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Abstract

Entanglement measures constitute powerful tools in the quantitative description of
quantum many-body systems out of equilibrium. We study entanglement in the
current-carrying steady state of a paradigmatic one-dimensional model of noninteracting
fermions at zero temperature in the presence of a scatterer. We show that disjoint
intervals located on opposite sides of the scatterer, and within similar distances from
it, maintain volume-law entanglement regardless of their separation, as measured by
their fermionic negativity and coherent information. The mutual information of the
intervals, which quantifies the total correlations between them, follows a similar scaling.
Interestingly, this scaling entails in particular that if the position of one of the intervals
is kept fixed, then the correlation measures depend non-monotonically on the distance
between the intervals. By deriving exact expressions for the extensive terms of these
quantities, we prove their simple functional dependence on the scattering probabilities,
and demonstrate that the strong long-range entanglement is generated by the coherence
between the transmitted and reflected parts of propagating particles within the bias-
voltage window. The generality and simplicity of the model suggest that this behavior
should characterize a large class of nonequilibrium steady states.
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1 Introduction

Within the broad field of quantum many-body physics, the study of nonequilibrium phenomena
is becoming increasingly intertwined with the analysis of entanglement witnesses. In
particular, the scaling of various entanglement measures with the size of a subsystem
quantitatively captures canonical nonequilibrium behaviors, such as thermalization [1–3]
or the violation thereof [4–6], in closed systems subjected to an initial quench. In
quench problems of this type, transient effects of long-range entanglement are signatures of
integrability [7–10], and the dynamics as well as the stationary values of the entanglement
entropy, negativity, and mutual information are used for the classification of out-of-equilibrium
models and their phases [11–22].

This success motivates the examination of entanglement properties also in open systems,
and specifically those of their steady states, which may give rise to unique entanglement
structures [23–29]. Current-carrying states of inhomogeneous systems offer a promising
ground for such an analysis, as recent studies have revealed that they can naturally sustain
long-range quantum coherent correlations [30–32]. In this context, scaling laws of steady-
state entanglement measures were shown to be closely related to the localized-diffusive phase
transition of the open noninteracting Anderson model [33]. In this work we show that
nonequilibrium conditions may lead to an even more striking behavior of quantum information
measures. This is achieved through the study of an elementary model for an inhomogeneous
system in a current-carrying state, where the mechanism underlying its unusual entanglement
properties is exceptionally transparent.

Beyond the role of entanglement measures as fundamental quantities, their estimation
is inextricably linked to the construction of useful tensor-network simulations of condensed
matter systems [34, 35]. Strong (volume-law) entanglement, which is commonly found in
nonequilibrium quantum many-body states [2,13,36], impedes the utility of these simulation
methods [37]. One possible key for their improvement is thus the uncovering of nontrivial
entanglement structures in certain classes of states, like the one that is the subject of this
work. Steady states that are predicted to give rise to strong entanglement are also of potential
interest from a technological standpoint, as entanglement is an essential resource for quantum
information applications [38–40].

In this work, we examine the long-range entanglement induced by a current-conserving
scatterer in the voltage-biased steady state of a 1D noninteracting fermion system. We treat
this problem generally, without imposing specific assumptions regarding the structure of the
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Figure 1: (a) Schematic sketch of the model: Red circles mark lattice sites in the
scattering region, while sites outside this region are marked in blue. Noninteracting
reservoirs with different chemical potentials are connected to the two ends of the
chain. See the text (Sec. 2) for details regarding the notations. Bottom panels:
An intuitive picture for the origin of the steady-state entanglement structure. (b)
Any incoming wavepacket (black) is split by the scattering region into a transmitted
part (dark gray) and a reflected part (light gray), with amplitudes determined by
the associated scattering matrix (see Eq. (5)). The transmitted and reflected parts
are coherently correlated and thus generate entanglement. (c) Split wavepackets
with energies within the voltage window strongly entangle regions that mirror each
other with respect to the position of the scattering region. Correlation measures
exhibit long-range volume-law scaling, since the number of split wavepackets shared
by these mirroring regions is proportional to their length and independent of their
spatial separation.

scatterer other than it being smaller compared to all other length scales. We study the
correlations between two disjoint subsystems located on opposite sides of the scatterer: AL

on its left, and AR on its right. The total amount of correlations is regularly quantified using
the mutual information (MI) between the two subsystems,

IAL :AR
= SAL

+SAR
−SA . (1)

Here A = AL ∪ AR, and SX = −Tr [ρX lnρX ] is the von Neumann entanglement entropy of a
subsystem X [41], with ρX being the reduced density matrix of X .

Given that A is in a mixed state, however, the MI has limitations as a measure of
entanglement, since it takes into account both classical and quantum correlations [42].
Therefore, we also address the fermionic negativity [43–45] between AL and AR, an
entanglement monotone defined as

E = ln Tr
q

(eρA)
†
eρA , (2)

where eρA is obtained fromρA by applying a partial time-reversal to either AL or AR. Interestingly,
our analysis shows that the MI and negativity follow a similar scaling, a scaling which to the
best of our knowledge has not been previously observed in a natural physical scenario.

As our main result, we find that both the MI and the negativity scale linearly with
ℓmirror, the number of sites in AL that, under reflection with respect to the position of the
scatterer, overlap with sites in AR (see Fig. 1(a) for an illustration). Remarkably, this steady-
state extensive entanglement is long-ranged, as the observed volume-law scaling does not
decay with the (similar) distance of the mirroring sites from the scatterer. Moreover, the
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entanglement depends non-monotonically on the distance of either AL or AR from the scatterer.
We analytically derive exact formulas for the asymptotic scaling of the MI and the negativity
(Eqs. (8)–(9)). Additionally, we demonstrate that the coherent information (CI) [46,47],

I(AL〉AR) = SAR
−SA , (3)

is not only positive (which is impossible classically) when ℓmirror is large enough, but also
grows with ℓmirror according to a volume law (Eq. (10)).1 The CI is a lower bound to the
squashed entanglement [48, 49], another rigorous entanglement measure with axiomatically
desirable properties [41], which therefore obeys an extensive scaling as well in regimes where
I(AL〉AR)> 0.

A simple intuitive explanation for these results is provided by considering that the scatterer
splits each incoming single-particle wavepacket into two coherently correlated counter-
propagating parts (Fig. 1(b)). Each such split wavepacket with energy within the voltage
window generates entanglement, since detecting the particle in one subsystem prohibits its
presence in the other. As the number of such wavepackets is proportional to ℓmirror and
independent of the distance between the subsystems (Fig. 1(c)), the correlation measures
exhibit a similar behavior.

The paper is organized as follows. In Sec. 2 we introduce the model for the system and its
nonequilibrium steady state that are the subject of this work. In Sec. 3 we report our analytical
results for correlation measures in the steady state. We point out the salient features of these
results, and support them through comparisons to numerical results (computed for a specific
choice of the scatterer). Sec. 4 outlines the derivation of the analytical results, and is limited
to the conceptually crucial steps in the derivation, while the technical aspects of the process
are mostly discussed in the appendices. In Sec. 5 we conclude and mention potential future
directions arising from this work.

Additionally, the paper includes four technical appendices. In Appendix A we derive the
two-point correlation function, which served as the basic ingredient in all of our calculations.
Appendix B presents the technical details of our computation method for subsystem entropies,
from which (as explained in Sec. 4) the asymptotics of the MI and CI can be immediately
derived. Appendix C summarizes the derivation of the formula for the fermionic negativity,
which is based on the same method. Finally, in Appendix D we complement the numerical
results included in Sec. 3 with additional numerical tests corroborating our analysis.

2 Nonequilibrium model

We consider a 1D lattice, occupied by noninteracting fermions and connected at its ends to
two reservoirs with different chemical potentials, µL ̸= µR, at zero temperature. The lattice is
assumed to be of infinite length, and it is modeled as a tight-binding chain that is homogeneous
everywhere, except for a small region at the center of the chain, which we dub the scattering
region. The Hamiltonian is thus of the form

H = −η
∞
∑

m=m0

�

c†
mcm+1 + c†

−mc−m−1 + h.c.
�

+Hscat . (4)

Here cm is a fermionic annihilation operator for the mth lattice site, η > 0 is a hopping
amplitude, m = ±m0 designate the boundaries of the scattering region, and Hscat pertains
only to sites with |m| ≤ m0 and breaks the homogeneity, e.g., through modified hopping terms,
on-site energies, or side-attached sites.

1The definition of the CI is evidently not symmetric with respect to the two subsystems AL and AR. Our choice to
examine I(AL〉AR) rather than I(AR〉AL) is arbitrary, and we maintain this choice throughout the text for convenience.
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The scattering region can be associated with a 2×2 unitary scattering matrix [50], defined
for any lattice momentum 0< k < π:

S(k) =

�

rL(k) tR(k)
t L(k) rR(k)

�

. (5)

The diagonal (off-diagonal) entries of this matrix stand for reflection (transmission)
amplitudes; the left (right) column contains the scattering amplitudes for a particle originating
in the left (right) reservoir with momentum k > 0 (−k < 0). The squared moduli of the
entries correspond to the transmission and reflection probabilities, respectively T (|k|) and
R(|k|) = 1 − T (|k|), for a particle originating in either reservoir with momentum k. These
scattering probabilities are the sole property of the scatterer on which our analytical results
depend.

The single-particle eigenbasis of the Hamiltonian is comprised of extended scattering states
with energies ϵ = −2η cos k, and of bound states localized near the scattering region [50,51];
we ignore the latter in our analysis, as they contribute negligibly to correlations between sites
that are distant from the scatterer. The current-carrying many-body steady state is pure, with
single-particle scattering states originating in the left (right) reservoir occupied up to a Fermi
momentum kF,L > 0 (−kF,R < 0), as shown schematically in Fig. 1(a). The Fermi momenta are
related to the chemical potentials through µi = −2η cos kF,i (i = L, R).

Correlation and entanglement measures are calculated with respect to two subsystems AL

and AR, each comprised of contiguous sites, with lengths ℓi and distances di ≥ 0 (i = L, R)
from the scattering region (all of which are assumed to be much larger than the size of the
scattering region, 2m0 + 1): AL contains the sites m such that −dL − ℓL ≤ m+m0 ≤ −dL − 1,
while AR contains the sites m such that dR + 1 ≤ m − m0 ≤ dR + ℓR (see Fig. 1(a)).
ℓmirror = max {min {dL + ℓL, dR + ℓR} −max {dL, dR} , 0} denotes the number of mirroring pairs
(−m, m) ∈ AL × AR, and we also define ∆ℓi = ℓi − ℓmirror.

