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Abstract

We complete the computation of the two-loop helicity amplitudes for the production
of three photons at hadron colliders, including all contributions beyond the leading-
color approximation. We reconstruct the analytic form of the amplitudes from numerical
finite-field samples obtained with the numerical unitarity method. This method requires
as input surface terms for all relevant five-point non-planar integral topologies, which
we obtain by solving the associated syzygy problem in embedding space. The numerical
samples are used to constrain compact spinor-helicity ansätze, which are optimized by
taking advantage of the known one-loop analytic structure. We make our analytic re-
sults available in a public C++ library, which is suitable for immediate phenomenological
applications. We estimate that the inclusion of the subleading-color contributions will
decrease the size of the two-loop corrections by about 30% to 50%, and the NNLO cross
sections by a few percent, compared to the results in the leading-color approximation.
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1 Introduction

With the rapid development of precision studies within the physics program at the Large
Hadron Collider (LHC), there is a growing need for precise theory predictions for many Stan-
dard Model processes. The knowledge of higher-order radiative corrections in the strong cou-
pling constant is essential for the correct interpretation of the associated experimental mea-
surements, and provides better control over theoretical uncertainties. While many two-to-
two reactions are now known at next-to-next-to-leading order (NNLO) in perturbation theory,
NNLO theoretical predictions for two-to-three processes constitute the current state of the art.

The study of triphoton final states at hadron colliders such as the LHC offers excellent
opportunities for several interesting investigations. For instance, it allows to explore the con-
sequences of potentially anomalous gauge and Higgs couplings [1–5]. Furthermore, the study
of triphoton production is an important irreducible background process for the associated pro-
duction of a photon with a beyond-the-Standard-Model particle that subsequently decays into
a pair of photons [6–8]. Similar to diphoton production [9–11], triphoton production exhibits
large next-to-leading order (NLO) and NNLO corrections [12–14]. Accordingly, NLO predic-
tions significantly deviate from data [15], and NNLO is the first perturbative order providing
reliable results [12, 13] (see also the related work of refs. [16, 17]). Thus, good control of
NNLO QCD corrections to this process is of great importance.

While diphoton production has been known at NNLO QCD accuracy for more than a
decade [9, 10], first results for triphoton production at the same level of accuracy have only
recently been obtained [12,13]. This is due to the highly challenging nature of NNLO computa-
tions for five-particle scattering processes. It has been demonstrated that existing frameworks
for the subtraction of infrared divergences at NNLO are, in principle, capable of handling ar-
bitrary production process [13, 18–20]. However, the calculation of two-loop amplitudes for
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five-particle processes represents the current state of the art, and needs to be addressed on
a case-by-case basis. While NNLO QCD corrections for most massless five-particle processes
have already been considered [12, 13, 18, 19, 21–24], in most of these studies, including the
NNLO QCD corrections to triphoton production [12,13], only the leading-color approximation
of the double-virtual corrections has been employed. The first complete cross-section calcula-
tion that does not employ the leading-color approximation was performed in ref. [24], and a
number of complete two-loop five-point amplitudes are also available [23–25].

Subleading-color corrections are more challenging to compute because they include non-
planar Feynman graphs, which are notoriously more challenging to handle. In pure QCD, all
non-planar contributions vanish in the limit of a large number of colors Nc [26]. This still
holds if the number of fermions flavors N f is considered to be of the order of Nc , i.e. when the
ratio N f /Nc is kept constant as Nc approaches infinity. The latter variant of the leading-color
approximation is typically phenomenologically justified, provided errors of about 10% in the
approximated contributions are deemed acceptable. On the other hand, terms originating from
photons coupling to closed fermion loops involve nonplanar diagrams. While these terms are
still suppressed in the formal Nc →∞ limit, one might be concerned that their contribution
is not suppressed numerically.

The goal of this work is to compute analytic expressions for all two-loop five-point am-
plitudes that contribute to the NNLO corrections for triphoton production at hadron collid-
ers in massless QCD (ignoring top loops), and provide an efficient numerical implementa-
tion for use in phenomenological studies. Our calculation follows the multi-loop numerical
unitarity approach [27–30] as implemented in CARAVEL [31]. In numerical unitarity, ampli-
tudes are reduced to a set of master integrals by matching numerical evaluations of gener-
alized unitarity cuts to a parametrization of the loop integrands. Analytic expressions can
then be reconstructed using multivariate functional reconstruction techniques [32, 33] (see
also refs. [34–38] for related developments). In order to perform our calculation within this
framework, we make a number of theoretical developments.

Firstly, we develop a new approach to the problem of parametrising the integrand so that
as many terms as possible vanish upon integration, due to integration-by-parts (IBP) identities
[39,40]. These terms are commonly referred to as surface terms, and it is a highly non-trivial
problem to construct them in a form that enables efficient numerical evaluations. In this
work, we present a novel method of deriving numerically efficient representations of surface
terms. We achieve this by solving an associated syzygy problem [27, 41, 42] which, taking
inspiration from refs. [43–45], is formulated in so-called embedding space. This allows us
to identify a simpler homogeneous syzygy system, whose solutions we lift to full syzygies via
linear algebra. By performing this calculation on a numerical phase-space point, we are able to
construct “skeleton” syzygies, that allow us to numerically determine the full set of syzygies and
surface terms phase-space point by phase-space point in an efficient manner. This significantly
reduces the expression size of surface terms, allowing us to efficiently match the integrand
parametrisation to generalized unitarity cuts.

Secondly, we tackle the important problem of the large amount of samples required to
perform analytic reconstruction. Indeed, while several improvements to the generic black-box
reconstruction [32, 33] have been explored [23, 46, 47] over the years, cutting-edge calcula-
tions (see e.g. [47]) indicate that further developments will be important to tackle amplitudes
with an increased number of scales. For this reason, we explore new techniques to construct
ansätze whose analytic structure better exhibit the physical properties of the scattering ampli-
tudes, performing the analytic reconstruction using spinor-helicity ansatz techniques [35,36].
In contrast to a more traditional reconstruction using a set of independent kinematic invariants
(as e.g. in [48]), this better manifests physical properties of the amplitudes. Combined with a
further optimization of the ansatz based on the expectation that some features of the analytic

3

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157


SciPost Phys. 15, 157 (2023)

structure of one-loop amplitudes are preserved at two loops, we find a significant reduction in
the number of numerical samples that is required. In practice, we are able to reconstruct the
most complicated helicity amplitude from only about 4000 evaluations, corresponding to an
order of magnitude less than what was originally required for the reconstruction of the planar
amplitudes in ref. [48].

Alongside this paper, we provide the analytic results for the complete two-loop triphoton
production amplitudes in a collection of supplementary material. Furthermore, in order to
facilitate the applicability of our results in phenomenological studies of triphoton production,
we have implemented them in the efficient public C++ library FivePointAmplitudes [49].
This further allows us to analyze the important question of the impact of the subleading-color
contributions on the two-loop corrections. Our study suggests that including these contri-
butions will lead to a significant decrease in the size of the two-loop corrections, reducing
them by approximately 30% to 50% compared to the results obtained in the leading-color
approximation. This effect is larger than the corrections of about 10% expected from typi-
cal color-suppressed contributions. This confirms the concerns that nonplanar contributions
arising from the photons coupling to closed fermion loops are not necessarily numerically sup-
pressed. We note nevertheless that this substantial change in the two-loop corrections should
be contrasted against the fact that the double-virtual contributions to the NNLO corrections to
this process are observed to be small [12,13].

