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Abstract

We propose a precise reformulation of 3d quantum gravity with negative cosmological
constant in terms of a topological quantum field theory based on the quantization of
the Teichmüller space of Riemann surfaces that we refer to as “Virasoro TQFT”. This
TQFT is similar, but importantly not equivalent, to SL(2,R) Chern-Simons theory. This
sharpens the folklore that 3d gravity is related to SL(2,R) Chern-Simons theory into
a precise correspondence, and resolves some well-known issues with this lore at the
quantum level. Our proposal is computationally very useful and provides a powerful
tool for the further study of 3d gravity. In particular, we explain how together with
standard TQFT surgery techniques this leads to a fully algorithmic procedure for the
computation of the gravity partition function on a fixed topology exactly in the central
charge. Mathematically, the relation leads to many nontrivial conjectures for hyperbolic
3-manifolds, Virasoro conformal blocks and crossing kernels.

Copyright S. Collier et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 24-05-2023
Accepted 15-09-2023
Published 11-10-2023

Check for
updates

doi:10.21468/SciPostPhys.15.4.151

Contents

1 Introduction 2

2 3d gravity and its relation to Virasoro TQFT 6
2.1 3d gravity in first order formalism 6
2.2 The phase space and the Teichmüller component 7
2.3 The Hilbert space 8
2.4 Mapping class group action and the Moore-Seiberg construction 13
2.5 Review of the Virasoro crossing kernel 15
2.6 The Virasoro TQFT 17
2.7 A relation between 3d gravity and Virasoro TQFT 19
2.8 Two-dimensional analogue 22

3 Partition functions on hyperbolic 3-manifolds 23
3.1 The inner product of Virasoro TQFT and the Euclidean wormhole 23
3.2 Handlebodies 25
3.3 Naive surgery 27

1

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151
mailto:scott.collier@princeton.edu
mailto:elorenz@ias.edu
mailto:mengyang@princeton.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.4.151&amp;domain=pdf&amp;date_stamp=2023-10-11
https://doi.org/10.21468/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

3.4 Surface bundles over a circle 30
3.5 Heegaard splitting without boundaries 30
3.6 Heegaard splitting with boundaries 32
3.7 Heegaard splitting with Wilson lines and/or boundaries 35

4 Discussion 38

A Consistency conditions of the Moore-Seiberg construction 44

B Spacelike and timelike Liouville theory 45
B.1 Conventions for spacelike Liouville theory 45
B.2 Conventions for timelike Liouville theory 47

C Some details about 3-manifold topology 47
C.1 Hyperbolic 3-manifolds via Kleinian groups 48
C.2 Finiteness conditions 49
C.3 Rigidity 50
C.4 Mapping class groups 50

References 50

1 Introduction

In the study of quantum gravity, a central objective is the construction of tractable models
that serve as theoretical laboratories where fundamental questions can be precisely posed.
However the construction of soluble models of quantum gravity is notoriously difficult. This
problem becomes much more tractable in low dimensions. In particular in three spacetime
dimensions, pure Einstein gravity does not carry dynamical graviton degrees of freedom, i.e.
there are no gravitational waves. This drastically simplifies the theory and there is hope to
construct a consistent theory of quantum gravity from the bottom up without the need to
resort to string theory. Moreover Einstein gravity with negative cosmological constant admits
nontrivial black hole solutions [1], so despite the absence of propagating gravitons, the three-
dimensional case retains much of the richness and many of the conceptual puzzles of the
higher-dimensional problem. A full treatment of quantum gravity in two-dimensions in form
of dilaton gravity models has been achieved, see e.g. the recent progress on JT gravity [2–4],
but the status of the much richer three-dimensional case is still unclear. Three-dimensional
gravity behaves in many ways as a topological field theory, where the role of edge modes is
played by graviton excitations at the asymptotic boundaries. Since many three-dimensional
topological field theories are solvable at the quantum level, this language provides the natural
framework for an exact formulation of 3d quantum gravity.

This description can be made more concrete in the case of negative cosmological constant
through the holographic principle. The AdS/CFT correspondence provides a window into the
ultraviolet dynamics of pure 3d quantum gravity by reformulating the problem in terms of
the boundary CFT. Indeed, the asymptotic symmetries of 3d gravity are given by two copies
of the Virasoro algebra with central charges c = 3ℓ

2GN
[5], where ℓ is the AdS radius, indicat-

ing the existence of a boundary CFT dual to 3d gravity. Despite much progress the status of
the boundary CFT is still not fully settled, but there are many (partially competing) propos-
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als [6–16]. Drawing on lessons learned in the recent solution of two-dimensional gravity [2],
it has been conjectured that the boundary description is not given by a particular family of 2d
CFTs admitting a large-c limit, but rather by an appropriate notion of an ensemble of chaotic
large-c CFTs. In contrast to the case of two-dimensional gravity, the boundary description is
subject to the tremendously rigid constraints of locality in the form of modular invariance and
associativity of the operator product expansion (OPE), so the averaging cannot be done in an
arbitrary way; indeed there is naively some tension between the rigidity of such consistency
conditions and expectations from quantum chaos. While there has been partial progress on
the construction of such an ensemble [14,15], it suffers from the obvious problem that there
is no known concrete example of a compact unitary large-c CFT with a sparse light spectrum
and only Virasoro symmetry1 — our knowledge of the solutions to the crossing equations, par-
ticularly in the holographic regime, is embarrassingly limited. The existence of the boundary
CFT description together with the data of the low-energy effective gravitational theory imposes
powerful constraints on the UV degrees of freedom of the bulk theory in the form of conformal
bootstrap techniques [18–28].

In this paper, we will address the problem from the bulk perspective. As a main technical
result, we will make the relation of AdS3-gravity with the TQFT description precise. This opens
up an avenue for the computation of many bulk quantities that were of reach before.

We start by reviewing the canonical quantization of 3d gravity in terms of the quantization
of Teichmüller space and then relate the gravity theory to a specific TQFT that we refer to as
“Virasoro TQFT,” which has previously appeared in the literature under various guises [29–34].
This formulation automatically provides a Hilbert space description for pure AdS3 gravity, and
allows us to use standard TQFT techniques to calculate the partition functions on various 3d
manifolds. We will now give a bird’s-eye view of logic of the paper.

The TQFT treatment of pure AdS3 gravity has been proposed and studied for decades,
starting from the connections between PSL(2,R) × PSL(2,R) Chern-Simons theory and Ein-
stein gravity in AdS3 spacetime at the classical level [35, 36]. Via a field redefinition, we can
trade the dreibein and spin connection from the first-order formalism of 3d gravity with two
sl(2,R) gauge fields A, Ā. The classical actions of two theories coincide. However, the direct
quantization of PSL(2,R)× PSL(2,R) Chern-Simons theory is not equivalent to the quantiza-
tion of pure 3d gravity. The phase spaces of the two theories are importantly different. Basic
principles of the gravity theory require the metric to be non-degenerate, while Chern-Simons
theory does not have such a requirement, so Mgravity ⊊MCS; in the Chern-Simons description
one would be integrating over gauge field configurations that are non-sensical when inter-
preted as three-dimensional metrics. The gravity phase space Mgravity on a spatial slice Σ is
in fact equal to two copies of the Teichmüller space T of Σ [37–39]. Teichmüller space is the
universal covering space of the moduli space of Riemann surfaces and thus roughly describes
the shape of the initial value surface.

It is a non-trivial (and from the perspective of the gauge theory, somewhat miraculous) fact
that Teichmüller space can be consistently quantized on its own [29,30,33,40–44]. This means
that we can assign to T a quantum Hilbert space HΣ endowed with a well-defined inner prod-
uct. However, in contrast to more standard TQFTs, this Hilbert space is infinite-dimensional.
In physical terms, the Hilbert space is simply given by the space of all (normalizable) Virasoro
conformal blocks on Σ. In fact, one can go further. Teichmüller space enjoys a natural ac-
tion of the two-dimensional mapping class group, a.k.a. modular transformations or crossing
transformations acting on Σ. These are represented as unitary operators on Hilbert space im-
plementing the usual crossing transformations on conformal blocks. The remarkable fact that
(normalizable) Virasoro conformal blocks close under crossing ensures independence of the

1See however [17] for recent progress constructing candidate examples of compact unitary CFTs with no chiral
symmetry enhancements beyond Virasoro.
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choice of basis for the conformal blocks in the quantization and means that one can define a
consistent 3d TQFT from this data. This is a version of the Moore-Seiberg construction [45]
generalized to the non-rational setting. This TQFT was previously formulated in the mathe-
matics literature by Andersen and Kashaev [31, 32]. However, we give a different treatment
of it that is physically better motivated and which gives a much more convenient language for
holography.

Therefore, we propose that in order to solve pure AdS3 gravity, we should consider Virasoro
TQFT instead of SL(2,R) Chern-Simons theory. More precisely, we propose that the gravity
partition function Zgrav(M) on a manifold M with fixed topology can be written as follows in
terms of the Virasoro TQFT partition function ZVir(M)

Zgrav(M) =
∑

γ∈Map(∂M)/Map(M ,∂M)

|ZVir(M
γ)|2 . (1.1)

This equation holds whenever M is a hyperbolic 3-manifold with at least one AdS boundary.
There is a modification in the absence of asymptotic boundaries (2.66) and a version that
partially holds in the non-hyperbolic case (2.63) that we shall explain in section 2.7.

We now briefly explain the ingredients going into eq. (1.1).

Virasoro TQFT partition function. The equation (1.1) involves two copies of the Virasoro
TQFT partition function ZVir(M) on the manifold M . One copy should be thought of as being
left-moving, the other as being right-moving. We emphasize that the partition function of Vi-
rasoro TQFT is algorithmically exactly computable on hyperbolic 3-manifolds. Computability
is achieved by standard surgery techniques familiar from Chern-Simons theory [46]. The re-
lation of Virasoro TQFT to Liouville CFT is exactly analogous to the relation of Chern-Simons
theory to the WZW model. In particular, as already mentioned above, the Hilbert space of
Virasoro TQFT consists of the space of all Virasoro conformal blocks on a spatial surface Σ.
The space of conformal blocks is equipped with an interesting inner product given in terms
of an integral over Teichmüller space, see eq. (2.5) in the main text. We however argue from
a variety of perspectives that the required integral can be computed explicitly in terms of the
DOZZ structure constants [47,48] of Liouville theory. The Hilbert space also carries the action
of all crossing transformations which in particular defines a projective, unitary representation
of the mapping class group Map(Σg). This representation is known very explicitly thanks to
the pioneering work of Ponsot and Teschner [43,49–51].

As we shall review in detail, this structure is enough to compute partition functions of
the three-dimensional theory using surgery techniques. However, compared to e.g. SU(2)
Chern-Simons theory, some extra care is needed. Since the Hilbert space of the theory is not
well-defined on the sphere with fewer than three insertions and on the torus in the absence
of insertions, we get ill-defined results if we try to perform surgery of manifolds along such
surfaces. Additionally, since the Hilbert space is infinite-dimensional, inner products are not
always guaranteed to be finite. Thus the Virasoro TQFT partition function does not take fi-
nite values on all three-dimensional manifolds. Moreover, similarly to Chern-Simons theory,
ZVir(M) has a framing anomaly, which however cancels once left- and right-mover are com-
bined in (1.1).

We will explain a concrete algorithm to compute these partition functions by using a (gen-
eralized) Heegaard splitting of the manifold under consideration. This procedure gives a finite
result whenever ZVir(M) is well-defined. In a follow up paper [52], we demonstrate the ef-
fectiveness of this algorithm by computing explicitly the TQFT partition function for various
known concrete examples of hyperbolic 3-manifolds, such as the figure-8 knot complement.
For standard examples in the literature, this completely trivializes the computation. We also
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calculate the partition functions for several multi-boundary wormhole geometries, which en-
code the non-Gaussian statistics of holographic CFT data [14,15,53].

Mapping class group. A theory of gravity obviously cannot be equivalent to a TQFT. In a
TQFT the background manifold is given, whereas it is dynamical in a gravity theory. In par-
ticular, there are large diffeomorphisms in a gravity theory that are not gauge transformations
from the TQFT point of view. They are captured by the mapping class groups in the problem.
There is a bulk and a boundary mapping class group,

Map(M ,∂M)≡ Diff(M ,∂M)/Diff0(M ,∂M) , Map(∂M)≡ Diff(∂M)/Diff0(∂M) . (1.2)

Here, Diff(M ,∂M) are diffeomorphisms of the bulk manifold that are allowed to act non-
trivially on the boundary of the manifold (but preserve each boundary component setwise).
The mapping class group is responsible for that fact that quantum gravity does not follow basic
QFT axioms such as factorization of amplitudes.

The sum over topologies in the quantum gravity path integral includes the sum over
the boundary mapping class group, while we still have to gauge by the bulk mapping class
group. However, when M has boundaries, the bulk mapping class group Map(M ,∂M) nat-
urally acts on the boundary. For a hyperbolic 3-manifold M , one can show that the map
Map(M ,∂M) −→ Map(∂M) has no kernel and we can view Map(M ,∂M) ⊂ Map(∂M). This
is a relatively deep geometric fact which we explain it in Section 2.7 and Appendix C. This
is in very stark contrast with the two-dimensional case. Thus, the sum over topologies and
the gauging of the bulk mapping class group partially cancel which leads to eq. (1.1). In the
formula Mγ denotes the image of M under the action of the mapping class group element γ.
For simple examples such as the sum over modular images of the BTZ black hole, this recovers
the well-known modular sum as first studied in [9].

Let us make some further remarks. It is perhaps surprising that the left- and right-movers
factorize as nicely as in eq. (1.1). The only ‘entanglement’ between them comes from the mod-
ular sum over the mapping class group. This sum in particular ensures that all the spins as
measured on the boundary only take integer values. Of course, (1.1) still needs to be summed
over different topologies to obtain the partition function of full 3d quantum gravity. Apart
from some new observations in the discussion section 4, we do not analyze this sum in this
paper, but rather focus on the contribution from a fixed topology. Similarly, our paper does
not immediately lead to conceptually new predictions about the boundary CFT description,
but serves as a useful tool to further analyze a possible boundary description. We will explore
the implications for the boundary CFT further in a follow-up paper [52]. We should also men-
tion that the prescription (1.1) gives the answer for the partition function for any hyperbolic
manifold, but the general prescription for ‘off-shell’ partition functions is still open. In that
case, both ZVir(M) can be divergent and there can be an infinite bulk mapping class group by
which we need to divide [54]. We comment further on these cases in the discussion section 4.

Finally, we want to emphasize that there is a number of seemingly lucky coincidences that
are essential for this correspondence to work, which we believe also serves as evidence for
its correctness. For instance, it is very fortunate that the phase space is given in terms of two
Teichmüller spaces which admit a natural quantization in terms of Virasoro conformal blocks.
In general, restricting the phase space in an arbitrary manner does not lead to a well-defined
theory. Moreover, three-dimensional hyperbolic manifolds behave very differently from two-
dimensional hyperbolic manifolds, which leads to a simple treatment of the mapping class
group, at least for the hyperbolic case. In comparison, one needs the Mirzakhani recursion
relations to solve the two-dimensional case [55,56]. So the surgery technique of the Virasoro

5

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

TQFT may heuristically be understood as a three-dimensional version of Mirzakhani’s recur-
sion relation.2

This paper is organized as follows. In section 2, we review the construction of the gravity
phase space of pure AdS3 gravity and its identification with Teichmüller space. We review the
quantization of Teichmüller space and the construction of the Virasoro TQFT. This in partic-
ular includes a detailed discussion of the inner product of the Hilbert space. We then derive
eq. (1.1) in detail. We also explain the parallel logic for the 2d analogue of JT gravity. In
section 3, we explain how to algorithmically compute the partition function of the Virasoro
TQFT. We explain the trivial computation of the partition function of the Euclidean wormhole
in our framework and then explain computations via surface bundles and (generalized) Hee-
gaard splittings. We provide three appendices for supplemental material. In appendix A, we
list the consistency consitions satisfied by the crossing kernels. In appendix B, we explain our
conventions for both spacelike and timelike Liouville theory, which both play an important role
at various places in the main text. Finally, we explain various standard facts about hyperbolic
3-manifolds in appendix C.

Note. The TQFT we consider in this paper has sometimes been referred to as “Teichmüller
TQFT” in the literature. We prefer the name “Virasoro TQFT” because we feel it better captures
the physical meaning of the TQFT, and we strongly feel that a person like O. Teichmüller does
not deserve additional scientific honor for a recent development that he did not contribute to.
Moreover our treatment of the theory is sufficiently different from previous considerations that
its equivalence to the theory known as Teichmüller TQFT, particularly the restricted state-sum
construction of [31,32], while expected, remains to be demonstrated.

2 3d gravity and its relation to Virasoro TQFT

2.1 3d gravity in first order formalism

It is well-known that 3d gravity is related to PSL(2,R)× PSL(2,R) Chern-Simons theory [35,
36]. This correspondence states that 3d gravity in first order formalism admits a field redef-
inition that maps the equation of motions and the action to those of SL(2,R)k × SL(2,R)−k
Chern-Simons theory (up to global issues mentioned below). In terms of the dreibein ea

µ and

the dualized spin connection ωa
µ =

1
2ϵ

abcωµ,bc , the relevant change of variables is

Aa
µ =ω

a
µ +

1
ℓ

ea
µ , Āa

µ =ω
a
µ −

1
ℓ

ea
µ , (2.1)

where Aµ and Āµ become the sl(2,R) × sl(2,R) gauge fields and Λ = −ℓ−2 < 0 is the cos-
mological constant. The level k of the Chern-Simons theory is related to the AdS-length ℓ
and Newton’s constant as k = ℓ

4G , which is classically related to the Brown-Henneaux central
charge c as c = 6k [5].

While this identification works formally on the level of the classical fields, one is immedi-
ately faced with myriad problems in its interpretation:

1. In 3d gravity, the metric is a dynamical field and as such the path integral includes a sum
over different topologies. On the contrary, we consider a fixed background topological
manifold for Chern-Simons theory and it is unnatural to sum over such choices.

