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Abstract

We derive the quasiparticle picture for the fermionic logarithmic negativity in a tight-
binding chain subject to gain and loss dissipation. We focus on the dynamics after the
quantum quench from the fermionic Néel state. We consider the negativity between
both adjacent and disjoint intervals embedded in an infinite chain. Our result holds in
the standard hydrodynamic limit of large subsystems and long times, with their ratio
fixed. Additionally, we consider the weakly-dissipative limit, in which the dissipation
rates are inversely proportional to the size of the intervals. We show that the negativity is
proportional to the number of entangled pairs of quasiparticles that are shared between
the two intervals, as is the case for the mutual information. Crucially, in contrast with the
unitary case, the negativity content of quasiparticles is not given by the Rényi entropy
with Rényi index 1/2, and it is in general not easily related to thermodynamic quantities.
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1 Introduction

Distinguishing genuine quantum correlations from statistical ones in quantum many-body sys-
tems is a daunting task. While for bipartite quantum systems in a pure state several computable
quantum information motivated measures can be used to identify entanglement [1–4], this
is more challenging for mixed-state systems. Open quantum systems undergoing dissipative
Lindblad dynamics [5, 6] represent an important example of systems featuring mixed states.
Recently, it has been shown that for one-dimensional free-fermion and free-boson systems it is
possible to describe the dynamics of information-related quantities, such as von Neumann and
Rényi entropies, as well as the mutual information, in the presence of generic quadratic dissipa-
tion [7–9]. This generalizes the well-known quasiparticle picture for entanglement spreading
after quantum quenches in integrable systems [10–12]. Although the Rényi entropies and the
mutual information are not proper measures of entanglement for mixed states [13], it has
been shown in Ref. [8] that even for Lindblad dynamics the mutual information is sensitive to
the presence of correlated pairs of quasiparticles. This is similar to closed quantum systems,
although the dissipation dramatically affects the correlation content of the quasiparticles.

To make a step forward towards understanding entanglement dynamics in open quantum
systems here we focus on the logarithmic negativity, which is a proper entanglement measure
also for mixed states [14–18]. The computation of the logarithmic negativity is in general a
challeging task. It can be computed effectively from the two-point correlation function only
for free-boson systems [19]. For free fermionic ones it requires knowledge of the spectrum of
the so-called partial transpose, which is not a Gaussian fermionic operator [20]. This means
that the computational cost to extract the logarithmic negativity from a fermionic many-body
wavefunction for a system with L sites grows exponentially with L. Very recently, an alterna-
tive definition of negativity (that was dubbed fermionic negativity) has been proposed [21] for
free fermions. This fermionic negativity can be computed from the two-point fermionic cor-
relation functions. The computational cost to determine the fermionic logarithmic negativity

Figure 1: Logarithmic negativity E between two intervals A1 and A2 of equal length
ℓ at distance d embedded in an infinite chain.
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grows only polynomially with L. For this reason here we restrict ourselves to the fermionic log-
arithmic negativity. For generic interacting systems, both the standard and the fermionic loga-
rithmic negativity can be computed with Matrix Product States (MPS) methods (see Ref. [22]
for the standard negativity), at least at equilibrium. Importantly, both the standard and the
fermionic negativity are proper entanglement measures for mixed states (see Ref. [21] for a
careful comparison between them).

The negativity is attracting increasing attention as a tool to characterize universal aspects
of equilibrium and out-of-equilibrium quantum many-body systems (see section 3). Interest-
ingly, it has been shown in Ref. [23] that after quantum quenches in one-dimensional closed
quantum integrable systems, both the standard negativity and the fermionic one become equal
to half the Rényi mutual information with Rényi index 1/2. This has been verified for both
free-fermion and free-boson models. For generic interacting systems it is quite challenging to
build a quasiparticle picture to describe the full-time dynamics of Rényi entropies, although
their value in the steady state can be determined [24–27]. Moreover, recent exact results for
quenches in the so-called rule 54 chain [28], which is a “minimal model” for interacting inte-
grable systems, suggest that Rényi entropies violate the quasiparticle picture paradigm. These
results motivated a conjecture for the growth with time of the Rényi entropies in generic inter-
acting integrable systems [29]. However, Ref. [30] showed that in the early-time regime and
for contiguous subsystems the relation between Renyi-1/2 mutual information and logarith-
mic negativity put forward in Ref. [23] still holds for any local quantum circuit, and therefore
also for interacting integrable systems. Similar results were obtained in CFTs [31].

In the context of open quantum systems subject to a Lindblad dynamics the logarithmic
negativity has not been explored much. Some numerical results were presented in Ref. [7],
suggesting that in the presence of dissipation the negativity is not half of the Rényi mutual
information with Rényi index 1/2, in contrast with closed systems [23]. Here we derive
the quasiparticle picture for the fermionic logarithmic negativity after the quench from the
fermionic Néel state in a tight-binding chain with homogeneous gain and loss of fermions. We
consider the geometry sketched in Fig. 1, focusing on the entanglement between two intervals
A1, A2 of length ℓ and placed at a distance d. The intervals are embedded in an infinite chain.
Our results hold in the standard hydrodynamic limit of long times, large subsystem size, and
large distances, i.e., ℓ, t, d →∞, with the ratios t/ℓ and d/ℓ fixed and arbitrary. The loga-
rithmic negativity decays expontially in time with a rate depending on the gain and loss rates
γ±. Since we consider times of order ℓ, in order to observe a non-trivial time-evolution of
the logarithmic negativity (and not an instantaneous convergence to its stationary value) we
work in the weakly-dissipative hydrodynamic limit, obtained by taking vanishing γ±→ 0, with
fixed γ±ℓ. Our results show that the dynamics of the logarithmic negativity can be described
within the framework of the quasiparticle picture. Specifically, we show that the logarithmic
negativity, and hence the entanglement, is proportional to the number of entangled pairs of
quasiparticles that are shared between the two intervals. Indeed, the structure of our formula
for the logarithmic negativity is the same as that of the mutual information [8]. The contri-
bution of the entangled quasiparticles to the negativity is time-dependent and it vanishes at
long times, again, similar to the mutual information [8]. However, in contrast with the unitary
case [23], this negativity content does not coincide with the Rényi entropy with Rényi index
1/2, and it is not, in general, straightforwardly related to known thermodynamic quantities.

The manuscript is organized as follows. In section 2 we introduce the tight-binding chain
and discuss the treatment of the quench from the fermionic Néel state. In section 2.1 we review
the Lindblad framework for gain and loss dissipation. In section 2.2 we discuss the quasiparti-
cle picture for free systems with quadratic dissipation. In section 3 we introduce the fermionic
logarithmic negativity. As a warm-up, we present in section 4 an ab initio derivation of the
quasiparticle picture for the Rényi entropies [7]. This was obtained already in Ref. [7] using
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the results of Ref. [32], although the alternative derivation that we present here is new and
self-contained. In section 5 we derive the hydrodynamic picture for the logarithmic negativity.
Specifically, in our approach this requires the calculation of the hydrodynamic behaviour of the
moments of ad hoc modified fermionic correlation functions, which are obtained in section 5.2
and Appendix A. Our main result is discussed in section 5.3. In section 6 we benchmark our
numerical results for the moments of the fermionic correlators (see section 6.1) and the log-
arithmic negativity (see section 6.2). We conclude in section 7. In Appendix A we provide
some technical details about the results of section 5.2. In Appendix B we derive the formula
for the negativity in terms of the fermionic correlation matrix for systems with fermion-number
conservation.

2 Quantum quench in the open tight-binding chain

We consider the fermionic chain defined by the Hamiltonian

H =
1
2

L
∑

j=1

�

c†
j c j+1 + c†

j+1c j

�

. (1)

Here c†
j and c j are canonical fermionic creation and annihilation operators with anticommuta-

tion relations {c†
j , cl}= δ jl and {c j , cl}= 0. For simplicity in (1) we assume that L is an even in-

teger. The Hamiltonian (1) is diagonalized by going to Fourier space by defining the fermionic
operators bk := 1/

p
L
∑

j eik jc j , with the quasimomentum k = 2πp/L and p = 0, 1, . . . , L − 1.
The Hamiltonian (1) becomes diagonal as

H =
∑

k

ϵ(k)b†
k bk , with ϵ(k) := cos(k) , (2)

where we defined the single-particle energy dispersion ϵ(k). It is also convenient to define the
group velocity of the fermionic excitations

v(k) := ϵ′(k) = dϵ(k)/dk . (3)

Here we focus on the nonequilibrium dynamics after the quench from the fermionic Néel state
|N〉 defined as

|N〉 :=
L/2
∏

j=1

c†
2 j|0〉 . (4)

Specifically, at t = 0 the system is prepared in |N〉. At t > 0 the chain undergoes unitary
dynamics under the Hamiltonian (1). The fermionic correlation function eC jl is the central
object to address entanglement related quantities in free-fermion systems [33]. This is defined
as

eC jl := 〈c†
j cl〉= 〈Ψ(t)|c

†
j cl |Ψ(t)〉 . (5)

Under the closed-system dynamics implemented by H, the time-dependent correlation func-
tion eC jl(t) [cf. (5)] after the Néel quench is straightforwardly obtained as

eC jl =
1
2
δ jl +

1
2
(−1)l

∫ π

−π

dk
2π

eik( j−l)+2i tϵ(k) . (6)

In the following we consider the thermodynamic limit L→∞, as it is clear by the integration
over the quasimomentum k. It is useful to exploit the invariance of the Néel state under

4

https://scipost.org
https://scipost.org/SciPostPhys.15.3.124


SciPost Phys. 15, 124 (2023)

translation by two sites. Thus, we rewrite (6) as
�

eC2 j,2l eC2 j,2l−1
eC2 j−1,2l eC2 j−1,2l−1

�

=

∫ π

−π

dk
2π

e2ik( j−l) t̂(k) , with j, l ∈ [1, L/2] . (7)

The factor 2 in the exponent in the integral reflects translation invariance by two sites. In (7)
we have introduced the 2× 2 matrix t̂(k) as

t̂(k) =
1
2

�

1+ e2i tϵ(k) −e2i tϵ(k)−ik

e2i tϵ(k)+ik 1− e2i tϵ(k)

�

. (8)

We can conveniently rewrite t̂(k) in terms of Pauli matrices as

t̂(k) =
1
2

�

12 +σ
(k)
−i e2i tϵ(k)

�

, with σ±i := σz ± iσy , (9)

where we introduce the rotated Pauli matrices σ(k)α as

σ(k)α := e−ik/2σzσαeik/2σz , α= x , y, z , (10)

with σα the standard Pauli matrices.