The paper is organized as follows. In section 2 we classify the full set of gauge-invariant
contributions to triphoton production. In section 3 we discuss our computational approach.
We review numerical unitarity, discuss our approach to the construction of surface terms and
how we construct compact spinor-helicity ansätze. In section 4, we discuss the structure of
our results, their validation, and the format in which they are presented in ancillary files. We
also showcase the numerical performance of our C++ implementation. In section 5, we discuss
the impact of the subleading-color contributions on the double-virtual corrections. Finally, in
section 6, we present our conclusions.

2 Notation and conventions

We consider the O
�

α2
s

�

corrections to the production of three photons at hadron colliders. The
loop-induced process g g → γγγ vanishes to all orders in the combined theory of QCD and QED
due to charge-conjugation symmetry [50]. Therefore, the only contributing partonic process
is

q(−p1,−h1) + q̄(−p2,−h2) → γ(p3, h3) + γ(p4, h4) + γ(p5, h5) , (1)

where pi and hi denote the momentum and the helicity of the ith particle, respectively.
Throughout this paper, momenta and helicity labels are understood in the all-outgoing con-
vention.

The process involves five massless particles. Thus, the underlying kinematic is specified by
five Mandelstam invariants, which can be chosen to be

s12 = (p1+ p2)
2 , s23 = (p2 + p3)

2 , s34 = (p3 + p4)
2 ,

s45 = (p4 + p5)
2 , s15 = (p1 + p5)

2 ,
(2)

as well as the parity-odd contraction of four momenta,

tr5 = tr(γ5
/p1/p2/p3/p4) . (3)

Strictly speaking, scattering amplitudes for processes such as that of eq. (1) cannot be ex-
pressed in terms of just the set {s12, s23, s34, s45, s51, tr5}, as this requires removing an arbitrary
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little-group-dependent factor. In fact, amplitudes depend not only on the four-momenta, but
also on the helicities of the external states.

To better represent this dependence on the helicities, we can adopt a different set of vari-
ables, namely the two-component spinors, λαi and λ̃α̇i , with i ∈ {1, . . . , 5}. Starting from the
2×2 spinors pα̇αi , which are given in terms of the respective four-momenta as pα̇αi = pi,µσ

µα̇α,
withσµα̇α = (1, σ⃗) and σ⃗ the Pauli matrices, the two-component spinors λαi and λ̃α̇i are defined
by noting that for massless particles

det
�

{pα̇αi }
�

= 0 =⇒ pα̇αi = λ̃
α̇
i λ
α
i . (4)

Lowering of spinor indices is performed as λi,α = εαβλ
β
i and λ̃i,α̇ = εα̇β̇ λ̃

β̇
i , where we make

use of the Levi-Civita symbol εαβ = εα̇β̇ = −εαβ = −εα̇β̇ = iσ2. Invariant contractions of
spinors give so-called spinor brackets, which we define as

〈i j〉= λαi λ j,α , and [i j] = λ̃i,α̇λ̃
α̇
j . (5)

These are related to the Mandelstam invariants in eq. (2) through si j = 〈i j〉[ ji]. We also use
longer spinor contractions, in particular

〈i| j + k|i] = 〈i j〉[ ji] + 〈ik〉[ki] . (6)

Finally, we can express tr5 as a polynomial in spinor brackets as

tr5 = [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] . (7)

Helicity amplitudes We closely follow the notation and conventions of ref. [48], and denote
the (renormalised) amplitudes for this process by

M(1h1
q , 2h2

q̄ , 3h3
γ , 4h4

γ , 5h5
γ ) := e3

qδi1 i2A(1
h1
q , 2h2

q̄ , 3h3
γ , 4h4

γ , 5h5
γ ) , (8)

where i1 and i2 are the color indices of the external quarks and eq is their electric charge. We

call A(1h1
q , 2h2

q̄ , 3h3
γ , 4h4

γ , 5h5
γ ) the helicity amplitudes for the process in eq. (1), and will often

suppress their arguments for simplicity.
Helicity amplitudes satisfy relations under permutations of the photon momenta or under

charge and parity conjugation. For the process in eq. (1) there are two independent helicity
configurations, which we choose to be

A+++(1, 2,3, 4,5) :=A(1+q , 2−q̄ , 3+γ , 4+γ , 5+γ ) ,

A−++(1, 2,3, 4,5) :=A(1+q , 2−q̄ , 3−γ , 4+γ , 5+γ ) ,
(9)

where we indexed the independent amplitudes by the photon helicities. We work in the
’t Hooft–Veltman scheme of dimensional regularisation, setting the space-time dimensions to
D = 4− 2ε, and use the definition of dimensionally regularised helicity amplitudes with ex-
ternal quarks given in ref. [46]. We perform the UV renormalisation in the MS scheme, where
the amplitudes admit an expansion in terms of the renormalised QCD coupling constant αs of
the form

A=A(0) + αs

2π
A(1) +

� αs

2π

�2
A(2) + . . . (10)

The coupling αs is related to the bare coupling α0
s through

α0
sµ

2ε
0 Sε = αsµ

2ε
�

1−
β0

ε

αs

2π
+O

�

α2
s

�

�

, Sε = (4π)
εe−εγE , (11)
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where γE is the Euler–Mascheroni constant, µ0 and µ are the dimensional regularization and
renormalization scales (which we assume to be equal), and β0 is the first coefficient of the
QCD β-function,

β0 =
11
6

CA−
2
3

TF N f . (12)

Here, CA = Nc is the quadratic Casimir of the adjoint representation of the SU(Nc) group,
N f is the number of massless quarks, and TF = 1/2 is the normalization of the generators
of the fundamental representation. Below we will also need the quadratic Casimir of the

fundamental representation, CF =
Nc

2−1
2Nc

. The coefficients of the perturbative expansion of the

renormalised amplitudes A(ℓ) are related to their bare counterparts A(ℓ)B , which are coefficients
in a perturbative expansion in powers of α0

s , by

A(0)B =A(0) , A(1)B = SεA(1) , A(2)B = S2
ε

�

A(2) + β0

ε
A(1)

�

. (13)

The coefficients A(ℓ) can be decomposed into individually gauge-invariant contributions
that scale differently with the number of light quarks N f , the number of colors Nc and the
electric charges of the light fermions. Up to second order, we have [51,52]

A(1) = CF A(1) ,

A(2) = C2
F B(2,0) + CF CAB(2,1) + CF TF N f A(2,N f ) + CF TF

 N f
∑

f=1

Q2
f

!

