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Abstract

We demonstrate the use of a ring-shaped Bose-Einstein condensate as a rotation sen-
sor by measuring the interference between two counter-propagating phonon modes im-
printed azimuthally around the ring. We observe rapid decay of the excitations, quan-
tified by quality factors of at most Q ≈ 27. We numerically model our experiment using
the c-field methodology, allowing us to estimate the parameters that maximise the per-
formance of our sensor. We explore the damping mechanisms underlying the observed
phonon decay, and identify two distinct Landau scattering processes that each domi-
nate at different driving amplitudes and temperatures. Our simulations reveal that Q is
limited by strong damping of phonons even in the zero temperature limit. We perform
an experimental proof-of-principle rotation measurement using persistent currents im-
printed around the ring. We demonstrate a rotation sensitivity of up to ∆Ω ≈ 0.3 rad s−1

from a single image, with a theoretically achievable value of ∆Ω ≈ 0.04 rad s−1 in the
atomic shot-noise limit. This is a significant improvement over the shot-noise-limited
∆Ω ≈ 1 rad s−1 sensitivity obtained by Marti et al. [1] for a similar setup.
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1 Introduction

High precision rotation sensing is critical for applications such as inertial navigation [2],
geodesy [3], and tests of fundamental physical theories such as general relativity [4]. One
mature technology used for rotation sensing is the hemispherical resonator gyroscope (HRG)
[2,5], which relies on standing mechanical waves generated around a hemispherical body akin
to those produced by tapping the rim of a wine glass. When the hemispherical body is rotated,
the standing waves precess around the circumference due to the Coriolis force. This preces-
sion is proportional to the rotation rate of the hemisphere and can thus be used to measure
the rotation rate. HRGs are used for rotation sensing in applications where high precision and
reliability are required, such as on board the James Webb Space Telecope [6]. HRG excita-
tions are robust to damping, quantified by high quality factors of Q ∼ 107. However, their
signal is susceptible to drift if used over long periods, and they only provide a measure of
relative—rather than absolute—rotation.
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In recent decades, cold atoms have emerged as an attractive alternative to traditional op-
tical techniques for performing high precision interferometry. The associated atomic wave-
lengths and velocities make it possible to realise extremely high precision interferometric de-
vices such as gravimeters, gradiometers, and gyroscopes [7]. For rotation sensing, ‘free-space’
atom interferometry configurations have proved successful, where the atoms are in free-fall
for the duration of the interrogation [8–12]. However, such setups require a large apparatus
and are therefore not suitable for many practical sensing applications. More recently, guided
or trapped atom interferometers have been demonstrated [1, 13–18]. In these systems, an
ultracold gas or superfluid Bose-Einstein condensate (BEC) is confined to a geometry, such as
a ring trap, using optical or magnetic potentials [19,20]. These systems are compact, have an
improved lifetime, and produce strong signals due to their high atomic densities. However,
measurements are susceptible to systematic phase shifts arising from atom–atom interactions
and trap imperfections.

Recently, it was proposed that a ring-shaped BEC could be used for rotation sensing [1,14]
using similar operating principles to an HRG. In this scheme, standing waves are formed us-
ing the collective excitations (phonons) of the condensate. Because these phonon modes are
the lowest energy excitations available [21], they are anticipated to be resistant to losses into
other excitation branches, as well as being minimally affected by interactions and trap inho-
mogeneity. An added advantage is that superfluids are irrotational, and can therefore serve as
an absolute frame of reference for rotation sensing with no need for calibration [22]. While
Ref. [1] successfully implemented this interferometry scheme, their sensitivity was too low to
perform a practical rotation measurement. Furthermore, the phonons were found to decay at
a rate much faster than that predicted by theory, severely limiting the potential sensitivity of
the system.

Here, we further explore the properties of the phonon-based rotation scheme proposed
in Ref. [1] to determine whether such sensors may be of practical use. Primarily, we aim
to improve the sensitivity of this device over the implementation of Ref. [1] and perform a
measurement of an applied rotation. We experimentally create a quasi-two-dimensional (2D)
ring-shaped BEC using a digital micromirror device (DMD) and perform a sinusoidal phase
imprint to excite azimuthal phonon modes. We characterise the performance of our interfer-
ometer as both the wavelength and the amplitude of the imprinted mode are varied, observing
quality factors up to a maximum of Q ≈ 27. We numerically model our setup using classical
field simulations at finite temperature [23], obtaining Q factors that are in good agreement
with the experiment. Using the numerics, we perform a detailed exploration of the physical
processes responsible for the rapid phonon damping observed in this system. Our analysis
reveals a rich variety of decay behaviour resulting from the interplay between two distinct
forms of Landau damping [24–26]. By simulating our system in the limit of zero temperature
and weak perturbations where these damping mechanisms are minimised, we predict that
the quality of our setup could be improved to Q ∼ 150, but even in this idealised scenario,
the performance is many orders of magnitude below modern HRGs for an experimentally re-
alistic fixed area. Both experimentally and numerically, we apply the phonon interferometry
technique to directly measure the rotation rate of persistent currents in the ring. Our measure-
ments imply that our experiment could achieve a rotation sensitivity of up to∆Ω≈ 0.3 rad s−1

from a single measurement.