2.1 Lindblad evolution in the presence of gain and loss dissipation

In this work we study the out-of-equilibrium dynamics in the tight-binding chain (cf. (1)) with
fermionic gain and loss processes. We employ the formalism of quantum master equations [5].
The Lindblad equation describes the evolution of the density matrix ρt of the full system as

dρt

d t
= L(ρt) := −i[H,ρt] +

L
∑

j=1

∑

α=±

�

L j,αρt L†
j,α −

1
2

¦

L†
j,αL j,α,ρt

©

�

. (11)

Here, L j,α are the so-called Lindblad jump operators, which are defined as L j,− :=
p

γ−c j

and L j,+ :=
p

γ+c†
j , with γ± the gain and loss rates. Eq. (11) describes single-site incoherent

absorption and emission of fermions which are homogeneous along the chain.
For free-fermion systems it is straightforward to obtain from (11) an equation for the

fermionic two-point function C jl = 〈c
†
j cl〉= Tr(c†

j clρt). The time-evolved matrix C(t) is given
by [8]

C(t) = etΛC(0)etΛ†
+

∫ t

0

dz e(t−z)ΛΓ+e(t−z)Λ†
. (12)

Here Λ = ih − 1/2(Γ+ + Γ−), where h encodes the effects of the Hamiltonian. Eq. (12) is
obtained from (11) by using that dC jl(t)/d t = Tr(a†

j alρt), with L defined in (11), and by
applying Wick theorem (see Ref. [34] for further details). For the tight-binding chain consid-
ered here in (1) we have h jl = 1/2(δ j+1,l + δ j,l+1). In (12), Γ± are L × L matrices describing
gain and loss processes. Here we have Γ±jl = γ

±δ jl , reflecting that gain/loss dissipation acts
separately on the different sites. The diagonal structure of the matrices Γ±jl implies that C jl can

be rewritten in terms of the correlation matrix eC jl(t) describing the quench in the absence of
dissipation, i.e., with γ± = 0. Precisely, one has

C = n∞(1− b)1+ beC , b := e−(γ
++γ−)t , n∞ :=

γ+

γ+ + γ−
. (13)
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Moreover, Eq. (13) suggests that it is convenient to modify the matrix t̂(k) (cf. (8)), introducing
t̂ ′(k) as

t̂ ′(k) = n∞(1− b)12 + bt̂(k) =
1
2

�

2n∞(1− b) + b+ be2i tϵ(k) −be2i tϵ(k)−ik

be2i tϵ(k)+ik 2n∞(1− b) + b− be2i tϵ(k)

�

,

(14)
which can also be written as

t̂ ′(k) =
1
2

�

a12 + bσ(k)−i e2i tϵ(k)
�

, with a := 2n∞(1− b) + b , (15)

where σ(k)−i are defined in (9)-(10).

2.2 Quasiparticle picture for free systems with quadratic dissipation

Our goal is to determine the dynamics of the logarithmic negativity after the fermionic Néel
quench in the tight-binding chain with gain and loss dissipation. Here we review the quasi-
particle picture for free-fermion and free-boson systems in the presence of quadratic dissipa-
tion [8]. The quasiparticle picture for the entanglement dynamics [10–12, 35] can be gener-
alized to describe the dynamics of quantum entropies, such as the von Neumann entropy and
the Rényi entropies, and the mutual information [7–9] in the presence of generic quadratic dis-
sipation [36]. Let us consider the Rényi entropies S(n)A of a subsystem A of length ℓ embedded
in an infinite chain (see Fig. 1). The Rényi entropy of A is given as [8]

S(n)A (t) = ℓ

∫ π

−π

dk
2π

�

s(n),YY
k (t)− s(n),mix

k (t)
�

min(1, 2|v(k)|t/ℓ) + ℓ
∫ π

−π

dk
2π

s(n),mix
k (t) , (16)

where v(k) (cf. (2) for the result in the tight-binding chain) is the fermion group velocity, which
depends on the dispersion relation of the model. Crucially, Eq. (16) holds in the standard
hydrodynamic limit t,ℓ → ∞ with their ratio fixed, which is the regime of validity for the
standard quasiparticle picture for the entanglement spreading after quantum quenches [11,
12, 37]. In the presence of quadratic dissipation one has to take the weak-dissipation limit
γ→ 0, with γℓ fixed, to ensure a nontrivial dynamics. Here γ is the relevant dissipation rate,
which measures the strength of the dissipative processes. For gain/loss dissipation this is the
rate γ± (cf. (11)). The reason for taking the weakly-dissipative hydrodynamic limit is that at
finite dissipation rate and for most dissipators, in the limit t,ℓ→∞ and fixed t/ℓ one obtains
a trivial scaling behaviour because the entropies and the mutual information would converge
immediately to their stationary value, which for the mutual information is zero. In some cases,
it is possible to apply Eq. (16) away from the weak-dissipation limit after redefining the group
velocities v(k) of the quasiparticles and rescaling by an exponential factor the entropies [38].

Let us now discuss the structure of (16). The first term has a similar structure as in the case
without dissipation [11, 12]. In the absence of dissipation s(n),mix

k = 0 and s(n),YY

k do not depend
on time. Thus, Eq. (16) describes a linear growth of the entropies up to t < ℓ/(2vmax), with
vmax the maximum velocity. At asymptotically long times t →∞ S(n)A saturates to a volume-
law behavior. Eq. (16) admits an interpretation in terms of entangled quasiparticle pairs [10].
After the quench, pairs of entangled quasiparticles are created uniformily in the systems. The
quasiparticles travel as free particles. At the generic time t the entanglement between A and
the rest is proportional to the number of shared entangled pairs, i.e., pairs that have one
quasiparticle in A and the other one in the complement of A. The entanglement content of the
quasiparticles, i.e., their contribution to S(n)A is given by the Yang-Yang entropies [37] s(n),YY

k .
The Yang-Yang entropies are determined by the density ρk of the Bogoliubov modes bk

(cf. (2)) that diagonalize the model. The density is calculated over the pre-quench initial state
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|ψ0〉. Specifically, we have

s(n),YY
k :=

1
1− n

ln
�

ρn
k + (1−ρk)

n
�

, with ρk := 〈ψ0|b
†
k bk|ψ0〉 . (17)

Here s(n),YY

k is the density of Rényi entropy of the Generalized Gibbs Ensemble [39–44] (GGE)
that describes local properties of the steady state after the quench.

This scenario changes dramatically in the presence of quadratic dissipation [8]. First, the
new term s(n),mix

k appears. This is purely dissipative and it can be obtained as the density of
Rényi entropies of the full system. Indeed, the first term in (16) cannot contribute to the
entropies of the full system because it describes the contribution of correlated pairs that are
shared between A and its complement. If A is the full system both members of a correlated
pair are within A and hence they cannot contribute. This means that only the second term
in (16) contributes to the full-system entropy. Clearly, in the unitary case the full system
is in a pure state at any time and s(n),mix

k = 0. For free-fermion and free-boson models s(n),mix

k is
straightforwardly extracted from the two-point correlation function in momentum space [8,9].
As it is clear from (16), dissipation affects the correlation between the quasiparticles as well.
First, the same s(n),mix

k appears in the first term in (16). The minus sign reflects that dissipation
diminishes the correlation of the pairs. Moreover, although s(n),YY

k in (16) has the form of a
Yang-Yang entropy (cf. (17)), the density ρk from which it is obtained is no longer that of the
original modes bk. It has been conjectured in Ref. [8] that in the presence of dissipation the
density ρk to be used in (17) is that of the eigenmodes βk of the map L∗, which is the dual
map — the one acting on observables — of the generator L appearing in Eq. (11). In the
weak-dissipation limit βk generically satisfy [8]

L∗(βk) = −
�γk

2
+ iϵ(k)

�

βk , (18)

where ϵ(k) is the dispersion of the model without dissipation, and γk are dissipation rates
that are easily calculable. Both ϵ(k) and γk are real. For the case of free fermion with gain
and losses, Eq. (18) simplifies because βk coincides with the Fourier transformed fermionic
operators ck. Indeed, one can easily check that Eq. (18) is satisfied with γk = γ+ + γ− and
ϵk = cos(k). The first term originates from the dissipative part (cf. second term in (11)),
whereas the second one from the unitary part of the Liouvillian (first term in in (11)). Notice
that for gain and loss dissipation Eq. (18) holds also at generic γ±, i.e., away from the weak-
dissipation limit. However, Eq. (18) is expected to be valid in general in the weak-dissipation
limit because the eigenvectors and eigenvalues ofL∗ should be linear in the dissipation rates, in
the limit of weak dissipation. Moreover, in the absence of dissipation, βk become the fermionic
operators that diagonalize the system, and the eigenvalue of L∗ becomes −iϵ(k).

Now, s(n),YY

k in (16) is the Yang-Yang entropy (17) calculated from the density ρk of
the modes βk, i.e., ρk = 〈ψ0|β

†
kβk|ψ0〉. In contrast with the density of the modes bk,

which in the unitary case is time-independent, the density of βk is time-dependent, imply-
ing that s(n),YY

k depends on time. By computing L∗(β†
kβk) and using also (18), the evolution of

ρk = 〈ψ0|β
†
kβk|ψ0〉 in the weakly-dissipative limit is obtained as [8]

ρk(t) = e−γk tρk(0) +
αk

γk
(1− e−γk t) . (19)

Here αk is, again, a function that depends on the dissipation and that can be easily calculated
for generic free systems with quadratic dissiption [8, 9]. Eq. (16) was derived ab initio for a
quench in the Kitaev chain with arbitrary quadratic dissipation in Ref. [9].

For the case of diagonal gain and loss dissipation, the decay rates γk in (18) do not depend
on k, and one has that γk = γ++γ−, and αk = γ+ (cf. (19)). It is also important to stress that
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while for generic dissipation the modes βk are different from the original Bogoliubov modes
bk (see, for instance, Ref. [9]), for several types of dissipation one has that βk = bk. The
gain/loss dissipation that we treat here provides one of the simplest examples for which this
happens.

