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Abstract

We present a fully differential calculation of lepton pair production, taking into account
the dominant next-to-next-to-leading order QED corrections as well as next-to-leading
order electroweak and polarisation effects. We include all lepton masses, hard photon
emission, as well as non-perturbative hadronic corrections. The corresponding matrix
elements are implemented in the Monte Carlo framework MCMULE. In order to obtain
a numerically stable implementation, we extend next-to-soft stabilisation, a universal
technique based on a next-to-leading-power expansion, to calculations with polarised
leptons. As an example, we show results tailored to the Belle II detector with the current
setup as well as a potential future configuration that includes polarised beams.
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1 Introduction

Thanks to its high luminosity, Belle II is expected to produce about 45 billion ττ events over
its lifetime [1], roughly fifty times more than Belle I [2] and a hundred times more than
at BaBar [3]. This increase in statistics will allow for precision measurements of very rare
Standard Model (SM) decays such as τ → νν̄ℓℓ′ℓ′ or τ → νν̄ℓγ as well as put bounds on
charged-lepton-flavour-violating decays such as τ → ℓℓ′ℓ′. For the SM decays, even differ-
ential measurements in terms of Michel parameters will be possible. In this case, spin-spin
correlations between the two taus of ee → ττ can be exploited [4]. Further, it was recently
proposed to measure the anomalous magnetic moment of the tau to 10−6 by exploiting trans-
verse and longitudinal asymmetries [5].

Hence, the production cross section for ee→ ττ needs to be known as precisely as possi-
ble. For the centre-of-mass (CMS) energy used at Belle II (

p
s ≈ 10.5GeV), QED effects still

dominate even though electroweak (EW) effects start to become relevant. With EW effects,
we mean all contributions due to EW interactions but without contributions due to pure QED.
The Monte Carlo code KKMC [6–8] combines a parton shower with fixed-order EW corrections
at next-to-leading order (NLO). It has been very useful for many experimental studies [1]. The
EW effects were further studied with the SANC program, accounting for the polarisation of the
incoming leptons [9].

However, the improvements expected from Belle II warrant a renewed theoretical effort.
Currently no NNLO-QED calculation for ee→ ℓℓ (with ℓ ̸= e) exists as the necessary two-loop
integrals are not yet known with full mass dependence. However, a recent theoretical interest
in e-µ scattering [10]was inspired by the MUonE experiment [11–13]. As part of this effort, the
necessary integrals were computed in the limit of vanishing electron mass me → 0 [14, 15].
This was very recently used to assemble to the full two-loop matrix element (squared) for
ee→ ℓℓ with me = 0 [16] which is an important part of the full NNLO-QED. Assuming me is
small compared to all other scales of the process, this matrix element can be used to obtain
the full matrix element up to terms suppressed by O(m2/Q2). This massification procedure
was first developed in [17–19] and later extended [20] to the case of a second, heavy mass.

However, the smallness of the electron mass means, that for a first estimate of the NNLO-
QED correction, it is sufficient to just consider the electronic corrections, i.e. those due to
the electron, and ignoring the more complicated mixed contributions. This can be done in a
gauge-invariant manner by assigning different charges for each lepton family and only take
contributions proportional to Q2

ℓ
Q6

e . This was demonstrated at NLO-QED [21] and then ex-
ploited to calculate the dominant NNLO-QED contributions to eµ → eµ [22, 23]. Note that
these Q2

ℓ
Q6

e corrections can be calculated exactly in the electron mass me without approxima-
tion as the virtual corrections are just the heavy-quark form factor [24].

In this paper, we use the MCMULE framework to extend our previous calculation [22] of
eµ → eµ to cover the electronic, or initial-state radiation (ISR), NNLO-QED corrections to
ee → ℓℓ. This means that our calculation includes the full NLO-QED (incl. the Q3

ℓ
Q3

e box
contributions) but only the leading, i.e. Q2

ℓ
Q6

e , NNLO-QED corrections. In particular, we do
not include final-state radiation (FSR, Q6

ℓ
Q2

e) and initial-final interference (IFI, Q3
ℓ
Q5

e , Q4
ℓ
Q4

e ,
and Q5

ℓ
Q3

e) since these are suppressed.1 We further treat the incoming electrons as polarised
and include EW effects at NLO since these are becoming relevant at the energy at which Belle II
operates.

Since the CMS energy of Belle II (
p

s ≈ 10.5GeV) is significantly higher than for MUonE

1While this paper was under review, the full NNLO-QED corrections for eµ→ eµ were calculated [25] by using
the two-loop matrix element with me = 0 [16] with massification. This calculation does indeed show that, at
least for certain observables, the hierarchy of the different contributions holds with the Q6

ℓ
Q2

e remaining dominant.
Extending [25] to ee→ ℓℓ is planned for a future paper.
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(
p

s ≈ 0.4GeV), new numerical problems arise in the real-virtual matrix element, especially in
the case of soft emission. These can be efficiently handled using next-to-soft (NTS) stabilisa-
tion [26], i.e. using a next-to-leading power (NLP) expansion if the emitted photon becomes
soft.