2 Phonon interferometry for rotation sensing

A phonon interferometer functions in much the same way as a hemispherical resonator gy-
roscope, whereby the beat frequency between counter-propagating excitations can be used
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to provide a measurement of the external rotation rate [2, 5]. The superfluid nature of the
medium additionally provides a stationary inertial frame of reference (FoR) for the phonons,
and in this frame the counter-propagating modes travel at equal and opposite angular veloci-
ties. The azimuthal density of the atoms as a function of time t and angle θ around the ring
can therefore be written:

nθ (θ , t) = n̄θ +δnθ (θ , t) = n̄θ +δn+θ (θ , t) +δn−θ (θ , t) , (1)

where n̄θ is the ground state density of the ring, δnθ is the total density perturbation, and δn±
θ

are the perturbations due to the anticlockwise (clockwise) propagating modes in the medium.
For the case of azimuthal standing waves, the density perturbations have the form [14]

δn±θ (θ , t) =A sin (mθ ±ωm t) , (2)

with A the perturbation amplitude, m the mode number (corresponding to the number of
wavelengths around the ring), andωm the corresponding angular frequency. The total density
perturbation in the frame of the superfluid is therefore

δnθ (θ , t) = 2A sin (mθ ) cos (ωm t) . (3)

If an observer is in the laboratory FoR rotating at a rate Ω relative to the superfluid, the
azimuthal co-ordinate from their perspective shifts, θ → θ −Ωt, and hence they will see the
standing wave precess at a frequency mΩ:

δn(lab)
θ
(θ , t) = 2A sin [m (θ −Ωt)] cos (ωm t) . (4)

By measuring the azimuthal density of the condensate, the observer can therefore deduce the
rotation rate Ω.

3 Experiment

3.1 BEC preparation

The BEC experimental setup and preparation process have been described in detail in Ref. [19].
In brief, a BEC of 87Rb atoms in the |F = 1, mF = −1〉 state, formed using a hybrid optical and
magnetic trapping technique [27], is tightly trapped in the vertical (z) direction using a far
red-detuned 1064 nm sheet beam potential with a trapping frequencyωz = 2π×133 Hz. A far
blue-detuned 532 nm laser is used to create the horizontal trapping potential and is shaped by
direct projection from a DMD. By switching the DMD mirrors to an on or off position, arbitrary
and dynamic patterning of the BEC at sub-micron resolution can be achieved [19].

We use a ring-shaped potential in the horizontal plane (see Sec. 3.2), with typical atom
numbers of Natoms ≈ 2× 106. We expect the system to be in the Thomas–Fermi regime, with
a parabolic density profile in the vertical direction of width ≈ 8µm. Using the Thomas–Fermi
approximation, we estimate the chemical potential to be µ≈ 55nK× kB. Although the system
should be fully 3D in a thermodynamic sense (with a true BEC transition), the tight vertical
and radial confinements restrict the relevant dynamics to be along the azimuthal direction.
Throughout this work, the condensate fraction of the gas is n0 ≈ 0.8, which we find to be the
highest achievable in this setup. We estimate this value by letting the cloud evolve in time-of-
flight and calculating the fraction of atoms contained within respective fits to the condensed
and thermal components, as measured from absorption imaging.
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Figure 1: Timing diagram for experimental sequence of ring formation, phonon im-
printing, hold time, and imaging. The depth of the trapping potential is indicated
with the red line, where tramp = 500µs (time not to scale—see text). Insets show
the applied DMD potential for different parts of the sequence, with white areas cor-
responding to an attractive potential. In the example shown, the imprinted mode
number m∗ = 5.

3.2 Experimental sequence

The experimental sequence is summarised in Fig. 1. We initially load the atoms into an annulus
with inner and outer radii of rin ≈ 35µm and rout ≈ 55µm, respectively, and a potential depth
of ≈ 330 nK × kB. The inner radius is then expanded to rin ≈ 45µm, increasing the atomic
density and the chemical potential. This lessens the impact of trap imperfections. We find
that 10 µm is the minimum ring thickness we can achieve that avoids segmentation of the
condensate due to light leak through from the DMD. After this step, the atoms are left to
equilibrate in the final ring potential for 100 ms.

We then imprint an azimuthally varying phase pattern around the ring. This is done by
applying a sinusoidal potential Vimp(θ ) for a time timp, causing the atoms to acquire a phase
factor exp[iVimp(θ )timp/ħh]. Our imprinting potential takes the form Vimp(θ ) = V0 sin(m∗θ ),
where m∗ is the mode number being excited.1 This pattern excites two counter-propagating
waves, which, due to the superfluid’s irrotational nature, must have equal amplitudes. The
amplitude V0 is set to ≈ 90% of the trap depth—this value ensures a fast imprint (relative to
the response time of the atoms) while also minimising the loss of atoms from the BEC. We
apply this imprinting potential via the DMD by adding it to the existing trapping potential.

Immediately prior to the phase imprint, the trapping potential height is doubled to
≈ 660nK × kB over a time tramp = 500µs, in order to prevent atoms spilling out of the
trap when the imprint is applied. The imprinting potential is switched on for a variable time
60µs ≤ timp ≤ 300µs, with longer imprints generating higher amplitude phase patterns (for
significantly longer imprint times, a density perturbation forms, which is the regime explored
in Ref. [1]). After this time, the imprinting potential is switched off, and the trap is lowered to
its original height over time tramp, so that stray-light induced losses are minimised during the
subsequent evolution. The BEC is then allowed to evolve for a variable hold time thold (up to
400 ms), after which time the atomic density is measured in situ using Faraday imaging.

1Throughout this work, we use m for the general azimuthal mode index and denote the imprinted mode m∗.
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4 Numerical modelling

We numerically model the Bose gas using three-dimensional c-field simulations [23], allow-
ing us to approximate the effects of the thermal cloud on the dynamics. In this approach,
a complex-valued classical field ψ(r, t) is used to describe the condensate and a chosen set
of macroscopically occupied low-energy excitations. Excitations above the energy cutoff are
excluded from the field and are not modelled dynamically. Although c-field models cannot
quantitatively capture all aspects of the Bose gas simultaneously [28], they have nonetheless
been shown to match experiments when used appropriately [29–31]. Here we use the c-field
simulations to provide insight into the mechanisms of the damping behaviour of the system
at non-zero temperature, and find that the results are in semi-quantitative agreement with
experiments when the condensate fractions are matched.