A(2,Ñ f ) ,
(14)

where Q f denotes the ratio of the charges of the light fermions running in a closed fermion
loop to the charge of the initial state quark/anti-quark pair. We can rearrange eq. (14) as

A(2) =
N2

c

4

�

A(2,0) −
1

Nc
2 (A

(2,0) + A(2,1)) +
1

Nc
4 A(2,1)

�

+ CF TF N f A(2,N f ) + CF TF

 N f
∑

f=1

Q2
f

!

A(2,Ñ f ) ,

(15)
where we have

A(2,0) := B(2,0) + 2B(2,1) , A(2,1) := B(2,0) . (16)

The contributions A(2,0) and A(2,N f ) involve only planar diagrams and were previously com-
puted in refs. [12,48,53]. In this work we obtain the missing contributions A(2,1) and A(2,Ñ f ).
Representative diagrams for each contribution are shown in figure 1.

The renormalised amplitudes still contain infrared (IR) poles. They can be predicted and
subtracted in a scheme-dependent way. We use the scheme of refs. [51, 52, 54], which we
denote as the Catani scheme. The finite remainders R are obtained from the UV-renormalised
amplitudes A through

R := IA . (17)

Upon expansion of eq. (17) in αs and ε, we obtain

R(0) =A(0) ,
R(1) =A(1) + I(1)A(0) +O(ε) ,
R(2) =A(2) + I(1)A(1) + I(2)A(0) +O(ε) ,

(18)

where the functions I(1), I(2) are the coefficients of the expansion of I in αs/(2π), and are
given in appendix A.1.1 Up to two-loops we can expand the finite remainders into the gauge-
invariant contributions R(1), R(2,0), R(2,1), R(2,N f ) and R(2,Ñ f ) as in eqs. (14) and (15).

1We note that our definition of I(1), I(2) differs by a sign from the one of ref. [48].
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(a) A(2,0) (b) A(2,N f )

(c) A(2,Ñ f ) (d) A(2,1)

Figure 1: Representative diagrams for the different contributions to eq. (14).

For phenomenological applications, we are mostly interested in squared finite remainders,
summed over helicity and color, which we will refer to as the hard function. We define it as

H = 1
B
∑

h

|Rh|
2 , B :=

∑

h

�

�

�A(0)h

�

�

�

2
, (19)

where the sum is over all different choices of helicities of the involved particles. Expanding in
αs and in color factors, we get

H(1) = CF H(1) ,

H(2) =
N2

c

4

�

H(2,0) −
1

Nc
2 (H

(2,0) +H(2,1)) +
1

Nc
4 H(2,1)

�

+ CF TF N f H(2,N f ) + CF TF

 N f
∑

f=1

Q2
f

!

H(2,Ñ f ) ,

(20)

and by definition H(0) = 1. We note that the hard functions are scheme dependent, with
expressions in different schemes being related by a finite shift. We give examples of such
relations in appendix A.2.

3 Calculation

3.1 Overview

Our calculation is done within the framework of two-loop numerical unitarity [27–29]. We
rely on the implementation of the method in the program CARAVEL [31].

This approach starts from the observation that the integrands of the gauge-invariant con-
tributions A(2,k) of eq. (15) all admit a decomposition of the form

A(ℓ) =
∑

Γ

∑

i∈MΓ∪SΓ

cΓ ,i
mΓ ,i(ℓ)

∏

j ϱΓ , j(ℓ)
, (21)
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where the outer sum is over all distinct sets Γ of inverse propagators ϱΓ , j contributing to
the amplitude (which we call topologies). For each topology Γ , the numerators mΓ ,i(ℓ) are
polynomials in the loop momenta ℓ (we use a single ℓ to collectively denote all loop momenta),
and they are constructed such that each mΓ ,i(ℓ) either corresponds to a master integral (i ∈ MΓ )
or can be expressed as a total derivative and therefore integrates to zero, i.e. it is a surface
term (i ∈ SΓ ). The coefficients cΓ ,i in eq. (21) are unknown rational functions of the external
particles’ momenta and the dimensional regulator ε. In the generalized unitarity method, the
coefficients of each topology Γ are constrained by evaluating (generalized) cuts, corresponding
to residues of eq. (21) at values of ℓ= ℓ̂ such thatϱΓ , j(ℓ̂) = 0∀ j. The cuts of the LHS of eq. (21)
are evaluated as products of D-dimensional tree-amplitudes (which we call cut diagrams) and
matched to the integrand parametrisation of eq. (21). In this way, cut equations are generated
for various loop-momentum configurations ℓ̂k satisfying the cut conditions ϱΓ , j(ℓ̂k) = 0. Given
a large enough sample of ℓ̂k, the coefficients cΓ ,i in eq. (21) can be determined as (numerical)
solutions to the cut equations. Our computation is based on the public implementation of the
two-loop numerical unitarity method in CARAVEL [31], which we extended to account for the
non-planar topologies appearing in eq. (21). These were absent in previous applications of
the two-loop numerical unitarity approach. In particular, we constructed the complete set of
surface terms required for the non-planar contributions in A(2,1) and A(2,Ñ f ). We discuss this in
more detail in section 3.2.

We note that to be compatible with generalized cuts in D dimensions, we require that
the numerators mΓ ,i(ℓ) in eq. (21) are polynomials in the loop momenta (i.e. additional de-
nominator powers are not allowed). In addition, for each Γ the numerators mΓ ,i(ℓ) must be
linearly-independent on D-dimensional cuts that set all ϱΓ , j to zero. While for the surface
terms these condition hold by construction, the definitions of master integrals are frequently
chosen such that at least one of the conditions is violated. Indeed, the basis of master integrals
of refs. [55, 56] violates the second condition. We find that the basis of ref. [57] is therefore
more convenient for our approach. It can easily be written in terms of the pentagon functions
of ref. [56] using modern integration-by-parts codes, e.g. [58, 59], which among other bene-
fits allows for an efficient numerical evaluation of the master integrals. The decomposition of
eq. (21) then leads to a decomposition of the finite remainders in eq. (18) in terms of pentagon
functions,

R(ℓ) =
∑

i

rihi , (22)

where the ri are rational functions of external kinematics, and the hi are monomials of the
pentagon functions of ref. [56]. In summary, two-loop numerical unitarity gives us a way to
numerically compute the ri . We can then use these numerical evaluations to reconstruct their
analytic form.

Before discussing some details of the construction of surface terms in section 3.2, and of
the analytic reconstruction of the finite remainders in section 3.3, we close this brief overview
of the approach with some technical comments. Cut diagrams are generated with qgraf [60],
and arranged into a hierarchy of cuts with a private code. To match the cuts evaluated through
color-ordered tree amplitudes to the amplitude definitions in section 2 we employ the unitarity-
based colour decomposition of refs. [61,62]. We determine the ε-dependence of cut diagrams
originating from the state sums in the loops through the dimensional reduction method devel-
oped in refs. [63–65]. This allows us to perform the entire calculation with six-dimensional
states only.

3.2 Surface terms

The two-loop numerical unitarity framework [27–29] builds on the parametrisation of the
integrand as in eq. (21). A crucial step in this procedure is the determination of a basis of
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surface terms that integrate to zero. In this section we present the method we used to construct
surface terms for the non-planar topologies.

