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Abstract

We present effective field theories for dipole symmetric topological matters that can be
described by the Chern-Simons theory. Unlike most studies using higher-rank gauge the-
ory, we develop a framework with both U(1) and dipole gauge fields. As a result, only
the highest multipole symmetry can support the ’t Hooft anomaly. We show that with
appropriate point group symmetries, the dipolar Chern-Simons theory can exist in any
dimension and, moreover, the bulk-edge correspondence can depend on the boundary.
As two applications, we draw an analogy between the dipole anomaly and the torsional
anomaly and generalize particle-vortex duality to dipole phase transitions. All of the
above are in the flat spacetime limit, but our framework is able to systematically couple
dipole symmetry to curved spacetime. Based on that, we give a proposal about anoma-
lous dipole hydrodynamics. Moreover, we show that the fracton-elasticity duality arises
naturally from a non-abelian Chern-Simons theory in 3D.
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1 Introduction

In recent years, there has been increasing interest among condensed matter and high energy
physicists in one family of novel phases of matter that is characterized by fractons – excita-
tions with restricted mobility [1–5]. As a simple example of the restricted mobility, a system
with both charge/mass and dipole moment/center of mass conservation forbids single-particle
dynamics and only allows the charge to move by inserting a dipole moment. Such kinetic con-
straint results in a fruitful unconventional phase of matter, including ergodicity breaking [6,7],
dipole condensation [8–12], and (breakdown of) dipole hydrodynamics [13–21].1 Experi-
ment [22] shows strong evidence about several above features making the universality class
reliable. The study of fractons also triggers a new type of symmetry, the subsystem symmetry,
that only acts on a sub-dimensional manifold of the whole spacetime [23, 24] (see also a re-
view [25]). A continuum quantum field theory for fracton has been developed showing exotic
features like exponentially large ground-state degeneracy and UV/IR-mixing [26].

Inspired by a series of seminal works of Michael Pretko [27–29], a higher-rank gauge theory
has been developed to describe fractonic matters [30] and is used to generalize the topological
Chern-Simons field theory [31–33]. However, the higher-rank Chern-Simons theory has two
major disadvantages. First, this theory requires substantial insight to write down a gauge
invariant action,2 and lacks a systematic way to classify what kind of Chern-Simons terms that
can be written down based simply on the symmetries we have. Second, this theory is unable
to couple to curved spacetime consistently [34,35], and it is unclear as to how to characterize
the deviation from a gauge invariant theory on the curved spacetime, although progress has
been made recently [19, 36, 37]. The ability to define a Chern-Simons theory on a generic
spacetime reflects its topological nature, which seems to be lacking in the higher-rank Chern-
Simons theory.

In this paper, we want to study the interplay between fracton-like multipole symmetry
[38] and topology by developing a Chern-Simons theory for both the U(1) and dipole gauge
fields: (Aµ, Aa

µ), following [19]. Before moving on, let us clarify our notations. We denote
µ,ν = t, x , y, z, . . . for the physical spacetime, α,β = t, x , y, z, . . . for the internal spacetime,
and use i, j and a, b to indicate their spatial subspace, respectively. The n-multipole gauge
field can be written as Aa1···an

µ , but, for our purpose, we restrict our attention to dipole sym-
metry. The set of gauge fields for dipole symmetry is analogous to scalar-and-vector charge
theory [39,40], and the internal index indicates whether it behaves as a scalar or vector under
rotational symmetry. Diplole symmetry further requires a nontrivial coupling between scalar
and vector charges. Under U(1) (α) and dipole (ξa) gauge transformations, the two gauge
fields transform as, in the flat spacetime limit,

Aµ(t, x)→ Aµ(t, x) + ∂µα(t, x) +δµaξ
a(t, x) , (1a)

Aa
µ(t, x)→ Aa

µ(t, x) + ∂µξ
a(t, x) , (1b)

1One might notice that some of them are hydrodynamics of dipole superfluid. This is because, when momentum
conservation is present, dipole symmetry must be broken [19].

2If it is reduced from a θ -term [29] in one-higher dimension, the construction of the θ -term is still nontrivial.
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and we see that Aµ transform nontrivially under the dipole shift ξa. By setting ξa = −δia∂iα,
they combine to form a symmetric higher-rank gauge theory with (At , Ai j), and whose gauge
transformation reads At → At + ∂tα, Ai j → Ai j − ∂i∂ jα. However, we emphasize that it is un-
necessary to reduce the dipole gauge theory to the higher-rank gauge theory for the latter over-
shadows many properties of the original dipole gauge theory for several reasons. For example,
first, the scalar and vector charges are mixed under higher-rank gauge theory and combined
to form an effective symmetric tensor charge. This change of the underlying degrees of free-
dom is an unwanted feature for the purpose of constructing an effective field theory as their
transformations under rotational symmetry are altered.3 Second, the higher-rank gauge fields
are unable to be expressed as differential forms. Unlike it, our set of gauge fields is manifestly
invariant under diffeomorphism and can be expressed as 1-forms: A = Aµdxµ, Aa = Aa

µdxµ.
Now, recall that the conventional Chern-Simons theory is built upon differential forms of gauge
fields for a scalar charge, our dipole gauge theory is thus better suited to generalize the Chern-
Simons theory than the high-rank gauge theory.

In Section 2, we discuss the dipolar Chern-Simons theory in even spatial dimensions and its
boundary ’t Hooft anomaly. Using the dipole gauge fields, we can write down most generally
in D = 2n+ 1-spacetime a dipolar Chern-Simons theory

SCS = C2n

∫

dD x εµ1ν1µ2···νnµn+1Aa1
µ1
∂ν1

Aa2
µ2
· · ·∂νn

Aan+1
µn+1

fa1a2···an+1
, (2)

where fa1a2···an+1
is an invariant tensor for the underlying (discrete) rotational symmetry. The

coefficient C2n is shown in Appendix A to be quantized for a compact dipole symmetry. From
construction, the Chern-Simons term is guaranteed to be invariant under rotational symmetry,
and invariant under gauge transformations up to a total derivative term. Interestingly, we find
the dipolar Chern-Simons theory can also exist in odd spatial dimensions (see [41]), which is
impossible for conventional scalar charge Chern-Simons theory. In Section 3, we detail such
construction and study its boundary anomaly. Due to breaking continuous rotational symmetry
to some discrete subgroups, we show how the boundary anomaly depends on the direction of
the boundary. This will provide a novel example where bulk-edge correspondence displays a
dependence on the boundary itself.

In Section 4, we show that the torsional anomaly in U(1) quantum Hall state can be iden-
tified as a dipole-like anomaly. Intuitively, momentum is like a (time-reversal odd) vector
charge, so it shares many similarities with dipole symmetry. The torsional anomaly provides
a mechanism to generate gapless modes in the quantum Hall state.

Conventional particle-vortex duality is captured by a mixed Chern-Simons term between
dynamical and background gauge fields. In Section 5, we generalize it to dipole phase transi-
tions that were reported recently in [42]. We study the mixed Chern-Simons term that incor-
porates either a dipole symmetry or a dipole symmetry breaking and show how the Lifshitz
theory emerges from it.

All of the above are defined in the flat spacetime limit. In Section 6, we develop effective
field theories toward a curved spacetime dipolar Chern-Simons theory. In Section 6.1, we
generalize (2) to curved spacetime with the help of dipole Goldstone. We then move further to
consider a pure gauge theory in 3D spacetime in Section 6.2. By treating the dipole symmetry
in an equal footing as the spacetime symmetry, we arrive at a non-abelian Chern-Simons theory
following the canonical construction of topological 3D gravity [43–46]. The resulting theory
is a generalized Wen-Zee term [47], and we will show that it enriches present understandings
of “fracton-elasticity duality” [48–50] (see also a review [51]).

3For example, it was shown in [19] that the dipole current in dipole hydrodynamics will have anti-symmetric
components that must couple to the anti-symmetric part of the dipole gauge field. Such coupling is disallowed in
the symmetric higher-rank gauge theory.
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2 Dipole anomaly in one spatial dimension

We start by proposing a boundary anomalous theory and then search for a bulk Chern-Simons
theory that cancels the boundary anomaly.