To sample thermal states, we use the stochastic projected Gross–Pitaevskii Equation [32–
34], in which the above-cutoff excitations are treated as a thermal reservoir with temperature
T and chemical potential µ, coupled to the field via the dimensionless collision rate γ. The
time evolution is given by:

dψ= P
§

−
i
ħh

LGPψd t +
γ

ħh
(µ− LGP)ψd t + dW

ª

, (5)

where the operator LGP = −(ħh2/2ma)∇2 + Vtrap + g|ψ|2, and the complex local white noise
dW has correlations 〈dW ∗(r, t)dW (r′, t)〉 = (2γkBT/ħh)δ(r − r′)d t. The interaction pa-
rameter g = 4πħh2as/ma, with the 87Rb scattering length as ≈ 5.3nm and atomic mass
ma ≈ 1.44 × 10−25 kg. The projection operator P ensures that the field is confined to the
classical field region, defined here as the set of three-dimensional plane waves with single-
particle energies satisfying ħh2|k|2/2ma < Ecut, with Ecut the energy cutoff.

We use a trapping potential Vtrap(x , y, z) = Vx y(x , y) + Vz(z), where Vz(z) = maω
2
z z2/2 is

a tight harmonic trapping potential, and the planar potential Vx y is chosen to be an annulus
of the form:

Vx y(x , y) = Ṽ0

§

1+
1
2

tanh
�

2
σ
(r − rout)
�

−
1
2

tanh
�

2
σ
(r − rin)
�ª

, (6)

with r =
p

x2 + y2 the radial co-ordinate. This potential has maximum height Ṽ0, inner
(outer) radius of rin (rout), and barrier width set by σ.

To generate the initial condition for our simulations, we first obtain the ground state of the
potential by evolving Eq. (5) with γ = 1 and T = 0. We then set the temperature T ≥ 0 and
continue to evolve in time until thermal equilibrium is reached. Finally, we imprint a phase
profile:

ψ→ψexp
�

iΦimp cos(m∗θ )
�

, (7)

where Φimp is the imprinted amplitude of the phase profile and m∗ is the imprinted mode num-
ber. We then evolve this initial state in time using the projected Gross–Pitaevskii equation [23],
obtained by setting γ = 0 in Eq. (5). In this model, the classical field is decoupled from the
thermal reservoir, and hence energy and particle number are both conserved under time evo-
lution. The decay of the imprinted phonon therefore results from the internal redistribution
of population among the available modes, rather than loss of energy to the reservoir.

In Eq. (5), we use a chemical potential µ= 58 nK×kB and (unless otherwise stated) a tem-
perature T ≈ 170 nK. These values are chosen such that the number of atoms approximately
matches the experiment, and the decay times of the imprinted phonons are on the order of
those measured experimentally. With these parameters, we find that the condensate fraction
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is n0 ≈ 0.81,2 although we note that this parameter should be treated as a self-consistent
measure of coherence within the c-field model, and may be different from the experimentally
measured value.

The planar potential is chosen to have barrier height Ṽ0 = 5µ = 290nK × kB, wall width
σ ≈ 2µm, and inner (outer) radius of rin = 45µm (rout = 55µm). We use a numerical grid of
256×256×24 points, corresponding to a simulation domain of 132µm×132µm×16µm. We
numerically evolve Eq. (5) using XMDS2 [36]. A second-order semi-implicit differential equa-
tion solver is used when γ > 0, and a fourth-order Runge–Kutta scheme is used when γ = 0.
The energy cutoff is set to Ecut = ħh2k2

cut/2ma ≈ 62nK × kB (corresponding to wavenumber
cutoff kcut ≈ 4.7µm−1). The imprinted mode number is varied between 3≤ m∗ ≤ 13, and the
amplitude is varied in the range of 0.1π ≤ Φimp ≤ 8π. We note that although we have used a
3D model for these simulations, we find that 2D simulations with the same atom number and
condensate fraction provide quantitatively similar predictions for the decay of the imprinted
excitation.

5 Analysis

5.1 Measurement protocol

For both experimental and numerical data, we analyse the evolution of the azimuthal exci-
tations by measuring the atomic density. Following the method presented in Ref. [1], we
perform a Fourier transform of the density to obtain the complex Fourier amplitude Am of the
mth azimuthal mode:

Am(t) =

∫∫

n2D(r, t)e−imθdr
∫∫

n2D(r, t)dr
= A(R)m (t) + iA(I)m (t) , (8)

where n2D(r, t) is the two-dimensional (z-integrated) atomic density profile at time t, and A(ν)m
are the real (ν = R) and imaginary (ν = I) components of the amplitude. Throughout this
work, Am(t) is normalised by the atom number, such that 0≤ |Am(t)| ≤ 1.

Treating the radial density profile as time-independent, the two-dimensional density can
be expressed as a product n2D(r, t) = nr(r)nθ (θ , t). Substituting this into Eq. (8) and using
nθ given by Eqs. (1) and (4), the amplitude of the excited phonon mode m= m∗ as measured
from the lab frame will have the form

Am∗(t) = iα(t) sin(ωm∗ t +φ0)e
im∗Ωt . (9)

For generality, we have included a phase offsetφ0 and a time-varying envelope α(t) to account
for any damping. As in previous works [1, 31, 37], we find that the envelope α(t) is well
described by exponential decay in most cases. We will therefore assume

α(t) = α0e−t/τ , (10)

throughout most of this work. Here, τ is the decay constant and 0 ≤ α0 ≤ 1 is the im-
print amplitude, controlled by either timp (in the experiment) or Φimp (in the numerics). In
the case |Ω| > 0 considered in Sec. 7, we extract the rotation rate by measuring the angle
θ (t)≡ arg{Am∗(t)}, which grows linearly in time as θ (t)∝ m∗Ωt.

2Determined from the largest eigenvalue of the one-body density matrix, in accordance with the Penrose–
Onsager criterion [23,35].
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5.2 Quality factor of the phonon interferometer

The quality or Q factor of a resonator is typically defined as [38]

Q =
ωmτ

2
, (11)

whereωm is the angular frequency of the excitation, and τ is its lifetime. The frequency of the
mth mode can be approximated asωm ≈ mω0, whereω0 ≈ cs/R is the fundamental frequency
of the ring, determined by the speed of sound cs =

p

µ/ma and the ring radius R.
In principle, the quality may be improved by either increasing ωm or τ. However, in this

system it has previously been demonstrated that τ ∝ m−1 [1], and thus the product ωmτ

should remain constant. The Q factor can therefore only be improved through other means,
such as by varying the ring properties.