This paper is organised as follows: in Section 2, we briefly summarise the calculation as
implemented in the MCMULE framework. Next, we explain how NTS stabilisation changes
when considering polarised particles in Section 3. Finally, we present some results for tau
production cross sections and asymmetries, both in general and tailored to Belle II in Section 4
before concluding in Section 5.

2 Overview of the calculation

We consider the scattering process

e+(p1)e
−(p2)→ Z/γ→ τ+(p3)τ

−(p4)
�

γ(p5)γ(p6)
	

, (1)

taking into account the full NLO-EW corrections and the electronic NNLO-QED corrections
(Q2
τQ

6
e) but drop all remaining NNLO-QED terms, i.e. FSR (Q6

τQ
2
e) and IFI (Q3

τQ
5
e , Q4

τQ
4
e , and

Q5
τQ

3
e) as discussed before. Since we are well below the Z peak, we can expand the NLO-EW

corrections by considering the masses of the EW bosons (M2
Z , M2

W , and M2
H) much larger than

all other scales of the process (m2
e , m2

τ, s = (p1 + p2)2, and t = (p1 − p3)2). We then expand
in the ratio of the heavy scale to the light scale, taking the first two terms of the expansion,
i.e. keeping all terms O

�

{s, t, m2
e , m2

τ}
�

{M2
Z , M2

W , M2
H}
�

. For simplicity, we write this as an
expansion in 1/MZ . This procedure corresponds to how one expands in an effective field
theory in 1/Λ while taking into account all effects up to and including dimension six. In this
view, the base theory is QED and the underlying theory is not New Physics but rather the full
SM. The resulting theory is a subset of what is often referred to as low-energy effective field
theory (LEFT) [27–29].

Considering only the electronic, i.e. Q2
τQ

6
e , contributions at NNLO-QED means that we

have exactly calculated the main source of logarithms in the electron mass, i.e. those terms
containing α2 log2(m2

e/Q
2) (where Q2≫ m2

e is some other scale). Since we perform this calcu-
lation with full me dependence we do include also power-suppressed terms that are∝Q2

τQ
6
e .

However, since such terms are also contained in the mixed IFI corrections, we have not in-
cluded all logarithms and power-suppressed terms involving me. Similar logarithms in the
tau mass do appear and those ∝ Q6

τQ
2
e (FSR) could be trivially calculated. However, since

m2
e ≪ m2

τ ∼Q2 these logarithms are not expected to be overly large.
Diagrams were generated with FeynArts [30] and QGraf [31] and calculated using Package-

X [32] with full electron and tau mass dependence. Ultraviolet (UV) and infrared (IR) diver-
gences are regularised in d = 4 − 2ε dimensions and the renormalisation is performed in
the on-shell scheme up to NLO-EW and NNLO-QED. For the EW corrections, this means that
we would like to use e, MW , MZ , MH , and mℓ as input parameters [33, 34]. However, it is
beneficial to use GF instead of MW as it has much higher precision

α=
e2

4π
=

1
137.035999084

,

GF = 1.1663787× 10−11 MeV−2 ,

MZ = 91 187.6MeV ,

MH = 125 000MeV ,

me = 0.510998950 MeV ,

mτ = 1 776.86MeV .

(2)
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For technical reason, the matrix elements in MCMULE are expressed through s2
W rather than

GF . s2
W = 0.226202 was obtained through

M2
W s2

W = M2
W

�

1−
M2

W

M2
Z

�

=
α
p

2GF

�

1+∆r
�

, (3)

where the one-loop expression of ∆r was taken from [34] to all orders in 1/MZ but without
including leading higher-order contributions.

The calculation is split into fermionic contributions that are due to fermionic vacuum po-
larisation (VP) effects (Section 2.1) and bosonic ones (Section 2.2).

Once properly renormalised, all matrix elements were implemented in version v0.4.0 of
the publicly available parton-level integrator MCMULE [22,35,36]

https://mule-tools.gitlab.io.

It performs the phase-space integration using the FKSℓ subtraction scheme [37], an all-orders
QED extension of the FKS scheme [38,39]. This allows us to calculate any IR-safe observable
in a fully differential way.

