundary when B3 lies on the line P (on which B1, B2 lie) followed by the boundary of that
geometry found when B4 also approaches P (shortly we will switch the order of in which we
take these boundaries).
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The resulting geometry is of the four points Bi on the line P inside the triangle, with the
following restrictions: B1 is not allowed to be between B2 and B3 and the orientation depends
on the relative position of B1 and the pair B2, B3 (with the position of B4 unconstrained). This
geometry is derived in appendix D.

The cut resulting from this geometry is then given by the general form (100) with

nI = 2 , cσ =











1 , σ = (2,3, 1)� (4) or (3,2, 1)� (4) ,
−1 , σ = (1,2, 3)� (4) or (1,3, 2)� (4) ,
0 , σ = (2,1, 3)� (4) or (3, 1,2)� (4) ,

(102)

where � is the shuffle operation (thus 4 can appear in any position). We have checked this
is indeed correct by explicitly taking the corresponding residues of the 4 loop amplitude and
finding perfect agreement.

Now note that even after taking the all-in-one-point and the all-in-one-plane configuration
there are still uncancelled loop-loop poles at B1 = B2 and B1 = B3, corresponding geometrically
to external boundaries.

Using the very simple residue structure of the ordered points on an interval canonical form,
namely

ResBk→B j
[I ; .., Bi , B j , Bk, Bl ..; J] = −ResBk→B j

[I ; .., Bi , Bk, B j , Bl ..; J] = [I ; .., Bi , B j , Bl ..; J] ,
(103)

one can quickly check that the residue of the four-loop point-plane cut (102) when B1 = B2
or B1 = B3 precisely reproduces the three-loop point-plane cut (101) with appropriate vari-
ables and with weight 4 instead of 2 (since this time we approached two internal boundaries,
〈AB2B1B3〉 = 0 and 〈AB2B3B4〉 = 0). This implies that the residue corresponding to this 4-
loop maximal loop-loop boundary is equal to 2 times the all-in-one-point-and-plane 3-loop
residue (C.12).

Returning to the all-in-one-point cut, we now consider the only other independent way
of reaching the point-plane geometry (modulo permutation of the loop variables) by taking
〈AB2B1B4〉= 0 by sending B4 to the line P followed by sending B3 to the line P (the other way
around to what we did above). In appendix D we again examine this carefully geometrically.
The end result this time is the geometry of four points Bi unconstrained on the line P but with
the overall orientation dependent on the ordering of B1, B2. The resulting canonical form is
thus given by (100) with

nI = 1 , cσ =

¨

1 , σ = (2,1)� (3, 4) ,
−1 , σ = (1,2)� (3, 4) ,

(104)

as we have confirmed by taking the residues explicitly and comparing.
Note that this time there is a remaining loop-loop residue apparent at B1 → B2 (corre-

sponding to an internal boundary). Taking the residue as above this again leads to the three
loop point-plane result (101) after which no more loop loop residues are present. This final
configuration corresponds to the 3-loop maximal cut Amll with weight 2.

5.4 A cut at arbitrary loop order

We have already seen from the four loop examples of the previous section that the point-plane
cut depends on how you approach the configuration. However one can give specific ways of
approaching the point-plane geometry at any loop order and find the resulting cut. So we
conclude this section by giving precisely such an example of a cut that can be computed at
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arbitrary loop order. This means that we are now specifying an ordered set of residues and
giving a closed formula for the result. The particular case is a generalisation of the second
4-loop case considered in the previous subsection.

We start defining what we call the simplest all-in-one-point cut. In this all loop lines first
intersect the line A1B1 and then they all slide to the same intersection point in the same order
as their labeling. The geometry of this boundary at L loops can be obtained from (E.4) and is
given explicitly in appendix E.

After taking the above all-in-one-point cut we then constrain all loops to lie on the
same line P, first B1, B2 then BL , BL−1, .., B3 thus taking the ordered series of boundaries
{〈AB2B1BL〉= 0, 〈AB2B1BL−1〉= 0, · · · , 〈AB2B1B3〉= 0}.