6 Characterising the phonon interferometer

6.1 Quality factor measurements

We first explore the properties of the system with no applied rotation, Ω = 0. This allows
us to benchmark the performance of the interferometer, which will determine its maximum
achievable sensitivity to rotation (see Sec. 7.5). We have performed experiments using the
method described in Sec. 3.2 for a range of imprint amplitudes 0.0135≲ α0 ≲ 0.19 and mode
numbers m∗ ∈ {3, 5,7, 13}. An example series of density images for an m∗ = 7 phase imprint
is shown in Fig. 2(a–d), depicting the evolution of the oscillation over one period. The time
evolution of the Fourier amplitude A(I)m∗(t) obtained from Eq. (8) is shown in Fig. 2(e) (open
circles), demonstrating the decaying oscillatory behaviour. From a fit to Eqs. (9)–(10) (solid

2

Figure 2: Typical experimental sequence for an m∗ = 7 excitation with imprint time
timp = 400µs (imprint amplitude α0 ≈ 0.11). (a)–(d) Density images for hold times
of 0, 6, 9 and 15 ms respectively. The colour scale denotes the squared density in
arbitrary units (a.u.). (e) Decaying oscillations of the imaginary component of the
Fourier amplitude of the m∗ = 7 azimuthal mode. Experimental data (open circles)
have been fitted with a decaying sine wave (black line); the grey shaded region shows
the 95% confidence interval for the fit. Data points corresponding to frames (a)–(d)
are labelled accordingly.
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Figure 3: Q factor as a function of imprint amplitude α0 for four different mode num-
bers m∗ (log–log scale). (a) Experimental data; (b)–(e) experimental (open coloured
points) and c-field simulation (filled black points) data for m∗ = {3,5, 7,13}, respec-
tively. In all panels, the power-law fit to the experimental data, Q∝ α−1

0 , is included
for comparison. Standard errors in Q are presented as vertical bars.

black line), we obtain measurements of the oscillation frequency ωm∗ and the decay time
constant τ, giving a quality factor Q ≈ 5 for this configuration [Eq. (11)].

The Q factors measured in this way for each run of the experiment are displayed in
Fig. 3(a). In agreement with Ref. [1], we find Q to be largely independent of the imprinted
mode number m∗, meaning that performance cannot be improved through the choice of m∗

(see Sec. 5.2). Additionally, we find that the data approximately follow an inverse relationship
with initial imprint amplitude, Q∝ α−1

0 , indicating that we are in a nonlinear damping regime
where τ is α0-dependent. In the limit α0→ 0, we expect the system to evolve approximately
linearly, corresponding to a constant Q(α0). The Q data do show a flattening at low α0 consis-
tent with this expectation, although the spread of the data is too large to reveal a clear picture.
From these results, we conclude that our interferometer should perform best in the limit of
low α0. However, even the best performing configuration only achieves Q ≈ 27—orders of
magnitude lower than other modern rotation sensing technologies [5]. Moreover, using such
weak imprints reduces the signal-to-noise ratio, until the oscillation becomes indistinguishable
from noise at initial amplitudes α0 ≲ 0.013.

To gain further insight into these results, we simulate our system using the c-field method
outlined in Sec. 4 using a similar range of parameters α0 and m∗. We fit Eqs. (9)–(10) to
the measured amplitude A(I)m∗(t) of the imprinted mode over the first ∼ 100ms of evolution.
The resulting Q measurements are shown as black points in Fig. 3(b)–(e), corresponding to
m∗ = {3, 5,7,13}, respectively. For comparison, the equivalent experimental data from (a)
are also shown in each frame (b)–(e), along with the same power-law Q ∼ α−1

0 . We find
broad agreement between our experimental and numerical results, to within the precision
expected from the c-field methodology. For large α0 the numerical data follow the power-law
quite convincingly. For small α0, the numerical results show a clear plateauing behaviour,
particularly for m∗ = 7 and m∗ = 13, providing convincing evidence of linear decay behaviour
in this regime. Importantly, the simulations do not predict significantly higher Q factors for
this experimental configuration, and hence the low Q values observed cannot be attributed to
imperfections in the experiment. Rather, the excited phonons are being damped by physical
processes that are present in both simulation and experiment. In the next section, we attempt
to understand these decay processes, as well as the observed transition between linear and
nonlinear behaviour as α0 is varied.
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6.2 Damping of phonons

6.2.1 Scattering processes

The imprinted excitation decays via mode mixing processes arising from the nonlinear inter-
actions in the Bose gas. The dominant scattering processes involve interactions between three
azimuthal quasiparticle excitations and the condensate mode.3 In such a process, the im-
printed mode m∗ will interact with two other quasiparticle modes (denoted by integers p and
q), as well as the condensate (denoted 0), leading to four potential events [24]: m∗+p→ q+0
(Landau damping [25,26]), m∗+0→ p+q (Beliaev damping [39,40]), q+0→ m∗+p (Landau
growth) and p+q→ m∗+0 (Beliaev growth). In the absence of quantum fluctuations (which
are neglected in the c-field simulations), these scattering events can only occur if both incom-
ing modes and at least one of the outgoing modes have nonzero population. Additionally, the
collisions must conserve both energy and angular momentum. Since we are interested in long
wavelength excitations, the relevant part of the energy spectrum scales linearly with mode
number, E(m) ∼ |m|. In the case of Landau damping, the two conservation conditions are
therefore |m∗|+ |p|= |q| (energy) and m∗+ p = q (angular momentum). Energy conservation
prohibits interactions between counter-rotating modes, and hence we restrict our treatment
to positive (anticlockwise) modes without loss of generality.