3 Asymptotics of correlation measures

The leading behaviors of the MI and the negativity can be encapsulated by that of the Rényi
MI, defined as

I(n)AL :AR
= S(n)AL

+ S(n)AR
− S(n)A , (6)

where S(n)X = 1
1−n lnTr [(ρX )

n] are Rényi entropies (which converge to SX as n→ 1). We report
that, for the nonequilibrium steady state described above, the Rényi MI follows a volume-law
scaling with ℓmirror,

I(n)AL :AR
∼
ℓmirror

1− n

∫ k+

k−

dk
π

ln[(T (k))n + (R(k))n] + . . . , (7)

where k− =min
�

kF,L, kF,R

	

and k+ =max
�

kF,L, kF,R

	

are the two Fermi momenta that bound the
voltage window. The ellipsis (which will be henceforth omitted) represents subleading terms,
the dominant of which are logarithmic in the different length scales (ℓi , di , and combinations
thereof). Full exact expressions for these logarithmic terms can be obtained in the long-range
limit di/ℓi →∞ (with dL− dR kept fixed) using methods related to the asymptotic calculation
of Toeplitz determinants [52–55]; the results for these subleading corrections will be discussed
in a separate publication [56].
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The MI is related to the Rényi MI simply by its definition, through the equality
IAL :AR

= limn→1 I
(n)
AL :AR

, yielding the following asymptotics:

IAL :AR
∼ ℓmirror

∫ k+

k−

dk
π
[−T lnT −R lnR] . (8)

The negativity, on the other hand, is not a priori directly related to the Rényi MI, yet our
analysis shows that, at the leading (linear) order,

E ∼ ℓmirror

∫ k+

k−

dk
π

ln
�

T 1/2 +R1/2
�

∼
1
2
I(1/2)AL :AR

. (9)

The equality I(1/2)AL :AR
= 2E is known to arise in quenches of integrable systems [10]. Eqs. (8) and

(9) state that, for a generic non-trivial scatterer (i.e., unless T (k) ∈ {0, 1} for all k ∈ [k−, k+]),
the MI and negativity both exhibit extensive scaling with ℓmirror. Additionally, we have found
that the CI scales at the leading order as

I(AL〉AR)∼ (ℓmirror−∆ℓL)

∫ k+

k−

dk
2π
[−T lnT −R lnR] , (10)

and so it grows linearly with ℓmirror if ∆ℓL is fixed. Crucially, the asymptotics in Eqs. (7)–(10)
do not depend on the magnitudes of di , and they hold even when di ≫ ℓi . That is, the extensive
entanglement is long-ranged, and it holds even for subsystems that are very distant relative to
their lengths, but that still share mirroring sites. Eqs. (8)–(10) are the central results of this
work.

The special symmetric case where ℓL = ℓR = ℓ and the subsystems are positioned
symmetrically relative to the scatterer (dL = dR) is particularly illuminating with regard to the
nature of the steady-state entanglement. In this case we have found that SA scales sublinearly
with ℓ, i.e. limℓ→∞SA/ℓ = 0 (see Eq. (19)). The combined subsystem A is therefore weakly
entangled to the rest of the system, while its two components – one being the mirror image of
the other – maintain strong entanglement between them.

The volume-law terms in Eqs. (7)–(10) are evidently generated by the scattering states
within the voltage window, with the contribution of each state in Eq. (7) being the equivalent
of the statistical moment of its corresponding transmission probability. This simple form
allows to deduce that the source of the long-range entanglement is the coherence between the
reflected part and the transmitted part of each scattered particle, which arrive simultaneously
at mirroring sites. In the steady state, the constant particle current renders this strong
entanglement a stationary property, and the length scale ℓmirror determines the amount
of entanglement as it is proportional to the number of scattered particles shared by the
two subsystems. The voltage bias and the non-trivial scattering constitute necessary and
generically-sufficient conditions for the extensive terms in Eqs. (7)–(10) to not vanish.

To support our general analytical results, we compared them to numerics for a specific
model where the scattering is a result of a single impurity at the site m = 0.2 For this model,
m0 = 0 and Hscat = ε0c†

0c0 in Eq. (4), ε0 being the impurity energy. The scattering matrix for
this model yields the transmission probability

T (k) = sin2 k

sin2 k+ (ε0/2η)
2 . (11)

2The numerical results presented in Figs. 2 and 3 were calculated in the limit di/ℓi → ∞, which allows
to simplify the expressions for the elements of two-point correlation matrices, as explained in Appendix A. In
Appendix D we also compare these numerical results to those computed for finite di/ℓi , demonstrating convergence
for di/ℓi ≫ 1.
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Figure 2: The single impurity model: Scaling of (a) the mutual information, (b) the
coherent information, and (c) the fermionic negativity between subsystems AL and
AR for the symmetric case ℓL = ℓR = ℓ and dL = dR, in the limit di ≫ ℓi . The analytical
results of Eqs. (8)–(10) for ℓ≥ 50 (lines) are compared to numerical results (dots) for
different values of the impurity energy ε0, with the Fermi momenta fixed at kF,R = π/2
and kF,L = 2π/3.

Good agreement with numerics is manifest in Fig. 2, where, focusing on the aforementioned
symmetric case with two intervals of length ℓ, we plotted the scaling with ℓ of all three
correlation measures for different ratios of ε0/η. The analytical results of Eqs. (8)–(10) are
plotted for ℓ≥ 50 (with a constant-in-ℓ additive correction term as the only fitting parameter),
as for small values of ℓ there is a considerable contribution from subleading terms beyond the
leading volume-law term (an exact analytical result for the most dominant subleading term,
which is logarithmic in ℓ, is derived in Ref. [56]).

In Fig. 3 we illustrate a rather counter-intuitive attribute of our results, using the example
of the single impurity model. For fixed values of ℓL and ℓR, we plot the dependence of the
MI and the negativity on the positions of the subsystems, and observe that this dependence is
non-monotonic. Indeed, Eqs. (8)–(10) state that the long-range correlations are the strongest
when the overlap between one subsystem and the mirror image of the other is maximal;
if one subsystem is then brought closer to the other, this overlap is reduced and so are
the correlations. Fig. 3 again showcases the good agreement of our analytical results with
numerics; the apparent slight deviations can be resolved once logarithmic corrections are
accounted for [56].
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Figure 3: The single impurity model: (a) The mutual information and (b) the
fermionic negativity between subsystems AL and AR as a function of their positions
relative to the impurity. We fix ℓL = 100 and ℓR = 200, and observe the dependence
on dL − dR in the limit di ≫ ℓi . Analytical results (lines) are compared to numerical
results (dots) for different values of the impurity energy ε0, with the Fermi momenta
fixed at kF,R = π/2 and kF,L = 2π/3. Letting ĀL = {m| −m ∈ AL} denote the mirror
image of AL, black dashed vertical lines mark the boundaries of the domain where
ĀL ⊂ AR, while gray dashed vertical lines mark the boundaries of the domain where
ĀL ∩ AR ̸= φ.

4 Analytical method

This section delineates the main steps in the derivation of Eqs. (8)–(10), while the discussion of
the various technical steps is deferred to the appendices. Subsec. 4.1 focuses on the derivation
of the formulae for the MI and CI (both of which are combinations of subsystem entropies),
while Subsec. 4.2 deals with the derivation of the negativity asymptotics.

The joint starting point of these computations is the two-point correlation function
¬

c†
j cm

¶

for j, m ∈ A. The absence of interactions entails that the states of the total system and its
subsystems are Gaussian, and thus entanglement is fully encoded in two-point correlations [43,
44,57,58]. The correlation function is given explicitly by

¬

c†
j cm

¶

=

∫ kF,L

−kF,R

dk
2π

u∗j (k)um(k) , (12)

where um(k) is the (unnormalized) single-particle wavefunction amplitude at site m of the
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scattering state associated with momentum k; namely,

um>m0
(k) =

¨

eikm + rR(|k|) e−ikm , k < 0 ,

t L(|k|) eikm , k > 0 ,

um<−m0
(k) =

¨

tR(|k|) eikm , k < 0 ,

eikm + rL(|k|) e−ikm , k > 0 .
(13)

Eq. (12) is derived in Appendix A, where we also discuss how this expression may be simplified
when di ≫ ℓi .

4.1 Mutual information and coherent information

The exact asymptotics of the MI and of the CI in Eqs. (8) and (10) were obtained through the
computation of the Rényi entropies of AL, AR and A. We describe here the main components of
this computation, referring the interested reader to Appendix B for full details.

Within the Gaussian steady state, the Rényi entropies of a subsystem X are reduced to
functions of CX , the correlation matrix restricted to X ((CX ) jm =

¬

c†
j cm

¶

where j, m ∈ X ) [57].
Furthermore, these functions admit a simple series expansion, on which our derivation relied.
Namely, the Rényi entropies are given by

S(n)X =
1

1− n
Tr ln[(CX )

n + (I− CX )
n]

=
1

1− n

∞
∑

s=1

(−1)s+1

s
Tr
�

{(CX )
n + (I− CX )

n − I}s
�

. (14)

To obtain an analytical expression for the Rényi entropies, it is therefore sufficient to calculate a
general expression for moments Tr[(CX )

p], with p being positive integers. Each such moment
can be expressed in the form of a p-dimensional integral,

Tr [(CX )
p] =

∫

[−kF,R,kF,L]p

dpk
(2π)p

p
∏

j=1

�

∑

m∈X

um

�

k j−1

�

u∗m
�

k j

�

�

, (15)

where we defined k0 = kp. Each sum over m ∈ X in Eq. (15) can be rewritten as an
integral over a fictitious variable ξ j ∈ [−1,1], such that Tr [(CX )

p] is then expressed as a
2p-dimensional integral.

The specific form of this integral depends on the choice of X , and is relatively involved
(see Appendix B). We illustrate schematically the way forward by considering the case of the
connected subsystems X = Ai . For each of these subsystems, Eq. (15) can be cast in the general
form

Tr
��

CAi

�p�
=
�

ℓi

4π

�p
∑

−→τ ,−→σ∈{0,1}⊗p

∫

[−kF,R,kF,L]p
dpk

×
∫

[−1,1]p
dpξ f−→τ ,−→σ

�−→
k
�

exp



i
ℓi

2

p
∑

j=1

�

kτ j−1
− kσ j

�

�

ξ j + 1
�



 , (16)

where kσ j
= (−1)σ j k j , and where the functions f−→τ ,−→σ vanish for

−→
k /∈

�

−kF,R, kF,L

�p
and are

independent of ℓi . The origin of the exponential term in Eq. (16) can be traced back to the
explicit forms of the wavefunctions um(k) in Eq. (13), which are superpositions of e±ikm.
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An integral of the form of Eq. (16) admits a stationary phase approximation in the large-ℓi
limit [29, 59, 60]; leading-order contributions come only from summands with −→τ = −→σ , with
the asymptotics of Eq. (16) given by

Tr
��

CAi

�p�∼ ℓi

∫ kF,L

−kF,R

dkp

2π

∑

−→σ∈{0,1}⊗p

f−→σ,−→σ

�

kσp
(−1)

−→σ
�

, (17)

where (−1)
−→σ = ((−1)σ1 , . . . , (−1)σp) . Substituting the specific expressions for the functions

f−→τ ,−→σ that satisfy Eq. (16), we then find that

Tr
�

��

CAi

�n
+
�

I− CAi

�n − I
	s�
∼ ℓi

∫ k+

k−

dk
2π
{(T (k))n + (R(k))n − 1}s , (18)

for all positive integers s. A similar treatment was applied to compute the leading term in ∆ℓi
of moments of CA, producing the same result as in Eq. (18) up to replacing CAi

with CA and ℓi
with ∆ℓL +∆ℓR.