Carefully examining the resulting geometry as is done explicitly in appendix E, we arrive
at the final geometry corresponding to this point-plane cut. It is given by L points Bi lying
on the line P, with B3, BL unconstrained and with B1 always lying between B2 and all of the
points B4, .., BL−1. The orientation of the geometry depends on the relative order of B1, B2.
The resulting canonical form at arbitrary loop order is thus

A(L)point-plane = 2
4
∑

i=1

ω(A)
3
∑

p=1

λi,p(P)[Ii,p; B3; Ji,p][Ii,p; BL; Ji,p]

×

�

[Ii,p; B2, B1; Ji,p]
L−1
∏

l=4

[B1; Bl ; Ji,p] + (−1)L−1[Ii,p; B1, B2; Ji,p]
L−1
∏

l=4

[Ii,p; Bl ; B1]

�

.

(105)

We tested (105) by computing this simplest maximal loop-loop residue up to 7 loops from the
explicit from of the amplitude obtained in [22] and found complete agreement. We see that
this point-plane cut has further poles when Bl → B1. We have checked up to 5 loops that taking
further residues in these poles eventually leads to the 3 loop point-plane cut (101). Indeed
our investigations so far indicate that after taking any all-in-one-point-and-plane geometry at
any loop order, there are always L−3 boundaries of the form Bi → B j remaining. After further
taking these boundaries we are then always lead to the three loop point-plane geometry (101).
It might be possible to prove this starting from the explicit all-in-one-point geometry (80).

6 Conclusions

We summarise the main points of the paper and point out topics for further work.
We began by observing that non-vanishing maximal residues of loop amplitudes are not

always ±1 as has generally been assumed, but can take arbitrary values in Z, apparently con-
tradicting the fact that the loop amplituhedron is a positive geometry. We found the source
of this apparent contradiction geometrically to be the existence of internal boundaries in the
geometry where two regions of opposite orientation touch. This minimally requires includ-
ing an extra term in the recursive definition of the canonical form to take into account these
internal boundaries (22). In all the examples we have found, the internal boundaries arise
from loop-loop propagators factorizing into the product of two factors. Algebraically these are
examples of composite residues discussed in this context in [9] and it would be interesting to
explore the relation between composite residues and internal boundaries in more detail.

As well as internal boundaries we have also stressed another under emphasised feature
of the boundary structure of the amplituhedron and multiple residues, namely the simple
fact that multiple-residues and corresponding multiple boundaries are non-unique. On the
algebraic side a multiple residue is defined as an (ordered) sequence of simple residues. In
the same way, on the geometrical side the relevant quantity one must use is ‘boundaries of
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boundaries of...’ rather than ‘codimension k boundaries’. It would be interesting to revisit
previous computations of the boundary structure of the loop amplituhedron, and in particular
its genus, for example [16], taking into account both internal boundaries and the above non
uniqueness of codimension k boundaries.

These two features of the amplituhedron, internal boundaries and ambiguity of multiple
boundaries, come into sharp focus when investigating the deepest cuts of [18]. The all loop
formulae for these cuts described there is not obtainable directly by taking multiple single
residues of the amplituhedron due to the presence of internal boundaries. We have shown
that nevertheless all-loop formulae can be obtained. They will inevitably depend though on
the details of the cut taken (that is the precise sequence of simple residues taken) and they will
in general contain further loop-loop poles after reaching the all-in-one-point cut configuration.
We give an example of an all loop formula for a particular all in plane and point cut. It
would be fascinating to obtain a general formula taking as input the details of the cut taken
and as output the corresponding canonical form. In general it seems that, taking loop-loop
type residues there are always available more loop-loop type poles (or boundaries) until one
eventually reaches a configuration with just three loop lines (so all other loop lines coincide
with one of these three) intersecting in a point and lying in a plane. This is arguably then
the true ‘deepest cut’ or ‘maximal loop-loop cut’ one can take. That is to say it is the maximal
cut involving only loop-loop type poles. It has a universal form given by the three loop all in
plane and point cut, but with an integer valued coefficient related to the number of internal
boundaries one takes in arriving there.