2Although unlike Mirzakhani’s recursion, the mapping class group must be treated separately.
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2. In 3d gravity, there is a condition that the metric is Lorentzian (and in particular the
dreibein is non-degenerate). In Chern-Simons theory, the gauge fields Aa

µ and Āa
µ are not

subject to such a non-degeneracy condition.

3. In 3d gravity, the gauge group is Diff(M) when we consider the theory on a manifold
M .3 This group agrees infinitesimally with gauge transformations from the Lie algebra
sl(2,R)× sl(2,R). However, the global structure is different. In particular, the group of
diffeomorphisms is in general disconnected. Letting Diff0(M) the identity component
of the group of diffeomorphisms, the quotient group Map(M) = Diff(M)/Diff0(M) is
known as the mapping class. Chern-Simons theory can only capture the identity com-
ponent Diff0(M).

In this paper, we will propose a prescription that solves these problems for a large class of
3-manifolds – namely at least all hyperbolic 3-manifolds. We will start by explaining Virasoro
TQFT – a theory closely related to 3d gravity that completely resolves the second problem, but
still has the others, which we argue can be fixed by hand.

2.2 The phase space and the Teichmüller component

Let us consider a 3-manifold of the form Σ × R for Σ a Riemann surface. As usual, we can
attach to Σ the phase space describing initial conditions. In SL(2,R) Chern-Simons theory,
the phase space is given by the moduli space of flat SL(2,R) bundles on Σ. However, not any
flat SL(2,R)× SL(2,R) bundle corresponds to a good initial condition for gravity since some
bundles may look very singular in the metric variables (2.1). Thus one wants to impose a
non-degeneracy condition on the space of flat bundles.

In 3d gravity with negative cosmological constant, this condition turns out to be quite
natural and singles out the Teichmüller component in the moduli space of flat SL(2,R) bun-
dles [37,38]. Recall that flat SL(2,R) bundles (or rather flat PSL(2,R)) bundles are classified
topologically by their Euler number, which takes values in the range {−|χ(Σ)|, . . . , |χ(Σ)|} (in
the absence of conical defects). Teichmüller space is the component with maximal Euler num-
ber (or, equivalently after a orientation-reversal, minimal Euler number). It captures precisely
the flat bundles that come from hyperbolic structures on Σ.

Thus the moduli space of flat PSL(2,R)-bundles is disconnected and gravity only picks out
the geometric component T ⊂Mflat

PSL(2,R). Hence we take the phase space of gravity to be two
copies of Teichmüller space of the initial value surface Σ:

Gravity phase space= T × T . (2.2)

We should think of one copy as left-moving and the other as right-moving.
Note that there is also an alternative description of phase space in terms of the cotangent

bundle of Teichmüller space, which naturally is obtained from the Hamiltonian formalism of
3d gravity. They are symplectomorphic, T × T ∼= T ∗T [38, 57]. For our purposes it will be
more convenient to work with the factorized form. We also remark that the phase space is
sometimes claimed to be (T × T )/Map(Σ), where Map(Σ) is the 2d mapping class group on
the initial value surface [39, 54, 58] (i.e. the group of modular transformations). In gravity,
we can implement the mapping class group either before or after quantization. In practice,
this means that modding by the 2d mapping class group is useful whenever the 2d mapping
class group embeds into the 3d mapping class group. This happens for example for manifolds

3There is also a choice involved regarding whether we allow for orientation reversing diffeomorphisms or not.
We will assume throughout this paper that M is orientable, and Diff(M) is the group of orientation-preserving
diffeomorphisms. This is the choice that corresponds most naturally to Chern-Simons theory, since CS theory is
formulated on oriented 3-manifolds. The theory then has time-reversal symmetry T , which we are not gauging.
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of the form Σ× S1 or for the Euclidean wormhole that is topologically of the form Σ×R, but
not in general. We will retain more computational control by dividing by the mapping class
group after quantization.

2.3 The Hilbert space

As a next step, one quantizes the phase space of the theory to obtain the Hilbert space asso-
ciated to the initial value surface Σ. This problem reduces to the quantization of Teichmüller
space, which was essentially solved in [29] and later refined in [30,40,43,44]. Our discussion
here however emphasizes different aspects than in those works.

Let us first explain what it means to quantize Teichmüller space. As any phase space, Te-
ichmüller space is a symplectic manifold. The symplectic form is given by the Weil-Petersson
symplectic form. Quantization assigns a Hilbert space to a symplectic manifold. It also pro-
motes certain distinguished functions to operators acting on that Hilbert space and their Pois-
son brackets to commutators. In general, there is no preferred recipe to perform quantization.
It however so happens that Teichmüller space is a Kähler manifold in which case one can use
geometric quantization to quantize. It is however far from obvious that this is the only possible
quantization of Teichmüller space.

We will now describe the result of the quantization in high-level terms. Kähler quanti-
zation proceeds in two steps. First, we have to find a holomorphic line bundle L over T
whose first Chern class is the symplectic form, c1(L ) =ω. Since Teichmüller space is simply-
connected, this line bundle is unique. This step is often called prequantization. In a second
step, one declares the Hilbert space to be holomorphic sections of this line bundle. Thus, every
wavefunction is such a holomorphic section. It depends in particular only on the holomorphic
coordinates, which is the analogue of the usual fact that the wave function should only depend
on either positions or momenta, but not both.

There is a natural candidate for such holomorphic sections, namely Virasoro conformal
blocks. They depend holomorphically on the moduli of the surface Σ. Since they are not
yet crossing symmetric, they are objects defined on Teichmüller space, rather than moduli
space. The conformal anomaly means that they are not functions on Teichmüller space, but
rather sections of a holomorphic line bundle. Thus the Hilbert space obtained by quantizing
Teichmüller space consists of Virasoro conformal blocks on the surface Σ. The central charge
is related to the Chern-Simons level k as follows,

c = 1+ 6Q2 , Q = b+ b−1 , b =
1

p
k− 2

. (2.3)

This value can be found from Hamiltonian reduction of SL(2,R)k conformal blocks via the
H+3 /Liouville correspondence [59], which agrees with the classical Brown-Henneaux value 6k
up to quantum corrections [5]. We will mostly consider the regime c ≥ 25 and can choose
b ∈ [0,1], so that the classical limit corresponds to b→ 0. It is however in principle sufficient
to impose c > 1 for the construction described in this paper to exist.4 As usual, we parameterize
conformal weights in terms of the “Liouville momenta” α or P as5

∆= α(Q−α) =
c − 1
24

+ P2 , α=
Q
2
+ iP . (2.4)

Finally, we need to explain how to turn this into a Hilbert space by exhibiting an inner
product on the space of conformal blocks. In geometric quantization, such an inner product

4For 1< Re(c)< 25 the description of the inner product that follows must be altered slightly, but we expect the
conclusions to remain essentially unchanged. Formally, we can even take c ∈ C \ (−∞, 1], but it is unclear what
the construction means physically if c is not real.

5In this paper we use ∆ to refer to the conformal weight, not the total scaling dimension.
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generally takes the form of an integral over the symplectic manifold under consideration. See
e.g. [60] for the case of Chern-Simons theory with a compact gauge group. For the quantization
of Teichmüller space, the inner product was worked out in [29]. It takes the form

〈F1|F2〉=
∫

T
Zbc Ztimelike Liouville F1 F2 , (2.5)

for two conformal blocks F1 and F2 on Σ. A little reflection makes it plausible that something
like this is the only well-defined formula we could have written down. Indeed, the ingredients
are well-known from string theory. Integration over Teichmüller space is locally the same as
integration over the moduli space of Riemann surfaces. In particular, we need an object of
central charge 26 for the Weyl anomaly to cancel. Thus we need to multiply by some CFT
partition function of conformal weight 26− c ≤ 1. The only natural CFT with central charge
≤ 1 is timelike Liouville theory.6 Finally, we need bc ghosts to define the measure for the
integration over Teichmüller space. In the presence of punctures, we have to combine the
conformal blocks with appropriate vertex operators in the timelike Liouville theory such that
the total conformal weight is 1 and the states are physical in the string theory sense.

We now remind the reader about timelike Liouville theory whose meaning was eluci-
dated in [61–63], which we review in appendix B. Let us only mention here a convenient
parametrization of the central charge and conformal weights of the theory. The central charge
in timelike Liouville CFT is often parameterized as

ĉ = 1− 6bQ2 , bQ = b̂−1 − b̂ . (2.6)

Hence to cancel the Weyl anomaly we must have

ĉ = 26− c =⇒ b̂ = b . (2.7)

Meanwhile, conformal weights in timelike Liouville are written in terms of the Liouville mo-
menta bP as

∆̂= bα(bQ+ bα) , bα= −
bQ
2
+ bP . (2.8)

Thus on the solution to the physical state conditions we have

∆̂= 1−∆ =⇒ bP = ±iP . (2.9)

We have suppressed a subtlety in the inner product (2.5). The Liouville CFT carries a label
µ known as the Liouville cosmological constant in addition to the central charge. A priori, the
value of the Liouville cosmological constant represents an ambiguity of the inner product in the
quantum Teichmüller theory. In 3d gravity this ambiguity reflects the freedom to add covariant
counterterms associated with each asymptotic boundary via holographic renormalization. In
what follows we will mostly ignore this ambiguity, which amounts to choosing an arbitrary,
but fixed value for µ. We will comment more on holographic renormalization in section 2.7.

With the definition of the inner product (2.5) in place, we can analyze which conformal
blocks are normalizable. Since we are dealing with a non-compact phase space, we can only
expect states to be delta-function normalizable. Divergences in the definition (2.5) come from
the boundaries of Teichmüller space for which a closed curve on the Riemann surface pinches.
We can for example analyze the case of two four-point blocks. Then as the cross ratio z tends
to 0, the product of conformal blocks behaves as

z−∆1−∆2+∆z̄−∆1−∆2+∆′ , (2.10)

6At the time of Verlinde’s paper [29], the subtleties of timelike Liouville theory were not appreciated and we
take eq. (2.5) as a more precise definition of his formula.
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where ∆1 and ∆2 are the external conformal weights. They are part of the data specifying
the punctured surface and thus coincide for both conformal blocks, while ∆ and ∆′ are the
two (potentially different) internal conformal weights of the blocks. The timelike Liouville
partition function behaves for z→ 0 as [62]

|z|−2(∆̂1+∆̂2)+
ĉ−1
12 | log |z||−

1
2 , (2.11)

where ∆̂i = 1−∆i is the conformal weight of the associated timelike Liouville vertex operator
and ĉ = 26− c the central charge. Thus the integrand (2.5) behaves for z→ 0 as

z∆−
c−1
24 −1z̄∆

′− c−1
24 −1| log |z||−

1
2 . (2.12)

The integral over z has thus a chance of converging when both internal conformal weights
satisfy

∆>
c − 1
24

, (2.13)

i.e. are above threshold.
We will shortly provide a more computationally useful perspective on this inner product,

but we find it instructive to first work through an example where the inner product (2.5) can
be computed explicitly. In particular, consider the inner product between conformal blocks
associated with the three-point function 〈O1O2O3〉 of local operators on the sphere. Of course,
these conformal blocks are trivial (we may take them to be normalized to unity7), and there
is no Teichmüller space to integrate over. Hence the only nontrivial ingredient in (2.5) is the
sphere three-point function in the timelike Liouville CFT, which is given by the timelike DOZZ
formula [61–66]




F0,3

�

�F0,3

�

= bCTLL(bP1, bP2, bP3) , (2.15)

where the bPi indicate the Liouville momenta of the appropriate operators in timelike Liouville
CFT; on the solution to the physical state conditions, they are given in terms of those of the
Oi as in (2.9). As reviewed in appendix B, we adopt operator normalization conventions such
that the timelike Liouville structure constants are given explicitly by

bCTLL(bP1, bP2, bP3) =
1

C0(ibP1, ibP2, ibP3)

�

�

�

�

b=b̂

. (2.16)

Here, C0 is the universal formula for CFT structure constants given in equation (B.3) that is
equivalent to the DOZZ formula [47,48] for the three-point function in spacelike Liouville CFT
with a particular choice of operator normalization.8 So the three-point functions in timelike
Liouville CFT are given by the analytic continuation of the inverse of those in spacelike Liouville
CFT. We reproduce the explicit form of C0 here for convenience:

C0(P1, P2, P3) =
Γb(2Q)Γb(

Q
2 ± iP1 ± iP2 ± iP3)

p
2Γb(Q)3
∏3

k=1 Γb(Q± 2iPk)
. (2.17)

7Of course, even the conformal block on a three-punctured sphere has ambiguous normalization due to the
conformal anomaly. What we mean is that we can choose the standard normalization for the three-punctured
sphere block on the plane,

F0,3 = z−∆1−∆2+∆3
21 z−∆1−∆3+∆2

31 z−∆2−∆3+∆1
32 . (2.14)

8The precise relationship between the universal formula C0 and the DOZZ formula as conventionally written is
reviewed in appendix B.
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We take the product over all choices of ± signs in the formula. Here, Γb(z) is the so-called dou-
ble Gamma function. It can be characterized as the unique function Γb(z) that is meromorphic
in z on the complex plane and continuous in b ∈ R and satisfies the following shift equation

Γb(z + b) =
p

2πbbz− 1
2

Γ (bz)
Γb(z) , (2.18)

as well as the same relation with b→ b−1. Finally, the normalization is fixed by requiring that
Γb(

Q
2 ) = 1. An explicit representation which holds for Re z > 0 is given by

log Γb(z) =

∫ ∞

0

dt
t

�

e
t
2 (Q−2z) − 1

4 sinh( bt
2 ) sinh( t

2b )
−

1
8
(Q− 2z)2 e−t −

Q− 2z
2t

�

. (2.19)

We thus conclude that the inner product between three-point blocks in Virasoro TQFT is
given by the inverse of the structure constants in spacelike Liouville CFT




F0,3

�

�F0,3

�

=
1

C0(P1, P2, P3)
. (2.20)

We will now argue that this is an example of a more general phenomenon. Indeed, we claim
that9




FC
g,n(P⃗1)
�

�FC
g,n(P⃗2)
�

=
δ(3g−3+n)(P⃗1 − P⃗2)

ρC
g,n(P⃗1)

, (2.21)

where the density ρC
g,n(P⃗) must be given by the OPE density of the partition function (or

correlation function) of the Liouville CFT in the channel C. The channel C is specified by
cutting the (punctured) Riemann surface into 2g − 2+ n pairs of pants sewn together along
3g−3+n internal cuffs and specifying a corresponding dual graph. This is described in detail
in section 2.4. In particular, we claim

ρC
g,n(P⃗) =
∏

cuffs a

ρ0(Pa)
∏

pairs of pants
(i, j,k)

C0(Pi , Pj , Pk) , (2.22)

where ρ0 is the universal Cardy density of states

ρ0(P) = 4
p

2 sinh(2πbP) sinh(2πb−1P) , (2.23)

and C0 is the universal formula for structure constants defined in eq. (2.17). See also ap-
pendix B for more details. We note that the inner product is indeed positive definite, which is
the statement that the density ρC

g,n(P⃗) is a positive function. This follows immediately from
the definition of C0 in eq. (2.17), together with the definition of the double Gamma-function
(2.19). Indeed, for real Q, one easily checks the properties

Γb(
Q
2 + iP) = Γb(

Q
2 − iP) , Γb(Q)> 0 , (2.24a)

Γb(Q+ iP) = Γb(Q− iP) , Γb(2Q)> 0 . (2.24b)

Thus the theory is unitary as long as c > 1.
It is sometimes be convenient to work with a basis of conformal blocks that trivializes the

inner product of the quantum Teichmüller theory. In particular, one can define a rescaled basis
of conformal blocks10

�

�
eFC

g,n(P⃗)
�

=
∏

pairs of pants
(i, j,k)

q

C0(Pi , Pj , Pk)
�

�FC
g,n(P⃗)
�

, (2.25)

9Here, we assume that each component of P⃗1 and P⃗2 is positive. By reflection symmetry, there are also delta-
functions of the form δ(Pa

1 + Pa
2 ) for every component a.

10Since C0(P1, P2, P3)> 0, the choice of square root is unambiguous.
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that is equipped with the inner product




eFC
g,n(P⃗1)
�

�
eFC

g,n(P⃗2)
�

=
δ(3g−3+n)(P⃗1 − P⃗2)

eρC
g,n(P⃗1)

, eρC
g,n(P⃗) =

3g−3+n
∏

a=1

ρ0(Pa) . (2.26)

We give three different arguments for the validity of eq. (2.22) in this paper. Here we provide
a very straightforward argument.

The claim (2.22) follows from the following physical considerations. As we already men-
tioned, the inner product is the result of a BRST reduction of a “worldsheet theory” consisting
of the two conformal blocks and timelike Liouville theory. This is of course not a CFT since it is
not crossing symmetric, but otherwise satisfies all other CFT axioms. Performing a BRST reduc-
tion ensures that all unphysical states do not propagate. In this context, this hence means that
all internal states parametrized by P⃗ need to be BRST closed. This in particular implies that
they need to be level-matched, which shows that the integral is delta-function supported when
P⃗1 = P⃗2. To determine the density ρC

g,n(P⃗), let us first notice that it has to factorize as in (2.22).
Indeed, we can think of the target string theory, which is essentially a two-dimensional quan-
tum field theory. The inner product is computing a scattering amplitude in this theory, which
can be computed by the Feynman rules. In this context, ρ−1

0 plays the role of the propagator,
while C−1

0 is the structure constant of the trivalent vertices. We have already demonstrated
the correctness of C0 by computing the three-point function on the sphere. ρ0 is nothing other
than the normalization of the two-point function with these conventions. We have

lim
P3→1

C0(P1, P2, P3) = ρ0(P1)
−1δ(P1 − P2) . (2.27)

This leads to the claimed formula. We write here and in the following P = 1 as a short-
cut for P = ± iQ

2 corresponding to the vacuum ∆ = 0. We should notice that it was crucial
for this argument that we integrate over Teichmüller space in eq. (2.5) and not the moduli
space of surfaces as ordinarily in string theory. Integrating over Teichmüller space leads to a
single Feynman diagram in spacetime, while usual string amplitudes would unify all Feynman
diagrams of a given loop order into a single diagram (and also avoid UV-divergences).