Summing up these contributions in the series expansion of Eq. (14) yields the extensive
terms for the Rényi entropies of AL, AR and A,

S(n)Ai
∼
ℓi

1− n

∫ k+

k−

dk
2π

ln [(T (k))n + (R(k))n] ,

S(n)A ∼
∆ℓL +∆ℓR

1− n

∫ k+

k−

dk
2π

ln [(T (k))n + (R(k))n] . (19)

The asymptotics in Eq. (19) directly lead to Eq. (7), while Eqs. (8) and (10) are obtained
by taking the limit n → 1 and substituting the resulting von Neumann entropies into the
definitions in Eqs. (1) and (3). We stress that the universal dependence of the Rényi entropies
on the scattering probabilities results from the fact that, at sites m lying outside the scattering
region, the wavefunctions um(k) in Eq. (13) are written only in terms of plane waves and
scattering amplitudes.

4.2 Fermionic negativity

Here we outline the principal steps in the derivation of Eq. (9), the asymptotic formula for the
fermionic negativity; a more detailed account of the computation appears in Appendix C. The
derivation relies on the fact that the negativity E can be obtained as the analytic continuation

of the Rényi negativities En = ln Tr
h

�

(eρA)
†
eρA

�n/2
i

at n = 1, where En are evaluated at even

values of n [43]. In analogy to the Rényi entropies, the Rényi negativities En can be expressed
as functions of CA and of a transformed two-point correlation matrix restricted to A [43,44,58].
As shown in Appendix C, this expression for En leads to the following series expansion:

En =
∞
∑

s=1

(−1)s+1

s
Tr











n−1
2
∏

γ=− n−1
2

�

I− Cγ
�

− I







s

 . (20)

Here each Cγ is a transformed version of CA, given by

Cγ =

 �

1− e
2πiγ

n

�

IℓL
0

0
�

1+ e
−2πiγ

n

�

IℓR

!

CA , (21)
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where the entries of CA are ordered such that the first ℓL indices correspond to sites in AL, and
the next ℓR correspond to sites in AR.

Eq. (20) reduces the calculation of the Rényi negativities to that of terms of the form
Tr
�

Cγ1
Cγ2

. . . Cγp

�

, which, by using Eq. (12), may also be written as

Tr
�

Cγ1
. . . Cγp

�

=

∫

dpk
(2π)p

p
∏

j=1

�

�

1− e
2πiγ j

n

�

∑

m∈AL

um

�

k j−1

�

u∗m
�

k j

�

+
�

1+ e
−2πiγ j

n

�

∑

m∈AR

um

�

k j−1

�

u∗m
�

k j

�

�

, (22)

where the integral is computed over the domain
�

−kF,R, kF,L

�p
. The remainder of the calculation

is similar in spirit to that of the Rényi entropies: the explicit forms of the wavefunctions from
Eq. (13) are substituted into Eq. (22); Eq. (22) is rewritten as a 2p-dimensional integral using
p fictitious variables; and finally, this 2p-dimensional integral is estimated through a stationary
phase approximation (see Appendix C). This process eventually leads to the following result
for every positive integer s:

Tr











n−1
2
∏

γ=− n−1
2

�

I− Cγ
�

− I







s

∼ ℓmirror

∫ k+

k−

dk
2π

¦

�

T n/2 +Rn/2
�2
− 1

©s

+ (∆ℓL +∆ℓR)

∫ k+

k−

dk
2π
{T n +Rn − 1}s . (23)

Upon summation of the series in Eq. (20), we find that the Rényi negativities are given by

En ∼ ℓmirror

∫ k+

k−

dk
π

ln
�

T n/2 +Rn/2
�

+ (∆ℓL +∆ℓR)

∫ k+

k−

dk
2π

ln [T n +Rn] , (24)

and the exact asymptotics of the negativity in Eq. (9) is obtained once the limit n→ 1 is finally
taken.

5 Discussion and Outlook

In this work we derived the exact asymptotics of correlation measures for a nonequilibrium
steady state of 1D noninteracting fermions. We have shown that this state hosts extensive long-
range entanglement between subsystems that are on opposite sides of a current-conserving
scatterer, provided that their distances from it are similar. The volume-law terms of these
measures stem from the extensive number of single-particle wavepackets that originate in
the high-chemical-potential reservoir, which are split by the scatterer so that they are in
a superposition of being found in either one of the mirroring subsystems. The correlation
measures thus exhibit a simple and universal dependence on scattering probabilities, allowing
to clearly read off the necessary and sufficient conditions for the generation of this strong
long-range entanglement. Apart from the requirement that the scatterer be non-trivial, the
essential ingredients are the absence of decoherence mechanisms, along with the extensive
excess of particles emerging from one of the reservoirs.

We therefore expect the main features of our results to hold in a wide class of
nonequilibrium steady states, including those of integrable interacting systems [8, 10, 61], as
well as when the reservoirs are at finite temperatures, and when the scatterer induces particle
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gain and loss [29]. Similar features should also appear in the dynamics following a quench
where two decoupled half-infinite chains are prepared with unequal fillings, and the scatterer
is suddenly introduced [11,62,63]. All of these scenarios offer intriguing prospects for future
studies. It would also be interesting to study the interplay of the effects uncovered by this
work with decoherence, which could arise due to an integrability-breaking impurity or when
the system is coupled to Lindblad baths [64–67], or the interplay of the same effects with the
addition of quadratic pairing terms [68], which break charge conservation, to the Hamiltonian
of Eq. (4).

Realizations of such models with, e.g., ultracold atoms [69] should allow to experimentally
extract entanglement measures [70–75]. In this context we highlight our results in Eqs. (19)
and (24) for the Rényi versions of these measures, which are generally more amenable to
efficient measurement than their von Neumann counterparts.

Replacing the scattering region with a disordered region [30, 33], the signatures of
localization and resonances on long-range entanglement properties could also be a fruitful
subject of research. Finally, another possible future direction is the study of symmetry-
resolution [76–86] of the different entanglement measures analyzed here.
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A Two-point correlations

Here we derive Eq. (12), which is the general expression for the two-point correlation function
¬

c†
j cm

¶

for sites outside the scattering region, | j| , |m| > m0. We consider a long chain with
N ≫ 1 sites, where the small scattering region is located at its center; in the end we will take
the thermodynamic limit N →∞.

An annihilation operator cm may be expanded in terms of annihilation operators
corresponding to the single-particle energy eigenstates. We include only extended scattering
states in this expansion, neglecting the contribution of localized bound states, since the
amplitude of a bound state wavefunction at any site outside the scattering region decays
exponentially with the distance of that site from the scatterer. More concretely, we associate
an annihilation operator ck,L (ck,R) with the scattering state of a particle originating in the left
(right) reservoir with momentum k > 0 (k < 0). Then, cm may be written as follows:

cm =
1
p

N

�

∑

−π<k<0

um(k) ck,R +
∑

0<k<π

um(k) ck,L

�

, (A.1)

where the wavefunctions um(k) are given in Eq. (13). In the language of scattering state
creation operators, the nonequilibrium steady state analyzed in this work is given by

|NESS〉=

 

∏

−kF,R<k<0

c†
k,R

! 

∏

0<k<kF,L

c†
k,L

!

|vac〉 , (A.2)
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with |vac〉 being the vacuum state. Substituting Eq. (A.1) into the definition of the two-
point correlation function, we find that, in the thermodynamic limit N →∞, the correlation
function approaches the integral expression of Eq. (12).

As explained in Sec. 4, the different correlation measures discussed in this work can all
be expressed as functions of two-point correlation matrices restricted to the subsystems of
interest. That is, we generally consider the terms given by Eq. (12) only for sites j, m ∈ A, and
correlation measures can scale at most as O(ℓL + ℓR), given the dimensions of the correlation
matrices. This, in turn, implies that in the limit di/ℓi → ∞ (with dL − dR kept fixed),
calculations of correlation measures can be simplified by first neglecting certain terms in
the expressions for the matrix elements

¬

c†
j cm

¶

, and only then calculating the appropriate
functions of the correlation matrices.

In particular, using Eq. (13) we observe that in Eq. (12) the correlation function is a
sum of integrals, where in each integral the integrand is a product of a function of k that
is independent of j, m and an exponent of the form exp

�

iα j,mk
�

, with α j,m ∈ {± ( j ±m)}.
Then, the Riemann-Lebesgue lemma leads to the conclusion that when

�

�α j,m

�

� ≫ ℓL,ℓR,
the contribution of the integral is negligible and may be omitted. This entails that when
dL, dR≫ ℓL,ℓR we may use the following approximations for the correlation matrix elements:

¬

c†
j cm

¶

≈



























∫ kF,R

−kF,R

dk
2π e−i( j−m)k +

∫ kF,L

kF,R

dk
2πT (k) e

−i( j−m)k , j, m ∈ AR ,
∫ kF,L

−kF,L

dk
2π e−i( j−m)k +

∫ kF,R

kF,L

dk
2πT (k) e

i( j−m)k , j, m ∈ AL ,
∫ kF,L

kF,R

dk
2π t∗

L
(k) rL (k) e−i( j+m)k , m ∈ AL , and j ∈ AR ,

∫ kF,R

kF,L

dk
2π t∗

R
(k) rR (k) ei( j+m)k , j ∈ AL , and m ∈ AR .

(A.3)

Our analytical results were all derived based on the full expression for
¬

c†
j cm

¶

in Eq. (12).
As they indicated that the volume-law terms of the different correlation measures depend on
dL and dR only through dL − dR, they were compared in Figs. 2–3 to numerical results that
were computed in the limit di/ℓi →∞, based on the approximated correlation function in
Eq. (A.3). A comparison to a numerical calculation that relies on the full expression for the
correlation function is provided in Appendix D.

B Calculation of the Rényi entropies

In this appendix we describe the analytical method used for the computation of the Rényi
entropies S(n)X = 1

1−n ln Tr [(ρX )
n] for the subsystems X = AL, AR, A. The final results are given

in Eq. (19). The results for the Rényi entropies lead directly to the asymptotics of the MI and
CI (Eqs. (8) and (10)), as explained in Subsec. 4.1.

In Subsec. 4.1 we showed that the calculation of Rényi entropies can be reduced to that
of the moments Tr[(CX )

p] for all positive integers p. We now derive the asymptotics of these
moments for the subsystems of interest, starting from their integral expression in Eq. (15).
The analysis is based on the stationary phase approximation (SPA) [59], and is inspired by the
analytical methods of Refs. [29,60].