The four-point planar amplitude integrand in N = 4 SYM (and its closely related half
BPS correlator) is known to ten loops using various graphical rules together with correla-
tor insights [22]. There have also been investigations o it directly using amplituhedron in-
sights [23–25]. A key question in this context then is whether the above all-loop cuts can be
used practically to actually compute the 4-point amplitude/correlator at higher loops. Tak-
ing maximal residues (eg first the all-in-one-point cut, then further external cuts) yields a
vast amount of information about the amplitude. It also has the tantalising chance of being
a constructive approach: rather than using a huge basis of graphs and determining their co-
efficients, most of which are zero, it might be possible to use the cuts to construct only the
relevant graphs and non-zero coefficients with which they appear.

Although we have focused on 4 points, the all-in-one-point cut and more general loop-loop
cuts are largely independent of the number of points, and also the MHV degree, since they
involve only the mutual geometry between loop lines rather than the details of the external
geometry. There has been some nice recent progress in computing the amplitude for arbitrary
multiplicity directly from the loop amplituhedron [14, 26–28]. Points worthy of note in the
current context are that taking the maximal multiple residues involving loops at higher points
yields leading singularities of amplitudes – rational coefficients – which have been extensively
analysed and are given by Yangian invariant Grassmann integrals [9,29]. Furthermore in the
works [4, 5] a method for extracting a list of the physical amplitude’s branch points from the
amplituhedron is suggested. Here the boundaries are derived by intersecting the closure of
the amplituhedron with the boundary components corresponding to vanishing brackets of the
form 〈ABi j〉, 〈AiBiA jB j〉. It would be extremely interesting to revisit both the above points
using the insights and technology developed here.

Unlike positive geometries, the space of generalised positive geometries is closed under
union: regions that are triangulated by GPGs will be GPGs. This then suggests they might be
a better arena to seek a direct characterisation – that is a simple straightforward answer to the
question ‘is the following region a GPG or not’ – than PGs. In particular it seems clear that
all multi-linear geometries are GPGs, and their canonical form can be computed algorithmi-
cally via cylindrical decomposition. Nicely all Grassmannian-type geometries, the type seen in
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physics, are multi-linear geometries and thus GPGs. But this is not the most general class and
the most general classification needs more investigation.

The generalisation of positive geometry to include internal boundaries also suggests the
utility of a further generalisation to weighted positive geometries where instead the weights
contain the information about internal boundaries, and the canonical form has a much more
natural definition (36). This concept also makes certain proofs very direct since one can add
two WPGs together without first making sure they are disjoint (see eg the proof of triangula-
tions of positive geometries in section 3.5).

In [2, 30] the geometry of the log of the MHV amplitude is considered and defined as a
union of geometries with negative mutual positivity condition 〈AiBiA jB j〉 < 0. One of these
has negative mutual positivity condition for all i, j and its canonical form is equal to the ampli-
tuhedron canonical form. The latter is the only term in the log of the amplitude surviving the
all-in-one-point cut and therefore the all-in-one-point cut of the amplitude and the log of the
amplitude are the same. The log of amplitude should most naturally be described by a WPG.

We believe that the above insights will also have utility in the increasing number of wider
applications of positive geometry concepts in physics beyond the amplituhedron. One closely
related case is the momentum amplituhedron. For the tree-level momentum amplituhe-
dron [31] a lot is known about its boundary stratification [32,33] and its Euler characteristic
has been proven to be equal to one [34], a strong indication that the geometry is free from
internal boundaries. However, despite the very solid understanding achieved at tree level,
finding the geometry of the loop momentum amplituhedron remains an open problem. In this
case we expect internal boundaries to appear and the language of WPGs could give the right
framework to define a loop momentum amplituhedron. Also in the search for a non-planar
amplituhedron interesting ideas involving the sum of geometries over different orderings have
been explored in [35, 36] and might benefit from being viewed as weighted positive geome-
tries. Other wider applications of positive geometry which one could revisit include [37–44].
Similarly weighted positive geometry may provide the right mathematical framework to deal
with cosmological correlators, which contrarily to the wavefunction of the universe described
by the cosmological polytopes [45,46]s, do not currently have a geometrical description. Their
maximal residues are not+/- 1 and they naively appears as a weigheted sum of canonical forms
of cosmological polytopes (P. Benincasa, private communication).
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A Inducing orientations on boundary manifolds