Denote the compact phase variables for charge and dipole moment as φ,φ x . In d = 1, φ x

is like a scalar charge. Under U(1) and dipole symmetry transformations, they shift by

φ(x)→ φ(x) +α− xξx (mod 2π) , (3a)

φ x(x)→ φ x(x) + ξx . (3b)

Consider a D = 1+ 1 system described by a real-time action that is invariant under the above
global symmetry

S[φ,φ x] =

∫

d2 x
χ

2
(∂tφ)

2 −
Kn

2
(∂xφ +φ

x)2 − C∂tφ
x∂xφ

x +
κ

2
(∂tφ

x)2 . (4)

In the action, we did not include the kinetic part (∂iφ
x)2 as the system is not in the symmetry

broken phase; see Section 5 for dipole symmetry breaking. The C-term, which has the first-
order time derivative, will be responsible for the anomaly in the system. The Noether current
is obtained by allowing α(t, x) and ξx(t, x) to be spacetime dependent. This leads to, to the
leading order in α,ξx ,

δS =

∫

d2 x χ∂tφ(∂tα− x∂tξ
x)− Kn(∂xφ +φ

x)(∂xα− x∂xξ
x)− 2C∂tφ

x∂xξ
x +κ∂tφ

x∂tξ
x

=

∫

d2 x Jµ∂µα+ Ĵµx ∂µξ
x , (5)

from which we identify the currents as

J t ≡ n= χ∂tφ , J x = −Kn(∂xφ +φ
x) , Ĵ t

x = κ∂tφx − xn , Ĵ x
x = −2C∂tφx − xJ x . (6)

Notice that the dipole current Ĵµx has a component proportional to xJµ that describes the
orbital part of the dipole moment. Now, we try to gauge the action (4) by adding the corre-
sponding gauge fields Âµ, Ax

µ. The gauged action is given by

S[φ,φ x , A, Ax] = S[φ,φ x]−
∫

d2 x (JµÂµ + Ĵµx Ax
µ)

+

∫

d2 x
�

1
2

Ax
t (κAx

t − 2CAx
x) +

χ

2
(Ât − xAx

t )
2 −

Kn

2
(Âx − xAx

x)
2
�

, (7)

where the second line is some suitable counterterm. Under gauge transformations
φ → φ + α − xξx , φ x → φ x + ξx and Âµ → Âµ + ∂µα, Ax

µ → Ax
µ + ∂µξ

x , the gauged ac-
tion changes by

δS[A, Ax ;α,ξx] =

∫

d2 x Cξx(∂xAx
t − ∂tA

x
x) . (8)

It is impossible to completely remove this anomalous gauge transformation by adding further
local counterterms, therefore, (4) encounters an ’t Hooft anomaly. The ’t Hooft anomaly can
be canceled by a bulk Chern-Simons theory. Consider the Chern-Simons term in D = 2+ 14

SCS[A
x] = C

∫

d3 x εµνρAx
µ∂νA

x
ρ . (9)

4We are informed that Leo Radzihovsky has constructed a similar Chern-Simons term for vector charge theory
in an unpublished work.
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Suppose the action is only defined on y ≤ 0. Under a gauge transformation, the Chern-Simons
action changes by

δSCS[A
x ;ξx] = C

∫

d3 x εµνρ∂µ(ξ
x∂νA

x
ρ)

= C

∫

d2 x ξxενρ∂νA
x
ρ = −δS . (10)

Hence, a gauge invariant theory is a sum of the Chern-Simons action (9) and the boundary
action (4).

The dipolar Chern-Simons theory in (9) is anisotropic, i.e. it does not involve the y-dipole.
If, instead, we have an isotropic dipolar Chern-Simons theory

SCS[A
a] = C

∫

d3 x εµνρAa
µ∂νA

a
ρ , (11)

for a = x , y , its boundary must also be anomalous in terms of the y-dipole moment φ y .
However, since we put the boundary at y = 0, the φ y is out of the plane. This implies that if
looking at the line y = 0,φ y would move like an unconstrained charge since its dipole moment
can always be preserved. Therefore, the ’t Hooft anomaly for the y-dipole is identical to that
for U(1) charge without dipole symmetry. Nevertheless, this out-of-plane dipole anomaly will
be important for the discussion in Section 3.

The Chern-Simons theory (11) has appeared in [31] in a different manner. They used
higher-rank gauge fields (At , Ai j) to construct it as

SgCS[Ai j , At] = C

∫

d3 x
�

εi jȦikAk
j − 2Atε

i j∂i∂kAk
j

�

. (12)

By taking Aa
t = ∂aAt and identifying the physical spacetime with the internal spacetime, we

find (11) reduces to (12). This is consistent with the gauge fixing discussed below (1) in order
to reduce the dipole gauge fields to the higher-rank gauge fields. Several remarks follow. First,
the way the higher-rank gauge theory is used to construct (12) does not have a direct general-
ization to our most general Chern-Simons theory in (2). Second, the length (L) dimension of
each field is different in the two theories. For (12), they have [Ai j] = L−1 and [At] = L0 [31].
However, we have [Aa

µ] = [Aµ] = L−1 and the dimensional analysis is taken with respect to the

physical spacetime only. The latter principle further indicates that [δa
µ] = L−1 and [xa] = L0

because ea
µ = δ

a
µ is a 1-form field and xa lives in the internal spacetime.

The action variation (5) leads to a conservation of dipole current as ∂µ Ĵµx = 0. This is
not written in the canonical way where dipole current is not conserved (see [19]), and this is
because Ĵµx contains the orbital dipoles. To have the non-conservation of dipole current, we
define the intrinsic dipole current Jµx = Ĵµx + xJµ, and then the dipole Ward identity changes
to ∂µJµx = J x . Along with it is the change of the U(1) gauge field Aµ = Âµ − xAx

µ, which then
transforms as

Aµ→ Aµ + ∂µα− x∂µξ
x = Aµ + ∂µα

′ +δµxξ
x . (13)

This agrees with (1). Now, combining (5) and (10), we obtain the anomalous equations of
motion

∂µJµ = 0 , (14a)

∂µJµx = J x + CεµνF x
µν , (14b)

where F x
µν = ∂µA

x
ν − ∂νA

x
µ.
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The boson action (4) indicates that φ x is gapped [42]: By the change of variable
φ x′ = φ x + ∂xφ, the Kn-term generates a mass term for φ x′, so we can set φ x′ = 0, and
obtain (up to higher derivative corrections)

φ x ≈ −∂xφ . (15)

This is also clear from the equation of motion (14b) that in the absence of the external field, we
have J x ≈ O(∂ 2φx), so using (6), we find (15) to the leading derivative order. Now, keeping
the next-leading derivative order, we have J x ≈ ∂x J x

x ≈ 2C∂t∂
2
x φ. Using ∂µJµ = 0, we arrive

at the chiral equation
χ∂tφ + 2C∂ 3

x φ = 0 . (16)

Upon Fourier transformation, we obtain a cubic chiral mode

ω= −
2C
χ

k3
x . (17)

It was recognized that the damped anomalous chiral mode in d = 1 will flow to the Kardar-
Parisi-Zhang (KPZ) universality class [52]. To study dissipation, one needs to construct an
effective field theory on a Schwinger-Keldysh contour. This has been done recently in [15]
though for different purposes. According to [15], the cubic chiral mode would experience a
quartic dissipation forming a damped mode ω ∼ k3

x − ik4
x . However, nonlinearity is relevant

in d = 1. By a zeroth-order scaling analysis, the true dissipative fixed point is predicted to be
ω ∼ k3

x − ikz
x with z ≈ 7/2, which, a priori, does not belong to the KPZ class [15]. Therefore,

our dipolar Chern-Simons theory provides a concrete example to realize the novel universality
class beyond KPZ.