B.1 Asymptotics of moments for the connected subsystems

We first consider the case X = AR. We begin by introducing the notation
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WR(x) =
x

sin x exp
�

2i
�

m0 + dR +
1
2

�

x
�

, and observing that

m0+dR+ℓR
∑

m=m0+dR+1

exp
�

im
�

k j−1 − k j

��

=
ℓR

2
WR

�

k j−1 − k j

2

�

1
∫

−1

dξexp
�

i
ℓR

2

�

k j−1 − k j

�

(ξ+ 1)
�

. (B.1)

For convenience, we define the notation ka j
= (−1)a j k j for a j ∈ {0,1}, as well as

(−1)
−→a = ((−1)a1 , . . . , (−1)ap) for −→a ∈ {0, 1}⊗p. We use Eqs. (13) and (B.1) to write

∑

m∈AR

um

�

k j−1

�

u∗m
�

k j

�

=
ℓR

2

∑

a j−1,b j=0,1

Ξa j−1 b j
�

ka j−1
, kb j

�

Θ
�

ka j−1

�

Θ
�

kb j

�

, (B.2)

where Θ(x) is the Heaviside step function, and where we defined

Ξ00
�

k j−1, k j

�

= t L

��

�k j−1

�

�

�

t∗
L

��

�k j

�

�

�

WR

�

k j−1 − k j

2

�∫ 1

−1

dξe
i
2 ℓR(k j−1−k j)(ξ+1) ,

Ξ11
�

k j−1, k j

�

=

∫ 1

−1

dξ

�

WR

�

k j − k j−1

2

�

e
i
2 ℓR(k j−k j−1)(ξ+1)

+ rR

��

�k j−1

�

�

�

r∗
R

��

�k j

�

�

�

WR

�

k j−1 − k j

2

�

e
i
2 ℓR(k j−1−k j)(ξ+1)

�

+

∫ 1

−1

dξ

�

r∗
R

��

�k j

�

�

�

WR

�

−k j−1 − k j

2

�

e−
i
2 ℓR(k j−1+k j)(ξ+1)

+ rR

��

�k j−1

�

�

�

WR

�

k j−1 + k j

2

�

e
i
2 ℓR(k j−1+k j)(ξ+1)

�

,

Ξ01
�

k j−1, k j

�

=

∫ 1

−1

dξ t L

��

�k j−1

�

�

�

�

WR

�

k j−1 + k j

2

�

e
i
2 ℓR(k j−1+k j)(ξ+1)

+ r∗
R

��

�k j

�

�

�

WR

�

k j−1 − k j

2

�

e
i
2 ℓR(k j−1−k j)(ξ+1)

�

, (B.3)

and Ξ10
�

k j−1, k j

�

= Ξ01
�

k j , k j−1

�∗
.

When plugging Eq. (B.2) into the expression for Tr
��

CAR

�p�
in Eq. (15), we will generally

get a sum of 2p-dimensional integrals, each of the form

F
�−→τ ,−→σ

�

=
�

ℓR

4π

�p ∫

[−kF,R,kF,L]p
dpk

∫

[−1,1]p
dpξ f−→τ ,−→σ

�−→
k
�

exp



i
ℓR

2

p
∑

j=1

�

kτ j−1
− kσ j

�

�

ξ j + 1
�



 ,

(B.4)

with −→τ ,−→σ ∈ {0,1}⊗p, and where the function f−→τ ,−→σ

�−→
k
�

is independent of ℓR and supported

on
�

−kF,R, kF,L

�p
. We apply a change of variables

ζ1 = ξ1 ,

ζ j = ξ j − ξ j−1 (2≤ j ≤ p) , (B.5)

and obtain

F
�−→τ ,−→σ

�

=
�

ℓR

4π

�p ∫

[−kF,R,kF,L]p
dpk

∫

dpζ f−→τ ,−→σ

�−→
k
�

× exp



i
ℓR

2

(

p
∑

j=1

�

kτ j−1
− kσ j

�

+
p
∑

l=1

ζl

p
∑

j=l

�

kτ j−1
− kσ j

�

)



 . (B.6)
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These are the integrals to which we apply the SPA. The SPA allows us to detect which integrals
contribute to the leading-order terms of Tr

��

CAR

�p�
, and to compute their exact contribution

to the linear term in ℓR. From Eq. (B.6) it is evident that the answer to the question of whether
F
�−→τ ,−→σ

�

has a leading-order contribution is determined by the values of −→τ and −→σ . We now
illustrate the method by focusing on two concrete cases for the choice of −→τ and −→σ .

Assuming that τ j = σ j for every j, we find that

F
�−→σ ,−→σ

�

=
�

ℓR

4π

�p ∫ kF,L

−kF,R

dkp

∫ 1

−1

dζ1

∫

dp−1k dp−1ζ f−→σ,−→σ

�−→
k
�

exp

�

i
ℓR

2

p
∑

l=2

ζl

�

kσl−1
− kσp

�

�

.

(B.7)

Applying the SPA to the innermost (2p− 2)-dimensional integral, with respect to the stationary
point of the function 1

2

∑p
l=2 ζl

�

kσl−1
− kσp

�

(at which ζl = 0 and kσl−1
= kσp

for l = 2, . . . , p),
we obtain [59]

F
�−→σ ,−→σ

�

∼
�

ℓR

4π

�p ∫ kF,L

−kF,R

dkp

∫ 1

−1

dζ1 f−→σ,−→σ

�

kσp
(−1)

−→σ
�

�

�

2π
ℓR

�p−1

|det H|−1/2

�

=
ℓR

2π

∫ kF,L

−kF,R

dkp f−→σ,−→σ

�

kσp
(−1)

−→σ
�

, (B.8)

where we used the fact that the Hessian H at the stationary point yields |det H|=
�1

2

�2p−2
.

If, on the other hand, τ j = σ j for every j ≥ 2 but τ1 ̸= σ1, then

F
�−→τ ,−→σ

�

=
�

ℓR

4π

�p ∫ kF,L

−kF,R

dk1

∫ 1

−1

dζ1 exp
�

iℓRkτ1
(ζ1 + 1)

�

×
∫

dp−1k dp−1ζ f−→τ ,−→σ

�−→
k
�

exp

�

i
ℓR

2

p
∑

l=2

ζl

�

kτl−1
− kτp

�

�

. (B.9)

Applying the SPA to the innermost integral will again produce a factor proportional to ℓ−p+1
R ,

yielding

F
�−→τ ,−→σ

�

∼
ℓR

4π

∫ kF,L

−kF,R

dk1

∫ 1

−1

dζ1 f−→τ ,−→σ

�

kτ1
(−1)

−→τ
�

exp
�

iℓRkτ1
(ζ1 + 1)

�

, (B.10)

only now the remaining phase factor exp
�

iℓRkτ1
(ζ1 + 1)

�

will eliminate the extensive
contribution, such that F

�−→τ ,−→σ
�

can have a contribution that is, at most, constant in ℓR.
From these two examples, it is straightforward to infer the more general rule that an

integral F
�−→τ ,−→σ

�

can contribute to Tr
��

CAR

�p�
beyond the constant-in-ℓR order only if

−→σ = −→τ . Furthermore, if indeed −→σ = −→τ , Eq. (B.8) indicates the contribution of F
�−→τ ,−→σ

�

to
the linear-in-ℓR term of Tr

��

CAR

�p�
.

Let us now apply this general conclusion to our problem. Substituting Eq. (B.2) into
Eq. (15), we obtain

Tr
��

CAR

�p�
=
�

ℓR

4π

�p ∫

[−kF,R,kF,L]p
dpk

∑

−→a ∈{0,1}⊗p

p
∏

j=1

�

Ξa j−1a j
�

ka j−1
, ka j

�

Θ
�

ka j

��

. (B.11)

Eq. (B.8) tells us that the focus on leading-order terms confines F
�−→σ ,−→σ

�

to an integration
subdomain where kσ j

= kσp
for all 1 ≤ j ≤ p; this implies that, for the purpose of calculating
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the leading-order asymptotics of Tr
��

CAR

�p�
, some of the terms in the full expressions for

Ξa j−1a j
�

ka j−1
, ka j

�

in Eq. (B.3) may be a priori discarded, given that for them the kσ j−1
= kσ j

requirement is satisfied only when kσ j−1
= kσ j

= 0. Namely, we may replace

Ξ11
�

k j−1, k j

�

−→
∫ 1

−1

dξ

�

WR

�

k j − k j−1

2

�

e
i
2 ℓR(k j−k j−1)(ξ+1)

+ rR

��

�k j−1

�

�

�

r∗
R

��

�k j

�

�

�

WR

�

k j−1 − k j

2

�

e
i
2 ℓR(k j−1−k j)(ξ+1)

�

,

Ξ01
�

k j−1, k j

�

−→
∫ 1

−1

dξ t L

��

�k j−1

�

�

�

r∗
R

��

�k j

�

�

�

WR

�

k j−1 − k j

2

�

e
i
2 ℓR(k j−1−k j)(ξ+1) , (B.12)

and again Ξ10
�

k j−1, k j

�

= Ξ01
�

k j , k j−1

�∗
. Note that in the first summand appearing in the

expression for Ξ11
�

k j−1, k j

�

, the term in the exponent has an opposite sign compared to all
other integrals (including Ξ00

�

k j−1, k j

�

). Since we have established that expressions of the
form F

�−→τ ,−→σ
�

in Eq. (B.4) contribute to the leading order only when −→σ = −→τ , a leading-
order contribution to Eq. (B.11) will arise from this integral only for −→a = 1⊗p, meaning that
we can write

Tr
��

CAR

�p�∼
�

ℓR

4π

�p ∫

[−kF,R,kF,L]p
dpk

∫

[−1,1]p
dpξ

×
p
∏

j=1

�

Θ
�

−k j

�

WR

�

k j−1 − k j

2

�

exp
�

iℓR

2

�

k j−1 − k j

� �

ξ j + 1
�

�

�

+
�

ℓR

4π

�p ∫

[−kF,R,kF,L]p
dpk

∫

[−1,1]p
dpξ

∑

−→a ∈{0,1}⊗p

p
∏

j=1

�

Θ
�

ka j

�

WR

�ka j−1
− ka j

2

�

× exp
�

iℓR

2

�

ka j−1
− ka j

�

�

ξ j + 1
�

�

�1+ (−1)a j
�

T
�

ka j

�

−R
�

ka j

��

2
. (B.13)

Applying the SPA as explained above while using the fact that WR(0) = 1, we thus have

Tr
��

CAR

�p�∼ ℓR







kF,R
π +

∫ kF,L

kF,R

dk
2π (T (k))

p , kF,L > kF,R ,
kF,L+kF,R

2π +
∫ kF,R

kF,L

dk
2π (R(k))

p , kF,L < kF,R .
(B.14)

The derivation for the case X = AL is equivalent, yielding

Tr
��

CAL

�p�∼ ℓL







kF,L+kF,R
2π +

∫ kF,L

kF,R

dk
2π (R(k))

p , kF,L > kF,R ,
kF,L
π +

∫ kF,R

kF,L

dk
2π (T (k))

p , kF,L < kF,R .
(B.15)