3 Fermionic logarithmic negativity: Definitions

Here we are interested in the entanglement between two non complementary regions A1 and
A2 (see Fig. 1). Let us first introduce the Rényi entropies S(n)W of a subsystem W = A1, A2, A1∪A2,
which are defined as

S(n)W :=
1

1− n
ln
�

Trρn
W

�

. (20)

Here we often consider the von Neumann entropy, which corresponds to the limit n→ 1 [1–4].
Crucially, since the interval A = A1 ∪ A2 in Fig. 1 is in general in a mixed state, neither

the von Neumann nor the Rényi entropies can be used to quantify the entanglement between
A1 and A2 [1–4]. Instead, one can use the logarithmic negativity [14–18] E , which is a com-
putable entanglement measure for mixed states. To define E one has to introduce the partially-
transposed density matrix ρT2

A . The partial transposition is taken with respect to one of the
intervals (here A2). ρT2

A is defined as

¬

e(1)i , e(2)j |ρ
T2
A |e

(1)
k , e(2)l

¶

=
¬

e(1)i , e(2)l |ρA|e
(1)
k , e(2)j

¶

, (21)

with e(1)i , e(2)j two bases for A1 and A2, respectively. The partial transpose is not positive-
definite, and its negative eigenvalues quantify the entanglement between the two intervals.
The logarithmic negativity is defined as

E = ln
�

Tr|ρT2
A |
�

. (22)

For free-boson systems the negativity can be computed from the two-point correlation func-
tion [19]. For free-fermion systems the partially transposed reduced density matrix can be
decomposed as [20]

ρ
T2
A = e−iπ/4O+ + eiπ/4O− , (23)

where O± are gaussian operators. Crucially, while the spectrum of O± can be effectively com-
puted from that of the fermionic two-point function, this cannot be done for ρT2

A . As a conse-
quence, the negativity cannot be easily calculated, not even for free-fermion models, although
several results have been obtained in the literature [45–47] for the moments of the partial
transpose. Recently, it has been shown that starting from the decomposition (23), it is pos-
sible to construct an alternative measure of entanglement for mixed-state systems. This has
been dubbed fermionic negativity [21,48–50]. The fermionic negativity is defined as

E := lnTr
p

O+O− . (24)

Notice that here we use the same symbol E for both the standard negativity (cf. (22)) and the
fermionic one. In the following sections we will always refer to the fermionic negativity.

Since the product O+O− in (24) is a gaussian operator because O± is gaussian, the fermionic
negativity (24) can be computed effectively in terms of fermionic two-point functions. The
central object is the fermionic correlation matrix C jl (cf. (12)). Let us define the matrix G jl as

G jl := 2C jl −δ jl . (25)
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We now consider the partition in Fig. 1. We focus on two intervals A1 and A2 of equal length ℓ
at distance d. We now define Gαβjl with α,β = 1,2 as the restricted correlator with j ∈ Aα and
l ∈ Aβ . The matrix GA is rewritten as

GA =

�

G11 G12

G21 G22

�

, (26)

where Gαβ are ℓ× ℓ matrices. We now define the matrices G±A as

G±A =

�

G11 ±iG12

±iG21 −G22

�

. (27)

These are the covariance matrices of the operators O± introduced in (23). Finally, the nega-
tivity is a function of the spectrum of CA, which is the fermionic correlator C restricted to A,
and that of GT

A , which is defined as

GT
A :=

1
2

�

12ℓ − (12ℓ + G+A G−A )
−1(G+A + G−A )

�

. (28)

Here 12ℓ is the 2ℓ × 2ℓ identity matrix. GT
A is the covariance matrix of the product

O+O−/Tr(O+O−). The negativity is defined as [51]

E :=
2ℓ
∑

j=1

ln
�

µ
1/2
j + (1−µ j)

1/2
�

+
2ℓ
∑

j=1

1
2

ln
�

λ2
j + (1−λ j)

2
�

, (29)

where µ j are the eigenvalues of GT
A and λ j of CA. The second term in (29) originates from

the normalization Tr(O+O−) = Trρ2
A (see, for instance, Ref. [52]). Importantly, Eq. (29) holds

for free-fermion systems that preserve the fermion number. For generic free-fermion systems a
generalization of (29) exists in terms of the correlation function of Majorana fermions [21,50].
In the presence of gain/loss dissipation the fermion number is not preserved, although at any
time one has 〈c†

j c
†
l 〉 = 〈c jcl〉 = 0. In Appendix B we show that this condition is sufficient to

ensure the validity of (29).
The logarithmic negativity has been employed to characterize entanglement in systems of

harmonic oscillators [19,53–58], spin models [22,59–70], Conformal Field Theory (CFT) [18,
71–77]. The out-of-equilibrium dynamics after quantum quenches has received a lot of at-
tention [23, 31, 78–84]. In particular, it has been shown in Ref. [23] that for large intervals,
long times, and large distance (see Fig. 1) ℓ, t, d →∞ with the ratios ℓ/t and d/t fixed, the
standard negativity and the fermionic one become

E = 1
2

I (1/2)A1:A2
, (30)

where I (1/2)A1:A2
is the Rényi mutual information with Rényi index 1/2. Eq. (30) was proposed in

Ref. [23], and it was verified for quantum quenches in free-boson and free-fermion systems. It
is natural to expect that Eq. (30) holds for generic interacting integrable systems. Very recently,
it has been shown that in the early-time regime Eq. (30) holds true in quenches with generic
local quantum circuits [30]. Eq. (30) is intriguing because in general the mutual information
between A1 and A2 is not a good measure of their entanglement but only an upper bound [85].

4 Warm-up: Quantum entropies in the presence of gain and loss
dissipation

As a warm-up, before deriving the quasiparticle picture for the fermionic negativity, here we
provide an alternative direct derivation of the results of Ref. [7]. In contrast with Ref. [7] the
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derivation that we present here is ab initio, although we rely on the same analytic techniques
employed in Ref. [86]. In section 4.1 we derive the behavior of the moments of the correlation
matrix Tr(Cn

A ). In section 4.2 we discuss the Rényi entropies.

4.1 Moments of the correlators Tr(Cn
A )

Here we determine the scaling of Tr(Cn
A ) in the hydrodynamic limit t,ℓ→∞, with their ratio

t/ℓ fixed. At the end of the derivation we will also discuss the weakly-dissipative limit by
taking γ±→ 0 with the product γ±ℓ fixed. To derive our main results we employ the approach
of Ref. [86]. The correlator CA is defined in (13). We can use the trivial identity

ℓ/2
∑

z=1

e2izk =
ℓ

4

∫ 1

−1

dξw([k]π)e
i(ℓξ+ℓ+2)[k]π/2 , with w(k) :=

k
sin(k)

, (31)

where we introduced the notation [x]π = x modπ. The modπ reflects the factor 2 in the
exponent in the left hand side in (31), and it is due to the fact that the initial state is not
invariant under one-site translation, although it is invariant under two-site translations. No-
tice that (31) is different from a similar identity used in Ref. [86], which deals with one-site
translation invariant initial states. Eq. (31) allows us to write

Tr(Cn
A ) =

� ℓ

4

�n
∫

[−π,π]n

dnk
(2π)n

∫ 1

−1

dnξD({k})F({k})eiℓ
∑n−1

j=0 ξ j+1([k j+1−k j]π)/2 . (32)

Here we defined

D({k}) =
n−1
∏

j=0

w
�

[k j − k j−1]π
�

, (33)

F({k}) = Tr
n−1
∏

j=0

t̂ ′
�

k j

�

, (34)

where t ′(k) is defined in (15). In deriving (32) from (31), we neglect the factor ℓ+2 because
it contributes with a phase. Notice that the quasimomenta in F (cf. (34)) are not defined mod
π. It is convenient to define new variables ζ j as

ζ0 = ξ1 , (35)

ζi = ξi+1 − ξi , i ∈ [1, n− 1] . (36)

This allows us to write (32) as

Tr(Cn
A ) =

� ℓ

4

�n
∫

[−π,π]n

dnk
(2π)n

∫

Rξ

dnζi D({k})F({k})e
−iℓ

∑n−1
j=0

∑ j
l=0 ζl ([k j+1−k j]π)/2 . (37)

Here the integration domain Rξ for ζi is

Rξ : −1≤
p−1
∑

j=0

ζ j ≤ 1 , p ∈ [1, n] . (38)

The strategy to determine the behaviour of (37) in the space-time scaling limit is to use the
stationary phase approximation for the integrals over k1, . . . , kn−1 and ζ1, . . . ,ζn−1. It is easy
to check that stationarity with respect to the variables ζ1, . . . ,ζn−1 implies that

[k j+1 − k j]π = 0 , ∀ j ∈ [0, n− 1] . (39)
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This also implies that the integrand in (37) does not depend on ζ0. Thus, the integration over
ζ0 is trivial and we obtain

Tr(Cn
A ) =

�

ℓ

4

�n ∫

[−π,π]n

dnk
(2π)n

∫

dn−1ζi D({k})F({k})e
−iℓ

∑n−1
j=0

∑ j
l=1 ζl ([k j+1−k j]π)/2µ

�

{ζ j}
�

,

(40)
where we introduced the integration measure µ as

µ({ζ j}) =max



0, min
j∈[0,n−1]

�

1−
j
∑

k=1

ζk

�

+ min
j∈[0,n−1]

�

1+
j
∑

k=1

ζk

�



 . (41)

Now we can replace k j → k0 in D({k j}) because it depends only on [k j − k j−1]π to obtain

D({k j})→ 1 . (42)

The function F({k j}) requires some care. We can expand it as

F =
1
2n

n−1
∑

p=0

n−1
∑

j1<···< jp=1

Tr
h
�

a12 + bσ(k0)
−i e2i tϵ(k0)

�

bpσ
(k j1 )
−i σ

(k j2 )
−i · · ·σ

(k jp )

−i

i

e2i t
∑p

l=1 ϵ(k jl
) , (43)

where a, b and σ−i are defined in (15), and we isolated the term with k0. It is worth noticing
that in Eq. (43) the time-dependent term appearing in the exponent is a number. This is specific
of the tight-binding chain. For generic quenches in the X Y chain the term in the exponent is
a matrix [86].

To perform the trace in (43) we observe that σ(k)−iσ
(k′)
−i = 0 if k → k′. On the other

hand, one has that that Tr(σ(k0)

−i σ
(k j1

)

−i . . .σ
(k jp−1

)

−i ) = 2p+1 if from the stationary solution (39)
one selects the alternating pattern as k j1 = k0 + π, k j2 = k0, . . . , and it vanishes otherwise.

For the second term, one has Tr(σ
(k j1

)

−i σ
(k j2

)

−i . . .σ
(k jp )

−i ) = 2p+1 for both the alternating patterns
k j1 = k0, k j2 = k0 +π, . . . and k j1 = k0 +π, k j2 = k0, . . . . This implies that the first term in the
trace in (43) gives nonzero contribution only for even p, whereas the second term contributes
to odd p. Thus, we can rewrite (43) as

F({k j})∝ 2−n
⌊(n−1)/2⌋
∑

p=0

�

n− 1
2p

�

an−2p(2b)2pe2i t
∑2p

l=1 ϵ(kl )

+ 2−n
⌊(n−2)/2⌋
∑

p=0

�

n− 1
2p+ 1

�

an−2p−2(2b)2p+2e2i t
∑2p+1

l=0 ϵ(kl ) .