In the presence of dipole symmetry, the U(1) chiral anomaly is forbidden. This can be
seen through both boundary and bulk theories. The boundary chiral boson action for U(1)
anomaly must take ∂tφ(∂xφ +φ x) to preserve the dipole symmetry. According to (15), the
anomalous charge flow is gapped and charges cannot propagate by themselves, so such a
term gives trivial dynamics at the boundary. From the perspective of the bulk, there is no
gauge invariant U(1) Chern-Simons theory under gauge transformation (1). For example,
if U(1) gauge transformation is preserved, we can have

∫

εµνρAµ∂νAρ, but it is not dipole
gauge invariant. If considering a mixed gauge interaction

∫

εµνρ(Aµ∂νAρ − 2AµδνxAx
ρ), it

fixes the dipole gauge transformations of the first term but, at the same time, generates more
terms under both U(1) and dipole gauge transformations. This fact can already be generalized
to systems that preserve multipole symmetries, and in that case, only the highest multipole
symmetry can support the ’t Hooft anomaly.

3 Dipole anomaly in two spatial dimensions

Since U(1) Chern-Simons theory only exists in even spatial dimensions, U(1) anomaly can only
occur in odd spatial dimensions. This is no longer true for dipolar Chern-Simons theory and
dipole anomaly together with an appropriate discrete rotational symmetry. To see it, consider
D = 3 + 1 spacetime, and introduce the vielbein ea

µ. Here, ea
µ transforms as a vector under

rotational symmetry. It is important to work in flat spacetime ea
µ = δ

a
µ such that the vielbein is

not a truly gauge field; we will come back to gauging both dipole and spacetime in Section 6.2.
Combining the two 1-forms δa

µ and Aa
µ, we can construct the following Chern-Simons theory

SCS = C

∫

d4 xεµνρσAa
µ∂νA

b
ρδ

c
σ fabc , (18)
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where fabc is a totally symmetric invariant tensor under a discrete rotational symmetry. In
the following, we will consider two different point group symmetries, construct bulk dipolar
Chern-Simons theories, and study their corresponding boundary anomalies. Note, this per-
spective is the inverse of that taken in Section 2.

3.1 Tetrahedral dipole anomaly

Consider a three-dimensional fluid with tetrahedral symmetry [53]. There exists a dipolar
Chern-Simons term

SCS = CT

∫

d4 x εµνρσAa
µ∂νA

b
ρδ

c
σ f T

abc , (19)

with f T
x yz = f T

xz y = f T
yzx = f T

zx y = 1. While the dipolar Chern-Simons term breaks time-reversal
symmetry, it does not break parity in all three directions. By contrast, a U(1) Chern-Simons
term breaks parity in every direction. Suppose putting boundary at z = 0, the dipolar Chern-
Simons theory under gauge transformation changes by

δSCS(z = 0) = CT

∫

dtdxdydz εµνρσ∂µ(ξ
a∂νA

b
ρδ

c
σ f T

abc) = CT

∫

dtdxdy ενρIξa∂νA
b
ρ f T

abI ,

(20)
where capital letters I , J run over the two-dimensional boundary. Manipulating in a reverse
way as Section 2, we find the chiral boson action

S[φ,φa] =

∫

dtdxdy
χ

2
(∂tφ)

2 −
Kn

2
(∂Iφ +φI)

2 − CTε
I J∂tφ

a∂Iφ
b f T

abJ +
κ

2
(∂tφ

a)2 . (21)

By varying the action with respect to the boson fields and using φI ≈ −∂Iφ, we arrive at the
equations of motion

χ∂tφ − 2CT(∂
2
x − ∂

2
y )φz = 0 ,

κ∂tφz + 2CT(∂
2
x − ∂

2
y )φ = 0 . (22)

Upon Fourier transformation, it leads to two modes

ω= ±

√

√

√4C2
T

κχ
|k2

x − k2
y | . (23)

The two counterpropagating modes form a time-reversal pair. Since the tetrahedral group is
symmetric in exchanging x , y, z, the boundary anomaly at x = 0 or y = 0 will be similar.
However, the anomaly does differ if the boundary is located in an arbitrary direction. To see
it, we rotate the invariant tensor through f T,R

acd = Ry
ab f T

bcd , where Ry is the rotation matrix along
y . Parametrizing the rotation matrix by θ , we have

f T,R
zx y = f T,R

z y x = f T,R
x yz = f T,R

xz y = cosθ ,

f T,R
x x y = f T,R

x y x = − f T,R
z yz = − f T,R

zz y = sinθ ,

f T,R
y xz = f T,R

yzx = 1 . (24)

Then, the chiral boson action at z = 0 is given by

S[φ,φa] =

∫

dtdxdy
χ

2
(∂tφ)

2 −
Kn

2
(∂Iφ +φI)

2 − CTε
I J∂tφ

a∂Iφ
b f T,R

abJ +
κ

2
(∂tφ

a)2 . (25)
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Varying the action, we obtain

χ∂tφ − CT(2 cosθ∂ 2
x − (cosθ + 1)∂ 2

y )φz + 2CT sinθ (∂ 3
x − ∂x∂

2
y )φ = 0 ,

κ∂tφz + CT(2cosθ∂ 2
x − (cosθ + 1)∂ 2

y )φ + 2CT sinθ∂xφz = 0 . (26)

When θ = 0, we recover (23). However, as soon as θ ̸= 0, the boundary modes changes, to
the leading order in wavevectors, as

ω≈
2CT

χ

�

−
k3

x

sinθ
+ kx k2

y cot
θ

2

�

, (27a)

ω≈
2CT sinθ
κ

kz . (27b)

The two modes are now chiral and break the time-reversal symmetry as well as the parity
of x and z, but preserve the parity of y . This is consistent with the rotated invariant tensor,
or equivalently the rotated boundary, that the bulk dipolar Chern-Simons theory is invariant
under the parity of y .

3.2 Triangular dipole anomaly

Consider a two-dimensional (x-y plane) triangular symmetry [54,55]. There exists a dipolar
Chern-Simons term

SCS = C△

∫

d4 x εµνρσAa
µ∂νA

b
ρδ

c
σ f △abc , (28)

with f △abc = δaxσ
x
bc+δa yσ

z
bc , where σx ,y,z are three Pauli matrices. There is another invariant

tensor f △′abc = δaxσ
z
bc −δa yσ

x
bc corresponding to rotating the triangle by 180 degrees, and the

two invariant tensors are related by εda f △′abc = f △d bc . This dipolar Chern-Simons term breaks
time-reversal symmetry and parity of x and z but preserves the parity of y due to the oddity
of f △abc under y →−y .

Let us first consider putting a boundary at y = 0. Under the gauge transformation, (28)
changes by

δSCS(y = 0) = C△

∫

dtdxdydz εµνρσ∂µ(ξ
b∂νA

c
ρδ

d
σ f △bcd) = C△

∫

dtdxdz ενρxξa∂νA
b
ρ f △abx .

(29)
The corresponding chiral boson action is given by

S[φ,φa] =

∫

dtdxdz
χ

2
(∂tφ)

2 −
Kn

2
(∂Iφ +φI)

2 − C△∂tφ
a∂zφ

b f △abx +
κ

2
(∂tφ

a)2 , (30)

where I = x , z. Varying the action and using φI ≈ −∂Iφ, we arrive at the equations of motion

χ∂tφ − 2C△∂x∂zφy = 0 ,

κ∂tφy + 2C△∂x∂zφ = 0 . (31)

Upon Fourier transformation, it leads to two modes

ω= ±

√

√

√
4C2
△

κχ
|kx kz| . (32)

Similar to the tetrahedral dipole anomaly, the counterpropagating modes here are quadratic.
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If the boundary is at x = 0, the action changes by

δSCS(x = 0) = C△

∫

dtdxdydz εµνρσ∂µ(ξ
b∂νA

c
ρδ

d
σ f △bcd) = C△

∫

dtdydz ενρ yξa∂νA
b
ρ f △ab y .