B.2 Asymptotics of moments for the disjoint subsystem

We now consider the case X = A. In the summation over sites m in
∑

m∈A um

�

k j−1

�

u∗m
�

k j

�

(the sum that appears in Eq. (15)) we will separate mirroring sites from sites which are not
mirrored. For concreteness, we assume that dL < dR < dL + ℓL < dR+ ℓR, where the subsequent
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generalization is straightforward. We then have

∑

m∈A

um

�

k j−1

�

u∗m
�

k j

�

=
m0+dR
∑

m=m0+dL+1

u−m

�

k j−1

�

u∗−m

�

k j

�

+
m0+dR+ℓR
∑

m=m0+dL+ℓL+1

um

�

k j−1

�

u∗m
�

k j

�

+
m0+dL+ℓL
∑

m=m0+dR+1

�

um

�

k j−1

�

u∗m
�

k j

�

+ u−m

�

k j−1

�

u∗−m

�

k j

��

. (B.16)

We define the function WL(x) =
x

sin x exp
�

2i
�

m0 + dL +
1
2

�

x
�

. Sums of exponents appearing
in Eq. (B.16) can be written as integrals:

m0+dR
∑

m=m0+dL+1

exp
�

im
�

k j−1 − k j

��

=
∆ℓL

2
WL

�

k j−1 − k j

2

�

1
∫

−1

dξexp
§

i
�

k j−1 − k j

�

�

∆ℓL

2
(ξ+ 1)

�ª

,

m0+dL+ℓL
∑

m=m0+dR+1

exp
�

im
�

k j−1 − k j

��

=
ℓmirror

2
WL

�

k j−1 − k j

2

�

1
∫

−1

dξexp
§

i
�

k j−1 − k j

�

�

ℓmirror

2
(ξ+ 1) +∆ℓL

�ª

,

m0+dR+ℓR
∑

m=m0+dL+ℓL+1

exp
�

im
�

k j−1 − k j

��

=
∆ℓR

2
WL

�

k j−1 − k j

2

�

1
∫

−1

dξexp
§

i
�

k j−1 − k j

�

�

∆ℓR

2
(ξ+ 1) + ℓL

�ª

.

(B.17)

The substitution of Eq. (B.16) into the integral expression for Tr[(CA)
p] in Eq. (15) will then

yield a sum of integrals of the form

F
�−→τ ,−→σ ,

−→
A
�

=





p
∏

j=1

A j

2





∫

[−kF,R,kF,L]p

dpk
(2π)p

∫

[−1,1]p
dpξ f

�−→
k
�

× exp

(

i
p
∑

j=1

�

kτ j−1
− kσ j

�

�A j

2

�

ξ j + 1
�

+B j

�

)

, (B.18)

where
�

A j ,B j

�

∈ {(∆ℓL, 0) , (ℓmirror,∆ℓL) , (∆ℓR,ℓL)}. Writing A j = α jℓ with α j being
some fixed ratios, we are interested in the leading-order behavior as ℓ → ∞. Again
defining the variables

�

ζ j

	

as in Eq. (B.5), we arrive at the crucial observation that unless
A1 = A2 = . . . = Ap (and hence also B1 = B2 = . . . = Bp), we cannot find in the exponent a
(2p− 2)-variable function with a stationary point as before, regardless of the values of −→τ ,−→σ .
Leading-order contributions will therefore arise only from terms where A1 = A2 = . . . = Ap.
We can thus conclude that

Tr[(CA)
p]∼

∫

[−kF,R,kF,L]p

dpk
(2π)p

p
∏

j=1

(

m0+dR
∑

m=m0+dL+1

u−m

�

k j−1

�

u∗−m

�

k j

�

)

+

∫

[−kF,R,kF,L]p

dpk
(2π)p

p
∏

j=1

(

m0+dR+ℓR
∑

m=m0+dL+ℓL+1

um

�

k j−1

�

u∗m
�

k j

�

)

+M(p) , (B.19)

where we defined

M(p) =

∫

[−kF,R,kF,L]p

dpk
(2π)p

p
∏

j=1

(

m0+dL+ℓL
∑

m=m0+dR+1

�

um

�

k j−1

�

u∗m
�

k j

�

+ u−m

�

k j−1

�

u∗−m

�

k j

��

)

.

(B.20)
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The first two integrals in Eq. (B.19) can be treated in the same way in which the equivalent
integrals were treated in the cases of the connected subsystems. What therefore remains to be
done is to treat M(p). We define fW(x) = WL(x) e2i x∆ℓL in order to simplify the notation.
In analogy to Eqs. (B.11) and (B.12), we may discard terms that have no leading-order
contribution to M(p) and write

M(p) ∼
�

ℓmirror

4π

�p ∫

[−kF,R,kF,L]p
dpk

∑

−→a ∈{0,1}⊗p

p
∏

j=1

�

eΞa j−1a j
�

ka j−1
, ka j

�

Θ
�

ka j

��

, (B.21)

where

eΞ00
�

k j−1, k j

�

=
�

t L

��

�k j−1

�

�

�

t∗
L

��

�k j

�

�

�

+ rL

��

�k j−1

�

�

�

r∗
L

��

�k j

�

�

��

fW
�

k j−1 − k j

2

�

×
∫ 1

−1

dξ e
i
2 ℓmirror(k j−1−k j)(ξ+1) + fW

�

k j − k j−1

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−k j−1)(ξ+1) ,

eΞ11
�

k j−1, k j

�

=
�

tR

��

�k j−1

�

�

�

t∗
R

��

�k j

�

�

�

+ rR

��

�k j−1

�

�

�

r∗
R

��

�k j

�

�

��

fW
�

k j−1 − k j

2

�

×
∫ 1

−1

dξ e
i
2 ℓmirror(k j−1−k j)(ξ+1) + fW

�

k j − k j−1

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−k j−1)(ξ+1) ,

eΞ01
�

k j−1, k j

�

=
�

t L

��

�k j−1

�

�

�

r∗
R

��

�k j

�

�

�

+ rL

��

�k j−1

�

�

�

t∗
R

��

�k j

�

�

��

fW
�

k j−1 − k j

2

�

×
∫ 1

−1

dξ e
i
2 ℓmirror(k j−1−k j)(ξ+1) , (B.22)

and eΞ10
�

k j−1, k j

�

= eΞ01
�

k j , k j−1

�∗
. Applying the SPA through the same procedure as before,

while recalling the unitarity of the scattering matrix in Eq. (5), we then obtain

M(p) ∼
kF,L + kF,R

π
ℓmirror , (B.23)

so that in total,

Tr[(CA)
p]

∼







kF,L+kF,R
2π (ℓL + ℓR) +∆ℓL

∫ kF,L

kF,R

dk
2π (R(k))

p +∆ℓR

∫ kF,L

kF,R

dk
2π [(T (k))

p − 1] , kF,L > kF,R ,
kF,L+kF,R

2π (ℓL + ℓR) +∆ℓL

∫ kF,R

kF,L

dk
2π [(T (k))

p − 1] +∆ℓR

∫ kF,R

kF,L

dk
2π (R(k))

p , kF,L < kF,R .

(B.24)

B.3 Asymptotics of the Rényi entropies

Finally, we use the asymptotics of the moments in Eqs. (B.14), (B.15) and (B.24) to derive
the Rényi entropies of the subsystems of interest. In particular, we observe that the terms
comprising the series expansion in Eq. (14) follow the asymptotic scaling

Tr
�

��

CAi

�n
+
�

I− CAi

�n − I
	s�
∼ ℓi

∫ k+

k−

dk
2π
{(T (k))n + (R(k))n − 1}s ,

Tr
�

{(CA)
n + (I− CA)

n − I}s
�

∼ (∆ℓL +∆ℓR)

∫ k+

k−

dk
2π
{(T (k))n + (R(k))n − 1}s . (B.25)

This yields Eq. (19), which is true for any dL and dR.
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C Calculation of the fermionic negativity

In this appendix we summarize the derivation of the result for the fermionic negativity E
between AL and AR. The analytical method we employed is similar to that used in Appendix B
for the calculation of the Rényi entropies, as we explain below.

The fermionic negativity E can be obtained from the Rényi negativities

En = lnTr
h

�

(eρA)
†
eρA

�n/2
i

, (C.1)

by evaluating En at even values of n and performing an analytic continuation to n = 1. En
can be written in terms of the restricted correlation matrix CA and a transformed correlation
matrix CΞ, facilitating a significant simplification of the calculation as in the case of the Rényi
entropies. We write

CA =

�

CAL
CLR

CRL CAR

�

, (C.2)

where the matrices CLR and CRL = (CLR)
† represent two-point correlations between a site in AL

and another in AR, and we define

CΞ =
1
2

�

I− (I+ Γ+Γ−)
−1 (Γ+ + Γ−)

�

, (C.3)

where

Γ± =

�

2CAL
− IℓL

∓2iCLR

∓2iCRL IℓR − 2CAR

�

. (C.4)

The Rényi negativities can then be written as [43,44,58]

En = lndet
�

(CΞ)
n/2 + (I− CΞ)

n/2�+
n
2

ln det
�

(CA)
2 + (I− CA)

2� . (C.5)

We now define the polynomials

pn(z) = zn + (1− z)n =

n−1
2
∏

γ=− n−1
2

�

1−
z
zγ

�

, (C.6)

and

p̃n(z) = zn/2 + (1− z)n/2 =

n−1
2
∏

γ=1/2

�

1−
z
z̃γ

�

, (C.7)

for any even integer n. Here
�

zγ
	

and
�

z̃γ
	

are, respectively, the roots of pn and p̃n, and they
satisfy

�

zγ
�−1
= 1− e2πiγ/n , γ= −

n− 1
2

,−
n− 3

2
, . . . ,

n− 1
2

,

�

z̃γ
�−1
=

e2πiγ/n + e−2πiγ/n

e2πiγ/n
, γ=

1
2

,
3
2

, . . . ,
n− 1

2
. (C.8)

Note that pn has n different roots, while p̃n has n/2 roots if n = 0 mod4, and n/2− 1 roots if
n = 2mod 4; in the latter case the missing root corresponds to the index γ = n/4, for which
1/z̃γ = 0. Additionally, we recognize that det[I+ Γ+Γ−] = det

�

I+ (I− 2CA)
2�, so that using

the definition of p̃n we may write the Rényi negativities in Eq. (C.5) as

En = ln det





n−1
2
∏

γ=1/2

�

I+ Γ+Γ−
2
−
(I− Γ+) (I− Γ−)

4z̃γ

�



 . (C.9)

19

https://scipost.org
https://scipost.org/SciPostPhys.15.4.134


SciPost Phys. 15, 134 (2023)

Now, if we define the modified correlation matrices

Cγ =

 �

1− e
2πiγ

n

�

IℓL
0

0
�

1+ e
−2πiγ

n

�

IℓR

!

CA =

 �

1− e
2πiγ

n

�

CAL

�

1− e
2πiγ

n

�

CLR
�

1+ e
−2πiγ

n

�

CRL

�

1+ e
−2πiγ

n

�

CAR

!

,

C ′γ = CA

 �

1− e
2πiγ

n

�

IℓL
0

0
�

1+ e
−2πiγ

n

�

IℓR

!