The construction of surface terms starts from the observation that total derivatives of Feyn-
man integrands integrate to zero in dimensional regularisation [39, 40, 66]. That is, we can
construct surface terms from

∫

dDℓ1 · · ·dDℓL
∂

∂ ℓ
µ
a

vµa (ℓ)
ϱ1 · · ·ϱN

= 0 . (23)

For an arbitrary vector vµa , the equation above will generate surface terms involving integrals
that are not relevant for the amplitudes we are computing, either because they have numera-
tors of too high degree or because they have propagators raised to too high powers. In order to
have an efficient construction of the surface terms required for the decomposition in eq. (21),
it is beneficial to construct a minimal set of surface terms, which contain specific propagator
powers and numerators whose polynomial degree is limited by the interactions of the under-
lying process.

While the numerator power in the surface terms is easy to control (because derivatives do
not increase it), care must be taken with the power of the propagators. Propagator powers in
surface terms can be controlled by requiring that the vector vµa in eq. (23) satisfies [41]

∑

a,µ

vµa (ℓ)
∂ ϱi

∂ ℓ
µ
a
= fi(ℓ)ϱi , ∀ i , (24)

where the unknowns fi and vµa are polynomials in loop momenta. We call such vectors
unitarity-compatible integration-by-parts (IBP) generating vectors, or simply IBP-generating
vectors. The mathematical structure of eq. (24) is well known and defines the vectors vµa and
the fi to be elements of a syzygy module.

Solving eq. (24) allows us to construct a minimal set of surface terms. In practice, how-
ever, obtaining analytic expressions for the surface terms can be challenging, both due to the
difficulty of solving eq. (24) and due to the size of the final expressions (see refs. [67–72] for
related work). Since our goal is to reconstruct analytic expressions for the two-loop remain-
ders from their numerical evaluations on a sufficient number of phase-space points, we do
not actually require analytic solutions to eq. (24). Indeed, it is sufficient to obtain IBP-vectors
that are analytic in the loop-momentum variables but numerical in external momenta. Nat-
urally, this requires solving eq. (24) at each phase-space point, and one must therefore have
an approach that is efficient. We now present our solution to this problem: we first discuss
its formulation in embedding space [43, 73], and then discuss how unitarity-compatible IBP
vectors and surface terms are constructed at a given phase-space point, and how we efficiently
extend this to subsequent phase-space points.

3.2.1 Embedding-space formalism

We start by reviewing the formulation of Feynman integrals in embedding space. We will
observe in the next section that this formulation simplifies the solution of the syzygy equations
in eq. (24). Formally, our goal is to discuss how momentum space can be mapped into a subset
of a projective space, commonly called embedding space. To this end, we map each point zµ in
momentum space into a line Z of projectively equivalent points. In the context of a Feynman
integral with N external legs, this can be done as follows [43,73]. We first define

qµi =
i−1
∑

j=1

kµj , 1≤ i ≤ N , (25)
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where the kµj denote the external momenta and the empty sum gives the zero vector. We then
arrange the loop and external momenta into the (D+2)-dimensional embedding-space vectors

Ya = cYa

�

ℓµa , (ℓa)
2, 1
�

, X i = cX i

�

qµi , (qi)
2, 1
�

, (26)

where cYa
and cX i

parametrise the points in embedding space that are projectively equivalent.
As a projective space, embedding space is equipped with a special point, commonly referred
to as the infinity point and denoted here by X0,

X0 = (0
µ, 1, 0) . (27)

We also define an inner product as

(AB) = cAcB

�

−2aµ · bµ + a2 + b2
�

. (28)

An L-loop Feynman integral is then mapped into embedding space as
∫

� L
∏

a=1

dDℓa

�

f (ℓ; q) =

∫

� L
∏

a=1

dD+2Ya

vol[GL(1)]
δ[(YaYa)]
(X0Ya)D

�

F(Y ; X ) , (29)

where F(Y ; X ) is implicitly defined as the image of f (ℓ; q) under the embedding procedure
and vol[GL(1)] accounts for the projective equivalence parametrised by the cYa

.
In this construction, we seem to have increased the number of degrees of freedom from D

to D+2. One apparent extra degree of freedom is removed by noting that any zµ in momentum
space is mapped to an embedding space point Z that satisfies (Z Z) = 0, i.e., onto the light-cone
in embedding space. Indeed, we can easily check from eq. (26) that (YaYa) = 0 and (X iX i) = 0.
The integration in embedding space in eq. (29) is restricted to the light-cone by the delta
function δ[(YaYa)], thereby corresponding to the integration over all loop-momentum space.
Another apparent extra degree of freedom is parametrised by the non-vanishing parameters
cYa

and cX i
. To understand how it is removed in practice, we first note that, for an arbitrary

embedding-space vector Z , cZ = (X0Z). It therefore follows that

(ℓ1 − ℓ2)2 =
(Y1Y2)

(X0Y1)(X0Y2)
, (ℓa − qi)

2 =
(YaX i)

(X0Ya)(X0X i)
, (qi − q j)

2 =
(X iX j)

(X0X i)(X0X j)
. (30)

The function f (ℓ; q) in eq. (29) is a rational function of these momentum-space inner products,
which implies that F(Y ; X ) is homogeneous of degree 0 in both cYa

and cX i
, that is

F(Y ; X ) = F(Y1, . . . ,λYa, . . . , YL; X ) = F(Y ; X1, . . . ,λX i , . . . , XN ) , λ ̸= 0 . (31)

Since the X i only appear in eq. (29) within F(Y ; X ), we can set cX i
= (X0X i) = 1. In principle

we could make the same choice for cYa
, but this would obscure some of the properties of

the Feynman integral, such as the fact that in dimensional regularization the integrand has a
branch point at (X0Ya) = 0 [43,45,73]. Equivalently, we can keep the explicit dependence on
the (X0Ya), and the division by vol[GL(1)] ensures that the integral is well defined despite the
invariance of F(Y ; X ) with respect to rescalings of each Ya.

The (inverse) propagators in a Feynman integral can all be written in terms of the expres-
sions given in eq. (30), where we are free to set (X0X i) = 1 as discussed above. For two-loop
five-point non-planar integrals it is also convenient to define another combination of the form

(ℓ1 − ℓ2 + ki)
2 =

rABY A
1 Y B

2

(X0Y1)(X0Y2)
, (32)

where rAB is a matrix that depends only on external kinematics. That is, the components of
rAB can be written in terms of the (X iX j) and are independent of Y1 and Y2. The denominator
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k1 k2k3

ℓ1 − ℓ2

ℓ1

Figure 2: Non-planar diagram corresponding to the propagators in eq. (34).