(33)
The corresponding chiral action is given by

S[φ,φa] =

∫

dtdydz
χ

2
(∂tφ)

2 −
Kn

2
(∂Iφ +φI)

2 − C△∂tφ
a∂zφ

b f △ab y +
κ

2
(∂tφ

a)2 . (34)

Varying the action and using φI ≈ −∂Iφ, we arrive at the equations of motion

χ∂tφ − 2C△∂
2
y ∂zφ = 0 ,

κ∂tφx − 2C△∂zφx = 0 . (35)

Upon Fourier transformation, it leads to two chiral modes

ω=
2C△
χ

k2
y kz , (36)

ω= −
2C△
κ

kz , (37)

with both linear and cubic dispersion relations. As promised by the bulk dipolar Chern-Simons
theory, the chiral modes are odd under parity of z but even under parity of y .

We can further consider an arbitrary boundary perpendicular to the x-y plane. Instead of
rotating the coordinate, we rotate the invariant tensor through f △,R

acd = Rab f △bcd . Parametrizing
the rotation matrix by θ , we have

f △,R
acd = δa,x(cosθσx

cd − sinθσz
cd) +δa,y(sinθσ

x
cd + cosθσz

cd) = cosθ f △acd − sinθ f △′acd . (38)

Let the boundary be at y = 0, so the action changes by

δSCS(y = 0) = C△

∫

dtdxdydz εµνρσ∂µ(ξ
b∂νA

c
ρδ

d
σ f △,R

bcd ) = C△

∫

dtdxdz ενρxξa∂νA
b
ρ f △,R

abx .

(39)
The corresponding chiral boson action is given by

S[φ,φa] =

∫

dtdxdz
χ

2
(∂tφ)

2 −
Kn

2
(∂Iφ +φI)

2 − C△∂tφ
a∂zφ

b f △,R
abx +

κ

2
(∂tφ

a)2 . (40)

Varying the action and using φI ≈ −∂Iφ, we arrive at the equations of motion

χ∂tφ − 2C△ sinθ∂ 2
x ∂zφ − 2C△ cosθ∂x∂zφy = 0 ,

κ∂tφy − 2C△ sinθ∂zφy + 2C△ cosθ∂x∂zφ = 0 . (41)

When θ = 0, we get back (32). However, when θ ̸= 0, it will lead to two chiral modes (to the
leading order in wavevector)

ω≈
2C△
χ sinθ

k2
x kz , (42)

ω≈ −
2C△ sinθ

κ
kz . (43)

It is consistent with (36) when setting θ = π/2.
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If the boundary is at z = 0, the action changes by

δSCS(z = 0) = C△

∫

dtdxdydz εµνρσ∂µ(ξ
b∂νA

c
ρδ

d
σ f △bcd) = C△

∫

dtdxdy ενρIξa∂νA
b
ρ f △abI .

(44)
The corresponding chiral boson action is given by

S[φ,φa] =

∫

dtdydz
χ

2
(∂tφ)

2 −
Kn

2
(∂Iφ +φI)

2 − C△ε
I J∂tφ

a∂Iφ
b f △abJ +

κ

2
(∂tφ

a)2 . (45)

Varying the action and using φI ≈ −∂Iφ, we arrive at the equations of motion

χ∂tφ + 2C△(∂
3
x − 3∂ 2

y ∂x)φ = 0 . (46)

Upon Fourier transformation, it leads to a single chiral mode

ω= −
2C△
χ
(k3

x − 3k2
y kx) , (47)

with cubic dispersion relation. As promised by the bulk dipolar Chern-Simons theory, the chiral
mode is odd under parity of x but even under parity of y . The dipolar Chern-Simons term
does not involve the z-dipole that is out of the plane, so there is no linear-dispersing mode.

3.3 Boundary-dependent bulk-edge correspondence

When the boundary is orthogonal to the direction along which the parity is preserved by the
bulk dipolar Chern-Simons theory, the boundary gapless modes will form a time-reversal pair.
These modes have a different universal behavior from the chiral modes at other boundaries.
For instance, they are quadratically dispersing and counterpropagating against each other.5 In
fact, unlike the chiral modes, those non-chiral modes are protected by additional symmetries.
They are protected by the parity normal to the boundary. Since the bulk is even under the
parity normal to the boundary, the out-of-plane gapless mode is forbidden in the equation of
motion. Hence, the out-of-plane dipole has to couple to the charge, which is bonded to the in-
plane dipole, to form a paired mode. We further justified it by considering symmetry-breaking
perturbations. This is amount to choosing different boundaries. We have seen that as soon as
the parity normal to the boundary is not a symmetry of the bulk, the non-chiral modes will
become two chiral modes with different dispersion at the leading order in wavevectors. In
a word, the non-chiral modes at specific boundaries correspond to some symmetry-protected
topological (SPT) bulk, while the chiral modes at generic boundaries correspond to a more
general bulk that does not require additional symmetries, like quantum Hall state for exam-
ple. Moreover, observe that such non-chiral modes cannot happen in a single-specie fluid, like
the U(1) chiral anomaly, and is instead carried by a mixture of the dipole moments that are
in the plane and out of the plane. Therefore, we suggest calling it the mixed anomaly be-
tween the in-plane dipole moment and out-of-plane dipole moment. As a result, we find that
the dipole anomaly with point group symmetries would violate the conventional bulk-edge
correspondence: A single bulk dipolar Chern-Simons theory may lead to different boundary
anomalies at different boundaries,6 and, at the same time, these different boundary anomalies
would correspond to either SPT or a generic bulk depending on whether there is an additional
symmetry that is protecting the boundary modes.

5This type of boundary anomalous flow is similar to the quantum spin Hall edge state, but the symmetries that
protect them are different.

6Similar observations have been made in a recent work about subsystem anomaly [56]. In the meantime, it
was noticed that a single boundary anomaly may correspond to different bulk fracton models [57–59].
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Following the analysis at the end of Section 2 and assuming isotropy, the zeroth-order
dissipative fixed point for the cubic chiral modes in d = 2 would be z ≈ 4. This is equal to
the subdiffusive scaling at the linear level, so d = 2 is the critical dimension. On the other
hand, the zeroth-order dissipative fixed point for the quadratic modes in d = 2 would be z ≈ 3.
This is still below z = 4 from linear analysis, so we anticipate a new dissipative fixed point.
In a word, a single bulk dipolar Chern-Simons theory could support different dissipative fixed
points on different boundaries.

As a final remark, the gapless edge modes would lead to UV/IR mixing [26]. For exam-
ple, taking kx − ky = 0 in (23), the low energy state ω = 0 talks to both small wavevector
kx+ky ≪ 1 and large wavevector kx+ky ≫ 1. This type of dispersion relation is also relevant
for the exciton Bose liquid [60,61].

4 Analogy to torsional anomaly in U(1) quantum Hall state

In this section, we take a detour to consider a U(1) quantum Hall state in D = 2+ 1 without
dipole symmetry. However, there is an emergent nonlinear dipole-like symmetry on the Lowest
Landau level (LLL) as recently discussed in [62]. This is realized as the volume-preserving
diffeomorphism (VPD). Consider a spatial Lie derivative

Lχ i ea
µ = χ

i∂ie
a
µ + ∂µχ

iδa
i , (48)

and ∂iχ
i = 0 for VPD. Notice that the linear term ∂µχ

iδa
i looks just like the dipole gauge trans-

formation in (1). By coupling to the background U(1) gauge field Aµ and fixing Ai = −
1
2 Bεi j x j ,

we arrive at the equations of motion (in the flat spacetime limit) [62]

∂µJµ = 0 ,

∂i T
i
a = BεabJ iδi b . (49)

This coincides with the hydrodynamic equations under a magnetic field and in the LLL limit
by letting m→ 0. Let us now introduce a Chern-Simons term in D = 3+ 1 mimicking (18):

Storsion = C ′
∫

d4 x εµνρσea
µ∂νe

b
ρδ

c
σ fabc , (50)

and we find that this is the generalized torsional Chern-Simons theory [63, 64]. Under the
nonlinear diffeomorphism (48), (50) changes by