Our calculation is performed with longitudinally polarised electrons (see for example [40,
41]). We introduce a polarisation vector ni along the beam direction for each particle that
takes the form

ni =
�

0, 0,0, Pi

�

,

pi =
�

mi , 0, 0, 0
�

,
(4)

in the particle’s rest frame. Of course ni · pi = 0 in any frame. |Pi| ≤ 1 is the degree of
polarisation that can be chosen as required by the beam parameters. To implement this, we
modify the completeness relation of the spinors to

u(pi)ū(pi) = (/pi +mi)(1+ /niγ5) . (5)

Alternatively, it may be simpler to calculate the matrix element for fully polarised initial states,
i.e. with Pi ≡ si = ±1

Ms1s2 =
�

�A
�

�

2
P1=s1,P2=s2

. (6)

This is for example done in OpenLoops [42, 43] which we will be using in Section 2.2. How-
ever, for most phenomenological applications we are interested in partial polarisation. For the
(parity conserving) QED part, we can recover the general result as

M=
1+ P1P2

2
M±± + 1− P1P2

2
M±∓ , (7)

where −1≤ Pi ≤ +1 can be arbitrary.

2.1 Fermionic corrections

Up to NNLO, all fermionic corrections to our process are due to closed fermion bubbles. They
can be split into leptonic contributions (electrons, muons, and taus) and non-perturbative
hadronic effects (HVP).2 At one-loop, these can be written in terms of the photonic and Z
currents for the lepton flavour ℓ= e,τ

j(ℓ,γ)µ = e v̄(p, mℓ)γµu(p
′, mℓ) , (8a)

j(ℓ,Z)µ = e v̄(p, mℓ)γµ
�

g−PL + g+PR

�

u(p′, mℓ) , (8b)

2One technically also has to include top loops which are very suppressed at the energy scales we consider. Since
the HVP contributions are ultimately extracted from data (see below), they have an inherit uncertainty which is
roughly at the percent level – far bigger than top loops. Hence, the top quark is neglected in this calculation.
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with the momenta properly chosen. The (Zℓℓ̄)-couplings are flavour-universal

g− = −
1
2 − s2

W

sW cW
and g+ =

sW

cW
. (9)

The (renormalised) one-loop amplitude for the fermionic vacuum polarisation can be divided
into three parts

A(1)vp, f = Σrenorm.
γγ, f

+ Σrenorm.
γZ , f

+ Σrenorm.
γZ , f

+ Σrenorm.
Z Z , f

+O
�

1

M4
Z

�

=A(1)
γγ,vp, f +A(1)

γZ ,vp, f +A(1)Z Z ,vp, f +O
�

1

M4
Z

�

=
1
s2

j(e,γ)
µ j(τ,γ)

µ Σrenorm.
γγ, f (s) +

1

s
�

s−M2
Z

�

�

j(e,Z)
µ j(τ,γ)

µ + j(e,γ)
µ j(τ,Z)

µ

�

Σrenorm.
γZ , f (s)

+
1

�

s−M2
Z

�2 j(e,Z)
µ j(τ,Z)

µ Σrenorm.
Z Z , f (s) +O

�

1

M4
Z

�

,

(10)

where the transversal fermionic self-energies Σrenorm.
i j, f are renormalised in the on-shell scheme

with the conditions [34]3

Σrenorm.
γγ (0) = 0 , Re

�

Σrenorm.
Z Z (M2

Z)
�

= 0 , Σrenorm.
γZ (0) = 0 , Re

�

Σrenorm.
γZ (M2

Z)
�

= 0 . (11)

Fermionic contributions due to other particles in the EW sector (such as the Higgs) are sup-
pressed by at least O(1/M4

Z) and hence already dropped. Corrections due to boson loops are
included in Section 2.2.

For the Z Z term, we extract the part that is O(1/M2
Z) by defining a constant C

A(1)Z Z ,vp, f =
1

M2
Z

j(e,Z)
µ j(τ,Z)

µ C +O
�

1

M4
Z

�

, (12)

that arises from the renormalisation of MZ . Hence, it is determined through the fermionic
part of the (unrenormalised) self-energy ΣZ Z , f (Q2) at Q2 = M2

Z where it can be calculated
perturbatively as it has no kinematic dependence

C =
α

6π

∑

f

(I f
3 )

2 − 2s2
W I f

3 Q f + 2s4
WQ2

f

c2
W s2

W

. (13)

From the renormalisation conditions (11) we also find the explicit expressions for the renor-
malised self-energies [45]

Σrenorm.
γγ (s) = Σγγ(s)−Σγγ(0) = Σγγ(s) ,

Σrenorm.
γZ (s) = ΣγZ(s)−ΣγZ(0)−

s
M2

Z

�

Re
�

ΣγZ(M
2
Z)
�

−ΣγZ(0)
�

.
(14)

3In the interest of clarity we keep the renormalisation condition for the photonic self-energy explicitly in (11)
even though Σγγ(0) = 0 already at the unrenormalised level. For the same reason we also retain Σi j, f (0) in (15).
Here, the fermionic part of the γZ term, ΣγZ , f (0), vanishes as well [44].
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By defining the fermionic VP function Π̂i j [45,46]