Here we would like to review how given an oriented manifold one can derive the induced
orientation of the boundary. An oriented manifold M is oriented if it posses a continuous top
differential form O that is always non-vanishing in M. The orientation is then equivalently
defined by this volume form modulo positive scaling. Suppose then M has a boundary ∂M
of codimension one. The orientation ω∂ induced by O on ∂M will be the projection of O on
∂M. We will now define what we mean by projection. Let the boundary be defined by f = 0
with f > 0 inside and f < 0 outside the region (at least near by). Then O∂ is defined simply
as

d f ∧O∂ =O|∂M . (A.1)

Note that the standard convention in math literature differ by a sign, that is d f represents an
outward pointing differential. We make this choice so that the segment x > 0 with positive
orientation form O(x) = dx has orientation O|x=0 = 1. In this way the canonical form of the
positively oriented segment is Ω(x > 0, dx) = dx

x , in fact this form satisfies

Resx=0

�

dx
x

�

= O|x=0 = 1 . (A.2)

B Relation of generalised positive geometries to the globally ori-
ented canonical form

The globally oriented canonical form was defined in [11] to obtain the square of the super
amplitude out of the geometry of the squared amplituhedron. The interior of the squared
amplituhedron consists of several disconnected components so the first problem is to define
the relative orientation of these components. The second problem is that the square of the
super-amplitude has non-normalizable maximal residues and therefore can not be possibly in-
terpreted as a canonical form of a positive geometry. We solved both problems by noticing that
the GCD algorithm (see [11,20]) correctly reproduces the canonical form of the squared am-
plituhedron. The GCD algorithm works in coordinates, that is on a Rkm patch of the oriented
Grassmannian using the tiling property of canonical forms. The orientation of the subregions
given by the GCD are fixed by the algorithm as the global orientation of the coordinate patch.
Then it gives the result as the sum of the canonical forms of the positive geometries triangu-
lating the region. We then defined the oriented canonical form as the sum of the canonical
form of the regions triangulating the squared amplituhedron.

With the new concept we introduced in this paper, we can simply say then that the squared
amplituhedron is a GPG with the orientation fixed by the global orientation of the oriented
Grassmannian. The canonical form of a generalized positive geometry X≥0 in an orientable
space X with orientation coinciding with the orientation of X is equal to its globally oriented
canonical form.

C Three loop internal boundary and its maximal residues

Here we consider taking further residues of the all-in-one-point cut (68) to eventually arrive
at the leading singularities. Then we will consider the same sequence geometrically. Indeed
in [21] such maximal residues were considered leading to a final configuration in which all
loop lines intersect external twistors as well as intersecting each other at a single point A.
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Specifically we consider the case where loop line L1 intersects Z1 and L2, L3 intersect Z2.
We here show that the resulting residue depends on the path taken. Furthermore if the path
taken involves taking a residue in 〈AB1B2B3〉= 0 first, then the resulting maximal residue has
magnitude 2 suggesting that 〈AB1B2B3〉= 0 corresponds to an internal boundary.