As promised, we will provide two different derivations below. We can require that the
crossing transformations are unitary with respect to this inner product which uniquely fixes it
to this form. We will also give an independent argument using 3d gravity.

Let us also comment on the case of the torus without punctures. The inner product is some-
what ill-defined because the partition function of Liouville theory on the torus is ill-defined.
However, we can still compute the inner product of two conformal blocks up to an overall
ill-defined constant. Conformal blocks on the torus are just Virasoro characters. Writing out
(2.5) explicitly for the torus (for which Teichmüller space is the upper half plane) gives

〈F1,0(P1)|F1,0(P2)〉=
∫

H

d2τ

Imτ
q̄P2

1 qP2
2

|η(τ)|2
× |η(τ)|4 ×

1
p

Im(τ)|η(τ)|2
. (2.28)

Here we treated the partition function of timelike Liouville theory just like the partition func-
tion of a free boson and avoided the normalization problem. We also set as usual q = e2πiτ.
We used the bc ghost partition function |η(τ)|4 on the torus. We also divided by another fac-
tor of Imτ. This represents the volume of the residual conformal transformations (conformal
Killing vectors). Since Teichmüller space is the coset

metrics on Σ
Weyl(Σ)×Diff0(Σ)

, (2.29)

of metrics up to Weyl rescaling and small diffeomorphisms, we should divide by the volume
of this residual gauge group just like in string theory. Writing τ= x + i y , we thus obtain with
P1 ≥ 0, P2 ≥ 0,
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〈F1,0(P1)|F1,0(P2)〉=
∫ ∞

−∞
dx

∫ ∞

0

dy
y3/2

e−2πy(P2
1+P2

2 )+2πi x(−P2
1+P2

2 ) (2.30)

= δ(P2
1 − P2

2 )

∫ ∞

0

dy
y3/2

e−4πyP2
1 (2.31)

=
1
P1
δ(P1 − P2)P1

∫ ∞

0

dy
y3/2

e−4πy . (2.32)

The remaining integral strictly speaking does not converge, but we should not assign too much
meaning to it, since we anyway already discarded an overall constant. We thus conclude that
〈F1,0(P1)|F1,0(P2)〉 ∝ δ(P1 − P2).

Let us summarize the discussion of this section. The Hilbert space consisting of all normal-
izable states is precisely the space of (holomorphic) Liouville conformal blocks,

HVir = {Liouville conformal blocks} . (2.33)

For 3d gravity, we have two copies of this Hilbert space and can think of one set of conformal
blocks as left-moving and one as right-moving.

We should also mention that states below and above the threshold have completely differ-
ent geometric origin. In Teichmüller space, we specify the monodromy of the flat PSL(2,R)
gauge field around the puncture. It can either be an elliptic element of PSL(2,R), correspond-
ing to a conical defect in the surface, or a hyperbolic element of PSL(2,R), corresponding to a
geodesic boundary of the surface. After quantization, the external conformal weight specifies
the type of puncture. A conformal weight below the threshold c−1

24 corresponds to a conical
defect, while a conformal weight above threshold corresponds to a geodesic boundary. The
semiclassical relation between the length of the boundary geodesic and the conformal weight
was worked out in [44] (and already conjectured in [29]). It reads

∆=
c − 1
24

+
�

ℓ

4πb

�2

, (2.34)

i.e. the Liouville momentum P is essentially equal to the geodesic boundary length ℓ. Some
consequences for sub-threshold states and their implications for 3d gravity were discussed
in [12,67].

2.4 Mapping class group action and the Moore-Seiberg construction

So far, the quantization procedure and the construction of the Hilbert space is not compu-
tationally useful. Indeed, we have assigned an infinite-dimensional Hilbert space to every
spatial slice, together with an inner product. However, all infinite-dimensional (separable)
Hilbert spaces are isomorphic and thus we haven’t gained much at this point. We will in the
following again discuss one copy of Teichmüller space. For 3d gravity the whole discussion
should be doubled.

To make the construction useful, we have to exhibit more structure on H. The 2d mapping
class group Map(Σ) acts on the phase space T . As usual in quantum theory, this means that H
should carry a unitary, projective representation of the mapping class group. Hence for every
γ ∈ Map(Σ) there should be a corresponding unitary operator U(γ) on H. In fact, we get
slightly more than a representation of the mapping class group, we get a representation of the
so-called Moore-Seiberg groupoid [45].

To continue, let us recall some facts about the mapping class group Map(Σ). To start with,
the mapping class group is generated by the Dehn twists around all the simple closed curves
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Figure 1: Pair of pants decomposition of a genus 1 surface with two punctures. We
also draw the dual graph in red.

on the surface.11 Let us present the surface in a pair of pants decomposition as in Figure 1.
We think of all the punctures as being excised holes in the surface. Then it is in fact the case
that the mapping class group is already generated by the Dehn twists around the curves that
define the pair of pants decomposition, including the curves around the punctures.12

It is also useful to draw a dual graph to the pair of pants decomposition on the surface
as indicated in Figure 1. Let us denote the set of all pair of pants decompositions with dual
graphs by XΣ. It is then clear that the mapping class group acts on the set XΣ in a natural way.
This lets one technically turn XΣ into a groupoid, but we will not make use of this terminology.

The group action is not transitive, but there are finitely many orbits. Every orbit can be
labelled by a corresponding trivalent graph that is obtained by forgetting the Riemann surface
and keeping only the dual graph. For the example of the genus 1 surface with two punctures
drawn in Figure 1, there are two such graphs:

and (2.35)

It should be clear that this graph remains invariant under the action of the mapping class
group.

Every such picture labels precisely one OPE channel for the Virasoro conformal blocks. The
construction of Moore and Seiberg establishes a number of basic moves that relate different
pictures to each other. Once we know the behaviour of conformal blocks under these basic
moves and their consistency conditions, the crossing transformations on arbitrary surfaces can
be deduced. We have the following basic moves:

1. Braiding:

1 2

3
= B3

12
1 2

3
(2.36)

2. Fusion:

3 2

14

s =
∑

s

Fst

�

3 2
4 1

�

3 2

14
t (2.37)

11In the presence of punctures, we also need rotations around the boundary curves. The relevant group is thus
strictly speaking a central extensionÕMap(Σ) of Map(Σ). Mathematically,ÕMap(Σ) is the pure mapping class group
(meaning that the mapping group element has to act trivially on the boundary) of the surface, where a small hole
around each puncture has been excised. This allows us also consider rotations around the holes. We refer to [45]
for more details and suppress the difference of Map(Σ) andÕMap(Σ) from now on.

12One can do slightly better and use even fewer generators [68,69], but we will not need this.
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3. Torus modular S-transform:

1

0

=
∑

2

S12[0] 2

0

(2.38)

The basic data B, F and S has to satisfy several consistency conditions. To start with, B is
elementary to determine,

B3
12 = ±eπi(∆3−∆1−∆2) , (2.39)

which follows from the universal short distance behaviour of the OPE. The sign has to do with
(pseudo)reality of the corresponding representations and will be the + sign in our application.
Performing the braiding move B twice as follows leads to a simple Dehn twist:

1 2

3

B3
12 1 2

3

B1
23 1 2

3
(2.40)

Thus, it is sometimes useful to also introduce

T2 = B3
12B

1
23 = e−2πi∆2 . (2.41)

The consistency conditions are known as the Moore-Seiberg relations and are listed in ap-
pendix A. It was shown in [45,70] that these relations are complete.

Since 3d gravity is a unitary theory, mapping class group transformations must act unitar-
ily on the Hilbert space. This also follows directly from the abstract definition of the inner
product (2.5), since a crossing transformation on the integrand can be undone by changing
the integration variable on Teichmüller space.

To summarize, the Hilbert space we get by quantizing Teichmüller space carries a unitary
projective representation of the “Moore-Seiberg groupoid”; or, in less fancy language, we can
express conformal blocks in one channel through conformal blocks in any other channel, which
leads to an action of crossing transformations on the Hilbert space.

2.5 Review of the Virasoro crossing kernel

We now discuss the explicit form of the crossing kernels F and S that appears in the crossing
symmetry of Virasoro conformal blocks.13

13That the crossing kernels satisfy the Moore-Seiberg consistency conditions was established in [51, 71]. We
review these consistency conditions in appendix A.

15

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

The Virasoro crossing kernels are given by [49,50]

FP21,P32

�

P3 P2
P4 P1

�

=
∏

±1±2±3=+

Γb(
Q
2 ±1 p2 ±2 p3 ±3 p32)Γb(

Q
2 ±1 p1 ±2 p4 ±3 p32)

Γb(
Q
2 ±1 p1 ±2 p2 ∓3 p21)Γb(

Q
2 ±1 p3 ±2 p4 ∓3 p21)

×
Γb(Q± 2iP21)
Γb(±2iP32)

∫

dξ
i

Sb(
Q
4 + ξ− iP1,2,21)Sb(

Q
4 + ξ− iP3,4,21)

× Sb(
Q
4 + ξ− iP2,3,32)Sb(

Q
4 + ξ− iP1,4,32)Sb(

Q
4 − ξ+ iP1,21,3,32)

× Sb(
Q
4 − ξ+ iP1,2,3,4)Sb(

Q
4 − ξ+ iP2,21,4,32)Sb(

Q
4 − ξ) , (2.42a)

SP1,P2
[P0] =

e
πi
2 ∆0ρ0(P2)Γb(Q± 2iP1)Γb(

Q
2 − iP0 ± 2iP2)

Sb(
Q
2 + iP0)Γb(Q± 2iP2)Γb(

Q
2 − iP0 ± 2iP1)

×
∫

dξ
i

e−4πξP1Sb(
Q
4 +

iP0
2 ± iP2 ± ξ) . (2.42b)

Here, PI =
∑

i∈I Pi for some set of indices I . The ξ-contour is given by the positively-oriented
imaginary axis. Here we have made use of the double sine function Sb(z), related to the
double Gamma function as Sb(z) = Γb(z)/Γb(Q − z). Due to the reflection formula of the
Gamma function, it satisfies the simpler functional equation

Sb(z + b±1) = 2sin(πb±1z)Sb(z) , (2.43)

which together with Sb(
Q
2 ) = 1 characterizes it completely. These formulas are obtained by

bootstrapping the Moore-Seiberg consistency conditions [45]. As an initial input, one can use
the crossing kernels for degenerate Virasoro blocks, which can be expressed explicitly as hy-
pergeometric integrals. The consistency conditions translate then into various shift equations
for F and S, which are solved by (2.42a) and (2.42b).

These formulas hold initially only when all Pi ’s are real, i.e. ∆i ≥
c−1
24 . However, one can

extend these formulas meromorphically to any any complex Pi . One can in particular also
consider the crossing transformation of identity blocks and we have [72]

FP3,P32

�

P3 P2
1 P1

�

= δ(P1 − P32) , (2.44a)

F1,P32

�

P3 P2
P3 P2

�

= C0(P2, P3, P32)ρ0(P32) , (2.44b)

S1,P[1] = ρ0(P) . (2.44c)

Note that it does not make sense to take outgoing momenta to the identity (nor to any sub-
threshold state) since the result of the crossing transformation will always be a linear com-
bination of normalizable blocks. Here C0(P1, P2, P3) is again the universal DOZZ three-point
function in a particularly convenient normalization that we already defined in (2.17). ρ0 is
the universal Cardy density of states defined in eq. (2.23). This identity is the main motivation
for us to use this convention.

We should also finally mention that it is non-trivial that the crossing matrices indeed pre-
serve the inner product. For example, for the once-punctured torus, this is the statement that

δ(P1 − P2)
ρ0(P1)C0(P1, P1, P0)

= 〈F1,1(P0; P1)|F1,1(P0; P2)〉 (2.45)

!
=

∫

dP ′1 dP ′2 SP1,P ′1
[P0]SP2,P ′2

[P0] 〈F1,1(P0; P ′1)|F1,1(P0; P ′2)〉 (2.46)
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=

∫

dP ′1 dP ′2 SP1,P ′1
[P0]SP2,P ′2

[P0]
δ(P ′1 − P ′2)

ρ0(P ′1)C0(P ′1, P ′1, P0)
(2.47)

=

∫

dP
SP1,P[P0]SP2,P[P0]

ρ0(P)C0(P, P, P0)
, (2.48)

where we renamed P ′1→ P in the last line. SP1,P2
[P0] behaves in a simple way when exchanging

P1 and P2,
SP1,P[P0]

ρ0(P)C0(P, P, P0)
=

SP,P1
[P0]

ρ0(P1)C0(P1, P1, P0)
. (2.49)

This follows from the Moore-Seiberg consistency conditions in appendix A. This allows us
rewrite the invariance of the inner produce under crossing symmetry as the condition

∫

dP SP1,P[P0]SP,P2
[P0]

!
= δ(P1 − P2) . (2.50)

Except for the phase e
πi
2 ∆0 in (2.42b), S is real and thus this condition can also be written as
∫

dP SP1,P[P0]SP,P2
[P0]

!
= eπi∆0δ(P1 − P2) . (2.51)

The condition is one of the Moore-Seiberg consistency conditions (A.5a). It basically says that
the square of S is trivial. A similar argument shows that F preserves the inner product thanks
to the validity of the Moore-Seiberg consistency conditions that we list all in appendix A for
convenience. One in particular has to use the fact that the combination

P32

P4
P3

P21
P1 P2 = ρ0(P32)

−1C0(P1, P2, P21)C0(P3, P4, P21)FP21,P32

�

P3 P2
P4 P1

�

, (2.52)

has tetrahedral symmetry as indicated by the picture. This is a consequence of the pentagon
equation (A.4). For instance, the fusion kernel is related to its inverse as

FP21,P32

�

P3 P2
P4 P1

�

ρ0(P32)C0(P1, P4, P32)C0(P2, P3, P32)
=

FP32,P21

�

P3 P4
P2 P1

�

ρ0(P21)C0(P1, P2, P21)C0(P3, P4, P21)
. (2.53)

Consistency with unitarity actually fully determines the inner product and can be used to
give an independent derivation of eq. (2.21).

2.6 The Virasoro TQFT

Let us take stock what has been achieved so far. Quantization of Teichmüller space leads to
a Hilbert space consisting of Liouville conformal blocks. This Hilbert space carries a unitary
(under the inner product (2.5)) representation of the Moore-Seiberg groupoid, i.e. it closes
under crossing transformations.

Let us emphasize that the latter property is very unexpected from a naive 3d point of view.
We started with the phase space of PSL(2,R) Chern-Simons theory and more or less arbitrarily
restricted to one component. It is surprising that the quantization obtained from only one
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component closes again under crossing. In particular, such a statement can easily be seen to
be false for any of the other components of the moduli space of flat PSL(2,R) bundles on the
initial value surface Σ.

This data is enough to define a three-dimensional TQFT (in Euclidean signature). It is
of course not a fully conventional TQFT because the Hilbert space is infinite-dimensional.
Related to this is also the fact that the trivial Wilson line is not normalizable. This leads to the
divergence of some partition functions.

Let us elaborate a little bit more on the construction of this TQFT from the data of Virasoro
conformal blocks and their behaviour under crossing transformations. The main goal of any
TQFT is to compute partition functions on a 3-manifold M , possibly with boundaries and
the insertion of Wilson lines. Let us assume that the boundary of M consists of a number
of Riemann surfaces, ∂M =

⊔n
i=1Σi . The path integral over M then prepares a state in the

boundary Hilbert space,

Z(M) ∈
n
⊗

i=1

HΣi
, (2.54)

i.e. for the Virasoro TQFT, the path integral evaluates to a combination of conformal blocks on
the boundary. This can be thought of as the chiral half of the boundary CFT; but of course,
being chiral, it is not invariant under modular transformations. When M is closed, the partition
function is simply a number.

The standard surgery technique to compute partition functions of TQFTs chops M into
smaller and smaller pieces and thus computes Z(M) recursively. If we write M = M1 ⊔ M2
glued along the common boundary, we have

Z(M) = 〈Z(M1) | Z(M2)〉 , (2.55)

where the inner product is taken in the Hilbert space of the joint boundary component. Using
the surgery technique, one can derive many seemingly miraculous formulas. However, one has
to be careful in the Virasoro TQFT. Z(M) is not guaranteed to give a normalizable state in the
boundary Hilbert space. Thus the inner product in (2.55) may or may not be finite. Further-
more, we have only defined the Hilbert space for surfaces with negative Euler characteristic
and want to avoid cutting along, say, a 2-sphere without punctures.

Doing so gets one immediately into trouble. Indeed, one can for example derive in any
TQFT that [46]

Z(M1#M2) =
Z(M1)Z(M2)

Z(S3)
, (2.56)

where # denotes the connected sum obtained by cutting out a ball of M1 and M2 and identi-
fying the two manifolds along the 2-sphere boundary created that way. However, the three-
sphere partition function that appears is not a well-defined object in the Virasoro TQFT, which
we will see in more detail below. In general, we expect that at least partition functions of
hyperbolic 3-manifolds make sense in the Virasoro TQFT, since those admit a classical saddle
solution in 3d gravity. However, hyperbolic manifolds are always prime, meaning that they
cannot be written as a connected sum (except in the trivial way M#S3). The proof of this
statement is very simple and we explain it in appendix C. Thus the left hand side of (2.56)
is not a hyperbolic manifold and does not have a well-defined partition function, which is
compatible with S3 not having a partition function in the Virasoro TQFT.

When M has a well-defined partition function, we can cut along Riemann surfaces with
well-defined Hilbert spaces and reduce the computation of the partition function to a number
of elementary building blocks, which can be computed by other means. In this process, we just
need a good understanding of the Hilbert space, but no inherently three-dimensional data. In
order for the procedure to be consistent, one has to make sure that the result does not depend

18

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

on the choices of the cuts in the surgery procedure. This is essentially ensured by the Moore-
Seiberg consistency conditions on the 2d mapping class group action. In fact, consistency of
the 3d theory often gives simpler ways to demonstrate certain identities for the transformation
properties of conformal blocks [52].