=

 �

1− e
2πiγ

n

�

CAL

�

1+ e
−2πiγ

n

�

CLR
�

1− e
2πiγ

n

�

CRL

�

1+ e
−2πiγ

n

�

CAR

!

,

(C.10)

one may check that

I+ Γ+Γ−
2
−
(I− Γ+) (I− Γ−)

4z̃γ
=

�

iIℓL
0

0 IℓR

�

�

I− C ′γ
�

�

−e
−4πiγ

n IℓL
0

0 IℓR

�

�

I− Cγ− n
2

�

�

−iIℓL
0

0 IℓR

�

.

(C.11)

By substituting Eq. (C.11) into Eq. (C.9), and recognizing that
∏(n−1)/2
γ=1/2

�

−e
−4πiγ

n

�

= 1, we
arrive at the result

En = lndet





n−1
2
∏

γ=1/2

�

I− C ′γ
�

�

I− C−γ
�



= Tr ln





n−1
2
∏

γ=− n−1
2

�

I− Cγ
�



 , (C.12)

which then yields the series expansion of En reported in Eq. (20). As explained in
Subsec. 4.2, writing this series expansion reduces the calculation to that of terms of the form
Tr
�

Cγ1
Cγ2

. . . Cγp

�

, corresponding to the general integral expression in Eq. (22).
We proceed by applying the SPA to the integrals appearing in Eq. (22). For concreteness

we again assume that dL < dR < dL + ℓL < dR + ℓR. The same argument that led to Eq. (B.19)
allows us to separate the integral into independent leading-order contributions arising from
mirrored and unmirrored sites. Namely, to the linear order in ∆ℓL, ∆ℓR and ℓmirror, we have

Tr
�

Cγ1
. . . Cγp

�

∼
∫

[−kF,R,kF,L]p

dpk
(2π)p

p
∏

j=1





�

1− e
2πiγ j

n

� m0+dR
∑

m=m0+dL+1

u−m

�

k j−1

�

u∗−m

�

k j

�





+

∫

[−kF,R,kF,L]p

dpk
(2π)p

p
∏

j=1





�

1+ e
−2πiγ j

n

� m0+dR+ℓR
∑

m=m0+dL+ℓL+1

um

�

k j−1

�

u∗m
�

k j

�





+Mγ1...γp
, (C.13)

where we defined

Mγ1...γp
=

∫

[−kF,R,kF,L]p

dpk
(2π)p

p
∏

j=1

� m0+dL+ℓL
∑

m=m0+dR+1

��

1− e
2πiγ j

n

�

u−m

�

k j−1

�

u∗−m

�

k j

�

+
�

1+ e
−2πiγ j

n

�

um

�

k j−1

�

u∗m
�

k j

�

�

�

. (C.14)

The first two integrals in Eq. (C.13) have already been treated using the SPA in Appendix B,
as they arise (up to a multiplicative constant) in the calculation of the Rényi entropies (see
Eqs. (B.14) and (B.15)). Assuming for concreteness that kF,L > kF,R, we may therefore write

Tr
�

Cγ1
. . . Cγp

�

∼∆ℓL

�

kF,R + kF,L

2π
+

∫ kF,L

kF,R

dk
2π
(R(k))p

� p
∏

j=1

�

1− e
2πiγ j

n

�

+∆ℓR

�

kF,R

π
+

∫ kF,L

kF,R

dk
2π
(T (k))p

� p
∏

j=1

�

1+ e
−2πiγ j

n

�

+Mγ1...γp
. (C.15)
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Let us now address the asymptotics of Mγ1...γp
, to the linear order in ℓmirror. Repeating the

argument in Appendix B leading to Eq. (B.12), which was also used to obtain Eq. (B.21), we
use the SPA to discard terms with no leading-order contribution and write

Mγ1...γp
∼
�

ℓmirror

4π

�p ∫

[−kF,R,kF,L]p
dpk

∑

−→a ∈{0,1}⊗p

p
∏

j=1

�

eΞ
a j−1a j
γ j

�

ka j−1
, ka j

�

Θ
�

ka j

��

, (C.16)

with

eΞ00
γ

�

k j−1, k j

�

=
��

1+ e
−2πiγ

n

�

t L

��

�k j−1

�

�

�

t∗
L

��

�k j

�

�

�

+
�

1− e
2πiγ

n

�

rL

��

�k j−1

�

�

�

r∗
L

��

�k j

�

�

�

�

× fW
�

k j−1 − k j

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−1−k j)(ξ+1)

+
�

1− e
2πiγ

n

�

fW
�

k j − k j−1

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−k j−1)(ξ+1) ,

eΞ11
γ

�

k j−1, k j

�

=
��

1− e
2πiγ

n

�

tR

��

�k j−1

�

�

�

t∗
R

��

�k j

�

�

�

+
�

1+ e
−2πiγ

n

�

rR

��

�k j−1

�

�

�

r∗
R

��

�k j

�

�

�

�

× fW
�

k j−1 − k j

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−1−k j)(ξ+1)

+
�

1+ e
−2πiγ

n

�

fW
�

k j − k j−1

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−k j−1)(ξ+1) ,

eΞ01
γ

�

k j−1, k j

�

=
��

1+ e
−2πiγ

n

�

t L

��

�k j−1

�

�

�

r∗
R

��

�k j

�

�

�

+
�

1− e
2πiγ

n

�

rL

��

�k j−1

�

�

�

t∗
R

��

�k j

�

�

�

�

× fW
�

k j−1 − k j

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−1−k j)(ξ+1) ,

eΞ10
γ

�

k j−1, k j

�

=
��

1+ e
−2πiγ

n

�

rR

��

�k j−1

�

�

�

t∗
L

��

�k j

�

�

�

+
�

1− e
2πiγ

n

�

tR

��

�k j−1

�

�

�

r∗
L

��

�k j

�

�

�

�

× fW
�

k j−1 − k j

2

�∫ 1

−1

dξ e
i
2 ℓmirror(k j−1−k j)(ξ+1) . (C.17)

According to Eq. (B.8), the SPA imposes the restriction |k1| = |k2| = . . . =
�

�kp

�

� on
integrals contributing to the leading order; since in Eq. (C.16) the integration subdomain
with kF,R <

�

�k j

�

�< kF,L is limited to k j > 0, Mγ1...γp
is split into two independent contributions,

Mγ1...γp
∼
�

ℓmirror

4π

�p ∫

[−kF,R,kF,R]p
dpk

∑

−→a ∈{0,1}⊗p

p
∏

j=1

�

eΞ
a j−1a j
γ j

�

ka j−1
, ka j

�

Θ
�

ka j

��

+
�

ℓmirror

4π

�p ∫

[kF,R,kF,L]p
dpk

p
∏

j=1

eΞ00
γ j

�

k j−1, k j

�

. (C.18)

The asymptotics of both integrals can be estimated using the SPA procedure explained before.
When applied to the first integral (which corresponds to an equilibrium scenario), this
procedure yields

�

ℓmirror

4π

�p∫

[−kF,R,kF,R]p
dpk

∑

−→a ∈{0,1}⊗p

p
∏

j=1

�

eΞ
a j−1a j
γ j

�

ka j−1
, ka j

�

Θ
�

ka j

��

∼ ℓmirror
kF,R

π

(

p
∏

j=1

�

1− e
2πiγ j

n

�

+
p
∏

j=1

�

1+ e
−2πiγ j

n

�

)

, (C.19)
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while for the second integral we find

�

ℓmirror

4π

�p ∫

[kF,R,kF,L]p
dpk

p
∏

j=1

eΞ00
γ j

�

k j−1, k j

�

∼ ℓmirror

∫ kF,L

kF,R

dk
2π

� p
∏

j=1

�

1− e
2πiγ j

n

�

+
p
∏

j=1

�

1− e
2πiγ j

n R(k) + e
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. (C.20)

Together with Eq. (C.15), we then have
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(C.21)

Using the decomposition of the polynomials pn and p̃n in Eqs. (C.6) and (C.7), we arrive at
Eq. (23), a result that also captures the case kF,L < kF,R (for which an equivalent derivation
applies). By summing the series in Eq. (20) and taking the limit n → 1, we then obtain the
final result for the leading-order asymptotics of the fermionic negativity, given by Eq. (9).

D Additional numerical tests

Fig. 2 shows a comparison between our analytical results and numerical calculations of the
different correlation measures – MI, CI and fermionic negativity – assuming a symmetric
configuration of the subsystems (ℓL = ℓR and dL = dR); Fig. 3 compares analytical and
numerical results for the dependence of the MI and negativity on the positions relative to the
scatterer of subsystems with fixed lengths. All of these results were computed for the single
impurity model described in Sec. 3, for fixed values of the Fermi momenta and various values
of the impurity energy ε0. In Fig. 4 we show similar comparisons, where now the impurity
energy is fixed and results are plotted for various values of the bias, which is another parameter
that influences the asymptotic scaling coefficients (for a bias that is small enough such that
the scattering probabilities vary negligibly in [k−, k+], the leading volume-law terms of the
correlations measures are linear in the bias). Again, the good agreement of the analytical
calculation with numerics is clearly evident.

The numerical calculations presented in Figs. 2–4 all rely on the direct diagonalization of
two-point correlation matrices, through Eq. (14) (for the MI and CI) and Eq. (C.5) (for the
negativity). The entries of these correlation matrices were computed in the limit di/ℓi →∞
(with dL−dR kept fixed), by discarding terms that vanish in this limit according to the Riemann-
Lebesgue lemma, as explained in Appendix A.