δStorsion = C ′
∫

d4 x εµνρσ
�

χ i∂ie
a
µ∂νe

b
ρ + ∂µχ

iδa
i ∂νe

b
ρ + ea

µ∂ν(χ
i∂ie

b
ρ + ∂ρχ

iδb
i )
�

δc
σ fabc

= C ′
∫

d4 x εµνρσ
�

χ i∂ie
a
µGb
νρ + ∂µχ

iδa
i Gb
νρ

�

δc
σ fabc

= −C ′
∫

d4 x εµνρσδa
µ∂iχ

iGb
νρδ

c
σ fabc = 0 , (51)

where we approximated the spacetime to have constant torsion Ga
µν = ∂µea

ν − ∂νe
a
µ and to be

close to the flat limit, and in the last step we used VPD. To obtain the boundary anomaly, let
us consider a triangular symmetry in the x-y plane, and place the boundary at z = 0. The
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boundary terms from (51) are given by

δStorsion = C ′
∫

d3 x εµzρcea
µ(χ

i∂ie
b
ρ + ∂ρχ

iδb
i ) fabc + ε

zνρcχ iδa
i Gb
νρ fabc

= C ′
∫

d3 x εzνρcχ iδa
i Gb
νρ fabc . (52)

The first term vanishes because fabc is fully symmetric. Then, the torsional Chern-Simons term
changes the equations of motion in (49) to

∂µJµ = 0 ,

∂i T
i
a = BεabJ iδi b + C ′εµνcGb

µν fabc . (53)

Consequently, rather than being subdiffusive [65], the U(1) quantum Hall state under torsional
anomaly will develop a cubic dispersing chiral mode just like in (47).

5 Generalized particle-vortex duality with dipole symmetry

Particle-vortex duality typically maps between particle excitations in one theory and vortex
excitations in another theory. The conventional particle-vortex duality describes a mapping
between the following two models:

XY model : S =

∫

d3 x |(∂µ − iAµ)Φ|2 + V (Φ) , (54a)

Higgs model : S =

∫

d3 x |(∂µ − iaµ)Φ̃|2 + Ṽ (Φ̃) +
1

2π
εµνρAµ∂νaρ , (54b)

where Aµ is the background gauge field. The essence of the particle-vortex duality is realized
through the mixed Chern-Simons term involving the dynamical gauge field aµ, which reveals
that the charge density associated with Φ is equal to the flux density da/2π. Therefore, the
Goldstone mode of spontaneously symmetry broken XY model is identified with the dual pho-
ton in the Higgs model. The exact same idea can be generalized to spontaneously broken
dipole symmetry: The dipole symmetry acts just like a U(1) symmetry for dipole moments.
Imagine dipole shifts on the dipole scalar field Φa→ Φaeiξa

, where a = 1,2, . . . are just labels.
Then, we can immediately write down the particle-vortex duality for dipoles:

dipole− XY model : S =
∑

a

∫

d3 x |∂µΦa − iAa
µΦ

a|2 + V (Φa) , (55a)

dipole−Higgs model : S =
∑

a

∫

d3 x |∂µΦ̃a − iaa
µΦ̃

a|2 + Ṽ (Φ̃a) +
1

2π
εµνρAa

µ∂νa
a
ρ . (55b)

Note there are no U(1) degrees of freedom in these dipole models. A more interesting scenario
is to include U(1) symmetry. However, since we can not have the U(1) Chern-Simons term
in the presence of dipole symmetry, including U(1) symmetry will not bring about additional
duality in terms of the flux attachment. To have a non-trivial duality, we need to condense the
dipole first, and then study the remaining U(1) phase transition; such U(1) symmetry breaking
has been studied in [42], and the condensed phase was argued to be Lifshitz-like.

Let us call the dipole Goldstone ϕa, and it transforms under the dipole shift as

ϕa→ ϕa + ξa . (56)
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It is useful to define the modified U(1) gauge fields

Bµ[ϕa]≡ Âµ − xaAa
µ −δµaϕ

a , (57a)

bµ[ϕa]≡ âµ − xaAa
µ −δµaϕ

a , (57b)

where Âµ, âµ transform as normal U(1) gauge field like in Section 2. We propose a new type
of particle-vortex duality mediated by dipole Goldstone:

ϕa−XY model : S =

∫

d3 x |(∂µ − iBµ[ϕ
a])Φ|2 + (∂µϕa − Aa

µ)
2 + V (Φ) , (58a)

ϕ̃a−Higgs model : S =

∫

d3 x |(∂µ − ibµ[ϕ̃
a])Φ̃|2 + (∂µϕ̃a − Aa

µ)
2 + Ṽ (Φ̃)

+
1

2π
εµνρBµ[ϕ̃

a]∂νbρ[ϕ̃
a] . (58b)

Both models have a global dipole symmetry: The shift Φ → Φe−ixaξa
is canceled by the shift

of −xaAa
µ − δµaϕ

a in (57), and the Chern-Simons term in (58b) is invariant up to a total
derivative. Like (54), ϕa−XY model has a U(1) global symmetry, while ϕ̃a−Higgs model has
a U(1) gauge symmetry.

There are two phases in ϕa−XY model: i) unbroken U(1), and ii) spontaneously broken
U(1). Case i has gapped Φ excitations but linear-dispersing gapless ϕa. In case ii, we can
parametrize the scalar field as Φ = ρeiφ , and neglect the massive excitations of ρ. The low-
energy theory becomes

SU(1) broken =

∫

d3 x (∂µφ +δµaϕ
a)2 + (∂µϕ

a)2→
∫

d3 x (∂tφ)
2 + (∂i∂aφ)

2 , (59)

where we used the fact that the dipole Goldstone is gapped by the U(1) Goldstone:
∂µφ = −δµaϕ

a. The low-energy excitations are ω ∼ k2 and thus is Lifshitz-like. In this
phase, the theory also has vortex excitations. Unlike the usual superfluid vortex, the U(1)
vortex here is given by [8]

−
∮

dx i xa∂i∂aφ = −
∮

dx i ∂i(x
a∂aφ) +

∮

dx i∂iφ = 2πn , n ∈ Z . (60)

On dimensional ground, such a vortex is gapped since it is logarithmically confined.
Let us now look at the ϕ̃a−Higgs model, which also has two phases: i) unbroken U(1)

gauge symmetry, and ii) broken U(1) gauge symmetry. In case i, the dynamical gauge field
bµ will support dual photon σ excitations. To see it, we ignore the coupling to the field Φ̃ and
introduce the Maxwell term. The partition function reads

Z =

∫

Db exp

�

i

∫

d3 x −
1

4g2
f 2 −

1
4π
εµνρδµaϕ̃

a fνρ

�

=

∫

D f Dσ exp

�

i

∫

d3 x −
1

4g2
f 2 −

1
4π
εµνρδµaϕ̃

a fνρ +
1

4π
εµνρσ∂µ fνρ

�

, (61)

where fµν = ∂µbν− ∂νbµ, and σ is a Lagrangian multiplier implementing the Bianchi identity
εµνρ∂µ fνρ = 0. Using the equation of motion

f µν = −
g2

2π
εµνρ
�

∂µσ+δµaϕ̃
a
�

, (62)

we can integrate out fµν to obtain an effective action

Sdual photon =

∫

d3 x
g2

8π2
(∂µσ+δµaϕ̃

a)2 . (63)
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Compared to (59), we identify σ with φ as the hallmark of the particle-vortex duality. Adding
back the dipole Goldstone dynamics, we get the Lifshitz scaling at low energy. In the meantime,
the Φ̃ excitations are gapped and their interactions are mediated by the Coulomb interaction.
In d = 2, Coulomb energy has logarithmic divergence, so it matches the vortex excitations in
the ϕa−XY model. Therefore, case i in ϕ̃a−Higgs model is dual to case ii in ϕa−XY model.