(ℓ1 − ℓ2)2 is a particular case of eq. (32). We denote the set of propagator denominators in a
two-loop five-point non-planar integral as

P =
�

(X1Y1) , (X2Y1) , . . . , (Y1Y2) , rABY A
1 Y B

2

	

, (33)

where we note that the last term is not required for planar integrals.
For concreteness we explicitly give an example of a simple non-planar diagram in embed-

ding space. The propagators of the diagram in fig. 2 take the form

ϱ1 = ℓ
2
1 =
(X1Y1)
(X0Y1)

, ϱ2 = (ℓ1 − k1)
2 =
(X2Y1)
(X0Y1)

, ϱ3 = (ℓ2 + k3)
2 =
(X3Y2)
(X0Y2)

,

ϱ4 = (ℓ2 + k2 + k3)
2 =
(X2Y2)
(X0Y2)

, ϱ5 = (ℓ1 − ℓ2)2 =
(Y1Y2)

(X0Y1)(X0Y2)
,

ϱ6 = (ℓ1 − ℓ2 − k3)
2 =

1
(X0Y1)(X0Y2)

[(Y1Y2) + (X0Y1)(X3Y2)− (X0Y1)(X1Y2) + (X0Y2)(X1Y1)

− (X0Y2)(X3Y1) + (X0Y1)(X0Y2)(X1X3)] ,
(34)

whereϱ6 has the form of eq. (32) and we have written the components of the respective matrix
rAB explicitly in terms of the (X iX j).

3.2.2 IBP-generating vectors in embedding space

Let us now discuss how IBP relations arise in embedding space, following previous work on
the subject [43,44]. To begin, we reformulate eq. (23) in embedding space as2

∫

∏

a

�

dD+2Ya

vol[GL(1)]

�

×
∂

∂ Y C
c

�

V C
c

ϱ1 · · ·ϱN

∏

b

δ [(YbYb)]

(X0Yb)
D

�

= 0 , (35)

where the ρi are now understood as their embedding-space expressions. The IBP-generating
vectors are denoted V C

c , where C runs over the D + 2 dimensions of an embedding-space
vector. A vector Vc that generates linear relations between Feynman integrals in embedding
space must satisfy a number of non-trivial properties. First, the components of V C

c must be
homogeneous functions in Yc of degree one in order to compensate for the scaling of the partial
derivatives. More precisely, they are required to be rational functions with denominators given
by products of the factors (X0Ya), so that no further propagator poles are introduced. Second,

2In practice, it can be more convenient to replace the δ [(YbYb)] by 1/ (YbYb) and modify the integration contour
to encircle the pole at (YbYb). This perspective can be taken to more easily derive some of the properties of IBP
vectors in embedding space.
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it can be verified that

∂

∂ Y C
c

�

FcY
C

c

ϱ1 · · ·ϱN

∏

b

δ [(YbYb)]

(X0Yb)
D

�

= 0 , (36)

for any homogeneous Fc that is degree 0 in Yc . As such, any IBP-generating vector Vc generates
the same surface term as another vector obtained from it by translations in the Yc direction.
Finally, any valid IBP vector must only generate relations between Feynman integrals. We
therefore impose that any terms containing derivatives of the delta function that arise from
expanding the derivative in eq. (35) should cancel. This can be achieved by requiring that

V C
c
∂

∂ Y C
c
(YbYb) = Fquadric

b (YbYb) , ∀ b , (37)

i.e. by requiring that the Vc generate translations along the light cone. It turns out that many
of the solutions to eq. (37) can be discarded as they lead to vanishing surface terms. Indeed,
it is easy to see that a subset of the solutions is given by Vc such that Vc =

1
2 Fquadric

c Yc . By
comparison with eq. (36), we see that such solutions give a vanishing surface term. We can
use this observation to simplify IBP-vector construction. Specifically, if we have an IBP vector
Vc for which the associated Fquadric

c ̸= 0, then the same surface term is generated by a vector
V ′c = Vc−

1
2 Fquadric

c Yc . It follows that the new vector V ′c satisfies equation (37) with Fquadric
b = 0.

Therefore, the solutions of eq. (37) with Fquadric
b = 0 generate the full set of surface terms and

it is sufficient to require that the IBP vectors Vc satisfy

V C
c
∂

∂ Y C
c
(YbYb) = 0 , ∀ b . (38)

Within the two-loop generalised unitarity framework, we also require that IBP-generating
vectors are unitarity compatible, that is that they satisfy eq. (24). In embedding space, the
analogous condition is that the exponents of the denominator factors (X iYa) and

�

rABY A
1 Y B

2

�

are not increased [44]. For propagators that depend on a single Ya, the conditions read,

V C
c
∂

∂ Y C
c
(X iYb) = Fi (X iYb) , (39)

and for the propagators that depend on both loop momenta

V C
c
∂

∂ Y C
c

�

rABY A
1 Y B

2

�

= Fr

�

rABY A
1 Y B

2

�

, (40)

which also covers the case of the propagator (Y1Y2).
In summary, we must construct IBP-generating vectors satisfying eqs. (38) to (40). These

constrain the vectors V A
a and the polynomials Fi and Fr to be elements of the syzygies of a

module defined by

(VaYa) = 0 , ∀ a ,

(VaX i) = Fi (X iYa) , for (X iYa) ∈ P ,

rAB

�

V A
1 Y B

2 + V B
2 Y A

1

�

= Fr

�

rABY A
1 Y B

2

�

, for (Y1Y2) and
�

rABY A
1 Y B

2

�

∈ P ,

(41)

where P was defined in eq. (33). The unknowns in these equations are the V A
a , Fi and Fr .

From now on, for simplicity we set (X0Ya) = 1 and require the solutions to be polynomials in
the (X iYa) and (Y1Y2), keeping in mind that those factors can be reinstated by requiring that
quantities have the correct homogeneous degree.
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3.2.3 Computing IBP-generating vectors

We now turn towards solving the syzygy equations (41). In short, our strategy is to construct
a degree-bounded generating set of solutions on a single phase-space point and then use the
shape of this set to compute a generating set of vectors on further phase space points, via linear
algebra. We start by expressing the IBP vectors in terms of the momenta in the problem,

Va =
N
∑

i=0

v i
aX i + vY

a Yb ̸=a , (42)

where we took into consideration eq. (36) and the surrounding discussion to remove the Ya
direction. We can then insert this parametrisation into eq. (41) and re-express these equations
as

MI J wJ = 0 , wJ = {v i
1, vY

1 , v i
2, vY

2 , Fi , Fr} , (43)

where the vector wJ collects all unknowns in the problem (while it contains a single vY
1 and

vY
2 , there are several v i

1 and v i
2, several Fi and two Fr). The direct solution of eq. (43) is in

general very challenging. Since we are only interested in a subset of solutions that generates
sufficiently many surface terms to construct the decomposition in eq. (21), which is degree
bounded by the theory, we instead solve the problem for a fixed polynomial degree [29,67,72].
To make this degree manifest, we consider the ansatz

wJ =
∑

|m⃗|≤Q

wJ
m⃗ y m⃗ , y = {(X1Y1) , . . . , (X1Y2) , . . . , (Y1Y2)} , (44)

where the wJ
m⃗ are Y -independent rational functions of the external kinematics, i.e. of the

(X iX j), that multiply associated monomials of the yk variables,

y m⃗ :=
∏

k

ymk
k , (45)

where the multi-index m⃗ specifies the exponents of the monomial. The total degree of a mono-
mial y m⃗ is denoted by |m⃗|,

|m⃗| :=
∑

k

mk . (46)