Similar to 3d Chern-Simons theory, Virasoro TQFT has a framing anomaly. We only get
well-defined results once we thicken the Wilson lines slightly to ribbons, which introduces
a self-linking number. Changing the self-linking number by one unit multiplies the partition
function by e2πi∆, where ∆ is the conformal weight associated to the Wilson line. Similarly,
one has to specify a framing of the full three-manifold and change of framing multiplies the
partition function by e

πic
12 . However, the framing anomaly will cancel in 3d gravity, where we

need two copies of Virasoro TQFT. The second copy has a reversed orientation which means
that all phases are opposite. Notice that we can have in principle spinning Wilson lines carrying
a different left- and right-moving conformal weight. Cancellation of the framing anomaly
requires that

∆− e∆ ∈ Z . (2.57)

The relation to 3d gravity makes the semiclassical behaviour of the partition functions
particularly transparent. As was already mentioned, b2 plays to role of ħh in the quantization
of Teichmüller space. Thus, we expect that for a closed hyperbolic manifold

|Z(M)|= e−
1

2πb2 vol(M)+O(1) , (2.58)

where vol(M) is the hyperbolic volume of M .14 The factor 2π is conventional and related to the
normalization of the hyperbolic metric. This property is known as the volume conjecture [73–
75]. There can be a large phase in this expression which cancels out once one combines left-
and right-movers. Virasoro TQFT and its relation to gravity actually predicts a generalization
of this conjecture for the first subleading correction and the case of boundaries. We discuss it
further in the discussion section 4.

We should also mention that a similar TQFT based on the quantization of Teichmüller space
was defined by Andersen and Kashaev [31, 32]. Their theory is defined in an ad-hoc way by
introducing certain special classes of triangulations. They also coined the name Teichmüller
TQFT for the theory. Our discussion is in our view physically much better motivated and should
be equivalent to their theory, but this is not completely obvious. The transformation between
the two different quantizations was discussed also in [30]. As mentioned in the Introduction,
we thus prefer to call the theory in this paper Virasoro TQFT.

2.7 A relation between 3d gravity and Virasoro TQFT

After our somewhat long detour into the Virasoro TQFT, we now want to formulate a precise
relation between 3d gravity and two copies of Virasoro TQFT that forms the heart of the paper.
We should note that while we have discussed 3d gravity in Lorentzian signature so far, we will
now change to Euclidean quantum gravity. It was necessary to start in Lorentzian signature to
determine the correct phase space and Hilbert space. The Hilbert space is however associated
to the initial value surface and should thus not depend on the spacetime signature. We can
thus take it as a starting point for the construction of Euclidean quantum gravity partition
functions.

In Euclidean 3d gravity, we would like to compute the path integral

∑

topologies

∫

[dg]
Diff(M ,∂M)

e−S[g] , (2.59)

14Three-dimensional hyperbolic manifolds are rigid, in the sense that they only admit one hyperbolic structure.
Thus the hyperbolic volume becomes a topological invariant of M .

19

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

over all metrics with given boundary conditions. We recall from footnote 3 that we only con-
sider orientable manifolds in this sum and only gauge orientation-preserving diffeomorphisms.
Diff(M ,∂M) is the group of all diffeomorphisms – large and small – that map each boundary
component to itself (but that don’t necessarily act trivially on it). This still differs from what
is done in Virasoro TQFT, where we only mod out by the small component of Diff(M ,∂M).15

The relative mapping class group is now defined as

Map(M ,∂M) = Diff(M ,∂M)/Diff0(M ,∂M) , (2.60)

and represents the mismatch of the gravity gauge group and the TQFT gauge group. Simi-
larly, there are large diffeomorphisms that act as modular transformations on the boundary
and hence do not change the boundary conditions, but potentially change the bulk manifold.
They are part of the sum over topologies in the gravitational path integral. These large diffeo-
morphisms are themselves parametrized by elements in the boundary mapping class group.
Thus the gravity partition function includes an additional sum over the boundary modular
transformations γ ∈Map(∂M).16

For a fixed topology M , this gives the formal expression

Zgrav(M) =
1

|Map(M ,∂M)|

∑

γ∈Map(∂M)

|ZVir(M
γ)|2 . (2.61)

This is not yet in its final form since |Map(M ,∂M)| can be infinite. However, Map(M ,∂M)
naturally maps to Map(∂M) since any mapping class group transformation of the
3d manifold gives also a mapping class group transformation of the boundary. For
γ ∈Map(M ,∂M) ⊂Map(∂M), we have

ZVir(M
γ) = ZVir(M) . (2.62)

Thus we arrive at the final formula

Zgrav(M) =
1

|Map0(M ,∂M)|

∑

γ∈Map(∂M)/Map(M ,∂M)

|ZVir(M
γ)|2 . (2.63)

Here,

Map0(M ,∂M) =
Map(M ,∂M)

ker(Map(M ,∂M) −→Map(∂M))
, (2.64)

is the the part of the bulk mapping class group that acts trivially on the boundary.
As a trivial example, let us decode the sum in eq. (2.63) for thermal AdS3, which is topo-

logically a solid torus. We have Map(∂M) = PSL(2,Z) – the standard mapping class group of
the torus. The bulk mapping class group is generated by Dehn twists along the contractible
bulk disk (a so-called compressible disk) and is isomorphic to Z ⊂ PSL(2,Z), see Figure 2.
Thus eq. (2.63) just turns into the standard Maloney-Witten sum [9].

In general, this formula is not well-defined since both the ingredients ZVir(M) and
|Map0(M ,∂M)| may diverge. A simple example where this happens is for M = Σ× S1, where
Σ is a Riemann surface, possibly with boundaries. Then, assuming that Σ is not a torus, the
3-dimensional mapping class group of M is just the two-dimensional mapping class group of

15In the 2d context, this is often called the pure mapping class group, since we do not allow for different boundary
components to be permuted under the mapping class group action.

16In the case where where punctures are present in the boundary, this is strictly speaking the so-called pure
mapping class group that does not allow for punctures to be permuted. We should also note that contrary to the
discussion in section 2.4, Map(∂M) denotes the actual mapping class group and not a central extension thereof.
This reflects the fact that the framing anomaly between left- and right-movers cancels.
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Figure 2: The mapping class group of thermal AdS3 is generated by Dehn twists
around the contractible disk drawn in red. This means that we cut the solid torus
along the red disk, twist it by 360 degrees and then glue it back.

Σ, which is usually infinite. We also have ZVir(Σ × S1) = dimHΣ =∞ and thus (2.63) is
ill-defined.17

However, we now explain that (2.63) is useful for “most” three-manifolds. In particular,
it is well-defined for all hyperbolic three-manifolds, i.e. all manifolds admitting a classical
gravity solution. Similarly to the two-dimensional situation, it is a well-known folklore that
most three-manifolds are hyperbolic, though it is difficult to quantify this. See e.g. [76–79] for
evidence in this direction. Indeed, it is a non-trivial fact that the mapping class group Map(M)
is finite for all closed hyperbolic 3-manifolds, while Map0(M ,∂M) is trivial for all hyperbolic 3-
manifolds with boundary. This is in very stark contrast to the two-dimensional situation. This
is a corollary of the rigidity theorem for three-dimensional hyperbolic manifolds. The basic
Mostow rigidity theorem says that a closed hyperbolic manifold admits exactly one hyperbolic
structure, which is hence rigid. The theorem was generalized by Bers, Maskit and Sullivan [80]
to the case with boundaries. Assuming a suitable finiteness condition on the manifold, the
theorem states that the bulk hyperbolic metric is fully determined by the boundary hyperbolic
metrics (and a choice of boundary mapping class group element). We give more details in
appendix C.

Let us explain why |Map(M)|<∞ for a closed hyperbolic three-manifold. We explain the
case with boundaries in appendix C, in which case we actually have |Map0(M ,∂M)| = 1. Let
[γ] ∈Map(M) be a mapping class group element. Because of Mostow rigidity, we can choose
γ to be an isometry, which gives a canonical representative. Thus, for closed hyperbolic three-
manifolds,18

Map(M) ⊂ Isom(M) . (2.65)

However, Isom(M) is a discrete group and the discrete part of the isometry group of a compact
manifold is necessarily finite.19 The argument for manifolds with boundaries is similar, but
slightly more involved. Thus, to summarize, we can simplify eq. (2.63) in the hyperbolic case
to the equations given in the introduction, (1.1), while the case without boundaries simply
reads

17In this case, it is actually understood that Zgrav(Σ×S1) still diverges and the factor of |Map0(M ,∂M)|−1 on the
right hand side of (2.63) is only enough to remove the divergence of one chiral half of the partition function [54].

18It is actually an isomorphism.
19In general, the isometry group of a Riemannian manifold is a Lie group and is compact when M is compact [81].

Since the isometry group is discrete in our case, it follows that it is finite.
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Zgrav(M) =
1

|Map(M)|
|ZVir(M)|2 . (2.66)

The other important component entering (1.1) and (2.66) is the Virasoro TQFT partition
function. As already mentioned, we expect it to be well-defined if M is hyperbolic, since we
could evaluate the gravitational path integral semiclassically in this case. In particular, the
volume conjecture (2.58) gives the semi-classical behaviour of the partition function.

Finally, we can of course ask whether the sum over Map(∂M)/Map(M ,∂M) in (2.63)
converges. In simple examples, such as the solid torus, the answer is known to be negative,
but the sum can be regulated [9,20]. We leave it for future investigation to study this sum in
more general cases.

We should also remark on the appearance of holographic renormalization and the confor-
mal anomaly in this framework. When computing partition functions on manifolds M with an
AdS boundary in this framework, we obtain a combination of conformal blocks on the bound-
ary ∂M , as expected by the AdS/CFT correspondence. In the metric formalism of gravity, one
however has to be careful how to even define the tree-level action on a non-compact manifold.
This usually proceeds by choosing some cut-off surface far out near the boundary of M and
cancelling divergent terms by suitable counterterms on the cut-off surface. The value of the
on-shell action depends on the choice of the cut-off surface, which leads to the appearance of
the conformal anomaly. This process is known as holographic renormalization [82] and can
be carried out very explicitly in AdS3 [83]. In our framework, it is not necessary to use such an
adhoc procedure of choosing a cutoff surface – the partition functions are well-defined without
any regularization. However, the fact that conformal blocks transform non-trivially under a
change of metric reflects of course the same conformal anomaly that is present in the usual
metric formalism.

To summarize, (1.1) gives a simple way to compute the gravity partition function on a
fixed hyperbolic 3-manifold. We turn it into a concrete algorithm below and compute various
examples in our follow-up paper [52]. It trivializes many of the computations that have been
done in the literature.

2.8 Two-dimensional analogue

Let us make contact with better-known statements and explain a precise analogue for 2d grav-
ity. We consider JT gravity, a particular dilaton-gravity theory, see e.g. [4] for a review. This
theory is also classically equivalent to a gauge theory – PSL(2,R) BF theory [84] with action

S =
1

4πGN

∫

Σ

tr(BF) , (2.67)

where B is an adjoint scalar and F = dA+ A∧ A the curvature of the PSL(2,R) gauge field.
JT gravity can be obtained from 3d gravity by dimensional reduction and this relation is the
shadow of the relation between 3d gravity and PSL(2,R) Chern-Simons theory.

This relation has the same problems as discussed in the three-dimensional setting above.
In particular, most PSL(2,R) gauge fields would look very singular from a gravity point of view.
Different approaches to partially cure this were discussed in the literature [85,86].

Computing partition functions of BF -theory is very simple. B acts as a Lagrange multiplier
and can be integrated out, which imposes F = 0. As a consequence, the path integral computes
the volume of the moduli space Mflat

PSL(2,R) of flat PSL(2,R)-bundles on a Riemann surface,20

ZΣ = vol(MΣ) . (2.68)
20This requires a careful treatment of the determinants of the Fadeev-Popov ghosts [2]. In particular, this analysis

also determines the measure on moduli space to be the Weil-Petersson volume form.
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We have been purposefully somewhat vague about the precise definition of the moduli
space MΣ.

As we have mentioned in section 2.2, the moduli space of flat PSL(2,R) bundles is discon-
nected and the component corresponding to smooth metrics is the Teichmüller component.
Thus the two-dimensional analogue of passing from PSL(2,R) Chern-Simons theory to Vira-
soro TQFT is to replace the moduli space of flat PSL(2,R) bundles by Teichmüller space.

We should mention that one can see this also from the perspective of canonical quantization
of JT gravity – just like we did above for 3d gravity. Indeed, we would like to impose that the
metric on every one-dimensional spatial slice in JT gravity is smooth which is tantamount to
saying that all PSL(2,R) holonomies around the cycles of the surface should be hyperbolic.
This uniquely picks out the Teichmüller component.

Passing to “Teichmüller BF theory” still treats the mapping class group incorrectly. Indeed,
before dividing by the mapping class group, all partition functions are divergent since Teich-
müller space is non-compact and thus vol(T ) =∞. The correct gravity partition function is
given by

1
|Map(Σ)|

vol(T )≃ vol(T /Map(Σ)) . (2.69)

Of course, the left-hand side of this equation does not make sense since Map(Σ) is typically an
infinite group. However, T /Map(Σ) is the moduli space of Riemann surfaces which famously
has a finite volume under the Weil-Petersson measure [55].

Thus, while the logic of the interplay of gravity and gauge theory in two dimensions is
essentially identical, the technical details especially in the last step are quite different because
Map(Σ) is not a finite group.

3 Partition functions on hyperbolic 3-manifolds

We will now explain how to use the structure explained in the previous section to compute the
gravity partition function for simple topologies. We will also explain a completely algorithmic
way to compute the partition function of any hyperbolic three-manifold in this manner.

3.1 The inner product of Virasoro TQFT and the Euclidean wormhole

In section 2.3 we gave an argument for the explicit form of the inner product (2.21) and (2.22)
in the Hilbert space of the quantum Teichmüller theory by appealing to the string worldsheet
interpretation of the conformal block inner product as put forward by H. Verlinde in [29]. Here
we will describe a bootstrap argument for this inner product that connects the inner product
with the path integral of AdS3 Einstein gravity (possibly coupled to massive point particles)
on the Euclidean wormhole with the topology Σg,n × I , where Σg,n is a (possibly punctured)
Riemann surface and I = [0,1] is the unit interval.

Consider Virasoro TQFT on the Euclidean wormhole Σg,n × I . If Σg,n is a punctured Rie-
mann surface, then there are Wilson lines extending into the bulk of the wormhole. Because
Virasoro TQFT is a topological theory, we can freely shrink the length of the interval to zero,
in which case the partition function should compute a modular invariant partition function
on Σg,n. This situation is familiar from the relationship between Chern-Simons theory and
WZW models based on a compact group, where the path integral of the Chern-Simons theory
of Σg,n× I implements the sum over paired (holomorphic times anti-holomorphic) conformal
blocks that computes the partition function of the WZW model on Σg,n [87].

In our case, the path integral of Virasoro TQFT on the Euclidean wormhole implements
the resolution of the identity in the Hilbert space of conformal blocks. Indeed, given a three-
manifold with appropriate boundaries and Wilson line configurations, one may always cut
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along Σg,n in the bulk and glue in the Euclidean wormhole without changing the partition
function.

The Euclidean wormhole prepares a state in two copies of the Hilbert space associated
with the Σg,n boundaries HΣg,n

⊗HΣg,n
. Hence the TQFT partition function must be written as

a linear combination of products of Virasoro conformal blocks on Σg,n. When we resolve the
identity on the Hilbert space HΣg,n

associated with one of the boundaries, the structure of the
inner product (2.21) implies that we get a pairing between conformal blocks that is diagonal
in the internal conformal weights: in other words, the partition function on the Euclidean
wormhole must take the form

ZVir(Σg,n × I) =

∫

d3g−3+n P⃗ ρC
g,n(P⃗)
�

�FC
g,n(P⃗)
�

⊗
�

�FC
g,n(P⃗)
�

. (3.1)

This form of the wormhole partition function is enough to argue for (2.22). The argument
is simple. The partition function of the TQFT on the Euclidean wormhole must compute a
unitary partition function invariant under the action of the mapping class group on Σg,n (in
other words, we must get the same answer no matter which channel C we choose in the
conformal block decomposition (3.1)). In fact, there is significant evidence that Liouville CFT
is the unique21 unitary solution to the crossing equations with c > 1 and only scalar Virasoro
primary operators in its spectrum [28,88,89]. So we have

ZVir(Σg,n × I) =
�

� ZLiouville(Σg,n)
�

, (3.2)

i.e. ρC
g,n(P⃗) is the OPE density of Liouville CFT onΣg,n. This result also holds in the presence of

boundary operator insertions with conformal weights below the c−1
24 threshold (corresponding

to Wilson lines in the TQFT with elliptic rather than hyperbolic holonomy), in which case the
right-hand side of (3.2) is the analytic continuation of the observable in the Liouville CFT.22

So far we have been intentionally vague about the moduli of the Σg,n boundaries. Indeed,
it is not essential for the purposes of this discussion that the moduli on the two boundaries
are identical; the same bootstrap argument fixes ρC

g,n(P⃗) in terms of the OPE density of the
Liouville CFT regardless of the kinematic configuration. Collectively denoting the moduli of
the Σg,n boundaries by mi , we have23

ZVir(Σg,n × I ;m1,m2) =



m1,m2

�

� ZLiouville(Σg,n)
�

= ZLiouville(Σg,n;m1,m2) . (3.4)

So in the case of different moduli on the two ends of the wormhole, the Virasoro TQFT partition
function is given by the analytic continuation of the Liouville CFT partition function on Σg,n
away from Euclidean kinematics. We should also mention that the Liouville partition function
is usually thought of as being holomorphic in m1, but anti-holomorphic in m2. One may
equally well take the conformal blocks associated to both boundaries as being holomorphic.
The difference lies in the orientation of the boundary surfaces: inward-pointing boundary
orientations lead to holomorphic blocks, while outward-pointing boundary orientations lead
to antiholomorphic blocks.

21Technically the statement is that observables in Liouville theory are the unique solutions to the scalar-only
crossing equations up to normalization of the external operators and up to the possibility of tensoring with a 2d
TQFT.

22This analytic continuation may require the deformation of the contour integral over internal Liouville momenta
P⃗ in (3.1).