The two routes we consider to reach the above configuration are as follows. For route 2
we first take further residues of the all-in-one-point cut (68) in the following order

〈AB112〉= 0 , 〈AB114〉= 0 , 〈AB212〉= 0 , 〈AB223〉= 0 . (C.1)

This corresponds to intersecting line L1 with the edge Z1Z4 and then with Z1 followed by in-
tersecting L2 with the edge Z1Z2 and then to Z2. In the process the pole 〈AB1B2B3〉 → 〈A12B3〉
and so the final step is to take residues in this pole 〈A12B3〉 = 0 followed by 〈A23B3〉 = 0
corresponding to L3 intersecting Z1Z2 and then sliding to Z2. We take the residues explicitly
by parametrizing the Bi as follows (with Z∗ an arbitrary twistor)

B1 = c1Z4 + Z1 + d1Z∗ ,

B2 = c2Z1 + Z2 + d2Z∗ ,

B3 = c3Z1 + Z2 + d3Z∗ ,

(C.2)

and considering the residues at zero in d1, c1, d2, c2, d3, c3 in that order. The residues are
straightforward to compute and can be done covariantly, for example:

Res
d1=0, c1=0

�

〈AB1d2B1〉
〈AB114〉〈AB112〉

�

=
−1
〈A214〉

. (C.3)

Only the displayed term in (67) out of the 24 total terms survives this sequence of residues
and it produces the final result

−
〈1234〉3〈Ad3A〉

〈A123〉〈A124〉〈A134〉〈A234〉
= −

dadbdc
abc

, (C.4)

where on the right hand side we parametrise the point A as

A= Z1 + aZ2 + bZ3 + cZ4 . (C.5)

This is the canonical form of a tetrahedron with vertices Zi and is inline with the prediction
of [21]. Indeed the mutual intersection point A is now the only remaining freedom and restrict-
ing the amplituhedron geometry to this configuration results in the tetrahedron. However as
we saw in the simple example in the introduction, simply restricting the geometry to a high
codimension boundary will not always give the right answer and the precise order in which
one takes the residues can be important.

For route 2 therefore we change the order in which we take the residues on the all-in-one-
point cut (68). We first take a residue in the pole 〈AB1B2B3〉 making L3 coplanar with L1 and
L2. Then proceed taking residues as previously in (C.1) moving B1→ Z1 and B2→ Z2. Then
finally we take a residue as B3→ Z2. Explicitly then, this time we parametrize the Bi as follows

B3 = c3B1 + B2 + d3Z∗ ,

B1 = c1Z4 + Z1 + d1Z∗ ,

B2 = c2Z1 + Z2 + d2Z∗ ,

(C.6)

and take the residues at zero in the order d3, d1, c1, d2, c2, c3. The first residue is

Res
〈AB1B2B3〉=0

�

〈AB3d2B3〉
〈AB1B2B3〉

�

= −dc3 , (C.7)
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and then use similar results to (C.3) before finally taking the residue in the parameter c3. This
time two terms in (67) survive, the displayed term together with the term

〈Ad3A〉
∏3

i=1〈ABid
2Bi〉〈1234〉3 〈23AB1〉

〈12AB1〉 〈12AB3〉 〈14AB1〉 〈23AB2〉 〈23AB3〉 〈34AB1〉 〈34AB2〉 〈AB1B2B3〉
. (C.8)

Note that this term only survives because a required pole 〈12AB2〉 appears from the pole in
〈12AB3〉 after the residues in d3 = 0, d1 = 0, c1 = 0 have been taken. Since there are two terms
now surviving, the final result turns out to be twice (C.4)

−
2〈1234〉3〈Ad3A〉

〈A123〉〈A124〉〈A134〉〈A234〉
= −2

dadbdc
abc

. (C.9)

Now the final configuration of these two routes is exactly the same in both cases:
B1 → Z1, B2, B3 → Z2 and yet the results differ by a factor of 2. We thus clearly see the
importance of path dependence when taking residues. We will shortly see that path depen-
dence can give different results for the all-in-one-point cut itself (rather than just when taking
further residues). Furthermore, taking three further residues as a, b, c → 0 clearly gives us a
maximal residue of magnitude 2 indicating that there is an internal boundary present. Let us
then consider this geometrically.