In the experiment, we expect Landau damping to dominate over all other processes because
of the large initial population in the m∗ mode, as well as the large number of decay channels
available for such collisions. (Beliaev damping, on the other hand, is highly restricted due
to the low values of m∗, in combination with the conservation laws stated above.) We do,
however, identify two unique Landau-type damping processes in the dynamics. Generally, the
incoming mode p will be thermally populated (i.e. p ̸= m∗), leading to population transfer
into another thermal mode q = m∗ + p. However, in the special case p = m∗, a phenomenon
known as frequency doubling occurs, where the outgoing mode q = 2m∗. We find that these
two processes lead to significantly different damping behaviour of the imprinted mode, as
explored in the next section.

6.2.2 Explanation of observed phonon damping

The two Landau-type decay processes described above become visibly distinct in the simula-
tions for large imprints (α0 ≳ 0.05), manifesting as two separate exponential decay constants
τ1 and τ2 in the decay of the envelope function α(t). This behaviour is demonstrated in Fig. 4
for an example c-field simulation with m∗ = 5 and α0 ≈ 0.18. In (a), the raw amplitude of the
imprinted mode is plotted as a function of time (black circles), alongside two fits to Eqs. (9)–
(10)—one for t < 90 ms (cyan solid line), and one for t > 90 ms (red dashed line). In (b), we
plot the time-varying envelope α(t), which we have isolated by dividing by the sinusoidal com-
ponent of the fit, sin(ωm∗ t +φ0), with fitting parameters ωm∗ and φ0.4 The exponential parts
of the fit are also plotted for comparison, clearly demonstrating that two decay constants are
required to describe the data. We have been unable to definitively observe this phenomenon
in the experiment due to limitations in the signal-to-noise ratio, although the strongest imprint
(m∗ = 13, α0 ≈ 0.18) shows behaviour consistent with two exponential decay rates.

Concurrent with this change in decay rate, we notice a change in the behaviour of the
other azimuthal modes in the simulation. Immediately after t = 0, the higher harmonics of the
m∗ = 5 imprint (m= 10, 15, ...) begin to grow in population, as seen in Fig. 4(c). To quantify
this effect, we have fitted quintic polynomial curves to approximate the envelopes α(t) of each

3Interactions between four quasiparticles are also possible, but are less frequent.
4We have implemented a moving-median binning procedure after dividing by the sinusoid in order to discount

singularities that occur where it passes through zero.
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Figure 4: Exemplar of two decay rates in the c-field model for an imprint with
m∗ = 5 and α0 ≈ 0.18, and an initial condensate fraction n0 ≈ 0.81. (a) Raw
Fourier amplitude oscillation (black circles), and (b) the decay envelope function
α(t) (black circles), obtained by dividing the data by sin(ωm∗ t +φ0), with fitted fre-
quency ωm∗ = 2π× 28 Hz and phase offset φ0 = 3.3 rad (blue shaded region) and
φ = 3.1 rad (red shaded region). Note the semi-log scale in (b). In both (a) and (b),
the envelope function is well described by Eq. (10), with time constants τ1 ≈ 50 ms
for t < 90 ms (blue shaded region), and τ2 ≈ 143 ms for t > 90ms (red shaded
region). The fits are shown with a cyan solid line and a red dashed line, respectively.
(c) Amplitudes of the imprinted mode m∗ = 5 and higher harmonics (solid lines),
vertically offset for clarity. Dashed lines show fifth-order polynomial fits capturing
the envelope α(t) of the amplitude data. The index ν ∈ {R, I}, with real component
plotted for even modes, and imaginary component plotted for odd modes. (d) Com-
parison of fitted amplitude envelope polynomials (solid lines), as well as the thermal
mode population Λth(t) (see text). The red circles correspond to time-averaged val-
ues of Λth, while the shaded region denotes the standard deviation. The vertical
dashed line denotes the 90 ms timescale where the decay rate crosses over, as mea-
sured from (a) and (b).

of these modes. The fits are plotted in Fig. 4(d) [also shown as dashed lines in (c)]. The higher
harmonics are seen to rapidly grow in amplitude at early times, before peaking at ≈ 20 ms
with a maximum population that decreases for increasing m. This growth of amplitude can
be explained as a form of high harmonic generation (HHG) [41,42] arising from a cascade of
Landau-type processes im∗ + jm∗ → (i + j)m∗ + 0. Initially, the frequency doubling process
described above (i = j = 1) converts population into the 2m∗ mode. This then stimulates
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Figure 5: Q factor as a function of the initial imprint amplitude α0 for different im-
printed mode numbers m∗ from the c-field simulations with n0 ≈ 0.81. Forα0 ≳ 0.05,
two decay times τ1 and τ2 emerge, giving rise to two distinct Q values, depending
on the temporal window used for the fit (‘early’ or ‘late’, respectively). We attribute
the source of the Q ∼ α−1

0 power-law to be the HHG damping process, while the ap-
proximately α0-independent behaviour reflects the Landau scattering from thermal
modes. The ‘early’ data are the same as those plotted in Fig. 3(b–e).

(i = 1, j = 2) collisions into the 3m∗ mode, followed by growth of the 4m∗ mode via (i = 1,
j = 3) and (i = 2, j = 2), and so on. In this way, the population rapidly transfers from the
imprinted mode to the higher harmonics. Other modes that are not integer multiples of m∗

are initially thermally populated, and their amplitudes remain at |Am(t)| ≲ 0.01 throughout
the simulation.

After peaking at ≈ 20ms, the populations of the higher harmonics begin to decay again,
facilitated by scattering processes involving the thermally populated modes. Eventually, they
decrease to the level of the thermal modes, indicating that the HHG process is no longer
dominant. Importantly, around the observed crossover time of ≈ 90 ms, the population in
the imprinted mode becomes almost equal to the population across all the thermal modes,
Λth(t)≡
∑

m ̸= jm∗ |Am(t)|, as seen in Fig. 4(d).5 Once this occurs, the thermal Landau damping
process should begin to dominate for mode m∗, because collisions with thermal quasiparticles
at least as probable as collisions with imprinted quasiparticles.