Σi j, f (Q
2)≡ Σi j, f (0) +Q2 Π̂i j

�

Q2
�

, (15)

the γγ and γZ amplitudes can be written as

A(1)
γγ,vp, f +A(1)

γZ ,vp, f

=
1
s

j(e,γ)
µ j(τ,γ)

µ Π̂γγ(s) +
1

�

s−M2
Z

�

�

j(e,Z)
µ j(τ,γ)

µ + j(e,γ)
µ j(τ,Z)

µ

��

Π̂γZ(s)−Re
�

Π̂γZ

�

M2
Z

�

��

.
(16)

Using the definitions of alphaQED [46]

Π̂γZ

�

Q2
�

=
1

sW cW

�

Π̂3γ

�

Q2
�

− s2
W Π̂γγ

�

Q2
�

�

, (17)

where the 3 refers to the third component of the isospin current and γ to the QED current, we
arrive at the final expression

A(1)vp, f =
1
s

j(e,γ)
µ j(τ,γ)

µ Π̂γγ(s)

−
1

M2
Z

�

j(e,Z)
µ j(τ,γ)

µ + j(e,γ)
µ j(τ,Z)

µ

�

�

1
sW cW

Π̂3γ(s)−
sW

cW
Π̂γγ(s)

�

+
1

M2
Z

�

j(e,Z)
µ j(τ,γ)

µ + j(e,γ)
µ j(τ,Z)

µ

�

�

1
sW cW

Re
�

Π̂3γ(M
2
Z)− s2

W Π̂γγ(M
2
Z)
�

�

+
1

M2
Z

j(e,Z)
µ j(τ,Z)

µ C +O
�

1

M4
Z

�

.

(18)

Here, all non-perturbative Π̂i j (including Π̂i j(M2
Z)) are taken from alphaQED and can be ob-

tained more or less directly from R ratio data. However, Π̂3γ is sensitive to fermions flavour in a
different way than Π̂γγ, necessitating a flavour recombination. The simplest strategy for this is
assuming that SU(3) f is an exact symmetry which results in Π̂3γ =

1
2 Π̂γγ. alphaQEDc19 uses a

more complicated strategy based on vector meson dominance (VMD) [46]. The perturbative,
leptonic contributions to Π̂i j are included in the usual way by calculating the corresponding
one-loop diagrams.

Beyond NLO, we have to account for QED-VP insertions into loop diagrams. This is done
using the hyperspherical method [47, 48] that was used for µ-e scattering [49] and imple-
mented in MCMULE for µ-e, ℓ-p, and Møller scattering [22,50]. There are further two types of
leptonic self-energy corrections at two loop in QED: the product of two one-loop self-energy
bubbles (“bubble chain”) and the genuine two-loop self-energy that can be obtained from [51].
Since these are fully perturbative, their inclusion is straightforward.

2.2 Bosonic corrections

At NLO, the bosonic corrections are given by two separately divergent types of contributions:
real (R) and virtual (V).

The virtual contribution includes in total about 250 one-loop diagrams. The majority of
them is due to self-energy corrections arising from purely bosonic loops such as W corrections
to the photon propagator (all NLO-EW). The remaining diagrams can be divided into vertex
correction diagrams for the electronic (Q2

τQ
4
e) as well as for the tauonic (Q4

τQ
2
e) part and box

contributions (Q3
τQ

3
e) involving box diagrams with two photons (NLO-QED), one heavy bo-

son (Z , W, H, or Goldstone bosons) and one photon, or two heavy bosons (all NLO-EW). The

6
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latter can still contribute at O(1/M2
Z) even though two heavy boson propagators enter the

calculation. Once the calculation and expansion of the one-loop diagrams is completed, we
renormalise as discussed at the beginning of Section 2.

At NNLO-QED, we have three separately divergent types of contributions: virtual-virtual
(VV), real-virtual (RV), and real-real (RR).

For the electronic corrections, the VV can be obtained from the on-shell renormalised
heavy-quark form factor [24] which is written in terms of harmonic polylogarithms
(HPLs) [52]. This allows for trivial analytic continuation into the time-like region we are
interested in.

We use OpenLoops [42,43] in its standard mode for the RV corrections. While OpenLoops
is extremely stable, its standard mode may not be sufficient for soft or collinear emission, espe-
cially in the case of small fermion masses. To address this issue, we use NTS stabilisation [26].
The basic idea of this method is to switch to an expanded matrix element if the (rescaled) pho-
ton energy ξ = 2Eγ/

p
s drops below a certain cut-off. This cut-off is usually varied between

10−5 and 10−2 to ensure that the final result does not depend on its value.
Below the cut-off, we use a matrix element that is expanded for small photon energies up

to NLP. To do this, we use an extension of the LBK theorem [53, 54] to one loop [55, 56] that
we will discuss in the next section.