One may wonder if the dipole Goldstone in the dual theory is still “gapped” when the
dynamical gauge field is turned off. Naively, this would lead to a linear-dispersing dipole
Goldstone that is in tension with the Lifshitz theory. Thanks to the Chern-Simons term in
(58b), the correct low-energy theory in the dual picture is given by

Sdual =

∫

d3 x −
1

2π
εabϕ̃

a∂tϕ̃
b + (∂iϕ̃

a)2 , (64)

where we neglected the second-order time derivatives. This theory has a Lifshitz fixed point
ω ∼ k2. The first-order time derivative term indicates that ϕ̃x and ϕ̃ y are canonically conju-
gate to each other reminiscent of the Heisenberg ferromagnet [66]. In fact, the analogy is not
a coincidence – dipole moment of vorticity (recall the dual theory is a theory of vortex) does
not commute with itself: [67]

{Di , Dj}= −εi jΓ , (65)

where {, } is the Poisson bracket, and Γ is the total vortex. Think of Γ as the total spin, the
dipole moment has an identical algebra as the Heisenberg ferromagnet, and importantly, it
allows for the first-order time derivative term to appear in (64). Thus the two linear-dispersing
Goldstone will couple together to form a single quadratic-dispersing Goldstone. To summarise,
the Chern-Simons term in (58b) plays two roles in the dual theory. First, it generates the usual
flux attachment to relate the gauge vortex σ to the real particle Φ. Second, it reflects the
non-commutativity of dipole moments in the dual picture and leads to a Lifshitz fixed point.

Lastly, in case ii, Φ̃ acquires an expectation value, so the U(1) gauge symmetry is broken,
and the dual photon σ becomes massive. This results in bµ = 0, so the dipole Goldstone
becomes linear-dispersing. This phase is thus dual to case i in ϕa−XY model.

6 Dipolar Chern-Simons theory on curved spacetime

In D = 2 + 1, the usual U(1) Chern-Simons theory can be written in the differential form
∫

A∧ F , where F = dA is the two-form field strength. In this way, the U(1) Chern-Simons term
is invariant under U(1) gauge transformation in a generic closed manifold, and the integral
does not depend on the metric meaning it is a topological field theory. However, a naive
generalization to dipolar Chern-Simons theory like

∫

Aa ∧ F b fab with F b = dAb is not correct
because this term is not invariant under the dipole gauge transformation on curved spacetime
[19]

Aa
µ→ Aa

µ +∇µξ
a , (66)

where∇µξa = ∂µξa+ωa
µbξ

b, andωa
µb is the spin connection. It turns out that it is impossible

to find a dipole field strength that is invariant under (66) since any vector charge gauge field
will necessarily encounter the Ricci curvature when computing its own “curvature”. The reason
is that the dipole algebra is “non-abelian” in spacetime:

[Pb, Dc] = −iQδbc , (67a)

[Pd , Lbc] = i (δdc Pb −δd bPc) , (67b)

[Dd , Lbc] = i (δdc Db −δd bDc) , (67c)

[Lbc , Lde] = i (δbd Lce −δbe Lcd −δcd Lbe +δce Lbd) , (67d)
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where Pa generates translation symmetry, Da generates dipole symmetry, and Lab generates
SO(d) rotational symmetry.

To build a gauge invariant theory on curved spacetime, we need to either cancel (66) by
coupling to matter fields or treat the dipole symmetry as a part of the spacetime symmetry
in (67). The former is presented in Section 6.1 to include dipole Goldstones in the dipolar
Chern-Simons theory. The latter leads to a non-abelian Chern-Simons theory in Section 6.2.

Before constructing the field theories, we review some necessary ingredients of the vielbein
formalism; for a complete analysis of dipole symmetry on curved spacetime, we refer readers
to [19]. The covariant derivative is defined as

∇µe0
ν = ∂µe0

ν − Γ
ρ
µνe

0
ρ , (68a)

∇µeb
ν = ∂µeb

ν +ω
b
µce

c
ν − Γ

ρ
µνe

b
ρ , (68b)

where Γρµν is the Christoffel connection, and ωa
µb is the spin connection for space only. Since

the spin connection and the Christoffel connection are not independent, and it is more natural
to treat the spin connection as the gauge field for spatial rotational symmetry (see (79)), we
impose the metric compatibility condition

∇µeαν = 0 , (69)

such that the Christoffel connection can be expressed in terms of the spin connections and the
vielbeins. We will further fix the temporal component of the vielbein to be e0

µ = δ
0
µ since the

time translation generator is central in the dipole algebra (67) so its gauge field e0
µ is decoupled

from the theory we are interested in. Now, the vielbein is full rank, and its inverse is defined
through

eαµeµ
β
= δαβ , eαµeνα = δ

ν
µ . (70)

6.1 Couple to dipole Goldstone

Define the dipole field strength as [19]

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ +ω

a
µbAb

ν −ω
a
νbAb

µ . (71)

It transforms under dipole shift (66) as F a
µν→ F a

µν + Ra
bµνξ

b, with

Rb
cµν ≡ ∂µω

b
νc − ∂νω

b
µc +ω

b
µdω

d
νc −ω

b
νdω

d
µc , (72)

the curvature tensor. In order to have a gauge-invariant field strength, we introduce the dipole
Goldstone ϕb that transforms under dipole shift as

ϕa→ ϕa + ξa . (73)

The gauge-invariant field strength is defined as

F̃ a
µν ≡ F a

µν − Ra
bµνϕ

b . (74)

Now,
∫

Aa ∧ F̃ b fab is still not gauge-invariant, but transforms as

δ

∫

Aa ∧ F̃ b fab =

∫

d3 x∂µ
�

eεµνρξa F̃ b
νρ fab

�

−
∫

d3 x eξa∇′µ
�

εµνρ F̃ b
νρ

�

fab , (75)
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where ∇′µ ≡ ∇µ + 2Γ ν[µν], and we used ∇µ fab = 0. While the first term is a boundary term,

the second term needs an additional term ϕa∇′µ
�

εµνρ F̃ b
νρ

�

to cancel it. Collecting the above
results, we arrive at the final gauge-invariant dipolar Chern-Simons term:

SCS = C

∫

d3 x e
�

εµνρAa
µ F̃ b
νρ +ϕ

a∇′µ
�

εµνρ F̃ b
νρ

��

fab . (76)

The inclusion of the dipole Goldstone makes physical sense – when dipoles want to form cy-
clotron motions in the quantum Hall phase on the curved spacetime, due to the kinetic con-
straint, the dipoles must be generated out of the condensate.

We expect that (76) is relevant to the construction of parity-violating dipole hydrodynamics
generalizing [19]. This is a useful starting point since there is no known dipolar anomaly on
curved spacetime to our knowledge. One can then follow the analysis of [68] in a reverse way
to determine various parity-odd transport coefficients in terms of the coefficient C [69].

6.2 Non-abelian Chern-Simons theory of 3D gravity: Fracton-elasticity duality
and beyond

We follow the non-relativistic construction in [43, 44] to build a non-abelian Chern-Simons
theory based on (67); see also the original proposal of relativistic 3D Chern-Simons gravity
in [45,46].7 A non-abelian Chern-Simons theory is given by8

SCS = C

∫

M3

tr
�

A∧ dA+ i
2
3
A∧A∧A
�

, (77)

where the trace encodes a non-degenerate invariant bilinear form on the dipole algebra. The
crucial difference from the Galilean algebra in [43, 44] is that we are allowed to turn off
the time-translation generator H, which is central in the dipole algebra, and the invariant
bilinear form is already non-degenerate without further central extensions. This can be seen
by observing that the bilinear form εabDaPb −

1
2Qεab Lab is invariant and commutes with all

the generators. Hence, we are interested in the following non-degenerate bilinear form

〈Da, Pb〉= εab , 〈Q, Lab〉= −
1
2
εab . (78)

The gauge field A is locally given by a dipole-algebra-valued one-form

A= eaPa +
1
2
ωab Lab + AaDa + AQ , (79)

where we can identify ea
µ as the vielbein, ωab

µ as the spin connection, Aa
µ as the dipole gauge

field and Aµ as the U(1) gauge field. First, we have

−iA∧A= ea ∧ωbaPb − ea ∧ AaQ+ Aa ∧ωbaDb +ω
ac ∧ωbc Lab . (80)

The two-form curvature is then defined as

F ≡ dA+ iA∧A= Ra(P)Pa + Ra(D)Da + Rab(L)Lab + R(Q)Q , (81)

7After this work was completed and posted, we learned that the Carrollian gravity [70] has a similar structure
as our dipole gravity due to their isomorphic algebra [36]. We anticipate that the Carrollian gravity is relevant to
gauging the spacetime dipole symmetry proposed by [71] (see [72]).