With this understanding, we revisit the numerical results presented in Fig. 3(b–e). By
performing additional fits of Eqs. (9)–(10) to A(I)m∗(t) using a later temporal window, we find
that a second decay time τ2 systematically emerges at large α0. Figure 5 shows the Q factor
as measured for this later fitting window (dark circles), with the data from the earlier fitting
window (light squares) also shown for comparison. Two distinct values of Q are obtained for
α0 ≳ 0.05. While the early time data follow Q ∼ α−1

0 in this region (as identified in Sec. 6.1),
the late time data show little dependence on α0. This suggests that while the early HHG
damping process gives rise to nonlinear decay, once the late time thermal Landau damping
process takes over, the dynamics enter an approximately linear regime. The weak downward
trend of Q(α0) from the late fits is also consistent with an increase in heating resulting from
the redistribution of increasingly large imprinted quasiparticle populations into the thermal
modes.

5Note that the thermal mode amplitudes oscillate in time, meaning that this measure will on average underes-
timate the true thermal population.
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Figure 6: Envelope functions α(t) from the c-field simulations for an m∗ = 5 imprint
at condensate fractions n0 = 1 (blue squares) and n0 ≈ 0.81 (orange circles), ob-
tained by dividing each amplitude curve A(I)m∗(t) by the sinusoidal component of the
fit to Eqs. (9)–(10). (a) Low initial amplitude imprint, α0 ≈ 0.02; (b) high initial
amplitude imprint, α0 ≈ 0.25. Solid lines show exponential fits to Eq. (10). In (b),
the early-time fits are performed in the window t ≤ 75ms; all other fits correspond
to windows t ≥ 150ms.

6.2.3 Temperature dependence of damping processes

Due to their different origins, the HHG and thermal Landau damping processes should give
rise to distinct behaviour as both the imprint amplitude and the temperature of the system are
varied. For large α0 where HHG initially dominates, lowering the temperature should not sig-
nificantly affect the decay rate, since the frequency doubling process is unaffected by the ther-
mal populations. By contrast, small α0 imprints should be strongly temperature dependent,
since thermal Landau damping is the dominant process. In the limit of both zero temperature
and small α0, damping should be minimised, because only very weak HHG should be possible.

To test this hypothesis, we have performed additional simulations of the m∗ = 5 imprint at
zero temperature (i.e. condensate fraction n0 = 1). Figure 6 compares the envelope functions
α(t) for n0 = 1 (blue squares) and n0 ≈ 0.81 (orange circles) for two imprint amplitudes α0.
The envelopes have been obtained in the same way as in Fig. 4(b). For weak imprints [panel
(a)], we find that the decay rate is much higher at finite temperature than zero temperature.
Consistent with our prediction, the envelope function for n0 = 1 is approximately flat at early
times, showing a gradual approach to exponential decay as the population transfers to higher
harmonics of m∗. At the highest amplitudes [panel (b)], we see that the early-time decay rate
is similar at the two temperatures, demonstrating the temperature-independence of HHG. The
late-time decay rate, on the other hand, is significantly higher at finite temperature, consistent
with the prediction that thermal Landau processes are more important here.

6.2.4 Change in quality factor with temperature

The data in Fig. 6(a) indicate that it should be possible to improve the Q factor of our system by
reducing the temperature. To explore this possibility further, we have repeated our simulations
of the m∗ = 5, α0 ≈ 0.02 imprint for a range of condensate fractions n0. As seen in Fig. 6(a),
the envelope α(t) exhibits a slow approach to exponential decay at the lowest temperatures.
We therefore measure the decay constant τ using two temporal windows: t ≤ 100 ms and
150 ms≤ t ≤ 400ms. The resulting Q factors are presented in Fig. 7. Evidently, the early time
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Figure 7: Q factor as a function of condensate fraction n0 in the c-field model, for
an m∗ = 5, α0 ≈ 0.02 imprint. ‘Early’ and ‘late’ fits correspond to temporal windows
t ≤ 100ms and 150 ms≤ t ≤ 400ms, respectively. Standard errors are shown.

Q factors are significantly larger at the highest condensate fractions, n0 ≳ 0.95. In this limit,
Q factors as large as ∼ 150 are attainable, provided that the measurement only probes the
first ∼ 100 ms of evolution. If longer interrogation times are required, the maximum possible
Q drops to ∼ 50, which is only a minor improvement over our best experimentally measured
values.

7 Rotation measurement with a persistent current

7.1 Persistent currents

We now turn to testing the performance of our superfluid ring as a rotation sensor in the case
rotation is applied, i.e. |Ω| > 0. Due to the challenges involved with rotating the laboratory
FoR, we have instead opted to induce rotation in the ring by generating persistent currents.
This provides a proof-of-principle demonstration of rotation sensing using phonon interferom-
etry [14]. However, we note that in a realistic rotation sensing application, persistent currents
are undesirable. Such currents will be generated if the atoms are rotating faster than the low-
est rotation rate the ring can support, Ω0, when the BEC is formed, introducing ambiguity into
the rotation measurement.

A superfluid confined to a ring geometry is capable of supporting persistent currents, which
arise due to the quantisation of circulation around the ring in units of h/ma, where h is Planck’s
constant. The rotation rate Ω is therefore also quantised such that:

Ω= lΩ0 ≈
lħh

maR2
, (12)

where l is number of circulation quanta and R the radius of the ring. With a ring radius of
45µm ≲ R ≲ 55µm, the presence of a single quantum of circulation (i.e. l = 1) indicates
a rotation rate that varies within the range 0.24 rad/s ≲ Ω0 ≲ 0.36 rad s−1 as a function of
radius.