23Here we are projecting the wormhole partition function onto a state 〈m1,m2| = 〈m1| ⊗ 〈m2| with definite
moduli on the two boundaries. In particular we have




m
�

�FC
g,n(P⃗)〉= FC

g,n(P⃗;m) . (3.3)
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The result (3.4) relating the partition function of Virasoro TQFT on the Euclidean worm-
hole to the Liouville partition function could have been anticipated from recent results on
wormholes in 3d gravity. Indeed, the path integral of semiclassical AdS3 gravity (possibly cou-
pled to massive particles) on the Euclidean wormhole Σg,n× I was recently computed in [15],
where it was shown that the wormhole partition function is given by the square of the corre-
sponding observable on Σg,n in Liouville CFT with the moduli of the two boundaries paired
as in (3.4), which in turn matched with the average of a product of CFT obvservables on Σg,n
with a Gaussian random ansatz for the structure constants.

It is now straightforward to write out the prescription (1.1) to obtain the gravity partition
function in this case. The boundary mapping class group is given by Map(Σg,n)×Map(Σg,n),
while the bulk mapping class group is given by the diagonal subgroup. Thus the modular sum
runs over

γ ∈
�

Map(Σg,n)×Map(Σg,n)
�

/Map(Σg,n) . (3.5)

We can choose the representative in the coset that only acts non-trivially on the right boundary.
Hence

Zgrav(Σg,n × I) =
∑

γ∈Map(Σg,n)

|ZLiouville(Σg,n;m1,γ ·m2)|2 . (3.6)

As mentioned around eq. (2.57) the Wilson lines connecting the two boundaries can be spin-
ning in which case the conformal weights of the two Liouville correlation functions entering
(3.6) are different.

This is of a similar form as the result obtained by Cotler and Jensen for the torus wormhole
T2 × I [13]. However, the similarity is only superficial. Our formalism predicts that the torus
wormhole is divergent due to the continuum of states in the Liouville theory. Dividing out
this divergent prefactor, the Liouville torus partition function just becomes that of a free non-
compact boson

Zboson(τ) =
1

p
2 Imτ |η(τ)|2

=
1

p

−i(τ− τ̄)η(τ)η(−τ̄)
. (3.7)

We then go away from Euclidean kinematics and replace τ→ τ1, τ→−τ̄2, corresponding to
the orientation reversal as discussed above. Taking the absolute value squared and summing
over modular images of τ2 gives

Zgrav(T2 × I)∝
1
2

∑

γ∈PSL(2,Z)

1
|τ1 + γ ·τ2| |η(τ1)|2 |η(γ ·τ2)|2

(3.8)

= Zboson(τ1)Zboson(τ2)
∑

γ∈PSL(2,Z)

p

Im(τ1) Im(τ2)
|τ1 + γ ·τ2|

. (3.9)

This is similar, but not identical, to the result of [13]. The difference can be traced to a different
measure in the integral over the intermediate P ’s in (3.1). While the measure is flat in P in our
formalism for the case of the torus, see eq. (2.32), it is flat in the conformal weight ∆ in the
formalism of [13], accompanied by an additional overall factor of

p

Imτ1 Imτ2 so that the
result is invariant under diagonal modular transformations. Of course, the torus wormhole is
not a hyperbolic manifold — it is not a classical solution of Einstein’s equations — so perhaps
it is not surprising that there are ambiguities in the computation of the path integral. It would
be good to understand this mismatch better.

3.2 Handlebodies

Another very basic class of 3-manifold is provided by handlebodies (genus-g Riemann surfaces
Σg with some cycles filled in). Thus let us discuss the Virasoro TQFT and gravity partition
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function on handlebodies. The filled-in cycles determine a conformal block channel C in the
boundary Riemann surface and thus we will denote a handlebody by SΣC

g .24

For an empty handlebody, the TQFT path integral on a handlebody SΣC
g is given by the

Virasoro identity block in the channel C:

ZVir(SΣg) =
�

�FC
g (1⃗)
�

. (3.10)

This follows from the quantization of the appropriate coadjoint orbit of the Virasoro group, see
e.g. [10, 90]. More generally, we can consider the TQFT path integral on a handlebody with
a network of Wilson lines threading cuffs in the pair of pants decomposition of the (possibly
punctured) handlebody. In this case, the TQFT partition function computes the corresponding
Virasoro conformal block in the channel C specified by the Wilson line network

ZVir









· · ·

P1

P2

P4

P5

P3 P6 P3g−4+n

P3g−3+n









=
�

�FC
g,n(P⃗)
�

. (3.11)

Let us recall that Wilson lines are characterized semiclassically by the monodromies of the flat
PSL(2,R) gauge field around the lines, which in turn are labelled by maps ρ from π1(Σ) into
PSL(2,R) up to conjugation. These are labelled by the Liouville momenta P as in (2.34).

That the path integral on handlebodies with Wilson lines in the bulk computes a conformal
block associated with the boundary surface is a familiar fact from the Chern Simons/WZW
model correspondence [87]. Up to overall normalization, this follows again for example from
the quatization of Virasoro coadjoint orbits of [90]. The disk punctured by a Wilson line with
momentum P gives rise to the corresponding Virasoro representation on the boundary [87].
This tells us that the momentum flowing through the dotted disks in (3.11) is fixed and hence
the corresponding states has to be proportional to the conformal block in the boundary. The
normalization can be determined by pinching all these disks – this degenerates the handlebody
to three-punctured spheres that only touch at the insertion points of the Wilson lines. This then
reduces the computation to determining the normalization for a three-punctured sphere

P1 P2

P3

(3.12)

which gives a state in the three-punctured sphere Hilbert space. This is a one-dimensional
Hilbert space, so only the normalization is meaningful. It is convenient to define the trivalent
junction such that the corresponding state has unit normalization as in footnote 7. This en-
dows the conformal blocks with a natural normalization that is commonly adopted in the CFT
literature. Let us explain this a bit more in detail. We can define a trivalent junction equiva-
lently by carving out a spherical boundary around the junction and dividing the result by the
C0(P1, P2, P3):

P1 P2

P3

=
1

C0(P1, P2, P3)

P1 P2

P3

(3.13)

24C is not uniquely specified from the bulk topology, since we can for example perform Dehn twists along the
filled-in cycles without changing the topology. This is of course precisely the role of the bulk mapping class group
that we will discuss below.
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Indeed, this follows immediately by comparison with our earlier computation of the Euclidean
wormhole which in turn followed directly from the normalization of the inner product (2.21).
Comparing the unit normalization of (3.12) with (3.4)

ZVir













P1 P2

P3













= ZLiouville(Σ0,3) = C0(P1, P2, P3) , (3.14)

gives the relation (3.13).
The identity blocks and indeed all conformal blocks with any internal conformal weights

below the c−1
24 threshold are non-normalizable states in the Hilbert space of Virasoro TQFT

equipped with the inner product (2.5).25 Thus the TQFT path integral is not guaranteed to
prepare normalizable states in the corresponding boundary Hilbert spaces. We will have more
to say about this in section 3.5.

One can straightforwardly apply the prescription (1.1) to turn this computation into a
full-fledged gravity partition function. Let us focus on the empty handlebody. Map(SΣg ,Σg)
is known as the handlebody group Hg . It is a relatively complicated group; in particular,
while being finitely generated, it is not only generated by Dehn twists around curves bound-
ing disks in the bulk [91]. It is also a fact that Hg ⊊ Tor(Σg) [92, Theorem 3.2]. Tor(Σg)
is the Torelli subgroup of the mapping class group given by the kernel of the natural map
Map(Σg) −→ Sp(2g,Z) obtained by reducing to homology. The image of Hg in Sp(2g,Z) is
given by the subgroup

Γ∞ =
§

�

A B
0 D

� �

�

�

�

ADT = 1 , BTD = DTB
ª

. (3.15)

As a consequence Map(Σg)/Hg is strictly bigger than the coset Sp(2g,Z)/Γ∞ and the modular
sum is bigger. This differs slightly from what was previously proposed in the literature [8].
Summarizing, we have

Zgrav(SΣg) =
∑

γ∈Map(Σg )/Hg

�

�Fγ·Cg (1⃗)
�

�

2
. (3.16)

3.3 Naive surgery

To compute partition functions of Virasoro TQFT on arbitrary (hyperbolic) three-manifolds M,
we seek a procedure that allows us to cut M into a number of smaller elementary building
blocks on which we understand how to compute the TQFT partition function, which we later
assemble together according to the rules of the TQFT. For TQFTs based on modular tensor cate-
gories (MTCs), this is a well-developed subject, and a variety of techniques are available for the
computation of such partition functions. But the Virasoro TQFT is not a conventional TQFT:
it admits a continuous spectrum of Wilson lines, and the trivial line is not in the spectrum of
the theory. Here we will see that many of the techniques familiar from more conventional
3d TQFTs will give nonsensical results when naively applied to the Virasoro TQFT for rea-
sons related to these peculiar aspects of the TQFT. Nonetheless, in what follows we will argue
that these pathologies can be overcome and that standard techniques are available that facili-
tate the unambiguous determination of the partition functions of Virasoro TQFT on arbitrary
hyperbolic three-manifolds.

25Of course, as demonstrated in (2.21), even the conformal blocks with all internal weights above the c−1
24 thresh-

old are only delta-function normalizable states in the boundary Hilbert space due to the continuous spectrum.
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Partition functions of Virasoro TQFT on three-manifolds should be regarded as states in
the Hilbert space associated with the asymptotic boundaries as in (2.54). When we cut the
manifold M into smaller pieces M1 and M2, we introduce a new boundary and the partition
function Z(M) is computed by the inner product of the partition functions Z(M1) and Z(M2) in
the Hilbert space associated with this boundary as in eq. (2.55). Thus when decomposing M ,
we must ensure that we are only cutting along surfaces on which the Hilbert space of Virasoro
TQFT is well-defined. A priori, this requires that we only cut along surfaces Σg,n with negative
Euler characteristic

2− 2g − n< 0 . (3.17)

In particular the Hilbert spaces associated with the sphere with 0, 1, or 2 punctures are not
well-defined in Virasoro TQFT, and so in computing partition functions we should not cut along
these surfaces. In these cases the Liouville OPE density that appears in the inner product (2.21)
is not well-defined. For the sphere with zero punctures, this amounts to the familiar statement
that the identity is not a normalizable operator (not even delta-function normalizable) in the
Hilbert space of Liouville CFT. Similarly, the sphere one-point function of local operators van-
ishes due to conformal symmetry, and the sphere two-point function is only delta-function
normalizable.

Let us briefly pause to comment on the case of the torus with zero punctures, which obvi-
ously does not satisfy (3.17). In this case the Hilbert space is actually well-defined as a vector
space — in particular, it is identified with the space of Virasoro torus characters with conformal
weight above the c−1

24 threshold — but there is a subtlety in defining the inner product as in
(2.21). This is a consequence of the fact that the partition function of Liouville CFT on the
torus is strictly infinite due to the continuum of primary states. Indeed, as discussed around
equations (2.28) and (2.32) from the definition of the inner product as an integral over Te-
ichmüller space, the inner product between the torus characters is strictly speaking infinite.
Nonetheless, there is a well-defined density of states in Liouville CFT obtained by dividing
the partition function by an infinite overall prefactor. This density of states is uniform in the
Liouville momentum

ρLiouville(P) = 1 , (3.18)

and indeed in (2.32) we found that upon removing the infinite prefactors, the inner product
between Virasoro characters is given by




F1,0(P1)
�

�F1,0(P2)
�

= δ(P1 − P2) . (3.19)

To summarize, in the case of a boundary torus without operator insertions, the Hilbert space
is well-defined and although the inner product is formally infinite, it can be rendered sensible
by removal of an overall infinite prefactor.

A technique for the computation of three-manifold invariants from TQFT state sums was
pioneered by Turaev and Viro [93]. Here we briefly sketch the Turaev-Viro construction —
closely following a nice explanation of the TQFT reasoning behind the prescription [94] —
to illustrate why it cannot straightforwardly be applied in Virasoro TQFT. The construction
works for any TQFT with gapped (i.e. topological) boundary conditions. In particular two
copies of Virasoro TQFT have such a gapped boundary condition. Consider a three-manifold
M (say for simplicity without boundaries or Wilson lines), and equip it with a triangulation
into tetrahedra.26 The Turaev-Viro construction proceeds by carving out a three-ball in the
vicinity of each vertex of the triangulation, which introduces S2 boundaries at each vertex on
which we impose the gapped boundary conditions. In ordinary compact TQFT, the partition
function on the three-ball prepares a state in the one-dimensional Hilbert space associated
with the boundary two-sphere. The TQFT path integral on this manifold is then equal to that

26It is a deep theorem that any three-manifold (possibly with boundary) can be triangulated [95,96].

28

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

on M up to a constant of proportionality d that relates the state associated with each two-
sphere boundary to that prepared by the three-ball for each vertex. d2 is seen to be given by
the partition function of the theory on the three-sphere, which follows since we can glue two
three-balls together to form a three-sphere.

One can then continue and drill cylinders out between the three-balls, which prepare a
state in the annulus Hilbert space. Continuing this drilling process leads to the following
formula first conjectured by Turaev and Viro:

ZTV(M) =
∑

decorations ϕ

d−2v
e
∏

i=1

d2
ϕ(i)

t
∏

a=1

|Zϕ,a| , (3.20)

where v is the number of vertices, e is the number of edges, and t is the number of three-
simplices (tetrahedra) in the triangulation of M . The sum is over the possible ways of deco-
rating each edge of the triangulation with Wilson lines in the spectrum of the TQFT. Here d
is the factor associated with the TQFT path integral with S2 boundary for each vertex, di is
associated with the TQFT path integral on the solid cylinder with bulk Wilson line Li , and Zϕ,a
is the TQFT path integral on the individual three-simplex a with Wilson line edges specified
by the decoration ϕ.27 Turaev and Viro showed that if di is given by the quantum dimension
associated with the Wilson line Li

di =
S1i[1]
S11[1]

. (3.21)

d is given by the “total quantum dimension”

d =
√

√

∑

i

d2
i , (3.22)

and Zϕ,a is given by an appropriate 6 j symbol, then ZTV(M) is invariant under the choice of
triangulation.

At this point it should be clear that partition functions in (Virasoro TQFT)2 cannot straight-
forwardly be computed using the Turaev-Viro procedure. It fails at the very first step after trian-
gulation of M , as the Hilbert space associated with a boundary two-sphere is not well-defined
in Virasoro TQFT. Similarly, the quantum dimensions associated to Wilson lines in Virasoro
TQFT are ill-defined precisely because the trivial line does not appear in the spectrum, so
S11[1] is not defined. One may try to consider a generalized notion of quantum dimension
associated with the identity element of the Virasoro modular S-matrix

di
?
∝ S1i[1] = ρ0(Pi) = 4

p
2 sinh(2πbPi) sinh(2πb−1Pi) , (3.23)

but even with this definition the analog of the total quantum dimension is clearly divergent

d2 ?
∝
∫

R
dPρ0(P)

2 =∞ . (3.24)

The upshot of this discussion is that the most naive surgery techniques cannot directly be
applied in the computation of Virasoro TQFT partition functions and so we will need another
strategy. In the following subsections we describe techniques that facilitate the computation of
Virasoro TQFT partition functions that only involve cutting three-manifolds along surfaces for
which the TQFT Hilbert space is well-defined. We will provide significant evidence that at least
in situations where the three-manifold is hyperbolic, these techniques yield finite results [52].

27Here boundary vertices and boundary edges should be counted with weight 1
2 rather than 1.

29

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

3.4 Surface bundles over a circle

A simple class of computable examples is furnished by three-manifolds that are bundles of
a surface Σg,n over a circle. We can think of such surface bundles as a Euclidean wormhole
Σg,n × [0,1] quotiented by the action of an element γ of the boundary mapping class group
Map(Σg,n) that identifies the two boundaries of the wormhole

Mg,n;γ =
�

Σg,n × [0,1]
�

/{(x , 0)∼ (γ(x), 1)} . (3.25)

In many situations the resulting three-manifold Mg,n;γ (which is sometimes referred to as a
“mapping torus”) is hyperbolic. Indeed, there is a theorem due to Thurston [97] that shows
that Mg,n;γ is hyperbolic if and only if γ is what is known as a “pseudo-Anosov” homeomor-
phism of Σg,n.

We can then use the fact that the Virasoro TQFT is equipped with a (projective) represen-
tation of the boundary mapping class group Map(Σg,n) on the Hilbert space HΣg,n

to straight-
forwardly compute the partition function on such surface bundles. Indeed, the TQFT partition
function on the surface bundle is simply given by the trace of the operator U(γ) in the boundary
Hilbert space HΣg,n

:

ZVir(Mg,n;γ) = trHΣg,n

�

U(γ)
�

(3.26)

=

∫

d3g−3+n P⃗ ρC
g,n(P⃗)



FC
g,n(P⃗)
�

�U(γ)
�

�FC
g,n(P⃗)
�

, (3.27)

where U(γ) is the representation of the modular transformation γ on the Hilbert space HΣg,n
. A

priori, it is not clear when this trace is finite. It is obviously badly divergent when γ corresponds
to the identity since the Hilbert space is infinite-dimensional. Given that hyperbolic manifolds
are the classical solutions of three-dimensional gravity, we expect that the trace (3.26) is finite
in the case that the surface bundle Mg,n;γ is hyperbolic. In other words, if Mg,n;γ is hyperbolic,
then U(γ) should be a trace class operator on the Hilbert space HΣg,n

.
As an example, consider the once-punctured torus fibered over the circle, pictured in figure

3. The mapping class group in this case is just PSL(2,Z), so the mapping tori are labeled by
elements γ ∈ PSL(2,Z) (along with the deficit angle at the puncture, corresponding to the
external operator dimension in the CFT). The hyperbolic mapping tori are hence specified by
PSL(2,Z) elements γ with two distinct real eigenvalues [98].