We can now redo the above computation geometrically by taking boundaries of the all-in-
one-point cut geometry (77) and using our formula of the canonical form of a GPG (22). To
do this, we parametrise A and Bi just as in (C.5) and (C.6)

B3 = c3B1 + B2 + d3Z∗ ,

B1 = c1Z4 + Z1 + d1Z∗ ,

B2 = c2Z1 + Z2 + d2Z∗ ,

A = Z1 + aZ2 + bZ3 + cZ4 .

(C.10)

Then take boundaries in the same order with which we took residues following (C.9)

d3 = 0 , d1 = 0 , c1 = 0 , d2 = 0 , c2 = 0 , c3 = 0 . (C.11)

The first boundary corresponds to the above internal boundary 〈AB1B2B3〉 = 0. Therefore,
from the recursive definition of the canonical form in the presence of internal boundaries (22),
the canonical form of the all-in-one-point cut geometry satisfies

lim
d3→0

d3

�

Ω(Rdc
1 ) +Ω(R

dc
2 )
�

= 2dd3 ∧Ω
�

Rdc|〈AB1B2B3〉=0

�

. (C.12)

This simply means that the residue, d3 = 0, on the canonical form determined by the inequal-
ities describing the geometry of the all-in-one-point cut (74), is equal to twice the canonical
form of the interior boundary, i.e. the canonical form determined by the inequalities (70) with
B3 = B1 + a3B2.

Continuing with the remaining boundaries, the final geometry is described by the following
set of inequalities,

Rfinal : a < 0 , b > 0 , c > 0 . (C.13)

The remaining residues were all on external boundaries, therefore the canonical form of
the final region is 2Ω(Rfinal), where the factor of two comes from the internal boundary
residue (C.12). The final inequalities describe a tetrahedron with vertices {Z1,−Z2, Z3, Z4}
and therefore the final canonical form is in precise agreement with (C.4).

We see that the internal boundary at 〈AB1B2B3〉 = 0 is key to obtaining the correct lead-
ing singularity from the geometry. Just as we saw algebraically above, it is also possible to
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reach the same final loop configuration by only going to consecutive external boundaries. An
example of this would be to follow the residues described in (C.2) geometrically. Then the
final canonical form would be, up to an overall sign, the canonical form of the tetrahedron
without the factor of two, as predicted in [21]. We see that the precise sequence of codi-
mension 1 boundaries taken to approach higher codimension boundaries starting from the
all-in-one-point cut configuration can give different results. At higher loops this is also true
for the all-in-one-point cut itself (rather than just its maximal residues as here).

D Four loop point-plane boundary geometry

We here examine the geometry of the loop-loop boundaries of the four loop all-in-one-point
cut (82). We start by the boundary when B3 lies on the line P = B1B2 followed by the boundary
of that geometry when B4 also approaches P. We observe that the regions R1 and R2 of (82)
touch on 〈AB2B1B3〉= 0 as do R3 and R4. Since the orientations of R1 and R2 are opposite as
areR3 andR4, this is an internal boundary. Thus the geometry of the (internal) amplituhedron
boundary 〈AB2B1B3〉= 0, with B3 living on B2B1, is given by R12 ∪R34 where

R12 = A(4)dc ∧ 〈AB2B1B4〉> 0∧ 〈AB3B1B4〉> 0|B3∈B2B1
, + ,

R34 = A(4)dc ∧ 〈AB2B1B4〉< 0∧ 〈AB3B1B4〉< 0|B3∈B2B1
, − .

(D.1)

Here R12 is positively oriented (indicated by the +), while R34 is negatively oriented. Notice
that both of these regions require B1 to be on the same side of B2 and B3. In other words B1
can not lie between B2 and B3. Further the orientation depends which side of B2, B3, B1 is on.
Then after we send B4 to the line P, we approach another internal boundary, with no further
constraints on where B4 can lie. We thus conclude that the geometry is of the four points Bi
on the line P inside the triangle, with B1 not allowed between B2 and B3 and the orientation
depending on the relative position of B1 and B2, B3.