3 LBK theorem for polarised particles

Following [55, 56], we will extend the LBK theorem to polarised cross sections at one loop.
We use ξ as the expansion parameter and write the photon momentum as pγ = ξk.

To better understand what happens at one loop, let us first review the changes in the
case of polarised particles in the proof at tree-level where similar results have been obtained
before [57,58]. By splitting A(0)n+1 into contributions from internal and external legs

A(0)n+1 =
∑

i









pγ

Γ ext

pi









+ Γ int

pγ

, (19)

and using gauge invariance, the NTS contribution can be written as [53–56]

A(0)n+1 =
∑

i

Q i

�

1
ξ

ε · pi

k · pi
Γ ext({p})−

Γ ext({p})/k/ε
2k · pi

−
�

ε · DiΓ
ext({p})

�

�

u(pi) +O
�

ξ1
�

, (20)

with the LBK operator

Dµi =
pµi

k · pi
k ·
∂

∂ pi
−
∂

∂ pi,µ
. (21)

When squaring A(0)n+1, we have to consider the interference between the leading-power (LP,
O (1/ξ) at amplitude-level) and NLP (O

�

ξ0
�

at amplitude-level) terms. To do this in the
unpolarised case, we would use the identity

u(pi)ū(pi)/ε/k+ /k/εu(pi)ū(pi)
2k · pi

=
ε · pi

k · pi
/k− /ε= ε · Di

�

u(pi)ū(pi)
�

, (22)

7
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since u(pi)ū(pi) = /pi +mi . In the polarised case, we have to use (5) and (22) gets modified
accordingly

u(pi)ū(pi)/ε/k+ /k/εu(pi)ū(pi)
2k · pi

=

�

ε · Di −
εµkν − ενkµ

k · pi
ni,ν

∂

∂ ni,µ

�

�

u(pi)ū(pi)
�

. (23)

Hence, the matrix element is finally obtained after summing over the polarisation of the photon

M(0)
n+1({p}, k)

=
∑

i j

Q iQ j

�

−
1
ξ2

pi · p j

(k · pi)(k · p j)
+

1
ξ

p j · Di

k · p j
+

1
ξ

p j,µkν − p j,νkµ
(k · pi)(k · p j)

ni,ν
∂

∂ ni,µ

�

M(0)
n ({p})

+O
�

ξ0
�

. (24)

Thus, the calculation of the NTS term at tree-level remains straightforward as we just need to
also calculate the derivatives w.r.t. the polarisation vector.

To extend this discussion to the one-loop level, we use the method of regions [59]. It was
shown in [55], that the amplitude of the soft contribution is

A(1),soft
n+1 = −

∑

i ̸= j

Q2
i Q j

�

iA(0)n

�

�

pi · ε
k · pi
−

p j · ε
k · p j

�

S(pi , p j , k) +O
�

ξ1
�

. (25)

The function S(pi , p j , k) ∼ k can be calculated universally and is presented in [55]. The hard
contribution is closely related to the LBK theorem (24) with one important subtlety related to
the following external leg corrections [56]

A(1)ext,i = pi

pγ

Γ ext + pi

pγ

Γ ext + pi

pγ

δm Γ ext . (26)

The vertex correction to the soft photon emission spoils the basic assumption of the LBK the-
orem that diagrams with internal emission do not contain any 1/pγ poles. Further, the self-
energy correction is technically an external correction and could be expanded using the normal
LBK theorem. Hence, these contributions do not reduce to the non-radiative amplitude. In-
stead, one can show that (26) results in an extra contribution of the form

A(1)ext,i =Q3
i Γ

extε ·H u(pi) , (27)

Hµ =
1
m i
γµ −

pµi
mi(k · pi)

/k−
1

k · pi
γµ/k . (28)

When interfering this contribution with the LP term of (20) we find

M(1)
ext,i =

1
ξ

∑

j

Q j
ε∗ · p j

k · p j
Γ extε ·H u(pi)ū(pi)Γ

ext,† + h.c. (29)

In the unpolarised case, this contribution vanishes after some Dirac algebra. However, if ni ̸= 0,
it does not and instead results in

M(1)
ext,i = −

1
ξ

∑

j

Q3
i Q j

16π2

1
(k · pi)(k · p j)

�

(2n · p j)k
µ − (2n · k)pµj

�

�

∂

∂ ni,µ
M(0)

n −
pµi
mi

M(0),′
n

�

.

(30)
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Figure 1: Convergence of the soft limit at LP and NLP of the dominant one-loop
corrections to e+e−→ ℓ+ℓ−γ. The reference value Mexact is calculated with arbitrary
precision in Mathematica.