7.2 Experimental stirring protocol

We generate persistent currents experimentally by stirring with a potential barrier [14], as
depicted in Fig. 8. First, we load the atoms into a ring-shaped trap with inner and outer radii
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Figure 8: Absorption images of the squared density during the stirring sequence. (a)
A thick ring is created, with a barrier for azimuthal stirring (top right); (b) the inner
radius is expanded to increase the atomic density; (c) a radial barrier is introduced
and the azimuthal barrier is rotated to generate a winding in the outer ring; (d) the
azimuthal barrier is removed; (e) either a sinusoidal phase is imprinted in the outer
ring (in this case, m∗ = 13), or; (f) the inner and outer ring are allowed to interfere
for a direct measurement of the winding number (in this case, l = 1). The squared
density is measured in the same arbitrary units (a.u.) across all frames. The color
scale in (f) applies to frames (a–d,f), while the range of the color scale for frame (e)
has been increased for clarity.

rin ≈ 25µm and rout ≈ 55µm, including an additional barrier to be used for azimuthal stirring
[panel (a)]. We then expand the inner radius to rin ≈ 30µm in order to increase the atomic
density [panel (b)]. A radial barrier of width ≈ 10µm is then ramped on, splitting the system
into two concentric rings of ≈ 10µm thickness [panel (c)]. The barrier is then swept around
the outer ring for< 1 cycle, moving with an angular acceleration of 1.53 rad s−2 until a desired
angular velocity is achieved in the outer ring. At this point, we remove the azimuthal barrier
and allow the system to relax for 500 ms so that any excitations generated by the stirring can
dissipate [panel (d)].

To use the system as a rotation sensor, we then imprint phonons into the outer rotating
ring in the same way as described in Sec. 3.2, ignoring the inner ring [panel (e)]. We can then
proceed to measure the rotation rate of the imprinted phonon mode by measuring the rate of
change of the angle θ (t) = arg{Am∗(t)} (see Sec. 5). Alternatively, we can perform a ‘control’
measurement of the system’s rotation rate by removing the trapping potential and letting the
two rings interfere before taking an image [panel (f)]. The resulting interference pattern is
expected to contain l fringes, enabling a direct measurement of the circulation [43, 44]. By
comparing these two measurements, we can confirm that the phonon interferometry scheme
matches an established method of measuring rotation.
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Figure 9: Evolution of the Fourier amplitude for an m∗ = 13 imprint, with a persistent
current of≈ 2.5 rad s−1 around the ring. Blue squares show the imaginary component
of Am∗(t) (left axis), while orange circles show the phase θ (t)/m∗ (right axis). The
orange dashed line shows a linear fit to the phase, with the shaded region denoting
one standard error. Vertical grey shading corresponds to regions with small imaginary
component (|A(I)m∗(t)| ≤ 0.01) where phase data are excluded from the fit.

7.3 Experimental rotation measurement

We perform rotation measurements for a range of circulation quanta around the ring, up to
l = 9 (corresponding to Ω ≈ 2.5 rad s−1). For these measurements, we use phonon modes
m∗ = 7 and m∗ = 13 to maximise the signal-to-noise ratio in the measurement of the phase
accumulation rate dθ/dt = m∗Ω. Figure 9 displays an example measurement for an m∗ = 13,
l = 9 imprint, with both the imaginary component of the Fourier amplitude A(I)m∗(t) and the
angle θ (t) shown. The dashed orange line shows a linear fit to θ (t), from which the rotation
rateΩ can be measured. Points where the imprinted mode amplitude is small (|A(I)m∗(t)| ≤ 0.01,
vertical shaded regions) are excluded from the fit, as these correspond to times when the
density profile is approximately uniform around the ring, resulting in an undefined angle θ .

Figure 10(a) displays the rotation rate Ωphonon as measured from phonon interferometry,
compared to Ωfringe obtained from fringe counting (see Sec. 7.2). All points on the graph
are located close to the ideal scenario Ωphonon = Ωfringe (solid line), demonstrating a successful
implementation of phonon interferometry for rotation sensing. However, our stirring sequence
does not provide deterministic control of the winding number, introducing variability in the
applied rotation rate. This may explain the large spread in θ (t) seen in Fig. 9, which is in
turn reflected in the vertical error bars in Fig. 10(a). The horizontal error bars are dominated
by the variation in rotation frequency over the finite width of the ring due to the irrotational
nature of the flow (see Sec. 7.1). We note that both of these effects are artefacts of the use of
persistent currents for rotation. In a realistic rotation sensing scenario, the BEC would rotate
as a rigid body relative to the laboratory FoR, and these sources of uncertainty would not be
present. We discuss the fundamental rotation sensitivity of this system in Sec. 7.5.

7.4 Numerical rotation measurement

We simulate the rotation measurements using the c-field model for comparison with the exper-
imental results. We use the same simulation procedure outlined in Sec. 4, with an additional
step of phase imprinting l circulation quanta, ψ→ψeilθ , onto the ground state before evolv-
ing Eq. (5) to equilibrium at finite temperature. We perform simulations with l = {1,2, 3,6, 9}
and imprinted mode numbers m∗ = {7, 13}.
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Figure 10: Measured rotation rates Ωphonon from phonon interferometry with m∗ = 7
and m∗ = 13 imprints, as a function of applied rotation. (a) Experimentally measured
rotation rates as a function of the rotation as measured from the fringe count Ωfringe;
(b) rotation rates measured from the c-field simulations as a function of the applied
rotation Ωapplied. In both frames, the ideal result is shown as a black line. Note that
the winding number l is nondeterministic in the experiment, whereas the simulations
provide precise control over l. The imprint amplitude 0.04 ≲ α0 ≲ 0.08 for the
experimental data, while α0 ≈ 0.1 was chosen for the simulations. The error bars
indicate the standard error.

Following the same analysis procedure as the experiment, we extract the rotation rate
Ωphonon by measuring the rate of change of θ (t). As for the experimental data, we re-
move points where |Am∗(t)| ≤ 0.01 in order to avoid singularities, and we restrict the fits to
t ≲ 100ms. We then bootstrap our fit by repeatedly sampling 10 randomly selected points out
of the remaining ∼ 30 points in the time sequence, performing a linear fit to each subsample.
The rotation rate and its uncertainty are then obtained from the mean and standard deviation
of the resulting distribution of gradients. These measurements are plotted as a function of the
applied rotationΩapplied = lΩ0 in Fig. 10(b). The data follow the expected behaviour, although
the singularities do still affect the quality of the fitting, leading to some slight disagreement
with the expected trend. Evidently, the simulation results are more precise than those from
the experiment, with smaller vertical error bars in particular due to the absence of uncertainty
in the applied winding number. However, the horizontal error bars remain approximately the
same size as the experimental data, due to the aforementioned variation in rotation frequency
over the width of the ring. This result demonstrates the viability of the sensor for practical
rotation measurement and confirms our understanding of the experiment.