Inserting eq. (44) into eq. (43) one obtains a linear system for the coefficients wJ
m⃗ allowing us

to solve the syzygy problem with a degree bound Q as a linear algebra problem.
We can however further simplify the problem. Indeed, we note that the matrix MI J is linear

in the yk, that is
MI J = M [0]I J +M [1]I J , M [1]I J =

∑

k

M [1]I Jk yk . (47)

It is interesting to note that, as the X i are linearly independent, M [1]I J is independent of external

kinematics, i.e., the M [1]I Jk are matrices of rational numbers. We can also decompose the ansatz
of eq. (44) into leading and subleading y contributions,

wJ = wJ
max +wJ

rem , wJ
max =

∑

|m⃗|=Q

wm⃗
J y m⃗ . (48)

It then follows that
M [1]I J wJ

max = 0 , (49)

which is a simpler syzygy problem than eq. (43) as it is homogeneous and independent of
kinematics. For wJ to be a solution to eq. (43), it is necessary that its maximal degree piece
solves eq. (49).
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To solve eq. (49) we use the methods implemented in SINGULAR [74], which yield a gen-
erating set of solutions, with each generator homogeneous of a given degree. That is, we have
the generating set,

¦

wJ ,[qk]
k ( y⃗)

©

k=1, ... kmax
, (50)

where qk is the degree of the homogeneous generator wJ ,[qk]
k . A basis of solutions with de-

gree q to eq. (49) is obtained from linear combinations of the generating set of eq. (50) with
coefficients that are homogeneous polynomials of degree q− qk.

We now use the homogeneous syzygies of eq. (49) to construct solutions to the full syzygy
problem of eq. (43). Since we require solutions only up to a maximal polynomial degree
we again consider solutions up to a given polynomial degree Q. To this end, we consider a
parametrization of a syzygy with degree q that consists of

1. a maximal degree piece of degree q constructed from the generators eq. (50). This
consists of combinations of the generators multiplied with polynomials of suitable poly-
nomial degree, and,

2. a generic polynomial-valued vector with degree less than q.

More precisely, such a syzygy can be written as

v I ,[q]( y⃗) =
∑

k, |m⃗k|+qk=q

bk,m⃗k
y m⃗k wI ,[qk]

k ( y⃗) +
∑

|m⃗|<q

bI
m⃗ y m⃗ , (51)

for y-independent coefficients bk,m⃗k
and bI

m⃗. The monomials y m⃗ and y m⃗k are bounded by the
degree constraints |m⃗| < q and |m⃗k| < q. Inserting this ansatz into eq. (43) then yields linear
equations for bk,m⃗k

and bI
m⃗. In practice, we observe that this approach of combining maximal

degree solutions with a parametrization of lower degree terms significantly reduces the size
of the linear system compared to starting from the generic parametrisation of eq. (44). In
this way, working degree by degree we can construct a basis of the solutions up to degree Q.
Once we have constructed this basis of the solutions it is easy to find a subset of the basis
elements which generate the module up to degree Q. Working degree by degree, one simply
removes basis elements that are polynomial combinations of lower degree generators using
linear algebra.

At this point we have obtained a generating set of the solutions of eq. (43) up to polynomial
degree Q at a given numerical phase-space point. We now use this information to streamline
the construction of IBP vectors on further phase-space points. We start with the generating set
we have obtained and express their components as a linear combination of monomials

v I( y⃗) =
∑

m⃗

r I
m⃗ y m⃗ , (52)

where we sum over all monomials such that the associated r I
m⃗ are non-zero. We then replace

the numerical coefficients r I
m⃗ by parameters bI

m⃗(p⃗) that explicitly depend on the external kine-
matic point p⃗, in order to obtain skeleton vectors

v I
skel( y⃗) =

∑

m⃗

bI
m⃗(p⃗) y⃗

m⃗ . (53)

We finally insert these skeleton vectors into (43), and obtain a linear system of equations that
constrain the bI

m⃗(p⃗). Importantly, these linear systems are analytic in the external kinematics
and so can be solved phase-space point by phase-space point. These equations may be linearly
dependent and not uniquely determine the bI

m⃗(p⃗). We discard linearly dependent equations,

14

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157


SciPost Phys. 15, 157 (2023)

and choose a set of bI
m⃗(p⃗) to set to zero so that the solution is unique. By making use of these

skeleton vectors instead of fully general vectors, we obtain equations for a minimal set of
monomial coefficients. In practice, the largest linear systems that we encounter when solving
for the bI

m⃗ of eq. (53) are approximately 2000× 2000. Finally, we note that for simpler case
we find it efficient to solve these linear systems analytically.

3.2.4 Computing surface terms

Now that we have constructed a set of IBP generating vectors up to degree Q, we use them
to construct a collection of surface terms. Recalling eq. (21), our goal is to construct a set
of linearly-independent surface terms SΓ for a given topology Γ that is sufficiently large for
the power counting of our theory. This set of surface terms is a subset of the mΓ ,i of eq. (21)
and they are polynomials in the loop momentum components. The maximum degree of these
polynomials is known a priori, since it is determined by the theory describing the scattering
process, and as such it is easy to construct a basis of span(MΓ∪SΓ ). As a basis of master integrals
is also known [55–57], we have sufficient information to construct a linearly-independent set
of surface terms.

To construct a single surface term, we start with an IBP-generating vector and a monomial
of the yk variables. We take their product, and use this as the vector V C

c in eq. (23). Expanding
out the derivative leads to a surface term in embedding space that is easily mapped to one in
momentum space by identifying all yk variables with their momentum space counterparts. In
this way, taking all pairs of IBP-vectors and monomials of yk variables that satisfy our power
counting bounds, we construct a set of surface terms. Many of the surface terms obtained
in this way are linearly dependent and can be discarded. As our construction of the IBP-
generating vectors was only performed up to degree Q, the set of surface terms generated in
this way may not be a basis of span(SΓ ). In practice, to solve this problem, we repeat the
procedure described in section 3.2.3, increasing the value of Q in order to construct more IBP
generating vectors until our set of surface terms is a basis of span(SΓ ).