Here, we need a modified version of the tree-level matrix element

M(0),′
n = Γ ext(/pi +mi)γ

5Γ ext,† . (31)

We can now write down a version of the LBK theorem that is valid both at one-loop and in the
case of polarised external particles

M(1)
n+1 =

∑

i, j

Q iQ j

�

−
1
ξ2

pi · p j

(pi · k)(p j · k)
M(1)

n +
1
ξ

p j · Di[M(1)
n ]

k · p j

+
1
ξ

pµj (k · ni)− kµ(p j · ni)

(pi · k)(p j · k)

�

∂

∂ ni,µ
M(1)

n +
Q2

i

8π2

�

∂

∂ ni,µ
M(0)

n −
pµi
mi

M(0),′
n

�

��

+
1
ξ

∑

l,i ̸= j

Q2
i Q jQ l

�

pi · pl

(pi · k)(pl · k)
−

pl · p j

(pl · k)(p j · k)

�

× 2S(pi , p j , k)M(0)
n +O

�

ξ0
�

.

(32)

The new term M(0),′
n , while easy to calculate, has severe consequences for the structure of the

NTS approximation. Every other term in (32) is directly related to the reduced process, either
at one-loop (M(1)

n ) or tree-level (M(0)
n ). M(0),′

n , on the other hand, is a new structure that
spoils the elegance of the LBK theorem and its extensions.

We have numerically verified that (32) is correct by taking the limit ξ→ 0 of the real-virtual
matrix element relevant for this process (as shown in Figure 1) and also for µ→ νν̄eγ.

9

https://scipost.org
https://scipost.org/SciPostPhys.15.3.104


SciPost Phys. 15, 104 (2023)

4 Results

To validate our calculation, we have crossed it to eµ → eµ and compared the NLO-EW
with [21] and the NNLO-QED with [22, 23] at the level of the differential distributions. We
found full agreement in both cases.

In the following, we present some results for e+e− → τ+τ− at
p

s = 10.5830052GeV
both without any cuts and tailored to Belle II. We stress that these are just examples and that
MCMULE can calculate any IR-safe observable.

We write the total cross section as

σ = σQED +σEW = σ
(0)
QED +σ

(1)
QED +σ

(2)
QED +σEW , (33)

which is divided into the pure QED and the EW part. The former are further split into
LO (σ(0)QED), NLO (σ(1)QED), and NNLO (σ(2)QED) contributions. Note that we do not split

σEW ≡ σ
(0)
EW + σ

(1)
EW as they turn out to be similar in size. As explained in the next section,

this is the result of a cancellation within the LO-EW contributions.
In the interest of Open Science, all raw data, analysis pipelines, and plots can be found

at [60]

https://mule-tools.gitlab.io/user-library/dilepton/belle.

4.1 Cross section without cuts

We begin by considering the cross section integrated over all of phase space without any cuts.
The relevant K factors are defined as

δK(1) =
σ
(1)
QED

σ
(0)
QED

, δK(2) =
σ
(2)
QED

σ
(0)
QED +σ

(1)
QED

and δKEW =
σEW

σQED
. (34)

We further consider the forward-backward asymmetry in the CMS frame which we denote
with a ∗

AFB(σ) =

∫ π/2
0 dθ ∗τ−

dσ
dθ ∗
τ−
−
∫ π

π/2 dθ ∗τ−
dσ

dθ ∗
τ−

∫ π/2
0 dθ ∗

τ−
dσ

dθ ∗
τ−
+
∫ π

π/2 dθ ∗
τ−

dσ
dθ ∗
τ−

=
σf −σb

σf +σb
. (35)

Following Belle’s convention [61], the angles θτ± are defined w.r.t. the incoming positron.4 At
a given order, AFB is defined to also contain all contributions below it, i.e.

AFB

�

σ
(ℓ)
QED

�

≡ AFB

 

ℓ
∑

j=0

σ
( j)
QED

!

, AFB (σEW)≡ AFB

�

σQED +σEW

�

. (36)

The cross sections and asymmetries are shown in Table 1 for the unpolarised case and the
cases where both electrons are polarised parallel (+) or anti-parallel (−) w.r.t. their direction
of flight with a degree of polarisation of 70% in their rest frames. Note that in the QED case,
parity invariance implies that there are only two independent configurations since

σQED(++) = σQED(−−) and σQED(+−) = σQED(−+) . (37)

4To convert to the more common convention of defining the angle w.r.t. the incoming electron, one would set
θ → π− θ and AFB→−AFB.
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In the EW case, parity is violated but CP is still conserved. Hence,

σEW(+−) ̸= σEW(−+) , but σEW(++) = σEW(−−) , (38)

implying three independent configurations.
The angular distributions used for AFB are shown in Figure 2 for the unpolarised case.