3.5 Heegaard splitting without boundaries

In order to compute partition functions of Virasoro TQFT on hyperbolic three-manifolds, we
seek a cutting procedure that only introduces boundaries on which the Hilbert space of the
TQFT is well-defined. A standard technique in three-dimensional topology is known as “Hee-
gaard splitting” [99–101]. Consider a closed orientable three-manifold M without any Wilson
line insertions. M is said to admit a “genus-g Heegaard splitting” if it can be decomposed into
two handlebodies identified along a common genus-g boundary:

M = SΣ(1)g ∪γ SΣ
(2)
g . (3.28)

Here, SΣg are handlebodies, and γ is an element of the mapping class group Map(Σg) of the
boundary. The common boundary of the handlebodies

∂ (SΣ(1)g ) = ∂ (SΣ
(2)
g ) = Σg , (3.29)

is a Riemann surface known as the “splitting surface,” and the boundaries are identified after
the action of the modular transformation γ. An example is pictured in figure 4.
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γ

Figure 3: The once-punctured torus fibered over the circle. The mapping torus
is specified by the strength of the puncture and the mapping class group element
γ ∈ PSL(2,Z).

Every closed orientable three-manifold admits a Heegaard splitting, which follows easily
from the triangulability of three-manifolds [95]. To see this, consider a triangulation of the
three-manifold. A slight thickening of the one-skeleton of the triangulation defines a handle-
body. The closure of the complement of this handlebody in fact defines another handlebody,
associated with the thickening of the one-skeleton of the dual triangulation. This description
is precisely the Heegaard splitting of the three-manifold as the union of handlebodies along
their common boundary as in (3.28).

Given a Heegaard presentation of a three-manifold M as in (3.28) it is straightforward to
compute the Virasoro TQFT path integral on M . The TQFT path integral on the handlebody
prepares a state in the Hilbert space associated with the splitting surface HΣg

. In the absence of
boundary Wilson line insertions, the boundary Hilbert space is well-defined in Virasoro TQFT
provided the splitting surface has genus g ≥ 2. In the absence of bulk Wilson lines, the state
prepared by the TQFT path integral on the handlebody is simply given by the Virasoro identity
block on Σg in the channel C prescribed by the handlebody as in (3.10). The TQFT path
integral on M is then given by the matrix element of the representation U(γ) of the mapping
class group element γ on the boundary Hilbert space HΣg

in the states prepared by the path
integral on the handlebodies (3.10):

ZVir(M) =



FC
g (1⃗)
�

�U(γ)
�

�FC
g (1⃗)
�

. (3.30)

As described in section 3.3, the identity block corresponds to a non-normalizable state in the
boundary Hilbert space HΣg

. So the matrix element (3.30) is not guaranteed to be finite;
indeed for γ equal to the identity it clearly diverges.

It is nontrivial to characterize the mapping class group elements γ for which the matrix
element (3.30) is finite; heuristically, it is finite for “sufficiently complex” γ. We conjecture that
the TQFT partition function on M is finite whenever M is a hyperbolic three-manifold, since it

γ

Figure 4: A genus-2 Heegaard splitting.
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Figure 5: The Heegaard splitting of S3 into two solid tori. We view S3 as the one-point
compactification of R3. One solid torus is drawn in black and the other complemen-
tary torus in blue, which in particular includes the compactification point.

is in those cases that AdS3 gravity admits a classical solution and indeed a sufficiently complex
γ leads almost surely to a hyperbolic 3-manifold [79]. This expectation will be validated in
the explicit examples we study in detail in a forthcoming companion paper [52]. However,
there is no clear expectation on the converse statement – the inner product could be finite even
though the manifold does not admit a hyperbolic metric.

As a standard example of the Heegaard splitting procedure consider the three-sphere S3.
Cutting the three-sphere along a torus, we obtain a Heegaard splitting of S3 involving two
solid tori — one with the a-cycle of the boundary torus filled in, the other with the b-cycle
filled in — glued along their common boundary torus as pictured in figure 5. This is strictly
speaking not well-defined in Virasoro TQFT because, as discussed in section 3.3, the Hilbert
space on the torus without any boundary insertions is ill-defined due to the formally infinite
inner product (2.32). Accepting that the path integral on the solid torus gives the Virasoro
identity character, then from (3.30) we hence obtain the identity-identity component of the
modular S-matrix

ZVir(S
3)

?
= S11[1] . (3.31)

Of course, as described in section 3.3, this is not well-defined in Virasoro TQFT since the
spectrum does not contain the trivial line.

3.6 Heegaard splitting with boundaries

In the previous subsection we have shown how Heegaard splitting allows us to cut closed
three-manifolds M into handlebodies and how that decomposition allows a straightforward
computation of partition functions of Virasoro TQFT on M (given in (3.30)) by application
of the inner product on the Hilbert space of the splitting surface. In order to compute TQFT
partition functions on three-manifolds with boundaries, we require a cutting procedure that
involves elements that themselves have boundaries beyond the splitting surface associated
with the cutting. The required new concept is that of a “compression body,” and the Heegaard
splitting involving compression bodies rather than handlebodies is known in the literature as
“generalized Heegaard splitting.”

To develop the notion of a compression body, start by considering the handlebody SΣg with
boundary Σg . We then imagine drilling out another handlebody in the interior of SΣg ; the
resulting manifold (let’s call it Wg) now has twoΣg boundaries, and is topologically equivalent
to the Euclidean wormhole

Wg ≃ Σg × [0,1] . (3.32)

We then proceed to degenerate some cycles in the interior; we do this by attaching 2-handles
along disjoint loops in the interior boundary, and fill in any resulting S2 boundaries with three-
balls.28 The resulting three-manifold is known as a compression body Cg(g1, . . . , gm). See

28In the most general setting one need not fill in all the S2 boundaries with three-balls. But for the purposes of
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SΣ4 = C4(;)

W4 = C4(4)

C4(2, 2)

Figure 6: The construction of the C4(2,2) compression body. We start with the genus-
4 handlebody SΣ4, then drill out another genus-4 handlebody in the interior to form
the genus-4 Euclidean wormhole W4 = C4(4). We then degenerate a cycle in the in-
terior boundary to form the compression body C4(2, 2) with two genus-2 boundaries
in the interior.

figure 6 for an example of a compression body with a genus-4 outer boundary and two genus-
2 inner boundary components. We refer to the outer boundary Σg × {0} as ∂+C and the
remaining (now possibly disconnected) boundary components ∂ C\∂+C as ∂−C .

We have already discussed some trivial special cases of compression bodies. For example,
if there are zero interior boundary components ∂−C = ; (m = 0) then Cg is simply a genus-g
handlebody. Similarly, if ∂−C has a single genus-g component (m = 1, g1 = g) then Cg(g) is
the Euclidean wormhole.

The triangulation theorem [95] for three-manifolds with boundaries shows that for any
partition of the boundary components of a three manifold M , ∂M = ∂M1 ∪ ∂M2, M admits
a Heegaard splitting involving two compression bodies C (1) and C (2) glued along their outer
boundary, the splitting surface ∂+C (1) = ∂+C (2) = Σg

M = C (1)g (g1, . . . , gm1
)∪γ C (2)g (h1, . . . , hm2

) , (3.33)

with ∂−C (1) = ∂M1, ∂−C (2) = ∂M2 and γ an element of Map(Σg). Hence the Heegaard
splitting may be regarded as a cobordism between the boundary components ∂M1 and ∂M2
[101].

To compute TQFT partition functions on three-manifolds M with boundaries, we find a
generalized Heegaard splitting of M (3.33) and evaluate the matrix element of the represen-
tation of the mapping class group element γ on the Hilbert space of the splitting surface HΣg

between the states prepared by the TQFT path integral on the compression bodies:.

ZVir(M) = 〈ZVir(C
(1)
g (g1, . . . , gm1

))|U(γ)|ZVir(C
(2)
g (h1, . . . , hm2

))〉 . (3.34)

We hence need to compute the partition function of Virasoro TQFT on compression bod-
ies Cg(g1, . . . , gm). To do this, we insert a complete set of states (i.e. conformal blocks

computation of partition functions of Virasoro TQFT, they must be filled in since the Hilbert space on the sphere
without sufficiently many Wilson line insertions is not well-defined.
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|FCi
gi
〉 ∈ HΣgi

) on the Hilbert spaces associated with each of the m inner boundary compo-
nents that make up ∂−C . This prepares the following state

ZVir(Cg(g1, . . . , gm)) =

∫ m
∏

i=1

�

d3gi−3 P⃗i ρ
Ci
gi
(P⃗i)
�

×
�

�FC1
g1
(P⃗1)
�

⊗ · · · ⊗
�

�FCm
gm
(P⃗m)
�

⊗
�

�ΨC
g (P⃗1, . . . , P⃗m)
�

. (3.35)

For each complete set of states in the inner boundary Hilbert spaces there is the freedom of a
choice of basis, in particular to specify a channel Ci in the conformal block decomposition. The
state
�

�ΨC
g (P⃗1, . . . P⃗m)
�

∈HΣg
is a particular genus-g conformal block associated with the outer

boundary ∂+C = Σg . It is obtained by gluing the handlebodies with Wilson lines corresponding
to the conformal blocks appearing in the complete set of states in the inner boundary Hilbert
spaces into the compression body. The resulting Σg conformal block is hence made up of
sub-blocks that are identical to those of the inner boundaries, with paired conformal weights
propagating in the same Ci sub-channels, and only the identity operator propagating through
disks that have been degenerated in the inner boundary. See figure 7 for an example.

P1 P2 P3

P4 P6

P5

P1 P2

P3
P4 P6

P5

1

〈FC1
g1
| 〈FC2

g2
|

|ΨC
g 〉

Cg(g1, g2)

Figure 7: When inserting a complete set of states in the Hilbert space of the in-
ner boundaries, we glue handlebodies with Wilson lines corresponding to conformal
blocks of the inner boundaries into the compression body. This prepares a particular
conformal block in the Hilbert space of the outer boundary. Only the identity can
propagate through any remaining empty disks.

The compression body partition function is then a sort of generalization of the Liouville
partition function, in that it involves integrated conformal blocks associated with the outer
and inner boundaries with paired internal conformal weights (but now the conformal blocks
are associated with different surfaces). These generalized Liouville partition functions are in-
variant with respect to the bulk mapping class group of the compression body. This invariance
generalizes the fact that the wormhole partition function (3.4) is invariant under the diagonal
mapping class group that acts simultaneously on the two boundaries.

For concreteness, consider for example the compression body C4(2,2) depicted in figure 6.
Inserting a complete set of states in the two genus-two Hilbert spaces of the inner boundaries,
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we have

ZVir(C4(2,2)) =

∫ 6
∏

i=1

�

dPi ρ0(Pi)
�

C0(P1, P2, P3)
2C0(P4, P4, P5)C0(P5, P6, P6)

×
�

�

�

�

P1 P2 P3

P4 P6

P5

1

P1 P2 P3

P4 P6

P5

�

.

(3.36)

3.7 Heegaard splitting with Wilson lines and/or boundaries

In order to compute partition functions of Virasoro TQFT on three-manifolds with boundary
Wilson line insertions, we need to further generalize the Heegaard splitting procedure. Al-
though conceptually the strategy is exactly the same as without Wilson lines — in particular,
to cut the manifold into generalizations of compression bodies, and then to compute the path
integral on these building blocks by resolving the identity on the Hilbert spaces associated
with the inner boundaries — we will see that the introduction of Wilson lines leads to some
complications that need to be treated carefully.

We now consider cutting the three-manifold along a splitting surface that is a punctured
Riemann surface Σg,n. This decomposes the three-manifold into a union of generalized com-
pression bodies with Wilson lines

M = C (1)g,n(g1, n1; . . . ; gm1
, nm1

)∪γ C (2)g,n(h1, p1; . . . ; hm2
, pm2

) . (3.37)

The generalized compression bodies Cg,n(g1, n1; . . . ; gm, nm) are compression bodies with Wil-
son lines connecting the inner and outer boundaries (and possibly connecting distinct inner
boundaries), arranged so that

∂+C = Σg,n , ∂−C =
m
⊔

i=1

Σgi ,ni
. (3.38)

Our notation does not keep track of the precise shape of the Wilson lines. Note that unlike
the case without Wilson lines, we can now consider the situation that ∂−C contains sphere
components — provided that they are supported by at least three Wilson line insertions —
in Virasoro TQFT, since the associated Hilbert spaces are well-defined. See figure 8 for an
example.

Figure 8: The pictured compression body C3,3(2,2; 0,4; 1,1) involves Wilson lines
connecting the outer boundary with the inner boundaries and the inner boundaries
to each other.

The computation of the TQFT partition function on the generalized compression bodies
proceeds in exactly the same way as on the compression bodies without Wilson line insertions.
We insert a complete set of states in the Hilbert spaces HΣgi ,ni

associated with the inner bound-
aries, which expresses the partition function as a linear combination of products of conformal
blocks of each of the boundaries. As without Wilson lines the conformal block associated with
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the outer boundary has the identity operator propagating in all channels corresponding to cy-
cles that have been degenerated in forming the inner boundaries. This prepares a state very
similar to (3.35) except that the conformal blocks that appear in the complete sets of states
may have external punctures

ZVir(Cg,n(g1, n1; . . . ; gm, nm)) =

∫ m
∏

i=1

�

d3gi−3+ni P⃗i ρ
Ci
gi ,ni
(P⃗1)
�

×
�

�FC1
g1,n1
(P⃗1)
�

⊗ · · · ⊗
�

�FCm
gm,nm

(P⃗m)
�

⊗
�

�ΨC
g,n(P⃗1, . . . , P⃗m)
�

.

(3.39)

The partition function on the Euclidean wormhole (3.1) is a trivial example of a compression
body partition function, with m= 1 and (g1, n1) = (g, n).

In the presence of Wilson lines, the state
�

�ΨC
g,n(P⃗1, . . . , P⃗m)
�

∈ HΣg,n
prepared by this pro-

cedure — namely, by gluing into the compression body the punctured handlebodies with bulk
Wilson lines corresponding to the conformal blocks appearing in the complete set of states —
may be somewhat complicated. For example, it may be the case that Wilson lines connecting
boundaries of the generalized compression body are braided or knotted in the bulk. It may
be possible to straighten the Wilson lines by braiding the operator insertions on one of the
boundaries (i.e. by sequential application of (2.36) to external legs of one of the boundary
conformal blocks), but this is not always possible. For example, it may be that the Wilson lines
trace out a “non-rational tangle” as in figure 9 in the bulk (see [102, 103] for related discus-
sions in the context of 3d gravity). In this case, we can perform a further splitting by cutting
through the non-rational tangle in the bulk along a surface with more Wilson line insertions,
and then performing crossing transformations on this surface to straighten the Wilson lines.
We will discuss the case of non-rational tangles in more explicit detail in [52].

(a) (b)

Figure 9: An example of (a) rational and (b) non-rational tangles of Wilson lines that
might appear as states in the Hilbert space of the sphere with four punctures.

Another potential subtlety is that as a result of projecting the compression body onto the
inner boundary conformal blocks, the resulting configuration may involve loops of Wilson
lines in the bulk, for which the interpretation in terms of conformal blocks in the Hilbert space
of the splitting surface is unclear. To illustrate the idea, consider the following generalized

36

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

compression body:

M =

1 2

s

t

4 3
(3.40)

This is a Euclidean wormhole with four asymptotic boundaries, each of which is a sphere
with three operator insertions. This four-boundary wormhole controls the leading non-
Gaussianities in the large-c ensemble of CFT data dual to semiclassical 3d gravity [15]. The
partition function on the four-boundary wormhole can be straightforwardly computed by Hee-
gaard splitting as described in this section as29

ZVir(M) = ρ0(Pt)
−1C0(P1, P2, Ps)C0(P3, P4, Ps)FPs Pt

�

P1 P4
P2 P3

�

×
�

�

�

�

1 2

s

1 t

4

t 2

3

4 3

s

�

, (3.41a)

= ρ0(Ps)
−1C0(P1, P4, Pt)C0(P2, P3, Pt)FPt Ps

�

P1 P2
P4 P3

�

×
�

�

�

�

1 2

s

1 t

4

t 2

3

4 3

s

�

. (3.41b)

We have included the kets on the right-hand side to remind the reader that this is a state in the
tensor product of the Hilbert spaces associated with each asymptotic boundary ZVir(M) ∈H⊗4

Σ0,3
,

even though the Hilbert spaces in this case are one-dimensional. As discussed in section 3.2, we
are adopting conventions such that the trivalent junction of Wilson lines is unit-normalized. It
is a nontrivial fact that the four-boundary wormhole partition function (3.41) enjoys a tetrahe-
dral symmetry permuting the Wilson lines from the bulk topology, though it is not at all evident
from this presentation. Indeed, this combination is proportional to the 6 j symbol of the mod-
ular double Uq(sl(2,R)) [49, 50]. As already remarked in section 2.5 around eq. (2.52), that
this combination has tetrahedral symmetry is a consequence of the pentagon identity (A.4)
satisfied by the fusion kernel, but one may also derive it by computing the partition function
of the TQFT on the four-boundary wormhole through different Heegaard splittings. More ex-
amples of miraculous-looking identities for the crossing kernels and conformal blocks that can
be derived through consistency of the TQFT will be discussed in [52].

We could also compute the partition function of this compression body by trivially resolving
the identity on the Hilbert spaces of the three inner boundaries. This prepares a state with a

29In [52] we provide more details of the computation of this partition function and discuss in more detail the
statistical interpretation of this four-boundary wormhole in the ensemble dual of semiclassical 3d gravity.
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loop of Wilson lines in the Hilbert space of the outer boundary:

ZVir(M) = C0(P1, P4, Pt)C0(P2, P3, Pt)C0(P3, P4, Ps)

�

�

�

�

1 2

s

t

4 3

�

×
�

�

�

�

1 t

4

t 2

3

4 3

s

�

. (3.42)

By comparing with the computation of the partition function of the four-boundary wormhole
via Heegaard splitting (3.41), we can determine the normalization of the state on the outer
boundary involving the Wilon line loop as:

�

�

�

�

1 2

s

t

4 3

�

=
C0(P1, P2, Ps)FPs Pt

�

P1 P4
P2 P3

�

ρ0(Pt)C0(P1, P4, Pt)C0(P2, P3, Pt)

�

�

�

�

1 2

s

�

(3.43)

=
C0(P1, P2, Ps)FPt Ps

�

P1 P2
P4 P3

�

ρ0(Ps)C0(P1, P2, Ps)C0(P3, P4, Ps)

�

�

�

�

1 2

s

�

. (3.44)

More complicated loop configurations of Wilson lines (for example involving more Wilson lines
attached to the loop, or more internal loops) can always be reduced to simple loops of this
kind by applying crossing transformations, so it suffices to work out this identity.