(44)

Here we used the invariance under relabelling of the momenta k jl to replace k jl → kl in the
phase factor. However, we are not allowed to replace kl with their stationary values before
performing the stationary phase approximation. The binomials in (44) are the number of
terms containing 2p and 2p+ 1 quasimomenta, and that are the same under exchange of the
momentum label. The factors 22p and 22p+2 are the results of the trace operation. Finally, the
proportionality symbol∝ in (44) is because there is an extra constant that originates from
the total number of stationary points in (39). Indeed, in principle Eq. (39) corresponds to
2n stationary points. This proliferation of the stationary points is due to the invariance under
shift by π (cf. (39)), which reflects translation invariance by two sites. Again, this is different
from Ref. [86]. However, the presence of the strings of σ

(k j )

−i selects one of the two patterns
k1 = k0, k2 = k0 + π, . . . or k1 = k0 + π, k2 = k0, . . . . For the first term in (44) there is a
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remaining overall factor 2n−1−2p that originates from the n − 1 − 2p quasimomenta that do
not appear in the string of σ−i . Moreover, there is an extra factor 2 because both alternating
patterns {k̄1, k̄2, . . . , k̄2p} = {k0, k0 +π, k0, . . . } and {k̄1, k̄2, . . . , k̄2p} = {k0 +π, k0, k0 +π, . . . }
contribute. This is different for the second term in (44). The stationary phase treatment of
the quasimomenta that do not appear in the phase factor gives a factor 2n−2−2p. There is no
extra factor 2 because only the quasimomenta pattern {k̄1, k̄2, k̄3, . . . }= {k0+π, k0, k0+π, . . . }
gives a nonzero contribution after taking the trace in (43). By putting together all the factors,
the result is that one can drop the prefactors 2−n, 22p and 22p+2 in (44) to obtain

F =
⌊(n−1)/2⌋
∑

p=0

�

n− 1
2p

�

an−2p b2pe
2i t

2p
∑

l=1
ϵ(kl )

+
⌊n/2⌋−1
∑

p=0

�

n− 1
2p+ 1

�

an−2p−2 b2p+2e
2i t

2p+1
∑

l=0
ϵ(kl )

. (45)

The strategy is now to apply the stationary phase approximation to the integral in the 2n− 2
variables k1, k2, . . . , kn−1,ζ1,ζ2, . . . ,ζn−1. For the first term in (45) with the quasimomenta
k1, k2, . . . , k2p appearing in the phase factor one obtains the stationary points k̄ j and ζ̄ j as

�

k̄1, k̄2, . . . , k̄2p

	

= {k0, k0 +π, . . . k0 +π} ∪ {k0 +π, k0, . . . k0} , (46)

ζ̄l = ±4
t
ℓ
(−1)lϵ′(k0) , l = 1, . . . , 2p , (47)

ζ̄ j = 0 , l > 2p . (48)

Here we have to choose only one of the patterns in (46) because they give the same result,
and this was already taken into account in (45). The sign of ζ̄ j in (47) is different for the two
patterns in (46). However, this sign does not affect the final result. The reason is that ζ̄l enter
only in the function µ({ζ j}) (cf. (41)), which remains the same under change of the sign of
ζ̄l . The stationary phase treatment of the second term in (45) is similar. The result is that
only the second pattern in (46) contributes. We now use the formula for the stationary phase
approximation [87]

∫

D
dN x p(x )eiℓq(x )→

�

2π
ℓ

�N/2

p(x 0)|detH|−1/2 exp
h

iℓq(x 0) + iπ
σA

4

i

. (49)

Here p(x ) and q(x ) are functions, D denotes the domain of integration and ℓ is the large
parameter. In (49), we denote by x 0 the stationary point that is solution of ∇q(x 0) = 0. The
Hessian matrix H is given by H = ∂x i

∂x j
q(x ). The signature σ of the Hessian is calculated as

the difference between the number of positive and negative eigenvalues of H, and in our case
it is zero. Moreover, in our case |detH|−1/2 = 2n−1, and the phase in (49) vanishes.

In using (49), we observe that the term with p = 0 in the first sum in (45) gives (cf. (41))
µ({ζ j}) = 2. On the other hand, all the other terms give the same result as

µ({ζ j}) = 2 max (0,1− 2t/ℓ|v(k0)|) , (50)

with v(k0) the group velocity (cf. (3)). Finally, it is clear from (45) that the term with p = 0
contributes with an, whereas the remaining sum gives ((a + b)n + (a − b)n − 2an)/2. This
implies that

Tr(Cn
A ) =

an

2n
ℓ+
(a− b)n + (a+ b)n − 2an

2n+1

∫ π

−π

dk
2π

max (0,ℓ− 2t|v(k)|) , (51)

where we replaced k0→ k. This can be rewritten as

Tr(Cn
A ) = ℓ

∫ π

−π

dk
2π

��a
2

�n
−
(a+ b)n + (a− b)n

2n+1

�

min(1, 2|v(k)|t/ℓ) + ℓ
∫ π

−π

dk
2π
(a+ b)n + (a− b)n

2n+1
.

(52)
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Now, the first term in (52) admits a quasiparticle interpretation. Indeed, the function
min(1,2|v(k)|t/ℓ) is the number of pairs of entangled quasiparticles with quasimomenta k
and −k that are shared between A and the rest at time t. The second term is proportional to
the volume of A and it is not due to the pairs of quasiparticles.

4.2 Rényi entropies and von Neumann entropy

Eq. (52) allows us to obtain the behaviour of Tr(F(CA)), where F(z) is an arbitrary function
that admits a Taylor expansion in z = 0. After expanding F(CA) and using (52), one obtains

Tr(F(CA)) = ℓ

∫ π

−π

dk
2π

�

F(a/2)− F((a+ b)/2) +F((a− b)/2)
2

�

min(1, 2|v(k)|t/ℓ)

+ ℓ

∫ π

−π

dk
2π

F((a+ b)/2) +F((a− b)/2)
2

. (53)

The functions Fn(x) and F1(x) that correspond to the Rényi entropies S(n)A and the von Neu-
mann entropy SA read

Fn(x) :=
1

1− n
ln(xn + (1− x)n) , (54)

F1(x) := −x ln(x)− (1− x) ln(1− x) . (55)

After using (54) and (55) in (53) one recovers the results of Ref. [7]. Let us also discuss the
non dissipative limit γ±→ 0. In that limit a, b→ 1 (see (13) and (15)), and one obtains

Tr(Fn(CA)) =

∫ π

−π

dk
2π

§

�

Fn(1/2)−
Fn(0) +Fn(1)

2

�

min(ℓ, 2|v(k)|t) +
ℓ

2
(Fn(0) +Fn(1))

ª

.

(56)
Since Fn(0) = Fn(1) = 0 for any n, only the first term in the square brackets in (56) survives.
One has that Fn(1/2) = ln(2) for any n, which implies that for the Néel quench all the Rényi
entropies are equal. Moreover, the density of Rényi entropy does not depend on k. Both these
two features are specific for the Néel quench. Finally, we should observe that Eq. (54) holds
in the limit ℓ, t →∞ with the ratio t/ℓ finite. In particular, for this simple case of diagonal
dissipation Eq. (54) holds also at finite γ±. Still, in the limit t →∞ one has that S(n)A → 0
for any n. To have a nontrivial dynamics we take the weakly-dissipative hydrodynamic limit
t,ℓ→∞, γ±→ 0, with t/ℓ and γ±ℓ fixed [7–9].

5 Fermionic logarithmic negativity

We are now ready to derive the behaviour of the fermionic logarithmic negativity in the weakly-
dissipative hydrodynamic limit. The strategy is as follows. We first focus on the moments
Tr[(G+G−)n]. In the following section we drop the subscript A in G±A , as it is clear that we
will always consider the correlators restricted to subsystem A. The results are presented in
section 5.1. Then we determine the hydrodynamic behaviour of some modified moments of
G+G−. These are obtained by expanding the n-th power of G+G− and inserting an arbitrary
number m of “misplaced” G±. These insertions break the alternating pattern of G+G−, cre-
ating “defects” at places where the same operator is present on consecutive positions. The
hydrodynamic limit of these defective moments is derived in section 5.2 The derivation is re-
ported in Appendix A. Finally, in section 5.3 we provide the result for the fermionic logarithmic
negativity.
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5.1 Moments Tr[(G+G−)n]

Let us now consider the moments of the product G+G− (cf. (27)), i.e, Tr[(G+G−)n] for arbitrary
n. Here we focus on a subsystem A of length 2ℓ, which is further divided into two adjacent
equal-length intervals A1 and A2 (see Fig. 1). Let us start by defining the Fourier transform
t̂ ′′(k) of the matrix (cf. (26)) G = 1− 2C as

t̂ ′′(k) = a′12 − bσ(k)−i e2i tϵ(k) , a′ := 1− a . (57)

The matrices G± (cf. (27)) are written as

G± =

∫ π

−π

dk
2π

e2ik( j−l)σ
(kℓ)
∓ ⊗

�

a′12 − bσ(k)−i e2i tϵ
�

, j, l = 1, . . . ,ℓ . (58)

In (58) we defined σ(kℓ)± as
σ
(kℓ)
± := σ(kℓ)z ±σ

(kℓ)
y , (59)

where σ(kℓ)α are the rotated Pauli matrices defined in (10). Notice that ℓ appears in the ro-
tation angle in (59). This is important when using the stationary phase approximation. The
tensor product with σ(kℓ)∓ in (58) accounts for the fact that the indices j, l are shifted by ℓ when
considering the blocks G12 and G21 (cf. (26)). The structure in (58) is straightforwardly gen-
eralizable to quenches from other initial states by changing the term in the square brackets.
Similar to (32), one can write the moments Tr[(G+G−)n] as

Tr[(G+G−)n] =
� ℓ

4

�2n
∫

[−π,π]2n

d2nk
(2π)2n

∫ 1

−1

d2nξD({k})F({k})eiℓ
∑2n−1

j=0 ξ j+1([k j+1−k j]π)/2 . (60)

Here D({k}) is the same as in section 4, whereas F({k j}) is given by

F({k j}) =

 

Tr
n−1
∏

j=0

σ
(ℓk2 j)
+ σ

(ℓk2 j+1)
−

! 

Tr
2n−1
∏

j=0

(a′12 − bσ
(k j)
−i e2i tϵ)

!

. (61)

To take the trace we use that

σ
(ℓk0)
+ σ

(ℓk1)
− · · ·σ(ℓk2n−2)

+ σ
(ℓk2n−1)
− = e−iℓ

∑2n−1
j=0 k j

2n−1
∏

j=0

(eik jℓ + eik j+1ℓ)

�

eik2n−1ℓ −i
iei(k0+k2n−1)ℓ eik0ℓ

�

.