In Fig. 5 we demonstrate that the omission of these terms from the correlation matrices
indeed captures the di/ℓi → ∞ limit of the correlation measures themselves. For the
symmetric case ℓL = ℓR = ℓ and dL = dR = d, we let I(d)AL :AR

and E (d) denote the MI and negativity,
respectively, that were numerically calculated using correlation matrices with entries given
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Figure 4: The single impurity model: Scaling of (a) the mutual information, (b) the
coherent information, and (c) the fermionic negativity between subsystems AL and AR

for the symmetric case ℓL = ℓR = ℓ and dL = dR. (d) The mutual information and (e)
the fermionic negativity as a function of dL − dR, when fixing ℓL = 100 and ℓR = 200;
letting ĀL = {m| −m ∈ AL} denote the mirror image of AL, black dashed vertical lines
mark the boundaries of the domain where ĀL ⊂ AR, while gray dashed vertical lines
mark the boundaries of the domain where ĀL ∩ AR ̸= φ. In all the panels, results are
computed in the limit di ≫ ℓi; analytical results (lines) are compared to numerical
results (dots) for different values of the bias ∆k = kF,L − kF,R, with the lower Fermi
momentum fixed at kF,R = π/2, and the impurity energy fixed at ε0 = η.

by Eq. (12), while I(∞)AL :AR
and E (∞) stand, respectively, for the MI and negativity that were

numerically calculated using correlation matrices with entries given by Eq. (A.3).
Indeed, the results in Fig. 5, numerically computed for the single impurity model, indicate

that I(d)AL :AR
→ I(∞)AL :AR

and E (d) → E (∞) as d/ℓ →∞. As they converge toward this limit, the
correlation measures exhibit Friedel oscillations, a behavior that was previously observed for
the entanglement entropy of a single subsystem of contiguous sites [28]. As in that case, the
difference between the average over these oscillations and the d →∞ limit decays according
to a∝ 1/d2 power law, while the amplitude of the oscillations decays according to a∝ 1/d
power law.
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Figure 5: The single impurity model: Comparison between numerical calculations of
correlation measures for the symmetric case with ℓL = ℓR = ℓ = 50 and dL = dR = d,
for two values of the impurity energy ε0 and with the Fermi momenta fixed at
kF,R = π/2 and kF,L = 2π/3. (a) The difference between I(d)AL :AR

, the MI computed

using the full expressions for the correlation matrices (Eq. (12)), and I(∞)AL :AR
, the MI

computed from correlation matrices where entries were taken to the limit d →∞

(Eq. (A.3)), as a function of d. (b) The deviation of I(d)AL :AR
, the average of I(d)AL :AR

over Friedel oscillations, from I(∞)AL :AR
; the dashed gray line emphasizes that, for

d ≫ ℓ, the deviation approaches a∝ 1/d2 power-law behavior. (c) The amplitude
�

�

�

�

I(d)AL :AR
− I(d)AL :AR

�

�

�

�

of the oscillations in the MI; the dashed gray line emphasizes that,

for d ≫ ℓ, the amplitude approaches a ∝ 1/d power-law behavior. The bottom
panels (d)–(f) present a similar analysis for the fermionic negativity E .
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[12] M. Serbyn, Z. Papić and D. A. Abanin, Local conservation laws and the
structure of the many-body localized states, Phys. Rev. Lett. 111, 127201 (2013),
doi:10.1103/PhysRevLett.111.127201.

[13] H. Kim and D. A. Huse, Ballistic spreading of entanglement in a diffusive nonintegrable
system, Phys. Rev. Lett. 111, 127205 (2013), doi:10.1103/PhysRevLett.111.127205.

[14] J. Schachenmayer, B. P. Lanyon, C. F. Roos and A. J. Daley, Entanglement growth
in quench dynamics with variable range interactions, Phys. Rev. X 3, 031015 (2013),
doi:10.1103/PhysRevX.3.031015.

[15] C. T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal
field theory, Phys. Rev. D 89, 066015 (2014), doi:10.1103/PhysRevD.89.066015.

[16] V. Eisler and Z. Zimborás, Area-law violation for the mutual information
in a nonequilibrium steady state, Phys. Rev. A 89, 032321 (2014),
doi:10.1103/PhysRevA.89.032321.

[17] V. Eisler and Z. Zimborás, Entanglement negativity in the harmonic chain out of
equilibrium, New J. Phys. 16, 123020 (2014), doi:10.1088/1367-2630/16/12/123020.

[18] A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global
quantum quench, J. Stat. Mech.: Theory Exp. P12017 (2014), doi:10.1088/1742-
5468/2014/12/p12017.

[19] X. Wen, P.-Y. Chang and S. Ryu, Entanglement negativity after a local
quantum quench in conformal field theories, Phys. Rev. B 92, 075109 (2015),
doi:10.1103/PhysRevB.92.075109.

[20] M. Hoogeveen and B. Doyon, Entanglement negativity and entropy in
non-equilibrium conformal field theory, Nucl. Phys. B 898, 78 (2015),
doi:10.1016/j.nuclphysb.2015.06.021.

[21] M. Gruber and V. Eisler, Time evolution of entanglement negativity across a defect, J. Phys.
A: Math. Theor. 53, 205301 (2020), doi:10.1088/1751-8121/ab831c.

[22] S. Paul, P. Titum and M. F. Maghrebi, Hidden quantum criticality and entanglement in
quench dynamics, (arXiv preprint) doi:10.48550/arXiv.2202.04654.

[23] P. Ribeiro, Steady-state properties of a nonequilibrium Fermi gas, Phys. Rev. B 96, 054302
(2017), doi:10.1103/PhysRevB.96.054302.

25

https://scipost.org
https://scipost.org/SciPostPhys.15.4.134
https://doi.org/10.1088/1742-5468/aa7df0
https://doi.org/10.21468/SciPostPhys.4.3.017
https://doi.org/10.1103/PhysRevB.100.115150
https://doi.org/10.1209/0295-5075/126/60001
https://doi.org/10.1209/0295-5075/99/20001
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127205
https://doi.org/10.1103/PhysRevX.3.031015
https://doi.org/10.1103/PhysRevD.89.066015
https://doi.org/10.1103/PhysRevA.89.032321
https://doi.org/10.1088/1367-2630/16/12/123020
https://doi.org/10.1088/1742-5468/2014/12/p12017
https://doi.org/10.1088/1742-5468/2014/12/p12017
https://doi.org/10.1103/PhysRevB.92.075109
https://doi.org/10.1016/j.nuclphysb.2015.06.021
https://doi.org/10.1088/1751-8121/ab831c
https://doi.org/10.48550/arXiv.2202.04654
https://doi.org/10.1103/PhysRevB.96.054302


SciPost Phys. 15, 134 (2023)

[24] S. Maity, S. Bandyopadhyay, S. Bhattacharjee and A. Dutta, Growth of mutual information
in a quenched one-dimensional open quantum many-body system, Phys. Rev. B 101, 180301
(2020), doi:10.1103/PhysRevB.101.180301.

[25] T. O. Puel, S. Chesi, S. Kirchner and P. Ribeiro, Nonequilibrium phases and phase transitions
of the XY model, Phys. Rev. B 103, 035108 (2021), doi:10.1103/PhysRevB.103.035108.

[26] V. Alba and F. Carollo, Spreading of correlations in Markovian open quantum systems, Phys.
Rev. B 103, L020302 (2021), doi:10.1103/PhysRevB.103.L020302.

[27] F. Carollo and V. Alba, Dissipative quasiparticle picture for quadratic Markovian open
quantum systems, Phys. Rev. B 105, 144305 (2022), doi:10.1103/PhysRevB.105.144305.

[28] S. Fraenkel and M. Goldstein, Entanglement measures in a nonequilibrium
steady state: Exact results in one dimension, SciPost Phys. 11, 085 (2021),
doi:10.21468/SciPostPhys.11.4.085.

[29] V. Alba, Unbounded entanglement production via a dissipative impurity, SciPost Phys. 12,
011 (2022), doi:10.21468/SciPostPhys.12.1.011.

[30] M. J. Gullans and D. A. Huse, Entanglement structure of current-driven diffusive fermion
systems, Phys. Rev. X 9, 021007 (2019), doi:10.1103/PhysRevX.9.021007.

[31] D. Bernard and T. Jin, Open quantum symmetric simple exclusion process, Phys. Rev. Lett.
123, 080601 (2019), doi:10.1103/PhysRevLett.123.080601.

[32] L. Hruza and D. Bernard, Coherent fluctuations in noisy mesoscopic systems, the
open quantum SSEP, and free probability, Phys. Rev. X 13, 011045 (2023),
doi:10.1103/PhysRevX.13.011045.

[33] M. J. Gullans and D. A. Huse, Localization as an entanglement phase transition
in boundary-driven Anderson models, Phys. Rev. Lett. 123, 110601 (2019),
doi:10.1103/PhysRevLett.123.110601.

[34] F. Verstraete, V. Murg and J. I. Cirac, Matrix product states, projected entangled pair states,
and variational renormalization group methods for quantum spin systems, Adv. Phys. 57,
143 (2008), doi:10.1080/14789940801912366.

[35] U. Schollwöck, The density-matrix renormalization group in the age of matrix product
states, Ann. Phys. 326, 96 (2011), doi:10.1016/j.aop.2010.09.012.

[36] M. M. Rams and M. Zwolak, Breaking the entanglement barrier: Tensor
network simulation of quantum transport, Phys. Rev. Lett. 124, 137701 (2020),
doi:10.1103/PhysRevLett.124.137701.

[37] N. Schuch, M. M. Wolf, F. Verstraete and J. I. Cirac, Entropy scaling and
simulability by matrix product states, Phys. Rev. Lett. 100, 030504 (2008),
doi:10.1103/PhysRevLett.100.030504.

[38] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting
an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys.
Rev. Lett. 70, 1895 (1993), doi:10.1103/PhysRevLett.70.1895.

[39] C. H. Bennett and D. P. DiVincenzo, Quantum information and computation, Nature 404,
247 (2000), doi:10.1038/35005001.

26

https://scipost.org
https://scipost.org/SciPostPhys.15.4.134
https://doi.org/10.1103/PhysRevB.101.180301
https://doi.org/10.1103/PhysRevB.103.035108
https://doi.org/10.1103/PhysRevB.103.L020302
https://doi.org/10.1103/PhysRevB.105.144305
https://doi.org/10.21468/SciPostPhys.11.4.085
https://doi.org/10.21468/SciPostPhys.12.1.011
https://doi.org/10.1103/PhysRevX.9.021007
https://doi.org/10.1103/PhysRevLett.123.080601
https://doi.org/10.1103/PhysRevX.13.011045
https://doi.org/10.1103/PhysRevLett.123.110601
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevLett.124.137701
https://doi.org/10.1103/PhysRevLett.100.030504
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1038/35005001


SciPost Phys. 15, 134 (2023)

[40] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, Quantum cryptography, Rev. Mod. Phys.
74, 145 (2002), doi:10.1103/RevModPhys.74.145.

[41] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Quantum entanglement, Rev.
Mod. Phys. 81, 865 (2009), doi:10.1103/RevModPhys.81.865.

[42] B. Groisman, S. Popescu and A. Winter, Quantum, classical, and total
amount of correlations in a quantum state, Phys. Rev. A 72, 032317 (2005),
doi:10.1103/PhysRevA.72.032317.

[43] H. Shapourian, K. Shiozaki and S. Ryu, Partial time-reversal transformation and
entanglement negativity in fermionic systems, Phys. Rev. B 95, 165101 (2017),
doi:10.1103/PhysRevB.95.165101.

[44] J. Eisert, V. Eisler and Z. Zimborás, Entanglement negativity bounds for fermionic Gaussian
states, Phys. Rev. B 97, 165123 (2018), doi:10.1103/PhysRevB.97.165123.

[45] H. Shapourian and S. Ryu, Entanglement negativity of fermions: Monotonicity, separability
criterion, and classification of few-mode states, Phys. Rev. A 99, 022310 (2019),
doi:10.1103/PhysRevA.99.022310.

[46] B. Schumacher and M. A. Nielsen, Quantum data processing and error correction, Phys.
Rev. A 54, 2629 (1996), doi:10.1103/PhysRevA.54.2629.

[47] M. Horodecki, J. Oppenheim and A. Winter, Partial quantum information, Nature 436,
673 (2005), doi:10.1038/nature03909.