We can check the geometry more carefully by exploring the boundaries of (D.1) explicitly.
To do this we make the constraint 〈AB1B2B3〉 = 0 explicit by expanding B1 as c1B2 + c2B3.
Then (D.1) becomes

R12 = A(4)dc ∧
�

〈AB2B3B4〉> 0∧ c1 < 0∧ c2 > 0
�

∨
�

〈AB2B3B4〉< 0∧ c1 > 0∧ c2 < 0
�

, + ,

R34 = A(4)dc ∧
�

〈AB2B3B4〉> 0∧ c1 > 0∧ c2 < 0
�

∨
�

〈AB2B3B4〉< 0∧ c1 < 0∧ c2 > 0
�

, − ,

(D.2)

and we see this has two external boundaries, c1 = 0 and c2 = 0, and one internal boundary
at 〈AB2B3B4〉 = 0. The two external boundaries correspond to sending B1→ B3 and B1→ B2
respectively. The limit internal boundary 〈AB2B3B4〉 → 0± instead corresponds to sending B4
to the line P. In this case the geometry is described by the union of a positively oriented region
R+1234 and a negatively oriented region R−1234 as

R+1234 =A(4)dc ∧ c1 < 0∧ c2 > 0 , + ,

R−1234 =A(4)dc ∧ c1 > 0∧ c2 < 0 , − .
(D.3)

We clearly see then recalling B1 = c1B2 + c2B3 that B1 cannot line in between the point B2
and B3 and the orientation depends on which side of B2, B3 B1 is on, with the position of B4
unconstrained.

This also reveals that there are still further loop-loop type boundaries we could take even
after doing the point-plane-cut. We could take a residue at c2 = 0 or c3 = 0 corresponding to
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B1 = B2 or B3. The geometry we then obtain corresponds to the 3-loops maximal loop-loop
cut A(3)mll but with weight 4 instead of 2 since this time we approached two internal boundaries
that is 〈AB2B1B3〉 = 0 and 〈AB2B3B4〉 = 0. This implies that the residue corresponding to this
4-loop boundary is equal to 2 times the (C.12) all-in-one-point-and-plane 3-loop residue.

Let’s now go back to the all-in-one-point cut (82) and explore the only other boundary
(modulo permutation of the loop variables), at 〈AB2B1B4〉 = 0. Notice that this time it is an
external boundary since the 4 regions remain distinct. To be very explicit, we can approach
the boundary by parametrizing B1 as c1B2 + c2B4 + c3Z∗ and then taking the limit c3 → 0±

on (82), which becomes

R1 = A(4)dc ∧ c2〈AB2B3B4〉> 0 ∧−c1〈AB2B3B4〉> 0 , + ,

R2 = A(4)dc ∧ c2〈AB2B3B4〉< 0 ∧−c1〈AB2B3B4〉> 0 , − ,

R3 = A(4)dc ∧ c2〈AB2B3B4〉> 0 ∧−c1〈AB2B3B4〉< 0 , + ,

R4 = A(4)dc ∧ c2〈AB2B3B4〉< 0 ∧−c1〈AB2B3B4〉< 0 , − ,

(D.4)

where the region 1 and 3 are positively oriented and 2 and 4 are negatively oriented. Here
the geometry looks very similar to (D.2), but this time c1 = 0 is unconstrained while c2 is an
external boundary. We can see that c1 is free by taking the union of R1 and R3 and expanding
the products into the different sign cases. The same goes for the pair R2,R4 . Because of this
we can actually rewrite the (D.4) as

R13 = A(4)dc ∧ c2〈AB2B3B4〉> 0 , + ,

R24 = A(4)dc ∧ c2〈AB2B3B4〉< 0 , − .
(D.5)

This in turn then has two boundaries, 〈AB2B1B3〉 = 0 and c2 = 0. Setting 〈AB2B1B3〉 = 0
obtained by sending B3 to P is described by the union of a positively oriented region and a
negatively oriented region as

R+1234 =A(4)dc c2 > 0 , + ,

R−1234 =A(4)dc c2 < 0 , − .
(D.6)

This is the geometry of unconstrained points Bi with orientation depending on the relative
order of B1, B2.