To make contact with a familiar identity from more conventional TQFTs, it is instructive
to consider the limit in which the s Wilson line becomes the trivial line (i.e. Ps → iQ/2).
Comparing the corresponding limits of (3.41) and (3.42), we conclude that a Wilson line
bubble can be reduced to a single Wilson line as follows

1

4

3

2 =
δ(P1 − P2)

ρ0(P1)C0(P1, P3, P4)
1

(3.45)

Here we’ve replaced Pt → P4 for better readability.
In any case, we can always reduce the three-manifold to a union of generalized compres-

sion bodies involving only unknotted Wilson lines connecting the various boundaries. For
these configurations, the evaluation of the compression body partition function as in (3.39)
is straightforward by insertion of complete sets of states in the Hilbert spaces of the inner
boundaries.

4 Discussion

In this paper, we developed a systematic algorithm to compute partition functions of 3d gravity
on arbitrary hyperbolic manifolds. We established the general theory in this paper and will
demonstrate its usefulness by working out a number of explicit examples in a follow-up paper
[52]. We end with a discussion of possible issues with our proposal, its relation to other
literature and comment on future applications.
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Finiteness of the partition function. Since the Hilbert space of Virasoro TQFT is infinite-
dimensional, not all partition functions are finite. One expects on physical grounds that
ZVir(M) is at least well-defined for all hyperbolic manifolds. While we observe this to be the
case in all examples that we considered, we do not have a general argument to prove this
statement.

It is conceivable that ZVir(M) is still well-defined for some non-hyperbolic manifold, al-
though we are not aware of an example.30 Even if ZVir(M) is divergent, one might hope that
the gravity partition function is rendered finite by dividing by the bulk mapping class group
Map0(M ,∂M), which does not have to be finite for non-hyperbolic manifolds. This certainly
does not work in general (Σ×S1 or trivially S3 are counterexamples). However, it was argued
in [11] that Seifert manifolds (which are in general non-hyperbolic) can give finite contri-
butions to the gravitational path integral. They admit a simple Heegaard splitting [104] and
thus provide an interesting arena for further study of off-shell contributions to the gravitational
path integral.

Volume conjecture and refined volume conjecture. For hyperbolic manifolds, we can com-
pare our computation to the one-loop evaluation of the gravitational path integral. Using the
results of [105] for the one-loop determinant, we hence suspect that

|ZVir(M)|2 = e−
c

6π vol(M)

�

∏

γ∈P

∞
∏

m=2

1
|1− qm

γ |2
+O(c−1)

�

. (4.1)

Here, P denotes the set of all primitive simple closed geodesics and qγ = e−ℓγ , where ℓγ is the
complex length of the geodesic. Equivalently, P is the set of all primitive conjugacy classes of
the Kleinian group realizing the manifold M and q1/2

γ is the smaller of the two eigenvalues of
the corresponding PSL(2,C) matrix.31 This formula is derived by using essentially the same
logic as for the Selberg trace formula.

The leading behaviour in terms of the volume of the hyperbolic manifold is often discussed
in the literature under the name of the volume conjecture, although it is often formulated for
the analytically continued SU(2)k Chern-Simons partition function [73–75, 106]. There is a
refinement for ZVir(M) itself, where the imaginary part is given by the Chern-Simons invariant
of the manifold [107]. Equivalently, the volume vol(M) is sometimes given as a complex
number, e.g. by using the command complex_volume() in SnapPy [108].

Eq. (4.1) should also hold in the presence of boundaries, in which case vol(M) denotes
the renormalized volume [82, 83, 109]. The renormalized volume has the same ambiguities
in its definition as the Virasoro TQFT partition function which are controlled by the conformal
anomaly.

To our knowledge, the “refined volume conjecture” given by eq. (4.1) and the case with
boundaries has not been discussed in the literature before. It leads to very non-trivial pre-
dictions, e.g. about the semi-classical expansion of conformal blocks and it definitely seems
worthwhile to explore this conjecture mathematically.

Equivalence to Andersen and Kashaev. A similar TQFT under the name of “Teichmüller
TQFT” was originally proposed by Andersen and Kashaev [31, 32]. It is also based on the
quantization of Teichmüller space. Their formalism is very different and relies on the quanti-
zation of Teichüller space in explicit coordinates (so-called Penner coordinates), where both

30There are some “almost” examples such as the unknot and the torus Euclidean wormhole that give well-defined
answers up to ill-defined overall prefactors.

31We count the conjugacy class of g and g−1 only once since they lead to the same geodesic. This is the reason
for an extra square compared to [105].
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the symplectic form and the mapping class group transformations take a relatively simple form,
which was developed in [30, 40, 41]. This quantization is not obviously related to the quan-
tization in terms of conformal blocks, which is physically much more desirable. Thus, it is
not obvious that the Virasoro TQFT discussed in this paper is equivalent to Teichmüller TQFT,
although it is strongly suggested by various results in the literature [30,110].

State-sum models. One initial motivation for the current study was to formulate 3d quan-
tum gravity as a state-sum model in the same way as 2d gravity can be obtained from a
scaling limit of random triangulations of surfaces [111–113]. Such attempts at state-sum
models for 3d gravity were made in the past, the most well-known being the Ponzano-Regge
model [114–121]. However, they are all somewhat ad-hoc constructions and essentially the
Turaev-Viro construction of SU(2)k×SU(2)k Chern-Simons theory [93], which clearly does not
adequately describe quantum gravity for the reasons discussed in this paper. As discussed in
section 3.3, the Turaev-Viro construction does not carry over to SL(2,R)k × SL(2,R)k Chern-
Simons theory because the total quantum dimension is ill-defined.

There is a restricted state-sum model of Teichmüller TQFT proposed by Andersen and
Kashaev [31,32], where the authors only consider certain triangulations with additional struc-
ture (so-called shaped triangulations). In particular, the state-sum is only invariant under the
so-called 2-3 Pachner move that keeps the number of vertices of the triangulation invariant,
but not under the 1-4 Pachner move. Related constructions have appeared in the physics liter-
ature [122,123]. The relation of this restricted state-sum model to the construction discussed
in this paper remains to be elucidated.

Summing over topologies. To define a full theory of quantum gravity, we should also sum
the gravity partition function of a fixed topology eq. (1.1) over all topologies. Of course, there
are a number of problems when performing this sum. While a sum over all three-manifolds
might sound daunting, we shall now argue that the associated difficulties can optimistically
be overcome.

An obvious problem is the existence of topologies with ill-defined partition function, such
as the S3 partition function. However, this should not be too worrying since a similar phe-
nomenon also appears in two-dimensional gravity, where the sphere and the torus partition
function are ambiguous or infinite [124–127]. This is mirrored by certain corresponding am-
biguities in the dual matrix integral. We are thus motivated to discard such divergent contri-
butions in three-dimensional gravity in an ad-hoc manner, since they are presumably mirrored
by corresponding divergences in an ensemble boundary CFT interpretation. As already men-
tioned, there are several indications that in a certain sense almost all three-manifolds are
hyperbolic and hence lead to finite contributions [76–79]. We can thus somewhat artificially
restrict the sum to hyperbolic manifolds:

Zgrav(∂M)
?
=
∑

hyperbolic manifolds M

Zgrav(M) . (4.2)

Here the notation indicates that the actual gravity partition function only depends on the
boundary geometry. In the sum, we are summing over all hyperbolic manifolds compatible
with the boundary conditions.

Let us discuss the case without boundaries, since the mathematics behind it are best un-
derstood. In this case, the size of the individual terms is to leading order in the semi-classical 1

c
expansion given by e−

c
6π vol(M), see eq. (4.1). Thanks to the rigidity of hyperbolic 3-manifolds,

closed hyperbolic 3-manifolds can be ordered according to their volume and vol(M) is a topo-
logical invariant playing a loose analogue of the genus in 2d gravity. For large central charges,
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1 1.5 2 2.5 3 3.5

41 52 61 72 81

Figure 10: The volume spectrum of complete hyperbolic manifolds with finite volume
below 3.6639. This list is taken from the Hodgson-Weeks census and might not be
complete. We also plotted the spectrum of accumulation points above in red and
identified some of the accumulation points as well-known knot-complements in S3.
The notation of the knots is standard and denotes the minimal number of crossings.

manifolds with large volumes are greatly suppressed. The volume spectrum of complete hy-
perbolic 3-manifolds of finite volume is a closed subset of R>0 of order type ωω [76].32 This
means that there is a unique hyperbolic manifold of smallest volume (the so-called Weeks
manifold of volume ≈ 0.9427 [128]). However, the spectrum has accumulation points from
below, the first accumulation point occurring at ≈ 2.0299, corresponding to the complement
of the figure 8 knot (a cusped hyperbolic 3-manifold) [129]. The first limit point of limit points
occurs at volume ≈ 3.6639 corresponding to the complement Whitehead link (a hyperbolic
manifold with two cusps) [130]. Accumulation points occur because one can produce a family
of hyperbolic 3-manifolds by performing a so-called Dehn filling of a cusp in a cusped hyper-
bolic manifold which we discuss further below. However, a lot of the structure of the volume
spectrum is not well-understood. We plotted the volume spectrum of hyperbolic manifolds in
the Hogdson-Weeks census of closed hyperbolic manifolds [131] in Figure 10 to give an idea
of the structure.

There are hence two main issues: (1) the sum diverges because the density of hyperbolic
manifolds presumably grows very fast and (2) the sum diverges because of the existence of
accumulation points. To make (1) more precise, one should also study how the functional
determinant behaves for different hyperbolic manifolds. On general grounds one expects that
(4.2) is only an asymptotic sum. The same happens also already in two-dimensional models
such as JT gravity [2, 132], where the asymptotic nature indicates the necessity to include
non-perturbative (or “doubly-non-perturbative”) objects corresponding to ZZ-instantons in the
worldsheet description. Thus the fact that (4.2) is presumably an asymptotic sum indicates
the presence of non-perturbative contributions to (4.2). It would be interesting to get a handle
on the asymptotic nature of the sum (4.2) which would give non-trivial information about the
structure of non-perturbative objects in the theory by resurgence analysis.33

To understand the issue (2) of accumulation points, we have to explain the procedure of
Dehn filling in some more detail. Given a hyperbolic manifold M with a cusp, we can excise
a tubular neighborhood around the cusp and obtain a manifold with a boundary

◦
M . We can

then glue back a solid torus via a mapping class group element γ ∈ SL(2,Z)/Z to obtain a new
manifold Mγ. Except for finitely many exceptions, Mγ is hyperbolic and has lower volume than
M [76]. This is a splitting as described in the main text and hence the TQFT partition function
can be computed as

〈ZVir(
◦

M) |U(γ) |F1,0(1)〉 , (4.3)

where γ ∈ PSL(2,Z)/Z and U(γ) is the corresponding representation on the Hilbert space.

32In this set of manifolds, we do not require the manifolds to be compact and allow for the existence of cusps,
but no conical defects.

33Such contributions would presumably correspond to doubly non-perturbative effects from the perspective of
the 1/c expansion. That the 1/c expansion around a given bulk saddle is asymptotic may be viewed as indicating
the need for the sum over geometries itself [133].
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Thus the sum over topologies is locally labelled by an element in PSL(2,Z)/Z near the a single
accumulation point. To perform the sum over topologies obtained by a Dehn filling from a
cusp, we hence merely need to compute

∑

γ∈PSL(2,Z)/Z

U(γ) |F1,0(1)〉 ⊗ U(γ) |F1,0(1)〉 . (4.4)

This is however nothing other than the Maloney-Witten sum obtained for the thermal AdS3
partition function [9]. Thus we conclude that the problem of accumulation points is the same
as making sense of the Maloney-Witten sum.34 It is known how to regularize the Maloney-
Witten sum [9, 20], although problems with a small negativity of states have so far resisted
a full explanation [11, 12, 22]. However, it should be clear from this discussion that it is not
completely hopeless (although technically daunting) to make sense of the sum over topologies
in 3d quantum gravity.

Relation to CFT ensemble. It has recently been proposed that semiclassical AdS3 Einstein
gravity coupled to point particles is dual to an ensemble of large-c 2d CFTs with random struc-
ture constants [15]. This proposal was developed by formulating a Gaussian ansatz for the
OPE coefficients, averaging products of CFT observables subject to this random ansatz together
with an averaged spectrum given by the Cardy formula, and matching to on-shell actions (and
one-loop determinants) of the corresponding classical solutions of Einstein’s equations in the
large-c limit. While the averaged CFT computations are straightforward, the correspondence
with semiclassical gravity was a nontrivial output of delicate gravity calculations. Our formu-
lation of 3d gravity in terms of Virasoro TQFT trivializes or simplifies many computations that
are burdensome or not tractable in the metric formalism, and in many cases extends the corre-
spondence between averaged CFT observables and gravity path integrals on a given topology
to finite central charge; this suggests that the match between gravity and averaged CFT observ-
ables is in an appropriate sense exact at the level of fixed topologies. In particular, the relation
between the gravity path integral on the Euclidean wormhole Σ × [0,1] and the product of
Liouville CFT partition functions originally derived semiclassically in [15] follows straightfor-
wardly from the resolution of the identity in the Hilbert space of the asymptotic boundaries as
described in section 3.1.

While the large-c ensemble of CFT data is crossing invariant on average, it is clear from a
variety of points of view that solving the crossing equations requires non-Gaussian corrections
to the statistics of the structure constants [14, 15, 135–138]. It is however unclear how to
treat wormholes with more than two asymptotic boundaries that would encode such statistics
in the metric formalism except in certain special situations. The Virasoro TQFT description
of 3d gravity completely systematizes the computation of the gravity path integral on general
multi-boundary wormholes with arbitrary configurations of Wilson lines, which in turn unam-
biguously determine higher moments of the CFT structure constants. The explicit example of
the partition function of the four-boundary sphere three-point wormhole (3.42) that controls
the non-Gaussian fourth moment of the structure constants was briefly discussed in section
3.7; this and more interesting examples will be discussed in more detail in [52].

It would be desirable to prove in full generality that the gravity path integral on a fixed
topology agrees with the corresponding averaged CFT observable. While the Virasoro TQFT
formulation facilitates the algorithmic computation of higher moments of OPE coefficients,
we seek a unifying description of the boundary theory that captures all corrections to the
Gaussian ensemble. Presumably, fully solving the boundary theory requires reckoning more

34There can be a finite number (≤ 10 [134]) of exceptional γ’s for which the resulting manifold is not hyperbolic.
These have to be omitted in the sum if we only want to sum over hyperbolic manifolds.
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seriously with the sum over topologies in the bulk, and perhaps with the path integral on off-
shell toplogies. We leave a more comprehensive discussion of multi-boundary wormholes and
the implications for the CFT ensemble to future work.

Supergravity and higher spin gravity. It is well-known that the Chern-Simons formalism
can in principle be adapted to incorporate supersymmetry and/or higher spin fields by chang-
ing the gauge group to a (super)group G together with an embedding SL(2,R) −→ G [139].
For example, for G = OSp(1|1,1), we get N = 1 supergravity, for G = OSp(2|1, 1) we get
N = 2 supergravity, while for G= SL(N ,R) with the principal embedding, we get higher spin
gravity with fields of spin 2, 3, . . . , N . In all these cases, there is a “Teichmüller component”
of the phase space as studied in higher Teichmüller theory. The natural conjecture for the
quantization of these spaces is in terms of N = 1 Virasoro conformal blocks, N = 2 Vira-
soro conformal blocks and WN conformal blocks, respectively. There is a conceptual difficulty
in the definition of WN conformal blocks since not all descendant correlation functions can
be reduced to primary correlation functions [140]. It stands to reason that at least in the
case without higher spin fields one can similarly define a (spin) TQFT based on the crossing
symmetry of super Virasoro blocks, see [141–143] for progress in this direction. Except for
the N = 1 Virasoro case, the existence of this TQFT has not been established. In particular
the generalizations of the crossing kernels F and S are only known in the N = 1 Virasoro
case [144–147].

Zero and positive cosmological constant. There is an obvious question whether an anal-
ogous story exists for pure quantum gravity with Λ = 0 or Λ > 0, which is loosely related
to Chern Simons theory with the Poincaré group or SL(2,C) as gauge group. The quantiza-
tion of SL(2,C)-Chern-Simons theory is actually better understood than for SL(2,R)×SL(2,R)
Chern-Simons theory [148], but one faces myriads of puzzles, see e.g. [36,149–156].

Engineering bulk duals to arbitrary CFTs. It was recently suggested [157] that one can con-
struct a toy model of holography by considering SU(2)k × SU(2)k Chern-Simons theory and
gauging the non-invertible one-form symmetry generated by the diagonal lines. This leads
to a theory that is trivial in the bulk (since it does not have any non-trivial gauge-invariant
operators) and hence is tautologically dual to the SU(2)k WZW model. In particular this TQFT
is completely insensitive to the bulk topology and thus does not require a sum over different
topologies. Modulo technical difficulties related to the continuum of lines, it should be possi-
ble to repeat this exercise for two copies of Virasoro TQFT. By gauging the set of all diagonal
(i.e. non-spinning) lines, one can produce a bulk dual of Liouville theory.35 In fact, one can in
principle produce a tautological AdS/CFT pair for any CFT by gauging the set of lines corre-
sponding to the operator spectrum of the CFT of interest. Consistency of the gauging should
directly translate into the crossing equations of the boundary CFT. Gauging a set of lines re-
quires one to insert a mesh of Wilson lines in the bulk and sum over all such insertions. This
can be interpreted as the sum over topologies on the bulk gravity side. Inserting Wilson lines
in Virasoro TQFT corresponds to putting conical defects or black hole horizons in the bulk.
Thus such an artifically engineered bulk theory requires one to include such singular geome-
tries and black hole geometries with precisely the right multiplicity in order to reproduce the
boundary partition functions.

35The properties of such a theory were analyzed from the boundary side in [158].
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A Consistency conditions of the Moore-Seiberg construction

In this appendix, we list all the consistency conditions that the crossing kernels F, S have to
satisfy. They are defined by eqs. (2.42a) and (2.42b). F has the following symmetry properties:

FP21,P32

�

P3 P2
P4 P1

�

= FP21,P32

�

P2 P3
P1 P4

�

= FP21,P32

�

P4 P1
P3 P2

�

. (A.1)

We have the following relations. We write∆i ≡∆Pi
etc. c denotes as usual the central charge.