3.3 Analytic reconstruction in spinor helicity formalism

As noted above, the two-loop numerical unitarity approach allows us to numerically evaluate
the coefficients ri in the finite remainder of eq. (22). We now discuss how to obtain analytic
expressions using these numerical evaluations. As suggested in e.g. refs. [36,75], we will con-
sider the ri to be rational functions of the spinor-helicity variables λ and λ̃ already introduced
in section 2.3 The coefficients admit a least common denominator representation, which reads

ri(λ, λ̃) =
Ni(λ, λ̃)

∏

j D
qi j

j (λ, λ̃)
. (54)

The exponents qi j are allowed to take negative values, thus denoting numerator factors. The
Ni and D j are polynomials in spinor brackets. Like the amplitude, the ri are dimensionful
and transform non-trivially under the little group. For a spinor function E(λ, λ̃) we define the
mass dimension [E] and kth little-group weight {E}k through

E(zλ1, . . . , zλn, zλ̃1, . . . , zλ̃n) = z2[E] E(λ1, . . . ,λn, λ̃1, . . . , λ̃n) , (55)

E(. . . , zλk, . . . , λ̃k/z, . . .) = z{E}k E(. . . ,λk, . . . , λ̃k, . . .) . (56)

3More precisely, the coefficients belong to the field of fractions of the ring of independent Lorentz invariants;
see ref. [36, Section 2.2] for more details.
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The mass dimension of an n-point amplitude An is [An] = 4− n. The kth little-group weight
of an amplitude depends on the kth-particles’ helicity hk,

{A}k = −2hk . (57)

Crucially, there is by now a large collection of evidence that the D j in eq. (54) are known a
priori. Indeed, they can be constructed from the symbol alphabet [30]. In our normalisation
of the amplitudes (see eq. (8)), they also include factors with little-group weight, such as the
tree level amplitude if it is not zero, or the leading order of the one-loop amplitude. Given
that the pentagon functions hi in eq. (22) are dimensionless and little-group invariant, the
mass dimensions and little-group weights of the ri are the same as those of the amplitudes.
Since the D j are known, the mass dimensions and little-group weights of the numerators Ni
are easily determined.

In a nutshell, the reconstruction procedure amounts to constructing and fitting an ansatz
for the Ni in terms of spinor variables. An important feature of spinor-helicity-based recon-
struction methods is that the ansatz directly captures the little-group and mass-dimension
properties of the coefficients. This is in contrast to Mandelstam-based reconstruction methods,
where the ri are normalized with a (dimensionful) phase factor to be little-group invariant,
and split into parity even and odd parts. This difference has an important practical conse-
quence, as the common denominator form of the ri often simplifies in spinor variables. For
example, the symbol alphabet may factorize in spinor variables. This can lead to denominator
factors that cancel further against the coefficient’s numerators, lowering the mass dimensions
of the latter, which thus require simpler ansätze in the reconstruction procedure.

To begin constructing our ansatz, we specify the set of denominator factors D j in eq. (54).
As already alluded to, these denominator factors can be constructed from the symbol alpha-
bet. In Mandelstam variables they correspond to the subset of so-called even letters, which
describe the collection of singular surfaces associated to the master integrals. When written
in terms of spinor variables, these surfaces may branch. That is, alphabet letters that appear
irreducible when written in terms of Mandelstam variables may further factorize in spinor
space. Beyond alphabet letters, the D j also include rational functions appearing in tree-level
or one-loop amplitudes. We therefore take these functions and the irreducible factors of the
symbol alphabet in spinor space as the set of expected denominator factors. This analysis was
already performed in ref. [36] for the amplitudes considered in this paper, and it was found
that the expected set of denominator factors contains 35 elements. It can be expressed as

D =
�

〈i j〉, [i j] : 1≤ i < j ≤ 5
	

∪

�

⋃

σ∈Z5

σ ◦
�

〈1|2+ 3|1], 〈1|2+ 4|1], 〈1|2+ 5|1]
	

�

, (58)

where the elements of Z5 are the cyclic permutations acting on the momentum indices asso-
ciated to each spinor. Note that, despite its presence in the alphabet we do not include tr5 in
D, as it is expected to cancel in the finite remainder (see e.g. refs. [57,76,77]).

In the following, it will be useful to consider the zero set associated to various denomina-
tors. We denote the algebraic variety corresponding to the common zero set associated to a
list of denominator factors {Di1 , . . . ,Din} by

V (Di1 , . . . ,Din) . (59)

Denominator exponents Our first task is to determine the denominator exponents qi j in
eq. (54). We will use the standard technology of univariate-slice reconstruction [30], com-
bined with the approach introduced in ref. [78], based on all-line BCFW-shifts [79–81]. Its
application to functions of Mandelstam variables was discussed in ref. [47]. Here we review
the procedure and discuss its generalization to functions of spinor variables.
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In order to determine the qi j , we must choose a set of curves in phase space that intersect
each surface V (D j) at a generic point at least once and are not contained in any of the V (D j).
We will achieve this with two BCFW shifts, one holomorphic and one anti-holomorphic, fol-
lowing the all-line shift approach of ref. [47]which we now review. Let us begin with a generic,
numeric momentum-conserving configuration of spinors {λ1, λ̃1, ...,λ5, λ̃5}. We make an all-
line holomorphic shift by adjusting every λ spinor in a way which is proportional to a common
reference spinor η. That is we shift

λi → λi + tciη , λ̃i → λ̃i . (60)

Here, we introduce unknowns ci that we use to ensure that the shifted kinematics satisfy
momentum conservation. Specifically, we choose the ci to satisfy

5
∑

i=1

ciλ̃i = 0 . (61)

This linear equation does not have a unique solution. Nevertheless, any solution with ci ̸= 0
will guarantee a non-trivial shift that satisfies momentum conservation. In order to ensure
that a slice is generic, we pick both the initial set of spinor variables {λ1, λ̃1, ...,λ5, λ̃5} and an
independent subset of the ca randomly over a finite field. The corresponding anti-holomorphic
shift can be constructed by taking the parity conjugate.

Let us now consider how a holomorphic shift affects the set of denominator factors D in
eq. (58). Firstly, the holomorphic spinor products are linear functions of t

〈ab〉 → 〈ab〉+ t
�

ca〈ηb〉+ cb〈aη〉
�

, (62)

whereas the anti-holomorphic spinor products remain unchanged. It is easy to see that the
curve parametrised by t intersects each of the ten distinct codimension-one varieties V (〈ab〉)
as well as each of the fifteen varieties V (〈a|b+ c|a]). Nevertheless, it does not intersect any
of the ten varieties V ([ab]). By comparing the form of the D j on this univariate slice with the
denominator of ri on the slice, one can compute the exponents qi j corresponding to the D j
which are not purely anti-holomorphic (i.e. the [ab]). In order to determine the exponents
of the [ab] denominator factors, we repeat the procedure on the anti-holomorphic shift. We
note that the anti-holomorphic shift must yield the same qi j for 〈a|b+ c|a] as the holomorphic
one, providing a consistency check. Having determined the qi j exponents in eq. (54), we can
now determine the mass dimension and spinor weight of the numerators Ni , allowing us to
write an ansatz for them in terms of spinor-helicity variables.

Improved ansatz It is well known that the ri are not all independent rational functions, and
it is sufficient to reconstruct a basis of this space of functions. We begin by sorting the ri by
the mass dimension of their numerator Ni , and then apply standard linear-algebra techniques
on finite-field-valued evaluations of the ri to determine a basis of the function space of the ri .
We therefore express the pentagon-function coefficients as

ri = r̃ j M ji , (63)

where M ji is a rectangular matrix with M ji ∈ Q. This observation allows us to reduce the
number of functions to reconstruct.