We note that even though the NNLO-QED and EW corrections are similar in size at the level
of dσ/dθ ∗, the latter are much smaller for the integrated cross section. This is because the
NNLO-QED corrections are symmetric while the EW corrections are largely antisymmetric as
can be clearly seen in Figure 2. The dominant antisymmetry of the EW corrections is due to
the coupling structure. Calculation at tree-level (unpolarised) with m = M = 0 shows that
the leading symmetric contribution ∼ cos2 θ is suppressed by (Vf /A f )2 = (1− 4s2

W )
2 ≈ 0.009

compared to the antisymmetric one ∼ cosθ

dσ(0)EW

dθ ∗
τ±
∼

�

cosθ −
V 2

f

2A2
f

cos2 θ + const.+O
�

1

M2
Z

�

�

. (39)

As a result, the integrated cross section σ(0)EW is almost eliminated by a cancellation between
forward and backward scattering

σ
(0)
EW =

�

(−2.516 pb)f + (2.489pb)b
�

︸ ︷︷ ︸

−0.067 pb

dim.-six +O
�

1

M4
Z

�

, (40)

and σEW is dominated by σ(1)EW

σ
(1)
EW =

�

(0.015pb)f + (0.192 pb)b
�

︸ ︷︷ ︸

0.207 pb

dim.-six +O
�

1

M4
Z

�

. (41)

The values in (40) and (41) are given for the unpolarised case. If polarisation effects are taken
into account σ(0)EW and σ(1)EW are similar in size.

Let us also consider the effects of taking further terms in the 1/MZ expansion. If (40) is
extended by dimension-six-squared5, and dimension-eight contributions, we find

σ
(0)
EW =

�

(−2.516pb)f + (2.489 pb)b
�

︸ ︷︷ ︸

−0.067pb

dim.-six +
�

(0.008 pb)f + (0.007 pb)b
�

︸ ︷︷ ︸

0.015pb

(dim.-six)2

+
�

(−0.034 pb)f + (0.033pb)b
�

︸ ︷︷ ︸

−0.001 pb

dim.-eight +O
�

1

M6
Z

�

= −0.053pb .
(42)

From this it is clear that at the differential level the expansion is perfectly justified. However,
due to the aforementioned antisymmetry of the dimension-six term, the total LO-EW cross
section receives sizeable corrections from the dimension-six-squared term. Hence, to avoid
these effects, we include the LO-EW contribution without expansion in 1/MZ .

Note that the zero crossing of the EW corrections in Figure 2 does not happen at exactly
90◦ but is slightly offset due to the small symmetric part in (39).

At LO in QED, AFB is exactly zero as expected, while at NLO in QED, the mixed tauonic-
electronic contribution induces a finite but small asymmetry. This is similar to the NLO-QCD

5This means the contributions where a dimension-six operator was interfered with itself rather than the pure
QED amplitude.
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Table 1: Cross sections and asymmetries for e+e− → τ+τ− up to NNLO-QED and
NLO-EW for all polarisation configurations (e+e−). When the electrons are polarised,
the degree of polarisation is 70% in their respective rest frames. Unless otherwise
indicated, all digits are significant.

polarisation (00)

σ
(0)
QED σ

(1)
QED σ

(2)
QED σEW

σ/pb 771.640 139.286 4.158 0.155

δK /% 18.051 0.457 0.017

AFB 0 0.012 n/a 0.006

polarisation (±±)

σ
(0)
QED σ

(1)
QED σ

(2)
QED σEW(++) σEW(−−)

σ/pb 393.537 72.922 2.537(3) 0.014

δK /% 18.530 0.544 0.003

AFB 0 0.012 n/a 0.006

polarisation (∓±)

σ
(0)
QED σ

(1)
QED σ

(2)
QED σEW(−+) σEW(+−)

σ/pb 1149.744 205.648 5.782(1) 0.105 0.486

δK /% 17.886 0.427 0.008 0.036

AFB 0 0.012 n/a 0.006 0.006

effects resulting in a non-zero AFB for the hadronic t t production [62]. In principle, this would
continue at NNLO in QED. However, the purely electronic contributions considered here are
perfectly symmetric w.r.t. θ ∗τ± and therefore do not contribute to AFB. The EW corrections
are almost perfectly antisymmetric but much smaller than the QED corrections. This means
that the full NNLO-QED corrections will be required to give a meaningful result for AFB.6

However, unless calculation of the QED two-loop matrix elements with full me dependence
becomes available, it will not be possible to do this for the (±±)-polarisation configuration
which requires a helicity flip that cannot be obtained with massification alone.