This point-plane configuration has a further (internal) loop-loop boundary at c2 = 0 corre-
sponding to the limit B1→ B2 . This boundary then consists of three unconstrained points on
the line B2, B3, B4. This final configuration thus corresponds to the 3-loop maximal cut A(3)mll
with weight 2.

E An all loop point-plane geometry

We here describe in detail the geometry corresponding to the specific all loop point-plane cut
described in section 5.4.

We first take the simplest all-in-one-point cut boundary. In this all loops first intersect the
line A1B1 and then they all slide to the same intersection point in the same order as their
labeling. At L loops this is given by the inequalities (see (E.4))

Rsimplest dc =
⋃

s⃗

Rsimplest dc
s⃗ ,

Rsimplest dc
s⃗ =A dc ∧

� L
∧

a=3

∧

2<i<a

{sa〈ABiB1Ba〉> 0}
�

, orientation=
∏

a

sa . (E.1)
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After taking the above all-in-one-point cut we then constrain all loops to lie in the same plane
by taking the ordered series of boundaries {〈AB2B1BL〉= 0, 〈AB2B1BL−1〉= 0, · · · , 〈AB2B1B3〉= 0}.
To do this, we will parametrize all loops, but B1 and B2, as Ba = B1+ baB2+ caZ∗ and we will
take the limit ca → 0±. We start by approaching the boundary 〈AB2B1BL〉. What we obtain
after this first limit is that for all i

sL〈ABiB1BL〉> 0→ sL bL〈ABiB1B2〉= −sLsi bL < 0 . (E.2)

Since this inequality must hold for all i we have that all si , apart from sL must be equal and
we can therefore define a single sign s as

s := sL−1 = · · ·= s3 . (E.3)

Moreover, we can see that bL is actually unconstrained. In fact, since for sL > 0 and sL < 0 we
have the same orientation, (E.2) reduces to bL > 0∨ bL < 0. The boundary geometry is then
given by

Rsimplest dc|〈A,B2B1BL〉=0 =Rsimplest dc
s=1 |〈A,B2B1BL〉=0 ∪R

simplest dc
s=−1 |〈A,B2B1BL〉=0 ,

Rsimplest dc
s |〈A,B2B1BL〉=0 =Adc ∧

�

L−1
∧

a=3

∧

2<i< j

{s〈ABiB1Ba〉> 0}

�

, orientation= sL−4 . (E.4)

Now let’s take the residue 〈A21BL−1〉= 0 by taking the limit cL → 0±. What we obtain is that

s〈ABiB1BL−1〉> 0= s〈ABiB1B2〉bL−1 > 0= bL < 0 . (E.5)

This implies that bL−1→ 0− corresponds to an external boundary of the geometry. Notice also
that now the orientation of the two components of the geometry labeled by s = 1 and s − 1
will be given by sL−5. The series of boundaries 〈AB2B1Ba〉= 0 have a clear recursive structure
such that at each step a we get an inequality of the form ba < 0 and the orientation of the
two components is equal to sL−a−3. The recursion ends when we get to the last residue on
〈AB1B2B3〉 = 0, for which no brackets of the form 〈ABiB1B3〉 are present. At that point the
two components 〈AB1B2B3〉 > 0 and 〈AB1B2B3〉 < 0 have the same boundary and opposite
orientation and therefore this represents an internal boundary. We can conclude that the
geometry of the simplest all-in-one-plane-and-point cut corresponds to

Rsimplest dc
s,L |∧

a〈A,B2B1Ba〉=0 =A dc ∧

�

L−1
∧

a=4

ba < 0

�

, (E.6)

where the weight of geometry is equal to 2 due to the internal boundary 〈AB1B2B3〉 = 0
contribution.

At this point it’s straight forward to compute the canonical form of this region for the 4-
point MHV amplitude. The inequalities ba < 0 for a = 4, · · · , L − 1 simply tell us that on the
line P all Ba must be on the same side of B1 as B2. So the full canonical form is as given
in (105).
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