8The level C is in general not quantized due to noncompact spacetime symmetries, but its precise value will not
be important in our discussions.
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where the field strengths are given by

Ra(P) = dea +ωab ∧ eb , (82a)

Ra(D) = dAa +ωab ∧ Ab , (82b)

Rab(L) = dωab +ωac ∧ωcb , (82c)

R(Q) = dA+ ea ∧ Aa . (82d)

The dipole field strength Ra(D) and the Ricci curvature tensor Rab(L) agree with (71) and
(72), respectively. Note that in D = 2+ 1, we can write

ωab ≡ωεab , (83)

so ωac ∧ωbc = 0 is trivial. Now, consider a four-dimensional manifold M4. A topological
invariant is given by, according to (78),
∫

M4

tr (F ∧F) =
∫

M4

εab

�

(dAa +ωac ∧ Ac)∧
�

deb +ωbc ∧ ec
�

−
1
2
(dA+ ec ∧ Ac)∧ dωab

�

=

∫

M4

d
�

εabAa ∧ deb − A∧ dω− Aa ∧ω∧ ea
�

. (84)

Because of the closed form, the integral can be reduced to its 3D boundary M3 ≡ ∂M4, which
is by definition the Chern-Simons action (77):

SCS = C

∫

M3

εabRa(D)∧ eb − A∧ dω= C

∫

M3

εabAa ∧ Rb(P)− A∧ dω . (85)

From the construction, (85) is automatically invariant under the non-abelian gauge transfor-
mation δA = dΛ+ iA ∧Λ. As a remark, the gauge transformation in (1) is precisely the flat
spacetime limit of this non-abelian gauge transformation. Interestingly, the second term itself
in (85) is known as the U(1)Wen-Zee term [47], thus, for reasons we shall shortly explain, we
call (85) the dipolar Wen-Zee term. Before a detailed linear response analysis, several remarks
follow. The term ω∧ dω (known as the second Wen-Zee term) can be generated by allowing
a bilinear form 〈Jab, Jcd〉= εabεcd [44], but we neglect it as it decouples from the dipole sym-
metry. We also neglected the gravitational Chern-Simons term due to framing anomaly [73].
There is no dipolar Chern-Simons term Aa ∧ dAa because the bilinear form δabDaDb does not
commute with Pa (see Section 6.1 for dipolar Chern-Simons theory on curved spacetime).

Let us first review the conventional Wen-Zee term. A linear response analysis gives a shift to
the charge density δS/δA0 = −Cεi j∂iω j and a spin current δS/δωµ = −Cεµνρ∂νAρ. Knowing
the vortex in solids corresponds to defects of rotational symmetry described by curvature or
disclination [74], we find a correspondence that each charge/boson is attached by a flux of
the spin connection, i.e. the curvature, and at the same time, each vortex/spin is attached by
a flux of U(1) gauge fields, i.e. the magnetic field. Notice that the former statement of flux
attachment is equivalent to the usual particle-vortex duality (see Section 5), while the latter
gives topological responses in the particle picture. To see it, we note that the Hall viscosity is
equal to the spin density through ηH =

1
2 s0 [62,75], where s0 ≡ δS/δω0 = −CB.9 Therefore,

the Wen-Zee term nontrivially relates the particle-vortex duality to the topological responses
with the same coefficient C .

9Quickly, we have ω0 ≈
1
2ε

abei
a∂t ei b where we used e0

µ
= δ0

µ
and Γσ

ρ0 = 0, so it gives a nonzero Hall viscosity

ηH =
1
2
δS
δ∂t ea

i
εabebi .

17

https://scipost.org
https://scipost.org/SciPostPhys.15.4.153


SciPost Phys. 15, 153 (2023)

Now, let us look at (85). First, the shift of the dipole density is given by

δSCS

δAa
0

= Cεabε
i jRb

i j(P) . (86)

The flux of the torsion field strength εi jRb
i j(P) corresponds to the dislocation density, which

also corresponds to the defects of translational symmetry [74]. In the meantime, the shift to
the charge density is again given by

δSCS

δA0
= −Cεi j∂iω j . (87)

These give rise to the fracton-elasticity duality proposed by [48]:10 (86) gives rise to the
dipole-dislocation duality, where the dipole gets attached by torsion flux, which corresponds
to dislocation in elasticity theory; (87) gives rise to the charge-disclination duality, where the
charge gets attached by curvature flux, which corresponds to disclination in elasticity theory.
Moreover, the same coefficient C in (86) and (87) implies that a dislocation is a bound state
of two equal and opposite disclinations in accordance with [48].

Next, like the conventional Wen-Zee term, (85) also generates topological responses. We
can define a spin current

δSCS

δωµ
= CεµνρAa

νe
a
ρ − Cεµνρ∂νAρ , (88)

and a stress-tensor
δSCS

δea
µ

= −Cεabε
µνρRb

νρ(D) . (89)

Working in flat spacetime afterward, we find a Hall viscosity

ηH =
1
2

s0 =
1
2
δSCS

δω0
=

C
2

�

εi jAa
iδa j − εi j∂iA j

�

, (90)

a stress density

ρstress,a =
δSCS

δea
0

= −Cεabε
i j∂iA

b
j , (91)

and a Hall elasticity

KH =
1
2
δSCS

δea
i
εabebi = −

C
2
δciε

iνρ∂νA
c
ρ . (92)

Both stress density and Hall elasticity are new topological responses absent in the con-
ventional quantum Hall state, and they are present in the dipolar quantum Hall state due
to the translational defects, i.e. dislocations. Defining an effective U(1) magnetic field
Beff = εi j∂iA j − εi jAa

iδa j , a dipole magnetic field Bb
dip = ε

i j∂iA
b
j and a dipole electric field

E ic
dip = ε

iνρ∂νA
c
ρ, we can rewrite the Hall viscosity, stress density, and Hall elasticity as11

ηH = −
C
2

Beff , (93a)

ρstress,a = −CεabBb
dip , (93b)

KH = −
C
2

E ic
dipδic . (93c)

10We thank Leo Radzihovsky for discussions about it.
11Ideally, one wish to have the background fields being constant in order for the responses to be well-defined.

This would require dipole and U(1) gauge fields to be linear and quadratic in coordinates, respectively.
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Hence, the effective U(1) magnetic flux generates the Hall viscosity, the dipole magnetic flux
generates stress density, and the trace of dipole electric field generates the Hall elasticity.12

These relations go beyond the fracton-elasticity duality. In fact, this justifies calling (85) the
dipolar Wen-Zee term since it nontrivially relates the fracton-elasticity duality to the topolog-
ical responses with the same coefficient C .