(62)
Notice that here we use periodic boundary conditions on the quasimomenta, meaning that
k2n = k0. One can expand (62) to obtain

Tr
n−1
∏

j=0

σ
(ℓk2 j)
+ σ

(ℓk2 j+1)
− = 2 +

n
∑

z=1

2n−1
∑

j1<···< j2z=0

�

eiℓ(k j1−k j2+k j3−···−k j2z ) + e−iℓ(k j1−k j2+k j3−···−k j2z )
�

.

(63)

Note the alternating pattern in the exponents in (63). The evaluation of the trace of the right
term in (61) can be performed as in (44). The stationary phase approximation with respect
to the variables ζ j gives [k j+1− k j]π = 0, i.e., the same as in (46). The trace in the right term
in (61) is the same as in (45) after redefining a→ a′, and n= 2p. One obtains

2−2nTr
2n−1
∏

j=0

t̂ ′′(k j) =
⌊(2n−1)/2⌋
∑

j=0

�

2n− 1
2 j

�

(a′)2n−2 j b2 je2i t
∑2 j

l=1 ϵ(kl )

+
p−1
∑

j=0

�

2n− 1
2 j + 1

�

(a′)2n−2 j−2 b2 j+2e2i t
∑2 j+1

l=0 ϵ(kl ) . (64)
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Figure 2: The functions Θ1(k) = max(0,1 − 2|v(k)|t/ℓ) (a) and
Θ2(k) = 2|v(k)|t/ℓ + max(2|v(k)|t/ℓ, 2) − 2max(2|v(k)|t/ℓ, 1) (b) plotted ver-
sus time t. Here v(k) = ϵ′(k) is the fermion group velocity (cf. (2)). The definitions
are for the bipartition with two adjacent intervals of length ℓ (see Fig. 1).

It is now clear that when multiplying (63) and (64) the constant term in (63) can be treated
as in section 4.1. In fact it gives the same result as (52) after replacing a → a′ and ℓ → 2ℓ.
Importantly, there are additional terms that originate from the second term in (63). First, it
is easy to check that the stationary phase approximation gives nonzero µ(ζ j) (cf. (41)) only
when terms of (63) and (64) that contain the same quasimomenta k j are multiplied. Notice
that the term with j = 0 in (64) does not contribute. It is also easy to check that within the
stationary phase approximation all the contributions give the same µ({ζ j})∝ Θ2(k), with

Θ2(k) := 2|v(k)|t/ℓ+max (2|v(k)|t/ℓ, 2)− 2max (2|v(k) j|t/ℓ, 1) , v(k) = ϵ′(k) , (65)

where we replaced k0 = k. The absolute value |v(k)| originates from the combination of the
two terms in the sum in (63). The function Θ2 is pictorially defined in Fig. 2 (b). Θ2(k)
describes a linear growth up to t = ℓ/(2|v(k)|), which is followed by a linear decrease up to
t = ℓ/(|v(k)|). At later times, Θ2(k) is zero. Finally, the sum over j in (64) gives

Tr[(G+G−)n] = ℓ

∫ π

−π

dk
2π

�

2(a′)2n +
�

(a′ − b)2n + (a′ + b)2p − 2(a′)2n
�

�

Θ1(k) +
1
2
Θ2(k)

��

.

(66)
The function Θ1(k) is defined as

Θ1(k) :=max(0, 1− 2|v(k)|t/ℓ) . (67)

Θ1(k) is plotted as a function of time in Fig. 2 (a). At t = 0, Θ1(k) = 1 and then
it decreases linearly up to t = ℓ/(2|v(k)|). At later times Θ1(k) is zero. Notice that
Θ1(k)+Θ2(k)/2=max(0,ℓ−|v(k)|t/ℓ). Thus, it is clear that Eq. (66) has the same structure
as (51). Precisely, it is twice the result obtained from (52) after replacing a → 2a′, b → 2b,
and n→ 2n. By using the formula

Tr(12ℓ + G+G−)−1 =
∞
∑

p=0

Tr(−G+G−)p , (68)

we obtain that (cf. (28))

Tr[(12ℓ + G+G−)−1] = ℓ

∫ π

−π

dk
2π

�

2
1+ (a′)2

−
�

(a′ − b)2

1+ (a′ − b)2
+
(a′ + b)2

1+ (a′ + b)2
−

2(a′)2

1+ (a′)2

�

�

Θ1(k) +
1
2
Θ2(k)

�

�

.

(69)

To derive the term in the square brackets in (69) one has to remove the term with p = 0
in (68). This is clear from (66) because the term in the square brackets for p = 0 is zero.
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5.2 Moments with defects insertions

Here we provide the formula describing the weak-dissipative hydrodynamic limit of the mo-
ments of the fermion correlation functions in the presence of defects insertions. The result
is

Tr

� m
∏

l=1

(G+G−)ql Gαl

�

= ℓ

∫ π

−π

dk
2π

�

2(a′)2s +
�

(a′ − b)2s + (a′ + b)2s − 2(a′)2s
�

Θ1

+
1
2

�

(a′ − b)m+
∑

l (2q2l−1−d2l−1,2l )(a′ + b)
∑

l (2q2l+d2l−1,2l )

+ (a′ + b↔ a′ − b)− 2(a′)2s
�

Θ2

�

. (70)

Eq. (70) is obtained from the moments without defects Tr(G+G−)n by inserting the isolated
operators Gαl . In (70) we defined s = m/2+

∑

k qk and di, j as

di, j :=











1 , for (αi ,α j) = (+,+) ,
1 , for (αi ,α j) = (−,−) ,
0 , for (αi ,α j) = (+,−) ,
2 , for (αi ,α j) = (−,+) .

(71)

The derivation of (70) is cumbersome, and we report the main steps in Appendix A. Eq. (70)
gives access to several other moments constructed from the matrices G± and that are needed
to obtain the fermionic negativity. For instance, by summing over ql in (70) we obtain

Tr

� m
∏

l=1

(12ℓ + G+G−)−1Gαl

�

= ℓ

∫ π

−π

dk
2π

�

2
�

a′

1+ (a′)2

�m

+

�

�

a′ − b
1+ (a′ − b)2

�m

+
�

a′ + b
1+ (a′ + b)2

�m

− 2
� a′

1+ (a′)2
�m
�

Θ1

+
1
2

�

(a′ + b)m−
∑

l d2l−1,2l

[1+ (a′ + b)2]m/2
(a′ − b)

∑

l d2l−1,2l

[1+ (a′ − b)2]m/2
+ (a′ + b↔ a′ − b)−

2(a′)m

[1+ (a′)2]m

�

Θ2

�

.

(72)

By summing over αl in (72), we obtain

Tr
��

GT
�m�
= ℓ

∫ π

−π

dk
2π

�

�

1
2
±

a′

1+ (a′)2

�m

+
1
2

�

�

1
2
±

a′ − b
1+ (a′ − b)2

�m

+
�

1
2
±

a′ + b
1+ (a′ + b)2

�m

− 2
�

1
2
±

a′

1+ (a′)2

�m�

Θ1(k)

+
1
2

�

�

1
2
±

a′

[1+ (a′ + b)2]1/2[1+ (a′ − b)2]1/2

�m

−
�

1
2
±

a′

1+ (a′)2

�m�

Θ2(k)

�

. (73)

Here we removed the subscript A in GT
A to lighten the notation, although the correlation ma-

trices are always restricted to subsystem A. In (73) one has to sum over the ± signs. As it is
clear from (28), Eq. (73) is crucial to compute the logarithmic negativity.

5.3 Fermionic logarithmic negativity

We now have all the ingredients to discuss the quasiparticle picture for the fermionic logarith-
mic negativity. Before starting, we observe that (A.8) allows one to obtain the hydrodynamic

16

https://scipost.org
https://scipost.org/SciPostPhys.15.3.124


SciPost Phys. 15, 124 (2023)

0 0.5 1 1.5 2

t/ℓ

0

0.02

0.04

0.06

0.08

0.1

ε/
ℓ

γ
+
=0.1, γ

-
=0.05

γ
+
=0.1, γ

-
=0

γ
+
=γ

-
=0.1

Figure 3: Dynamics of the fermionic negativity E: Theoretical predictions in the
weakly-dissipative hydrodynamic limit t,ℓ → ∞ γ± → 0 with t/ℓ and γ±ℓ fixed.
The results are for two adjacent intervals of equal length ℓ. We plot E/ℓ versus the
rescaled time t/ℓ for several gain/loss rates γ±. The negativity is smaller for balanced
gain and losses, i.e., for γ+ = γ−, and it increases upon increasing the imbalance
between them. Notice the cusp-like singularity at t/ℓ= 1/2 (marked by the vertical
line), which reflects the presence of entangled quasiparticles.

behavior of Tr[F(CT)], for any F(z) that admits a Taylor expansion near z = 0. After expand-
ing F(z), by applying (A.8) to all the terms, and resummming the series, we obtain that

Tr
�

F(GT)
�

= ℓ

∫ π

−π

dk
2π

�

F
�

1
2
±

1− a
1+ (1− a)2

�

+
1
2

�

F
�

1
2
±

1− a− b
1+ (1− a− b)2

�

+F
�

1
2
±

1− a+ b
1+ (1− a+ b)2

�

− 2F
�

1
2
±

1− a
1+ (1− a)2

��

Θ1(k)

+
1
2

�

F
�

1
2
±

1− a
[1+ (1− a+ b)2]1/2[1+ (1− a− b)2]1/2

�

−F
�

1
2
±

1− a
1+ (1− a)2

��

Θ2(k)

�

,

(74)

where we replaced a′ = 1−a, and where one has to sum over the±. To calculate the negativity
(see first term in (28)) we have to use

F (1/2)(z) := ln(z1/2 + (1− z)1/2) . (75)

We also need to calculate Tr[F (2)(CA)] where CA is the correlation matrix for A1 ∪ A2 (cf. (5))
of length 2ℓ, with

F (2)(z) :=
1
2

ln
�

z2 + (1− z)2
�

. (76)

The hydrodynamic prediction for the latter contribution is obtained from (53) as

Tr[F (2)(CA)] = ℓ

∫ π

−π

dk
2π
[2F (2)(a/2)min(1, t/ℓ|v(k)|)

+ (F (2)((a+ b)/2) +F (2)((a− b)/2))max(0, 1− t/ℓ|v(k)|)] . (77)
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Figure 4: Dynamics of the fermionic negativity E: Same as in Fig. 3 for balanced
gain and losses, i.e., γ+ = γ−. We show the theoretical prediction for the negativity
for γ+ = 0.1,0.05, 0.01. The dashed-dotted line is the prediction in the absence of
dissipation, i.e., for γ+ = γ− = 0. In the absence of dissipation E exhibits a linear
growth up to t/ℓ= 1/2, followed by a “slow”, i.e., power-law decay. Upon switching
on the dissipation the initial linear growth is damped. Approximate linear growth
can be observed only for t ≪ 1/γ±. Moreover, for finite γ±, E vanishes exponentially
at t/ℓ→∞.