7.5 Sensitivity of rotation sensor

The performance of the interferometer as a rotation sensor can be quantified by its sensitivity
∆Ω, defined as the smallest rotation frequency it is capable of resolving. Unlike in the previous
sections, here we focus on a scenario where just a single run of the experiment is performed,
and a sample is obtained at an optimal time t. The uncertainty in a measurement of Ω made
from this sample is ∆Ω(t) =∆Am∗ |dAm∗/dΩ|

−1, which from Eqs. (9)–(10) gives

∆Ω(t) =∆Am∗
exp(t/τ)

m∗α0 t| sin(ωm∗ t +φ0)|
. (13)
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If we make a measurement at time t = τ, the ratio exp(t/τ)/t will be minimised, and
∆Ω(τ)∝ 1/τ| sin(ωm∗τ+φ0)|. The global minimum of the single-shot sensitivity will there-
fore be achieved if t = τ also corresponds to a maximum of the sinusoid (i.e. a maximum of
the density perturbation), giving:

∆Ωmin =∆Am∗
e

m∗α0τ
. (14)

This optimal scenario could be engineered via a change in the frequency ωm∗ , for example by
adjusting the atomic density.

Expressing this ideal sensitivity in terms of the Q factor (11),

∆Ωmin ≈∆Am∗
eω0

2α0Q
, (15)

it becomes evident that the imprinted mode number m∗ does not affect the sensitivity, and
that ∆Ωmin will improve with larger Q. However, in Sec. 6.1 we found that Q and α0 are not
independent quantities in general, and in particular that Q ∝ α−1

0 for strong imprints. In
this regime, the sensitivity becomes completely independent of the properties of the imprinted
mode, leaving only its dependence on the system properties via ω0.

If the density profile measurement is shot-noise limited, we expect fluctuations in the
Fourier amplitude of order ∆Am∗ = (2Natoms)−1/2 [1]. In this limit, Eq. (15) predicts an op-
timal sensitivity of ∆ΩASN ≈ 0.04 rad s−1 for our experiment. For comparison, we directly
estimate the fluctuations in Am∗(t) by experimentally measuring the spread ∆A(R)m∗ (t) for zero

imprinted rotation, in which case 〈A(R)m∗ (t)〉= 0 is expected due to the orientation of the phase
imprint. By doing this for all non-rotating datasets presented in Fig. 3(a), we estimate that
∆Am∗ is approximately eight times larger than than the shot-noise limited value, leading to an
achievable sensitivity of ∆Ωmin ≈ 0.3 rad s−1 from a single measurement at t = τ.

8 Conclusions

We have established the sensitivity of a rotation sensing schemed based on the interference
of counter-propagating phonon modes imprinted in the phase of a ring-shaped Bose–Einstein
condensate. Such a device is fundamentally limited by the lifetime of the imprinted excitations,
and the system achieves quality factors up to a maximum of Q ≈ 27. This is an improvement
over previously reported values in similar experimental setups [1,37], but still many orders of
magnitude poorer than commercially available sensors.

By performing c-field simulations of the experiment, we have confirmed that the low qual-
ity factors obtained do not arise from experimental deficiencies. Rather, the decay of the im-
printed excitations is caused by physical damping processes facilitated by the nonlinearity of
the BEC. Intriguingly, the numerics have revealed two distinct decay processes at work. Scat-
tering between imprinted and thermal quasiparticles provides a form of damping that depends
only on temperature, while collisions between imprinted quasiparticles give rise to damping
that depends on the imprinting amplitude but not on temperature. In the limit of zero tem-
perature and weak imprints, where both of these damping mechanisms should be minimised,
our simulations suggest that Q factors up to ∼ 150 may be attainable in this system.

We have successfully performed a rotation measurement using this phonon interferometry
scheme by creating a persistent current in the ring BEC, thereby demonstrating a resolution
below the fundamental frequency of the ring, Ω0 ≈ 0.29 rad s−1, when fitting to a sequence of
measurements. We predict that the optimal rotation sensitivity attainable from a single run of
our experiment is ∆Ωmin ≈ 0.3 rad s−1. While this is an improvement over previous work [1],
it is significantly above the atomic shot-noise limit of ∆ΩASN ≈ 0.04 rad s−1 of our apparatus.

18

https://scipost.org
https://scipost.org/SciPostPhys.15.4.128


SciPost Phys. 15, 128 (2023)

The rotation sensing precision could therefore be improved by reducing the noise floor, for
example via the reduction of optical noise sources. Improving the signal-to-noise ratio of the
measurement would also allow for weaker imprints to be used, increasing the sensitivity [see
Eq. (15)]. Further gains could be made in the sensitivity by implementing non-destructive
imaging, which would allow for multiple sequential measurements without increasing the
experimental run time [45]. Finally, it might be possible to alter the trap geometry to limit the
available scattering channels, making the imprinted excitations resistant to decay.

Significant improvements in sensitivity would be required to produce a sensor of compara-
ble precision to those already commercially available. However, the superfluid’s absolute FoR
does prevent measurement drift, potentially providing a very significant potential advantage
for operation over extended periods. These devices may therefore prove useful if used in con-
junction with conventional rotation sensors as a means of calibration to reduce uncertainty
in classical systems over prolonged operation [46–48]. This could be achieved by repeatedly
performing single-shot rotation rate measurements using the phonon system. The difference
between these measurements and those from the classical system from individual measure-
ments would accumulate to provide a long term drift value that could thus be subtracted from
the classical measurement [46–48].
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