• Idempotency of F:
∫ ∞

0

dP32 FP21,P32

�

P3 P2
P4 P1

�

FP32,P ′21

�

P4 P3
P1 P2

�

= δ(P21 − P ′21) . (A.2)

• Hexagon equation:
∫ ∞

0

dP32 eπi(
∑4

i=1∆i−∆21−∆32−∆31)FP21,P32

�

P3 P2
P4 P1

�

FP32,P31

�

P1 P3
P4 P2

�

= FP21,P31

�

P3 P1
P4 P2

�

. (A.3)

• Pentagon equation:
∫ ∞

0

dP32 FP21,P32

�

P3 P2
P54 P1

�

FP54,P51

�

P4 P32
P5 P1

�

FP32,P43

�

P4 P3
P51 P2

�

= FP21,P51

�

P43 P2
P5 P1

�

FP54,P43

�

P4 P3
P5 P21

�

. (A.4)

• SL(2,Z) transformations:
∫ ∞

0

dP2 SP1,P2
[P0]SP2,P3

[P0] = eπi∆0δ(P1 − P3) , (A.5a)

∫ ∞

0

dP2 SP1,P2
[P0]e

−2πi
∑3

i=1(∆i−
c

24 ) SP2,P3
[P0] = SP1,P3

[P0] . (A.5b)
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• Relation at genus 1 and two punctures:

SP1,P2
[P3]

∫

dP4 FP3,P4

�

P2 P ′0
P2 P0

�

e2πi(∆4−∆2) FP4,P5

�

P0 P ′0
P2 P2

�

=

∫

dP6 FP3,P6

�

P1 P0
P1 P ′0

�

FP1,P5

�

P0 P ′0
P6 P6

�

eπi(∆0+∆′0−∆5) SP6,P2
[P5] . (A.6)

They were written in this form in [51].36

B Spacelike and timelike Liouville theory

In this appendix, we recall some known facts about both spacelike and timelike Liouville theory.
The spacelike case is well-understood [42,47,48]. The timelike case is a bit more obscure, but
essentially developed to the same amount of completeness and rigour from a bootstrap point
of view [61, 62, 64–66]. We use conventions here that are particularly adapted to studying
three-dimensional gravity.

B.1 Conventions for spacelike Liouville theory

We will parametrize the central charge and conformal weights in the standard way,

c = 1+ 6Q2 , Q = b+ b−1 , ∆= α(Q−α) , α=
Q
2
+ iP . (B.1)

We will assume that c ≥ 25 (and hence b can be chosen in b ∈ (0,1]), but this assumption
can be relaxed to c > 1. For states in the spectrum, we have P ∈ R. We will denote vertex
operators by VP(z). We use conventions such that the three-point function is given by

〈VP1
(0)VP2

(1)VP3
(∞)〉= C0(P1, P2, P3) , (B.2)

where the structure constant C0 is given by

C0(P1, P2, P3) =
Γb(2Q)Γb(

Q
2 ± iP1 ± iP2 ± iP3)

p
2Γb(Q)3
∏3

k=1 Γb(Q± 2iPk)
. (B.3)

Here, a ± means that we are taking the product over all possible sign choices. For example,
Γb(

Q
2 ± iP1± iP2± iP3) denotes a product of eight terms. Γb(z) is the double Gamma-function,

which is explicitly defined through (2.19). Γb(z) has simple poles for

z = −mb− nb−1 , m, n ∈ Z≥0 . (B.4)

The structure constant (2.17) has simple poles37 associated with double-twist operators [67,
159]

αi = α j +αk +mb+ nb−1 , m, n ∈ Z≥0 , (B.5)

and all reflections thereof, and simple zeros associated with degenerate representations of the
Virasoro algebra

αi = −
1
2
(mb+ nb−1) , Q+

1
2
(mb+ nb−1) , m, n ∈ Z≥0 . (B.6)

36There are two typos in [51] which we correct here. χb in eq. (6.34e) should be − c
24 and not as stated c

24 . In
eq. (6.34f), the product of Dehn twists should be T−1

β4
Tβ2

and not Tβ4
T−1
β2

.
37For the poles to be simple we assume b2 /∈Q.
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In this normalization, the reflection coefficient is unity and hence vertex operators are identi-
fied according to

VP(z) = V−P(z) . (B.7)

The two-point function is obtained by taking the limit P3 →
iQ
2 in C0(P1, P2, P3). Taking the

limit is a bit subtle, but the result is

〈VP(0)VP ′(∞)〉= ρ0(P)
−1δ(|P| − |P ′|) , (B.8)

with
ρ0(P) = 4

p
2 sinh(2πbP) sinh(2πb−1P) . (B.9)

which gives the inverse two-point function. This normalization of vertex operators is natural
because ρ0(P)dP is the Plancherel measure on the Virasoro group (which is identical to the
Plancherel measure on the modular double Uq(sl(2,R))) [50,160].

The conformal block expansion of an n-point function of local operators on a genus-g
Riemann surface in the Liouville CFT hence takes the form
® n
∏

i=1

VPi
(zi)

¸

g

=

∫ ∞

0

3g−3+n
∏

a=1

dPa ρ0(Pa)
∏

(Pi ,Pj ,Pk)
pair of pants

C0(Pi , Pj , Pk)
�

�FC
g,n(P⃗)
�

�

2
. (B.10)

Here we used the same notation for the conformal blocks as in the main text. They of course
also depend on all the moduli of the problem, which we have suppressed on the right-hand
side.

Let us pause to contrast this with the DOZZ formula for the structure constants of spacelike
Liouville as conventionally written in the literature. It is given by [47,48]

CDOZZ(P1, P2, P3) =
µ̃−(

Q
2+iP1+iP2+iP3) Υ ′b(0)

∏

j Υb(Q+ 2iPj)

Υb(
Q
2 + i
∑

j Pj)
∏

k Υb(
Q
2 + i
∑

j Pj − 2iPk)
, (B.11)

where
µ̃ :=
�

πµγ(b2)b2−2b2
�1/b

, (B.12)

with γ(z) = Γ (z)/Γ (1− z), and

Υb(z) =
1

Γb(z)Γb(Q− z)
. (B.13)

Here µ is the Liouville cosmological constant. The two-point functions inherited from the
DOZZ formula are not canonically normalized

CDOZZ(P1, P2, iQ
2 ) = 2π [δ(P1 + P2) + S(P1)δ(P1 − P2)] , (B.14)

where S(P) is the reflection amplitude

µ̃−2iP Υb(Q+ 2iP)
Υb(2iP)

. (B.15)

Moreover the DOZZ formula is not invariant under reflection of the Liouville momenta; rather
it picks up a factor of the reflection amplitude

CDOZZ(P1, P2, P3) = S(P1)CDOZZ(−P1, P2, P3) . (B.16)

46

https://scipost.org
https://scipost.org/SciPostPhys.15.4.151


Select SciPost Phys. 15, 151 (2023)

The universal formula C0 can be written in terms of the DOZZ formula in the following way

C0(P1, P2, P3) =

�

µ̃
Q
2

2
3
4π

Γb(2Q)
Γb(Q)

�

CDOZZ(P1, P2, P3)
Ç

∏3
k=1 S(Pk)ρ0(Pk)

. (B.17)

We prefer to work with C0 rather than CDOZZ because it is reflection-symmetric (the conformal
weights depend only on P2 and so all CFT quantities ought to manifest reflection symmetry)
and it eliminates the presence of the Liouville cosmological constant. Moreover the inverse
of the two-point function inherited from C0 admits a clean interpretation as the Plancherel
measure of the Virasoro group.

B.2 Conventions for timelike Liouville theory

Let us now move on to timelike Liouville. We will also parametrize it by the parameter b, but
it is now related to the central charge and conformal weights as

ĉ = 1− 6Q̂2 , Q̂ = b− b−1 , ∆̂= −
Q̂2

4
+ P̂2 . (B.18)

Hatted quantities denote quantities of the timelike theory. For the internal spectrum that
appears in the operator product expansion, we have P̂ ∈ R. However, external states in corre-
lation functions can be analytically continued to any value P̂ ∈ C and we are mostly interested
in P̂ ∈ iR [62,63].

We will denote the vertex operators by V̂P̂(z). We use conventions in which the three-point
functions take the form

〈V̂P̂1
(0)V̂P̂2

(1)V̂P̂3
(∞)〉=

1

C0(i P̂1, i P̂2, i P̂3)
. (B.19)

Notice that the two-point function inherited from (B.19) (obtained by sending one of the
hatted Liouville momenta to Q̂/2) is non-diagonal. This is a signal that the timelike Liouville
CFT contains a weight-zero operator that is distinct from the degenerate representation of the
Virasoro algebra corresponding to the identity operator.

The conformal block expansion of a correlation function of local operators takes the form

® n
∏

i=1

V̂P̂i
(zi)

¸

=

∫ ∞+iϵ

−∞+iϵ

3g−3+n
∏

a=1

dP̂a (N P̂2
a )

ρ0(i P̂a)

∏

(Pi ,Pj ,Pk)
pair of pants

C0(i P̂i , i P̂j , i P̂k)
−1
�

�FC
g,n(
⃗̂P)
�

�

2
. (B.20)

The integration contour runs slightly above the real axis and avoids all the poles of the in-
tegrand. Shifting the contour by +iϵ avoids all the poles that the integrand has and gives a
well-defined integrand. It was shown in [62] that this prescription indeed leads to crossing-
symmetric correlation functions. The integration measure over P̂a is fixed by the requirement
of crossing symmetry. This only determines it up to an overall normalization N . The normal-
ization N essentially reflects the coupling constant of the theory. Our arguments do not fix
the explicit value of N that we should choose such that the eq. (2.21) holds true.

C Some details about 3-manifold topology

Let us recall some geometry of hyperbolic 3-manifolds that are relevant to our study.
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C.1 Hyperbolic 3-manifolds via Kleinian groups

Let M be a possibly non-compact connected complete hyperbolic 3-manifold. In three dimen-
sions every hyperbolic manifold looks locally the same and hence the universal cover is the
unique simply-connected hyperbolic manifold – H3. Consequently any hyperbolic 3-manifold
can be obtained by a quotient H3/Γ , where Γ ⊂ PSL(2,C) is a discrete subgroup. Discreteness
is needed in order to ensure that the action of Γ on H3 is a properly discontinuous action.
Such groups are known as Kleinian groups and there is an enormous body of mathematical
literature on them and their connection with hyperbolic 3-manifolds [161,162].

In order to get a regular hyperbolic 3-manifold, we also often want to assume that the
Kleinian groups is torsion-free, i.e. does not contain elements γ ∈ Γ with γn = 1 for some
n. Such elements are elliptic and fix a line inside H3, thus leading to a conical deficit. Thus
for a regular hyperbolic 3-manifold, Γ does not contain any elliptic elements since if they are
not finite order, the series {γn} can get arbitrarily close to 1, which leads to a non-discrete
group. Similarly parabolic elements in Γ are associated to cusps in the 3-manifold. Thus to
get a regular manifold, we also want to assume that we don’t have any parabolic elements in
Γ and Γ consists of purely loxodromic elements.

Since H3 is the universal cover of M , Γ is naturally isomorphic to π1(M) (well-defined up
to overall conjugation associated with the choice of base point). In fact, the isomorphism is
given by the holonomy representation

ρ : π1(M) −→ Γ . (C.1)

Since H3 is contractible, we learn in particular that π2(M) = 0 for any hyperbolic 3-manifold
(as well as all higher homotopy groups). Such a space is called an Eilenberg MacLane space
in topology and is often denoted by K(π1, 1). This means that any 2-sphere bounds a ball
in M and in particular every hyperbolic manifold is irreducible in the sense that it cannot be
written as a connected sum of two smaller manifolds (except in the trivial way M#S3). Since
Eilenberg MacLane spaces are determined up to homotopy equivalence, π1 determines the
manifold completely.
Γ also acts on the boundary ∂H3 = CP1, but the action is not properly discontinuous.

Instead, one has to remove a set Λ (known as the limit set) from CP1 and Γ acts properly
discontinuously on the complement Ω = CP1 \Λ. One can thus extend M to a manifold with
boundary by setting

M = (H3 ∪Ω)/Γ . (C.2)

Λ is usually a very complicated set with non-trivial Haussdorff dimension. Note also thatΩ can
have many (possibly infinitely many) disconnected components and every component leads
to a conformal boundary of M in the sense of the AdS/CFT correspondence.

There are a few cases in which Λ is finite which lead to exceptions in many statements.
They are known as elementary Kleinian groups and are convenient to exclude. In the torsion-
free case without parabolic elements this only happens when π1 is abelian and the corre-
sponding 3-manifold is thermal AdS3 (i.e. a genus 1 handlebody). This is the only case where
the torus without punctures can appear as a boundary component of a hyperbolic 3-manifold
(with AdS boundary conditions). Indeed, let Ω∗ be the component of Ω for which Ω/Γ ∼= T2

is a torus. Then Ω is a covering space of T2 (not necessarily the universal one) and as such Γ
is a subgroup of π1(T2)∼= Z2. This means that Γ is abelian and hence an elementary Kleinian
group which only gives the case of the genus 1 handlebody.

There is also the important special case of a quasi-Fuchsian group in which the limiting set
is topologically a S1 ⊂ S2 (although the S1 can be a very fractal Jordan-curve). In this case, Ω
consists of precisely two simply-connected regions. Let Ω∗ be one of these regions. Since Ω∗
is simply connected, it is a universal cover of the boundary surface. In particular by the same
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argument as before, we learn that π1(M)∼= π1(Σ∗), where Σ∗ is the corresponding boundary
surface. Since both M and Σ∗ are K(π1, 1)’s, it follows that they are homotopy equivalent. In
particular, the corresponding manifold M is a Euclidean wormhole of topology Σ× [0, 1].

C.2 Finiteness conditions

In order to state some of the results of 3-manifold topology, we have to assume some kind
of finiteness condition on the 3-manifold under consideration. We will assume a somewhat
strong finiteness condition that was also used in [163] of convex co-compactness. Let us first
explain the definition of the convex core of a three-manifold. Define

C = hyperbolic convex hull of Λ ⊂H3 , (C.3)

i.e. we first connect every pair of points in Λ by a geodesic through the bulk and then take the
convex hull of the resulting set of geodesics in the bulk. By construction, C is preserved by the
action of Γ . Thus we can form the convex core by taking the quotient

C M ≡ C/Γ . (C.4)

By construction, also π1(C M) ∼= π1(M) and thus C M is homotopy equivalent to M . When Γ
is “too simple”, it can happen that the dimension of C M is less than three. For example, for
Γ a quasi-Fuchsian wormhole, C M is precisely the geodesic surface forming the throat of the
wormhole.

C M is now a hyperbolic 3-manifold (or 2-manifold) with boundary. The manifold is called
convex co-compact when the convex core is compact (we also assume that Γ is not elementary).
The convex core is precisely the analogue of the bulk of the manifold that we consider in 2d
JT gravity after we amputate the trumpets.

Convex co-compactness has many implications for other notions of finiteness:

1. M is geometrically finite, which means that a slight thickening of C M has finite volume:

(C M)δ = {x ∈H3 | d(x , C M)< δ} . (C.5)

This is the most commonly used finiteness condition in the literature.

2. The previous point in particular makes it possible to have a finite renormalized volume
of M , thus motivating the definition in the context of AdS/CFT.

3. The Dirichlet fundamental domain defined as

Da = {x ∈H3 | d(x , a)< d(γ(x), a) for all γ ̸= 1} , (C.6)

is a polyhedron with finitely many sides.

4. Γ is finitely generated.

5. M has finitely many boundary components (this is the deep Ahlfors finiteness theorem).

Every of these properties alone is however usually weaker than convex co-compact.
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C.3 Rigidity

3-manifolds enjoy the remarkable property of being rigid. Colloquially speaking, the hyper-
bolic structure in the bulk is completely determined by the conformal structure of the boundary
components, together with the topological type. To formalize this, it is useful to introduce two
notions of deformation spaces of hyperbolic 3-manifolds. We suppress issues regarding com-
pactifications of these deformation spaces.

Let us first define the moduli space of hyperbolic 3-manifolds with given fundamental
group Γ . We have

MΓ = {M |M hyperbolic, π1(M)∼= Γ }/∼ , (C.7)

where we identify isometric manifolds.
We also introduce Teich(Γ ), which will turn out to be the universal covering space of MΓ .

Fix an element M0 ∈MΓ .

Teich(Γ ) =

�

(M , f )

�

�

�

�

M hyperbolic, π1(M)∼= Γ
f : M −→ M0 an isomorphism

�

À

∼ , (C.8)

where (M , f )∼ (M ′, f ′) if M and M ′ are isometric and f ◦ ( f ′)−1 is homotopic to the identity.
Intuitively, the Teichmüller space also keeps track of a marking. We can forget the information
about f , which gives a covering map Teich(Γ ) −→MΓ . Then the most general rigidity result
formulated by Bers, Maskit and Sullivan [80] states that

Teich(Γ )∼= Teich(∂M) , (C.9)

i.e. the deformation space of the bulk precisely corresponds to the Teichmüller space of the
boundary components. In some special cases, this theorem was known earlier, i.e. for the
quasi-Fuchsian wormhole, this is known as Bers’ uniformization theorem [164].

C.4 Mapping class groups

We now carefully discuss how to take care of the mapping class groups. We want to explain the
claim mentioned in section 2.7 that the three-dimensional mapping class group Map0(M ,∂M)
that acts trivially on the boundary is trivial when boundaries are present.

Consider a mapping class group element γ : M −→ M . Because it acts trivially on the
boundary and because of the isomorphism (C.9), we know that we can find again a represen-
tative γ that is an isometry. Hence we can think of γ as an PSL(2,C) matrix that commutes
with the action of the Kleinian group on H3.

But since we assumed that the boundary of M is non-trivial, we know that the action
of γ on ∂M and hence on all of ∂H3 is trivial. This implies that γ is the identity and thus
Map0(M ,∂M) is the trivial group.
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