Let us consider the unitary limit γ± → 0. Thus, one obtains that a → 1 and b → 1.
From (74), one has that

Tr(F (1/2)(GT
A)) = 2ℓ

∫ π

−π

dk
2π

F(1/2)[1−Θ1(k)] , (78)

where we used that F (1/2)(0) = F (1/2)(1) = 0. Importantly, as we also observed before, the term
with Θ2 vanishes in the non-dissipative limit. On the other hand, we have

Tr(F (2)(CA)) = 2ℓ

∫ π

−π

dk
2π

F (2)(1/2)min(1, |v(k)|t/ℓ) . (79)

Putting together (78) (79) and (28), we obtain that

E = ℓ
2

∫ π

−π

dk
2π

ln(2)Θ2(k) . (80)

This is in agreement with the conjecture that E = I (1/2)A1:A2
/2 that was put forward in [23], where

I (1/2)A1:A2
is the Rényi mutual information with Rényi index 1/2 between the two intervals. This

conjecture was also verified recently for the quench from the Néel state and the Majumdhar-
Ghosh state in the X X chain [84]. As we are going to discuss, the relation between negativity
and Rényi mutual information is violated in the presence of dissipation.

Before discussing the final result for E we observe that

F (1/2)
�

1
2
+

1− a
1+ (1− a)2

�

+F (1/2)
�

1
2
−

1− a
1+ (1− a)2

�

+ 2F (2)
�a

2

�

= 0 . (81)

The left hand side of Eq. (81) would be the contribution to E for t > ℓ/|v(k)|. Eq. (81) is
consistent with the fact that the negativity is determined by the propagation of entangled
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pairs of quasiparticles. Indeed, for t > ℓ/|v(k)| there are no entangled pairs shared between
the two subsystems. Furthermore, within the quasiparticle picture the negativity should be
proportional to Θ2, which is the number of entangled pairs that are shared between A1 and
A2, as in the unitary case (cf. (80)). Indeed, a straightforward calculation shows that the
negativity is given by

E = ℓ
2

∫ π

−π

dk
2π

e(k)Θ2(k) , (82)

where

e := ln
�

1
2

�

1− (1− a)2 + b2 +
Æ

[1+ (1− a)2]2 + 2[1− (1− a)2]b2 + b4
�

�

, (83)

is the density of negativity. As anticipated, the function Θ2(k) appears in (82). The structure
of (82) is quite similar to the result for the logarithmic negativity after a global quantum
quench in Conformal Field Theory [78]. Indeed, the same function Θ2(k) appears. This gives
the typical “rise and fall” dynamics of the negativity. Specifically, for two adjacent intervals of
equal length ℓ, E grows linearly up to time t/(2vmax), with vmax the maximum velocity in the
system. At asymptitocally long times the negativity vanishes. In contrast with the behavior
in Conformal Field Theory where the negativity decreases linearly up to t = ℓ/vmax, where it
vanishes, Eq. (82) predicts a “slow” vanishing behavior. This is due to the fact that for lattice
models the quasiparticles possess a nonlinear dispersion. The nonzero negativity at times
t > ℓ/vmax is due to slow quasiparticles.

Let us now discuss the negativity content of the quasiparticle pairs e(k) in (82). First, we
should observe that e(k) depends on time because a and b are time-dependent (cf.(13) (15)).
This is different from the CFT setup [78] and from the case of free-boson and free-fermion
systems [23]. As a consequence of the factor e−(γ

++γ−)t in the definition of b (cf. (13)) in the
presence of dissipation the linear growth at t ≤ ℓ/(2vmax) is damped. Indeed, approximate
linear behavior is visible only for t ≪ 1/(γ++γ−). Moreover, at long times t ≫ ℓ the negativity
decays to zero exponentially, in constrast with unitary dynamics, for which the decay is power
law. Furthermore, in integrable free-fermions and free-boson systems, the negativity content
of the quasiparticle pairs is the Rényi mutual information with Rényi index 1/2. As it is clear
from (82), this is not the case in the presence of dissipation.

Clearly, from (82) one recovers that in the non-dissipative case γ± = 0, e = ln(2). Finally,
it is interesting to focus on the balanced gain/loss dissipation. The condition γ+ = γ− implies
that a = 1, whereas b = e−2γ− t . This means that the term proportional to Θ2(k) in (A.9)
vanishes. Now, one has that e(k) = ln(1+ b2). Interestingly, this implies that Eq. (83) is

e(k) = s(2),YY
k (t)− s(2),mix

k (t) , for γ+ = γ− , (84)

where s(2),YY

k and s(2),mix are the same as in (16). This means that

E = 1
2

I (2)A1:A2
, for γ+ = γ− , (85)

which makes apparent that in dissipative settings E ̸= I (1/2)/2. We also verified that Eq. (85)
does not remain valid for generic gain and loss processes.

One should also stress that the structure of (82) is quite revealing. Indeed, it is clear that
Eq. (82) can be interpreted as the negativity of a few qubit systems. It should be possible to
derive an effective few-qubits mixed density matrix describing the state of A1∪A2 that give the
negativity in (82). Importantly, the effective density matrix is expected to be mixed because
of the dissipative dynamics. The fact that the dynamics is dissipative is at the heart of the
failure of the result of Ref. [23], which relies on the local dynamics being unitary. This idea

19

https://scipost.org
https://scipost.org/SciPostPhys.15.3.124


SciPost Phys. 15, 124 (2023)

allows to understand the dynamics of the negativity free-fermions in the presence of localized
losses [88]. Still, to derive the effective density matrix for the two intervals one would need
at least a different quench in order to be able to guess how the elements of the matrix depend
on the parameters of the system.

Our theoretical predictions for balanced gain and loss dissipation are reported in Fig. 4. In
the figure we show results for vanishing dissipation rates γ+ = γ− = 0.1,0.05, 0.01,0. Clearly,
as the dissipation is switched off, the unitary result is recovered. In particular, one recovers
the linear increase up to t =O(ℓ).

Finally, within the quasiparticle picture it is straightforward to generalize (82) to the case
of two intervals at a distance d (see Fig. 1). Indeed, as for the unitary case [23], it is natural
to expect that the negativity content e(k) of the entangled pairs remains the same as in (82),
whereas only the functionΘ2(k) has to be modified. This is obtained by replacingΘ2(k) in (82)
with eΘ2(k) defined as

eΘ2 :=max(2|v(k)|t/ℓ, 2+ d/ℓ) +max(2|v(k)|t/ℓ, d/ℓ)− 2max(2|v(k)|t/ℓ, 1+ d/ℓ) . (86)

Clearly, eΘ2(k) appears in the quasiparticle picture for the mutual information between two
intervals (see for instance [83]). This happens because both the mutual information and the
negativity are proportional to the number of pairs shared between A1 and A2. eΘ2(k) is zero for
t < d/(2|v(k)|). This reflects that at very short times there are entangled pairs that are shared
between A1∪A2 and the rest, but there are no entangled pairs shared between A1 and A2 only.
eΘ2(k) grows linearly for d/(2|v(k)|) ≤ t < (d + ℓ)/(2|v(k)|). At later times eΘ2(k) decreases
linearly. At any t > (d + 2ℓ)/(2|v(k)|) it is identically zero.

We report analytical predictions for E for several dissipation rates γ± in Fig. 3 considering
the case of adjacent intervals. For all the values of γ± the negativity exhibits the typical “rise
and fall” behavior, with a growth at short times, followed by a vanishing behavior in the long
time limit. The maximum at intermediate times is lower for the case with balanced gain/loss,
i.e., for γ+ = γ−, and it progressively grows as the imbalance is increased. The vertical dashed
line marks the point t/ℓ = 1/2. All the curves exhibit a cusp-like singularity at this point,
which reflects the presence of the entangled quasiparticles. Indeed, a similar cusp is present
in the absence of dissipation.

Finally, let us stress again that Eq. (82) and Eq. (83) hold in the usual hydrodynamic limit
with ℓ, d, t →∞ with the ratios t/ℓ and t/d fixed. Still, since E at fixed γ± vanishes exponen-
tially as e−(γ

++γ−)t for t →∞, it is convenient to take the weakly-dissipative hydrodynamic
limit by sending γ±→ 0 with fixed γ±ℓ.

6 Numerical benchmarks

Having derived the quasiparticle picture for the logarithmic negativity in the (weakly-
dissipative) hydrodynamic limit, we now discuss some numerical checks. We first focus on
several moments of the matrices G+G− in section 6.1. Finally, in section 6.2 we discuss nu-
merical results for the negativity.

6.1 Moments of G+G−

Let us discuss the moments

Mn := Tr





n
∏

p=1

Gαp



 , with αp = ± . (87)
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Figure 5: Dynamics of the moments Tr(
∏

p Gαp) in the tight-binding chain with gain
and loss dissipation. The results are for the quench from the fermionic Néel state and
for two adjacent intervals of equal length ℓ (see Fig. 1). The string of (α1,α2, . . . ) that
identifies the correlator is reported. Here we consider strings of operators G± with
and without “defects”, i.e., places where the same operator appears on consecutive
sites (red symbols). We fix γ+ = 0 and γ− = 1/(4ℓ). The continuous red lines are the
analytical results in the weakly-dissipative hydrodynamic limit ℓ, t → ∞ with t/ℓ
and γ−ℓ fixed. The theoretical results are obtained by using Eq. (66) and Eq. (70).