[48] M. Christandl and A. Winter, “Squashed entanglement”: An additive entanglement
measure, J. Math. Phys. 45, 829 (2004), doi:10.1063/1.1643788.

[49] E. A. Carlen and E. H. Lieb, Bounds for entanglement via an extension of strong
subadditivity of entropy, Lett. Math. Phys. 101, 1 (2012), doi:10.1007/s11005-012-0565-
6.

[50] E. Merzbacher, Quantum mechanics, Wiley, Hoboken, USA, ISBN 9780471887027
(1998).

[51] R. G. Newton, Inverse scattering by a local impurity in a periodic potential in one dimension,
J. Math. Phys. 24, 2152 (1983), doi:10.1063/1.525968.

[52] B.-Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz determinants
and the Fisher-Hartwig conjecture, J. Stat. Phys. 116, 79 (2004),
doi:10.1023/B:JOSS.0000037230.37166.42.

[53] P. Deift, A. Its and I. Krasovsky, Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel
determinants with Fisher-Hartwig singularities, Ann. Math. 174, 1243 (2011),
doi:10.4007/annals.2011.174.2.12.

[54] F. Ares, J. G. Esteve, F. Falceto and A. R. de Queiroz, Entanglement in fermionic chains
with finite-range coupling and broken symmetries, Phys. Rev. A 92, 042334 (2015),
doi:10.1103/PhysRevA.92.042334.

[55] F. Ares, J. G. Esteve, F. Falceto and A. R. de Queiroz, Entanglement entropy in the long-
range Kitaev chain, Phys. Rev. A 97, 062301 (2018), doi:10.1103/PhysRevA.97.062301.

[56] S. Fraenkel and M. Goldstein, Exact asymptotics for long-range quantum correlations in a
nonequilibrium steady state, In preparation.

27

https://scipost.org
https://scipost.org/SciPostPhys.15.4.134
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/PhysRevA.72.032317
https://doi.org/10.1103/PhysRevB.95.165101
https://doi.org/10.1103/PhysRevB.97.165123
https://doi.org/10.1103/PhysRevA.99.022310
https://doi.org/10.1103/PhysRevA.54.2629
https://doi.org/10.1038/nature03909
https://doi.org/10.1063/1.1643788
https://doi.org/10.1007/s11005-012-0565-6
https://doi.org/10.1007/s11005-012-0565-6
https://doi.org/10.1063/1.525968
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.4007/annals.2011.174.2.12
https://doi.org/10.1103/PhysRevA.92.042334
https://doi.org/10.1103/PhysRevA.97.062301


SciPost Phys. 15, 134 (2023)

[57] I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A:
Math. Gen. 36, L205 (2003), doi:10.1088/0305-4470/36/14/101.

[58] H. Shapourian and S. Ryu, Finite-temperature entanglement negativity of free fermions, J.
Stat. Mech.: Theory Exp. 043106 (2019), doi:10.1088/1742-5468/ab11e0.

[59] R. Wong, Asymptotic approximations of integrals, Soc. Ind. Appl. Math., Philadelphia,
USA, ISBN 9780898714975 (2001), doi:10.1137/1.9780898719260.

[60] M. Fagotti and P. Calabrese, Evolution of entanglement entropy following a quantum
quench: Analytic results for the XY chain in a transverse magnetic field, Phys. Rev. A 78,
010306 (2008), doi:10.1103/PhysRevA.78.010306.

[61] P. Mehta and N. Andrei, Nonequilibrium transport in quantum impurity models:
The Bethe ansatz for open systems, Phys. Rev. Lett. 96, 216802 (2006),
doi:10.1103/PhysRevLett.96.216802.

[62] B. Bertini, M. Fagotti, L. Piroli and P. Calabrese, Entanglement evolution and generalised
hydrodynamics: Noninteracting systems, J. Phys. A: Math. Theor. 51, 39LT01 (2018),
doi:10.1088/1751-8121/aad82e.

[63] O. Gamayun, O. Lychkovskiy and J.-S. Caux, Fredholm determinants, full counting
statistics and Loschmidt echo for domain wall profiles in one-dimensional free fermionic
chains, SciPost Phys. 8, 036 (2020), doi:10.21468/SciPostPhys.8.3.036.

[64] M. Brenes, E. Mascarenhas, M. Rigol and J. Goold, High-temperature coherent transport
in the XXZ chain in the presence of an impurity, Phys. Rev. B 98, 235128 (2018),
doi:10.1103/PhysRevB.98.235128.

[65] A. Bastianello, Lack of thermalization for integrability-breaking impurities, Europhys. Lett.
125, 20001 (2019), doi:10.1209/0295-5075/125/20001.

[66] M. Lotem, A. Weichselbaum, J. von Delft and M. Goldstein, Renormalized Lindblad
driving: A numerically exact nonequilibrium quantum impurity solver, Phys. Rev. Res. 2,
043052 (2020), doi:10.1103/PhysRevResearch.2.043052.

[67] T. Jin, M. Filippone and T. Giamarchi, Generic transport formula for a
system driven by Markovian reservoirs, Phys. Rev. B 102, 205131 (2020),
doi:10.1103/PhysRevB.102.205131.

[68] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001),
doi:10.1070/1063-7869/44/10S/S29.

[69] D. Husmann, S. Uchino, S. Krinner, M. Lebrat, T. Giamarchi, T. Esslinger and J.-P. Brantut,
Connecting strongly correlated superfluids by a quantum point contact, Science 350, 1498
(2015), doi:10.1126/science.aac9584.

[70] D. A. Abanin and E. Demler, Measuring entanglement entropy of a generic many-
body system with a quantum switch, Phys. Rev. Lett. 109, 020504 (2012),
doi:10.1103/PhysRevLett.109.020504.

[71] A. J. Daley, H. Pichler, J. Schachenmayer and P. Zoller, Measuring entanglement growth
in quench dynamics of bosons in an optical lattice, Phys. Rev. Lett. 109, 020505 (2012),
doi:10.1103/PhysRevLett.109.020505.

28

https://scipost.org
https://scipost.org/SciPostPhys.15.4.134
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/1742-5468/ab11e0
https://doi.org/10.1137/1.9780898719260
https://doi.org/10.1103/PhysRevA.78.010306
https://doi.org/10.1103/PhysRevLett.96.216802
https://doi.org/10.1088/1751-8121/aad82e
https://doi.org/10.21468/SciPostPhys.8.3.036
https://doi.org/10.1103/PhysRevB.98.235128
https://doi.org/10.1209/0295-5075/125/20001
https://doi.org/10.1103/PhysRevResearch.2.043052
https://doi.org/10.1103/PhysRevB.102.205131
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1126/science.aac9584
https://doi.org/10.1103/PhysRevLett.109.020504
https://doi.org/10.1103/PhysRevLett.109.020505


SciPost Phys. 15, 134 (2023)

[72] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli and M. Greiner,
Measuring entanglement entropy in a quantum many-body system, Nature 528, 77 (2015),
doi:10.1038/nature15750.

[73] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac and P. Zoller, Rényi entropies from random
quenches in atomic Hubbard and spin models, Phys. Rev. Lett. 120, 050406 (2018),
doi:10.1103/PhysRevLett.120.050406.

[74] E. Cornfeld, E. Sela and M. Goldstein, Measuring fermionic entanglement:
Entropy, negativity, and spin structure, Phys. Rev. A 99, 062309 (2019),
doi:10.1103/PhysRevA.99.062309.

[75] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt
and C. F. Roos, Probing Rényi entanglement entropy via randomized measurements, Science
364, 260 (2019), doi:10.1126/science.aau4963.

[76] M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys.
Rev. Lett. 120, 200602 (2018), doi:10.1103/PhysRevLett.120.200602.

[77] E. Cornfeld, M. Goldstein and E. Sela, Imbalance entanglement: Symmetry decomposition
of negativity, Phys. Rev. A 98, 032302 (2018), doi:10.1103/PhysRevA.98.032302.

[78] N. Feldman and M. Goldstein, Dynamics of charge-resolved entanglement after a local
quench, Phys. Rev. B 100, 235146 (2019), doi:10.1103/PhysRevB.100.235146.

[79] R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free
fermionic systems, J. Phys. A: Math. Theor. 52, 475302 (2019), doi:10.1088/1751-
8121/ab4b77.

[80] S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: Exact results in 1D and
beyond, J. Stat. Mech.: Theory Exp. 033106 (2020), doi:10.1088/1742-5468/ab7753.

[81] S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped
integrable systems: A corner transfer matrix approach, SciPost Phys. 8, 046 (2020),
doi:10.21468/SciPostPhys.8.3.046.

[82] L. Capizzi, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement entropy of
excited states in a CFT, J. Stat. Mech.: Theory Exp. 073101 (2020), doi:10.1088/1742-
5468/ab96b6.

[83] M. T. Tan and S. Ryu, Particle number fluctuations, Rényi entropy, and symmetry-resolved
entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization,
Phys. Rev. B 101, 235169 (2020), doi:10.1103/PhysRevB.101.235169.

[84] X. Turkeshi, P. Ruggiero, V. Alba and P. Calabrese, Entanglement equipartition
in critical random spin chains, Phys. Rev. B 102, 014455 (2020),
doi:10.1103/PhysRevB.102.014455.

[85] B. Estienne, Y. Ikhlef and A. Morin-Duchesne, Finite-size corrections in
critical symmetry-resolved entanglement, SciPost Phys. 10, 054 (2021),
doi:10.21468/SciPostPhys.10.3.054.

[86] S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement in AdS3/CFT2
coupled to U(1) Chern-Simons theory, J. High Energy Phys. 07, 030 (2021),
doi:10.1007/JHEP07(2021)030.

29

https://scipost.org
https://scipost.org/SciPostPhys.15.4.134
https://doi.org/10.1038/nature15750
https://doi.org/10.1103/PhysRevLett.120.050406
https://doi.org/10.1103/PhysRevA.99.062309
https://doi.org/10.1126/science.aau4963
https://doi.org/10.1103/PhysRevLett.120.200602
https://doi.org/10.1103/PhysRevA.98.032302
https://doi.org/10.1103/PhysRevB.100.235146
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1088/1751-8121/ab4b77
https://doi.org/10.1088/1742-5468/ab7753
https://doi.org/10.21468/SciPostPhys.8.3.046
https://doi.org/10.1088/1742-5468/ab96b6
https://doi.org/10.1088/1742-5468/ab96b6
https://doi.org/10.1103/PhysRevB.101.235169
https://doi.org/10.1103/PhysRevB.102.014455
https://doi.org/10.21468/SciPostPhys.10.3.054
https://doi.org/10.1007/JHEP07(2021)030

	Introduction
	Nonequilibrium model
	Asymptotics of correlation measures
	Analytical method
	Mutual information and coherent information
	Fermionic negativity

	Discussion and Outlook
	Two-point correlations
	Calculation of the Rényi entropies
	Asymptotics of moments for the connected subsystems
	Asymptotics of moments for the disjoint subsystem
	Asymptotics of the Rényi entropies

	Calculation of the fermionic negativity
	Additional numerical tests
	References