4.2 Predictions for Belle II

Next, we tailor our calculation to Belle II. The detector is asymmetric since the electron beam’s
energy is higher than the positron beam’s

E(in)e− = 7GeV and E(in)e+ = 4GeV . (43)

We approximate the detector’s geometric acceptance by requiring that the tau leptons are
produced within the geometric acceptance [61]

17◦ < θτ± < 150◦ . (44)

6While this paper was under review, the full NNLO-QED corrections were calculated [25] for eµ→ eµ, albeit
at without polarisation and lower energies where numerical instabilities are less pronounced.
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Figure 2: The angular distribution of the two taus in the final state for an unpolarised
initial state in the CMS frame. Note that the scale changes from linear to logarithmic
at +0.06.

The angular distribution of the outgoing taus is shown in Figure 3. The LO distribution
vanishes below ≈ 53◦ because of the cut on the other particle. However, once real emission is
allowed, the angle can become much smaller. Once again, the EW corrections are similar in
size to the NNLO-QED ones.

The SuperKEKB beams are currently unpolarised which is reflected in our calculation.
However, recent proposals suggest that this could be changed in the future, aiming for 70%
polarisation [63]. To study this case, we consider the ratio between the polarised and unpo-
larised angular distributions of the τ−, both in the lab frame with cuts (θτ−) and the CMS
frame without (θ ∗τ−)

R(∗)(±+) =
dσ(±+)/dθ (∗)

τ−

dσ(00)/dθ (∗)
τ−

−
σ(±+)
σ(00)

. (45)

Note that the first term in (45) is not centred around one but instead around σ(±+)/σ(00).
Hence, we subtract this overall shift to centre R(±+) around zero to make the comparison
between R(++) and R(−+) easier.

R∗ and R are shown in Figure 4. Let us first consider the simpler R∗ (Figure 4a). Since
the outgoing taus are not polarised, R∗ = 0 at LO. At and beyond NLO, this is no longer true
because hard-collinear ISR causes a helicity flip in the emitter.7 With (45) normalised as it
is, adding all polarisations results once again in a flat line, meaning that we have recovered
the unpolarised result. Boosting to the lab frame (Figure 4b) stretches the distributions for
forward emissions (53◦ ≲ θτ− ≲ 120◦) and squeezes them for backward (120◦ ≲ θτ− ≤ 150◦).

7We verified this with a dedicated run where we required that the initial-state emission is harder than
E∗
γ
> 0.2GeV and cos∢

�

p∗e− , p∗
γ

�

> 0.8 in the CMS frame.
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Figure 3: The angular distribution of the two taus in the lab frame for unpolarised
initial states. Note that, because we only considered the dominant NNLO-QED cor-
rections, the σ(2)QED curves for θτ+ and θτ− are identical.

Further, since the cuts (44) mean that hard emission is required for θτ− ≲ 53◦, the effect is
significantly enhanced.

5 Conclusion

We have presented a fully differential calculation of the dominant NNLO-QED and NLO-EW
corrections for di-lepton productions, including fermionic and bosonic corrections. We find
that the EW corrections are of similar size to the NNLO-QED ones for

p
s ≈ 10.5GeV meaning

they are vital for Belle II. To perform this calculation, we have extended the strategy of next-
to-soft stabilisation to polarised observables, which, combined with OpenLoops, allows for a
fast and stable evaluation of the real-virtual matrix element.

All matrix elements were implemented in the parton-level Monte Carlo code MCMULE

which allows the user to calculate arbitrary IR-safe observables. As a first example, we have
calculated differential predictions for Belle II, both for polarised and unpolarised initial states.

Since this calculation only includes the dominant contribution, a natural next step would
be the inclusion of the full set of NNLO-QED corrections, especially when considering asym-
metries such as AFB. The relevant two-loop matrix elements are known in the unpolarised case
for me = 0 [16] but would need to be extended, in a first step, to the polarised case. Finally,
this work will need to be combined with [25] to properly include the numerically delicate
real-virtual corrections. Work to that end is currently in progress.

Should even higher precision be required, resummation is required. Currently, MCMULE is
calculating strictly at fixed order which means that some important logarithmically-enhanced
contributions are not considered beyond NNLO-QED. These can be resummed to all orders us-
ing fragmentation functions (for final state) or parton distribution functions (for initial state).
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Figure 4: The ratios R(∗)(++) in orange and R(∗)(−+) in blue, both in the CMS
frame and in the lab frame. Note that this observable is very insensitive to EW effects
and that the shape of the plots originates from the QED corrections. This means that
we only need to show two out of the four different polarisation configurations.
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For a recent review on this topic, see [64] and references therein. However, this was not done
in the present study as any analytic resummation limits what observables can be calculated.
Further, there is an effort within the MCMULE collaboration to include a YFS parton shower
that is similar to PHOTONS++ [65] and matched to NNLO-QED.
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