Here we focus on two adjacent intervals of length ℓ. The correlator (87) is identified by the
string {α1,α2, . . . ,αn}. Our numerical results for Mn are shown in Fig. 5. We only consider the
situation with loss dissipation with rate γ−. In Fig. 5 we consider both moments with defects
insertions (see section 5.2), as well as without them. The operator insertions that create defects
are denoted with red ± symbols. For each Mn we consider several values of increasing ℓ. To
reach the weakly-dissipative hydrodynamic limit we fix γ− = 1/(4ℓ). The analytic results in
the scaling limit are reported as continuous red lines, and are obtained by using (70). For all
the cases that we consider, at t = 0 we have Mn = 2 independently of n. Then, Mn decrease,
vanishing in the limit t →∞. It is important to stress that this is due to the fact that we have
only loss dissipation. In the generic case with both gain and loss dissipation the behavior is
different. Precisely, the moments start at Mn = 2, they exhibit a minimum at intermediate
times, and saturate to a nonzero value at t →∞. As it is clear from Fig. 5, as we approach
the weakly-dissipative hydrodynamic limit, deviations between the exact numerical data and
the analytic predictions become progressively smaller. In Fig. 6 we consider the moments M ′n
defined as

M ′n := Tr
�

n
∏

p=1

(12ℓ + G+G−)−1Gαp
�

. (88)

Similar to Fig. 5, we focus on γ+ = 0. The red continuous lines are the results in the weakly-
dissipative hydrodynamic limit. These are obtained by using (72). Already for moderately
small γ− and large t,ℓ the data are in very good agreement with the analytical results. As
a further check, in Fig. 7 we discuss the moments of GT (cf. (28)). We report Tr[(GT)n] for
n = 3,4. We now consider gain dissipation only with γ+ = 1/(2ℓ) and γ− = 0. As it is clear
from Fig. 7, already for ℓ = 10, 20 the data are in excellent agreement with the analytical re-
sults in the weakly-dissipative hydrodynamic limit (continuous red lines) obtained from (73).
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Figure 6: Dynamics of the moments Tr
�

∏

p P−1Gαp
�

with αp = ± and
P = 12ℓ + G+G−. Results are for the quench from the fermionic Néel state and
for two adjacent intervals of equal length ℓ. The gain and loss rates γ± are fixed as
γ+ = 0 and γ− = 1/(4ℓ). In the legend we report as (α1,α2, . . . ) the configuration
of the αp that identify the different moments. Here (+,−)4 denotes the sum over
all the possible strings (α1,α2,α3,α4). The continuous red lines are the results in
the weakly-dissipative hydrodynamic limit ℓ, t → ∞ with t/ℓ and γ±ℓ fixed. The
analytical results are given by Eq. (72).

6.2 Logarithmic negativity

Let us finally discuss the dynamics of the fermionic negativity. We show numerical data for
the rescaled fermionic negativity E/ℓ plotted versus t/ℓ in Fig. 8. We now consider both gain
and loss dissipation with rates γ+ = 1/(2ℓ) and γ− = γ+/2. In Fig. 8 (a) we consider the
situation with two adjacent intervals of equal length ℓ, i.e., at distance d = 0 (see Fig. 1). In
Fig. 8 (b) we focus on two disjoint intervals. Since we are interested in the hydrodynamic
limit, we consider d = ℓ/2. In the figure we show numerical data for ℓ= 10,20, 40. The data
exhibit the typical “rise and fall” dynamics. For the two disjoint intervals (Fig. 8), E = 0 for
t ≤ d/(2vmax) with vmax = 1. This is expected because for t ≤ d/(2vmax) there are no pairs of
entangled quasiparticles that are shared between A1 and A2. Indeed, the first entangled pair
contributing to the entanglement between the two intervals is created at a distance d/2 from
them. The time d/(2vmax) is the time at which the two quasiparticles forming the pair and
traveling with |vmax| = 1 reach A1 and A2, respectively. The quasiparticle prediction for the
logarithmic negativity (cf. (79)) is reported in Fig. 8 as continuous red line. The agreement
between (82) and the numerical data is remarkable for both adjacent and disjoint intervals.

7 Conclusions

We derived an exact formula for the dynamics of the fermionic logarithmic negativity after
the quench from the fermionic Néel state in the tight-binding chain with both gain and loss
dissipation. Our main result is formula (82). As a byproduct we provided analytical results for
several fermionic correlators. Formula (82) shows that the negativity admits a quasiparticle
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Figure 7: Dynamics of the moments Tr[(GT )n] in the tight-binding chain with gain
and loss dissipation. The results are for two adjacent intervals of equal length ℓ (see
Fig. 1). Dissipation rates γ± are chosen as γ+ = 1/(2ℓ) and γ− = 0. We show the
rescaled moments Tr(GT )n/ℓ versus t/ℓ. The results are for n= 2,3 and ℓ= 10,20.
The continuous red line is the the weakly-dissipative hydrodynamic limit t,ℓ→∞,
with t/ℓ and γ±ℓ fixed. The analytical results are given by Eq. (73).

picture interpretation. Similar to the mutual information, the negativity is proportional to
the number of entangled pairs that are shared between two intervals. This is reflected in its
typical “rise and fall” dynamics. Still, the negativity content of the quasiparticles originates
from an intricate interplay between unitary and dissipative contributions. In particular, the
negativity is not easily related to standard thermodynamic quantities. This is in constrast with
what happens for the mutual information, which can be related to the thermodynamic entropy
of the system [8, 9]. Moreover, our result shows explicitly that in the presence of dissipation
the logarithmic negativity is not half of the Rényi mutual information with Rényi index 1/2,
in contrast with the unitary case [23].

Let us now mention some interesting future directions. First, it would be important to
extend the quasiparticle picture for the negativity to other quenches and other free-fermion
systems. Indeed, it is likely that a formula for generic quenches and quadratic dissipation can
be obtained. A good starting point would be to consider the quench from the Majumdar-Ghosh
state in the tight-binding chain [89]. Another interesting direction would be to consider out-
of-equilibrium dynamics in bosonic systems [8]. Moreover, it would be interesting to study
the negativity in the presence of localized dissipations. Indeed, it has been shown in Ref. [90]
that the dynamics of the von Neumann and the Rényi entropies in the presence of localized
fermion losses are determined by the effective transmission and reflection coefficients of the
lossy site. It would be interesting to understand how to generalize this result to the negativity.
Finally, an important open problem is to understand the behavior of the logarithmic negativity
in dissipative interacting integrable systems.
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Figure 8: Dynamics of the fermionic negativity E after the quench from the fermionic
Néel state in the tight-binding chain with gain/loss dissipation. Results are for the
negativity between two intervals of equal length ℓ. The data are for γ+ = 1/(2ℓ) and
γ− = γ+/2. The figure shows the scaling plot of E/ℓ versus t/ℓ. The continuous red
line is the result in the weakly-dissipative hydrodynamic limit. In (a) we show results
for two adjacent intervals, whereas in (b) we discuss the case of two disjoint intervals
at d = ℓ/2. The analytical results are given by (82), where for disjoint intervals we
replaced Θ2→ eΘ2 (cf. (86)).
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A Moments of G+G− with insertions of defects

In order to calculate the moments of GT (cf. (28)) one has to deal with terms of the form

Tr

� m
∏

l=1

(G+G−)ql Gαl

�

, with αl = ± . (A.1)

Here ql is a positive integer. The term (G+G−)ql is obtained by using (68) to expand
(12ℓ + G+G−)−1. The term under the trace in (A.1) is obtained by breaking the alternating
pattern in (G+G−)

∑m
l=1 ql via the insertion of m “misplaced” matrices (defects) Gαl at positions

2ql + l. Now, following the approach in section 5.1, one obtains an expression similar to (61).
In particular, the presence of the defects in (A.1) does not affect the second trace in (61),
which depends only on the details of the quench and of the Hamiltonian. The term inside the
first trace in (61) has to be modified, although in a simple manner. Specifically, some of the
terms eik jℓ + eik j+1ℓ in the product in (62) get a relative minus sign.

Before considering the generic situation with arbitrary m, it is useful to focus on m = 2.
The case with m= 1 can be neglected because we numerically observe that Eq. (A.1) vanishes
in the hydrodynamic limit for any odd m. For now, let us consider m = 2 and α1 = + and
α2 = −. One can use (62) to obtain

Tr[(G+G−)q1 Gα1(G+G−)q2 Gα2] = e−iℓ
∑2q1+2q2+2

j=1 k j−1

2q1+2q2+2
∏

j=1

�

eik j−1ℓ + s je
ik jℓ
�

, (A.2)

where s j = 1 except for the sites near the positions of the defects. Precisely, s j = −1 if a
“misplaced” G− is inserted at j+1, and s j = −1 if G+ is inserted at j. Clearly, Eq. (A.2) can be
generalized to account for generic αl . A straightforward although tedious calculation allows
one to obtain that

Tr[(G+G−)q1 G+(G+G−)q2 G−] = ℓ

∫ π

−π

dk
2π

¦

2(a′)2s +
�

(a′ − b)2s + (a′ + b)2s − 2(a′)2s
�

Θ1(k)

+
1
2

�

(a′ − b)2(q1+1)(a′ + b)2q2 + (a′ + b)2(q1+1)(a′ − b)2q2 − 2(a′)2s
�

Θ2(k)
©

, (A.3)

where we defined s := q1 + q2 + 1. Interestingly, the first two terms do not contain informa-
tion about the defects. In fact they coincide with the first two terms in (66) after changing
n→ q1 + q2 + 1. They depend only on the total number of operators G± present in (A.1). On
the other hand, the term multiplying Θ2(k) (third term in (A.3)) depends on the defects. This
term is obtained from the second one by replacing (a′− b)2q1+2q2+1→ (a′− b)2q1+2(a′+ b)2q2

and (a′+ b)2q1+2q2+2→ (a′+ b)2q1+2(a′− b)2q2 . The change in the relative sign between a′ and
b reflects the presence of the defects in (A.1). A similar structue is present for generic α1,α2.
We verified that

Tr

� 2
∏

l=1

(G+G−)ql Gαl

�

= ℓ

∫ π

−π

dk
2π

¦

2(a′)2s +
�

(a′ − b)2s + (a′ + b)2s − 2(a′)2s
�

Θ1(k)

+
1
2

�

(a′ − b)2(q1+1)−d1,2(a′ + b)2q2+d1,2 + (a′ + b↔ a′ − b)− 2(a′)2s
�

Θ2(k)
©

. (A.4)

Here we defined di, j as

di, j :=











1 , for (αi ,α j) = (+,+) ,
1 , for (αi ,α j) = (−,−) ,
0 , for (αi ,α j) = (+,−) ,
2 , for (αi ,α j) = (−,+) .

(A.5)
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Figure 9: Pictorial illustration of the operators G± (a). In (b) we show the pictorial
definition of (G+G−)q1 G−(G+G−)q2 G− with q1 = 1 and q2 = 2. In (c) we show the
effect of two defects due to the insertion of two misplaced operators (black symbols).
The number of operators between the two defects is 2q2+d12 = 5. (d) The case with
four defects with q1 = q3 = 1 and q2 = q4 = 2. The contribution of the configuration
to the last term in (A.6) is (a′+b)m+2q1+2q3−d12−d34(a′−b)2q2+2q4+d12+d34 plus the term
with a′ − b and a′ + b exchanged.