One may wonder whether the dipolar Wen-Zee term (85) would lead to a boundary
anomaly. In the case of a single U(1) Wen-Zee term, the gauge transformation on a mani-
fold with a boundary can be canceled by a local boundary counterterm [77], which implies
that the U(1) Wen-Zee term does not necessitate boundary anomaly. To see it, we introduce
the embedding function Xµ(σA) where σA are coordinates on ∂M3. Then, we can define the
projection P[ea] = ea

AdσA by the pullback ea
A = ∂AXµea

µ. The local counterterm is given by
the extrinsic one-form curvature K13 at the boundary satisfying P[ω] + K = dΦ where Φ is
a boundary zero-form, such that

∫

M3 A∧ dω+
∫

∂M3 A∧ K is U(1) gauge invariant. However,
we find a similar calculation does not carry over to the action (85). Consider a dipole gauge
transformation given by Λ = ξaDa, then δAa = dξa + εacωξc and δA= eaξa, thus the action
changes by

δSCS =

∫

M3

εabdξa ∧ deb + ξaω∧ deb − ξaea ∧ dω− dξa ∧ω∧ ea

=

∫

M3

d
�

εabξ
adeb − ξaω∧ ea

�

=

∫

∂M3

εabξ
a ∧ P[Rb(P)] . (94)

Observing that P[Ra(P)] = dP[ea] + εabP[ω] ∧ P[eb] = dP[ea] + εab(dΦ − K) ∧ P[eb], we
realize that there exists no local counterterms that can cancel (94). Therefore, in a generic
curved spacetime, the dipolar Wen-Zee action (85) contains a boundary anomaly. However, in
certain special manifolds, (94) could be canceled by counterterms. One such example is when
both the intrinsic and the extrinsic curvature vanish, i.e. ω = K = 0, and, one can show that
(94) can be canceled by the boundary term

∫

∂M3 εabAa ∧ P[eb]. As a remark, the boundary
anomaly from (94) will lead to the violation of dipole conservation in the following way:

∂AJA
a = JAeAa + εabε

ABRb
AB(P) . (95)

Finally, let us come back to the 3D gravity interpretation of (85). It is suggested that
such 3D gravity can be helpful for the study of 2D non-relativistic field theory [44] through
holographic duality [78]. For our case, the dipole algebra (67) was recently realized as the
infinite mass limit of the Galilean algebra [19]. Therefore, we hope that the 3D gravity derived
in (85) would be useful in studying the so-called “flat band” models [79], which corresponds
to infinite single-particle mass, through a field theory perspective.

7 Outlook

In this paper, we have constructed various dipolar Chern-Simons theories to describe topolog-
ical responses for systems that conserve dipole symmetry. Our construction highlights a subtle
issue of the problem: There is no need to impose a Lagrangian multiplier to reduce the dipole
gauge theory to a higher-rank gauge theory. As a consequence, only the highest multipole
symmetry can support a Chern-Simons term and its corresponding ’t Hooft anomaly.

12It is interesting to see the relation with odd crystals [76].
13The precise definition can be found in [77].
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An important lesson from this effective field theory construction is how to couple dipole
symmetry to curved spacetime. Chronologically, it takes us three steps to understand this
structure. First, we should think of the two indices of dipole gauge field Aa

µ as playing differ-
ent roles under symmetries, in contrast to symmetric tensor gauge fields Ai j of which the two
indices are equivalent. In particular, the internal index a indicates that the dipole gauge field
transforms as a vector under rotational symmetry, and the spacetime index µ implies that it
behaves as a 1-form under diffeomorphism. This structure significantly simplifies the construc-
tion of the dipolar Chern-Simons theory and allows us to see the effect of discrete rotational
symmetry in unconventional bulk-edge correspondence. Second, our dipole gauge theory is in
fact analogous to the vielbein ea

µ that is used to gauge the spacetime symmetries [54]. Notice
that on the one hand, the momentum is a time-reversal-odd vector charge, and the stress ten-
sor is sourced by the vielbein; on the other hand, the dipole is a vector charge and its dipole
current is sourced by the dipole gauge fields. This analogy carries over to the Chern-Simons
theory. As we have shown, the torsional (vielbein) Chern-Simons theory can be similarly con-
structed using our approach. Moreover, this analogy promotes the third step of developing a
consistent field theory on curved spacetime. Specifically, we should treat the dipole symmetry
and the spacetime symmetry on an equal footing. This results in a non-abelian group sym-
metry. We emphasize that this non-abelian group symmetry is so far an unknown feature in
higher-rank gauge theory, based on which people argued that dipole symmetry is inconsistent
with a generic curved spacetime [34, 35]. As we have shown, dipole symmetry can survive
on curved spacetime so long as there are dipole Goldstones or defects in geometry that could
support it. Importantly, a careful analysis of coupling dipole symmetry to defects in geometry
by a non-abelian Chern-Simons theory gives rise to a more comprehensive understanding of
the fracton-elasticity duality [48].

Looking forward, we anticipate that our method can be generalized to subsystem sym-
metries. Recent work [56] studied the boundary anomaly with both continuous and discrete
subsystem symmetries, but only adopt the perspective from boundary anomalous theory to
bulk Chern-Simons theory. Understanding the rotational symmetry for those gauge fields will
help to build the bulk theory directly and facilitate the analysis of bulk-edge correspondence.
We expect our boundary-dependent bulk-edge correspondence would potentially extend the
classification of SPT phases. In the meantime, it is possible to compare our theory to the one
obtained by integrating out fermions in some microscopic dipole-symmetric fermionic mod-
els, possibly generalizing [80]. It is also interesting to quantize the theory in Section 6.2
following [43,46], so that a topological quantum field theory or quantum gravity with dipole
symmetry can be established.
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A Level quantization in the dipolar Chern-Simons theory

We derive the level quantization for the dipolar Chern-Simons theory. Similar derivation was
done in [31].
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For the purpose of this section, we take the dipole symmetry to be a compact U(1) sym-
metry for the corresponding dipole moment living in the internal space. Imaging adiabatically
moving a dipole moment pointing at r̂a along a closed loop in the presence of the dipole gauge
fields. Due to the single-particle dynamics governed by

∫

dt ∂t x iAa
i r̂a, the relative phase it

picks up is

αa =

∮

Aa
i dx i . (A.1)

Now, threading a magnetic dipole flux through a sphere, and requiring consistency on the
relative phase, the minimum such flux is given by

∫

S2
Ba = 2πr̂a , (A.2)

where Ba = εi j∂iA
a
j , and r̂a indicates the direction of the magnetic dipole moment.

Consider the thermal partition function Z[Aa
µ] = exp(iS[Aa

µ]) of (2) with isotropic coupling
fab = δab. Let the Euclidean time be periodic, τ ∼ τ + β , and take the large dipole gauge
transformation ξa = −2πτ

β r̂a, the temporal dipole gauge field transforms as

Aa
0→ Aa

0 +
2π
β

r̂a , (A.3)

while Aa
i remains invariant. Now, take Aa

0 to be constant, and thread the minimum flux to a
sphere, (2) becomes

S = 4πC2βAa
0 r̂a . (A.4)

Thus, under the large dipole gauge transformation, the action changes by

δS = 8π2C2 . (A.5)

In order for the partition function to remain the same, we must have

C2 =
k

4π
, k ∈ Z . (A.6)

This is the quantized level for dipolar Chern-Simons theory. To generalize to anisotropic cases,
we should just require that the single-particle dynamics obey

∫

dt ∂t x iAb
i r̂a fab, so the relative

phase it picks up becomes αa =
∮

fabAb
i dx i , which leads to flux

∫

S2 Bb fab = 2πr̂a. For the
partition function to be invariant under the large dipole gauge transformation, we get the
same condition as in (A.6).

To see the quantization of (18), one can imagine that the dipole moment is moving on a
closed two-dimensional manifold. It will pick up a phase

αa =

∮

Ab ∧δc fabc , (A.7)

where we used the differential forms Ab = Ab
µdxµ and δc = δc

µdxµ but assumed flat spacetime.
This will lead to the minimum flux on a 3-sphere as

∫

S3
εi jc∂iA

b
j fabc = 2πr̂a . (A.8)

Similarly, in order for the partition function to be invariant under the large dipole gauge trans-
formation, we must have

C3 =
k

4π
, k ∈ Z . (A.9)
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Several remarks follow. First, one can further couple the theory to additional dynamical
gauge fields to obtain fractional numbers in the coefficient mimicking the fractional quantum
Hall effect. Second, the level quantization requries the symmetry to be compact. In Sec-
tion 6.2, both the dipole symmetry and the translational symmetry are noncompact, so the
level there is in general not quantized.
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