Let us now discuss the case with generic m. We verified that formula (A.4) can be generalized
to arbitrary number of defects as

Tr

� m
∏

l=1

(G+G−)ql Gαl

�

= ℓ

∫ π

−π

dk
2π

¦

2(a′)2s +
�

(a′ − b)2s + (a′ + b)2s − 2(a′)2s
�

Θ1

+
1
2

�

(a′ − b)m+
∑

l (2q2l−1−d2l−1,2l )(a′ + b)
∑

l (2q2l+d2l−1,2l ) + (a′ + b↔ a′ − b)− 2(a′)2s
�

Θ2

©

,

(A.6)

with di, j defined in (71) and s := m/2+
∑

k qk. Again, as for the case with m = 2 (cf. (A.3))
the term multiplying Θ1(k) does not depend on the defects insertions. Oppositely, the term
multiplying Θ2 contains information about the defects. The structure of this term is illustrated
in Fig. 9. In Fig. 9 (a) we denote with a square and a diamond the two operators G+ and
G−, respectively. In (b) we show the multiplication of the string of operators with m = 2,
q1 = 1, q2 = 2 and α1 = −,α2 = −. The result is shown in Fig. 9 (c). Defects are now present
at places where the same operator is on consecutive sites. The box encloses the operators
in between two defects. Notice that the number of operators in the box is 2q2 + d12 = 5
(cf. Eq. (71)). Similarly, one can recover the other cases of Eq. (71) by considering other values
of α1,α2. A more complicated contraction with m = 4 is shown in Fig. 9 (d). Now we have
{α1,α2,α3,α4} = {−,+,−,−} and {q1, q2, q3, q4} = {1,2, 1,2}. In the last term in (A.6), this
corresponds to (a′ + b)4+2q1+2q3−d1,2−d3,4(a − b)2q2+2q4+d1,2+d2,4 plus the term with the relative
sign between a′ and b exchanged. After summing over ql , we obtain

Tr

� m
∏

l=1

(12ℓ + G+G−)−1Gαl

�

= ℓ

∫ π

−π

dk
2π

�

2
�

a′

1+ (a′)2

�m

+

�

�

a′ − b
1+ (a′ − b)2

�m

+
�

a′ + b
1+ (a′ + b)2

�m

− 2
�

a′

1+ (a′)2

�m�

Θ1

+
1
2

�

(a′ + b)m−
∑

l d2l−1,2l

[1+ (a′ + b)2]m/2
(a′ − b)

∑

l d2l−1,2l

[1+ (a′ − b)2]m/2
+ (a′ + b↔ a′ − b)−

2(a′)m

[1+ (a′)2]m

�

Θ2

�

.

(A.7)

After summing over αl = ±, we obtain
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Tr

 

∑

{αl=±}

m
∏

l=1

(12ℓ + G+G−)−1Gαl

!

= 2m+1ℓ

∫ π

−π

dk
2π

�

�

a′

1+ (a′)2

�m

+
1
2

�

�

a′ − b
1+ (a′ − b)2

�m

+
�

a′ + b
1+ (a′ + b)2

�m

− 2
�

a′

1+ (a′)2

�m�

Θ1(k)

+
1
2

�

(a′)m

[1+ (a′ + b)2]m/2[1+ (a′ − b)2]m/2
−

(a′)m

[1+ (a′)2]m

�

Θ2(k)

�

. (A.8)

Curiously, the term multiplying Θ2(k) vanishes in the non-dissipative limit a′ → 0, despite
the fact that it shows the “rise and fall” dynamics expected for the negativity (see Fig. 2 (b)).
From (A.8) we now obtain the moments of GT (cf. (28)) as

Tr
��

GT
�m�
= ℓ

∫ π

−π

dk
2π

�

�

1
2
±

a′

1+ (a′)2

�m

+
1
2

�

�

1
2
±

a′ − b
1+ (a′ − b)2

�m

+
�

1
2
±

a′ + b
1+ (a′ + b)2

�m

− 2
�

1
2
±

a′

1+ (a′)2

�m�

Θ1(k)

+
1
2

�

�

1
2
±

a′

[1+ (a′ + b)2]1/2[1+ (a′ − b)2]1/2

�m

−
�

1
2
±

a′

1+ (a′)2

�m�

Θ2(k)

�

, (A.9)

where one has to sum over the ±. Again, as for (A.8), the term multiplying Θ2(k) vanishes in
the nondissipative limit.

B Logarithmic negativity for particle-number-conserving
free-fermion systems

In this appendix we report the derivation of formula (29) for the fermionic logarithmic nega-
tivity [21] for free-fermion systems with fixed fermion number. Specifically, fermion number
conservation implies

〈c jcl〉= 〈c
†
j c

†
l 〉= 0 , ∀ j, l . (B.1)

As a consequence of Eq. (B.1), the negativity can be expressed in terms of the correlation
matrix C jl defined as

C jl := 〈c†
j cl〉 . (B.2)

In order to show that, we start from the more general definition of the negativity in terms of
Majorana correlation functions, which holds true also for generic, i.e., non particle-conserving
fermion systems [21]. Let us define the Majorana operators a j as

c j :=
1
2

�

a2 j−1 − ia2 j

�

, c†
j :=

1
2
(a2 j−1 + ia2 j) . (B.3)

Here a j satisfy the standard anticommutation relations

{a j , al}= 2δ jl . (B.4)

In the following we are going to assume that (B.1) holds in the initial state and at any time.
From the definitions (B.2) and (B.3) we obtain that

C jl =
1
4

�

a2 j−1a2l−1 − ia2 j−1a2l + ia2 ja2l−1 + a2 ja2l

�

. (B.5)
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After using (B.1), Eq. (B.5) becomes

C jl =
1
2

�

a2 ja2l + ia2 ja2l−1

�

. (B.6)

This implies that

2Re(C jl) = δ jl + ia2 ja2l−1 , 2iIm(C jl) = a2 ja2l −δ jl . (B.7)

Let us now define the Majorana correlation matrix Γ jl as

Γ jl :=
1
2
〈[a j , al]〉= 〈a jal〉 −δ jl . (B.8)

From (B.7) we obtain that

Γ2 j,2l = Γ2 j−1,2l−1 = 2iIm(C jl) , (B.9)

Γ2 j−1,2l = −Γ2 j,2l−1 = −i
�

2Re(C jl)−δ jl

�

. (B.10)

The correlation matrix G jl (cf. (25)) is obtained as

G jl := 2C jl −δ jl = Γ2 j,2l + iΓ2 j,2l−1 . (B.11)

Let us now consider the 2ℓ × 2ℓ correlation matrix G restricted to subsysytem A, i.e., with
j, l ∈ A (see Fig. 1). We also define the 4ℓ× 4ℓ restricted Majorana correlation matrix as

Γ =

�

Γ2 j,2l Γ2 j−1,2l
−Γ2 j−1,2l Γ2 j,2l

�

, (B.12)

where we used (B.9) and (B.10). The eigenvalues and eigenvectors of Γ are simply related to
those of G jl . To show that, let us consider a generic eigenvalue λ of G jl with eigenvector v j .
From (B.11) one has that

(Γ2 j,2l + iΓ2 j,2l−1)vl = λv j , (B.13)

where the sum over repeated indices is assumed. Now, one can check that

Γ v+ = λv+ , Γ v− = −λ̄v− , with v+ =

�

v j
−iv j

�

, v− =

�

v̄ j
i v̄ j

�

, (B.14)

where v j are the components of the eigenvectors of G jl (cf. (B.13)) and the bar in v̄ j denotes
the complex conjugate. To verify (B.14) one has to use that v̄ j satify

(Γ2 j,2l − iΓ2 j,2l−1)v̄l = λ̄v̄ j , (B.15)

which is obtained by taking the complex conjugate of (B.13) and by using that Γ̄2 j,2l = −Γ2 j,2l
and Γ̄2 j,2l−1 = −Γ2 j,2l−1. Furthermore, here we notice that λ is real, because G jl is an hermitian
matrix. This means that given the eigenvalues λk of G jl , the eigenvalues of Γ are organized in
pairs as (λk,−λk).

A similar result holds for the matrices Γ± (cf. (27)). Let us first define Γ± as

Γ± =

�

Γ 11 ±iΓ 12

±iΓ 21 −Γ 22

�

. (B.16)

Here Γ pq (p, q = 1, 2) are defined in (B.12) with the constraint that j ∈ Ap and l ∈ Aq. The
eigenvalues and eigenvectors of Γ± are simply related to those of G± (cf. (27)) defined as

G± =

�

G11 ±iG12

±iG21 −G22

�

. (B.17)
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First, we observe that G± and Γ± are not hermitian, implying that they have different left
and right eigenvectors. Let us consider the right eigenvector w±j ( j = 1, . . . , 2ℓ) of G± with
eigenvalue µ±. One can show by direct computation that the right eigenvector Vµ± of Γ± with
eigenvalue µ± is obtained as

Vµ± =
�

w±1 ,−iw±1 , w±2 ,−iw±2 , . . . , w±2ℓ,−iw±2ℓ
	

. (B.18)

The eigenvector V−µ̄± associated with the other eigenvalue −µ̄± of Γ± is given as

V−µ̄± =
�

w̄±1 ,−iw̄±1 , w̄±2 ,−iw̄±2 , . . . , w̄±ℓ ,−iw̄±ℓ ,−w̄±ℓ+1, iw̄±ℓ+1, . . . ,−w̄±2ℓ, iw̄±2ℓ
	

. (B.19)

Finally, in a similar way one can obtain the spectrum of Γ T defined as

Γ T =
1
2

�

14ℓ − (14ℓ + Γ
+Γ−)−1(Γ+ + Γ−)

�

, (B.20)

from that of GT defined as (cf. (28))

GT =
1
2

�

12ℓ − (12ℓ + G+G−)−1(G+ + G−)
�

. (B.21)

First, both Γ T and GT are hermitian matrices, and hence have real eigenvalues. Now, let us
consider the eigenvector Z = {z1, . . . , z2ℓ} of 12ℓ/2−GT with eigenvalue ζ. One can show that
14ℓ/2− Γ T has eigenvalues ±ζ. The eigenvectors are obtained from (B.18) and (B.19) after
replacing w j → z j . Thus, the eigenvalues νi of Γ T are given as νi = (ξi , 1− ξi), with ξi the
eigenvalues of GT . Finally, for a generic free-fermion system the negativity is obtained as [50]

E = 1
2

4ℓ
∑

i=1

ln(ν1/2
i + (1− νi)

1/2)−
1
2

S(2)A , (B.22)

where νi are the eigenvalues of Γ T , and S(2)A is the second Rényi entropy of A = A1 ∪ A2 (see
Fig. 1). Given the relationship νi = (ξi , 1− ξi) between νi and the eigenvalues ξi of GT , it is
clear that (B.22) is the same as (29).
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