A further important simplification comes from the observation that the rational coeffi-
cients in a scattering amplitude are less naturally expressed in common-denominator form,
and should in fact be cast in some partial-fractions representation of the form

r̃i =
∑

k

r̃ik , with r̃ik =
∑

k

Nik
∏

j D
qi jk

j

, (64)
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where the Nik are polynomials in spinor brackets and the qi jk are integer exponents that deter-
mine the exact partial-fractions decomposition. For analytic reconstruction approaches, this
means that in general a common-denominator ansatz is unnecessarily large. However, sys-
tematically constructing a compact partial-fractions ansatz for a generic amplitude remains a
challenging task (see refs. [35,36,82] for recent progress in this area). A practical solution to
this issue is to explore several possible partial-fractions decompositions, determine the size of
the ansatz of the Nik for each of them, and declare that a suitable (if not optimal) decompo-
sition has been found when the ansatz is small enough for the Nik to be reconstructed. For
the amplitudes we are concerned with in this paper, however, we were able to identify a very
convenient partial-fractions decomposition that we now discuss.

To construct compact ansätze for the rational functions, we build upon the observation
that for several one-loop five-point massless amplitudes all poles of the form 〈c|a+ b|c]α can
be separated into different fractions (see e.g. [83]). This feature is related to the fact that
the poles 〈c|a + b|c] are spurious, and can be used to greatly simplify analytic expressions
for amplitudes [84]. Given this observation, we work under the assumption that a one-loop-
like partial-fractions representation exists at two loops. The validity of this assumption will be
tested during the calculation. To take an explicit example, consider a function whose common-
denominator form reads

N
〈1|2+ 4|1]〈1|2+ 5|1]〈2|1+ 5|2]〈4|1+ 2|4]2〈4|1+ 5|4]2〈5|1+ 2|5]2〈5|1+ 4|5]2

,

where N is an unknown polynomial in spinor brackets to be determined. The partial-fractions
decomposition would then take the form

N1

〈1|2+ 4|1]
+

N2

〈1|2+ 5|1]
+

N3

〈2|1+ 5|2]
+

N4

〈4|1+ 2|4]2

+
N5

〈4|1+ 5|4]2
+

N6

〈5|1+ 2|5]2
+

N7

〈5|1+ 4|5]2
,

(65)

where the Ni are unknown polynomials in spinor brackets. The ansätze for each of them is
substantially simpler than that for the numeratorN in the common-denominator form, making
the reconstruction substantially more efficient.

Another layer of simplification of the reconstruction procedure comes from the observa-
tion that, when considering a partial-fractions representation, many of the basis functions are
partially contained within the vector space spanned by the others. More precisely, given a
basis element r̃n expressed in the form of eq. (64), many of the r̃nk belong to span(r̃i ̸=n). If
we consider the reconstruction of a basis function r̃n, this motivates us to include other basis
functions in its ansatz, while dropping many of the terms in the partial-fractions decomposi-
tion. That is, if we include other basis elements r̃i ̸=n when constructing an ansatz for r̃n, then
it will suffice to supplement this set of functions with a set that parametrises only the part of
r̃n not contained in span(r̃i ̸=n). Naturally, there is a family of such ansätze, with the members
corresponding to different choices of terms in the partial-fractions decomposition to include.
Concretely, we consider a family of ansätze, where each member is of the form

r̃n =
Ñn

∏

j D
q̃n j

j

+
∑

i ̸=n

cni r̃i , (66)

where Ñn is an unknown polynomial in spinor brackets and the cni are unknown rational num-
bers. The exponents q̃n j in eq. (66) are chosen so that the involved denominator factors are a
subset of those in the common denominator form of r̃n. Given our one-loop-like motivation,
we choose the q̃n j so that only one pole of the form 〈a|b + c|a]α is involved in each member
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of the family. In the example of eq. (65), there are seven members of the family of ansätze,
each corresponding to a term in eq. (65). Taking each member in turn, we sample the r̃n
appropriately using finite-field kinematics randomly generated with lips [85, 86]. We then
attempt to fit r̃n with each ansatz, until we find that one is successful, validating our working
assumption. If any of the working assumptions we made were not valid we would not find a
successful fit, but in all cases considered in this work we find that our assumption holds. We
note that an important step in this procedure is to parametrise polynomials in spinor brackets.
This is a non-trivial exercise due to momentum conservation and Schouten identities and we
make use of the systematic solution proposed in ref. [36].

Having constrained a single r̃n with an ansatz of the form given in eq. (66), we have
determined the Ñn, the q̃n j and the cni . As we do not yet know the analytic form of the
r̃i ̸=n, we have not yet determined the analytic form of r̃n. Nevertheless, we can sidestep this
problem by choosing to change basis and replace r̃n with the first term in eq. (66). In order
to fully determine a complete set of linearly independent rational functions, we then apply
this procedure iteratively. Once this procedure is finished we will need a different matrix M ji
that relates our basis to the original set of rational functions ri in eq. (63). This matrix can be
obtained in a similar way as M ji was determined.

Let us finish by briefly commenting on the benefits of our ansatz procedure. We find that
the dimension of each ansatz that we make is greatly reduced in comparison to common de-
nominator form. Indeed, the improved ansatz in eq. (66) involves a numerator of much lower
mass dimension than that in common denominator form, supplemented only by a few extra
parameters for the other rational functions. In practice we find that the largest ansatz we use
has only O(4000) unknowns, which is approximately 10 times smaller than the largest ansatz
in common-denominator form. Importantly, as we systematically walk through all possible
choices of ansätze we can recycle the numerical evaluations. Furthermore, given the small
number of unknowns in the improved ansatz, the many linear systems that we solve are per-
formed at negligible computational cost in comparison to the numerical sampling. Finally,
we note that once a successful small ansatz for an r̃n of the form in eq. (66) has been found,
we can efficiently further simplify the analytic form of the r̃n by systematically trying simpler
ansätze with fewer poles and potentially partial fractioning.

Mandelstam reconstruction We also perform the reconstruction computation in Mandel-
stam invariants following the approach of ref. [47]. The pentagon-function coefficients are
split into parity-even and parity-odd parts, and are normalized by the corresponding tree, or a
spinor-weight factor in case the latter vanishes. The denominators in Mandelstam invariants
are obtained with the same procedure described above, with the difference that a single uni-
variate slice now suffices since the denominators are little-group invariant (given by products
of alphabet letters). We sort the coefficients by ansatz size, and select the simplest subset which
constitutes a basis of the vector space of the rational functions. The numerator ansatz for the
most complicated parity-even or parity-odd coefficient is now a polynomial of degree 32 in 5
independent variables, corresponding to 58905 unknown parameters. The number of evalua-
tions of the remainders required to fit the free parameters of this ansatz is twice this number,
since for each kinematic point we also require an evaluation at the parity conjugate point in
order to differentiate the parity-even from the party-odd parts of the pentagon-function coef-
ficients. In conclusion, to fit the ansatz in common-denominator form the number of required
evaluations is 117810 in Mandelstam invariants, compared to 29059 in spinor variables. We
verified numerically over both C and Fp that the results obtained with the two computations
match.
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Table 1: Summary of rational function space in common denominator form for the
non-planar finite remainders (this work), and, for reference, for the planar ones
(originally calculated in ref. [48]). In the first column, we label the associated fi-
nite remainder. In the second, we give the number of linearly independent rational
functions that arise in the remainder. In the third, we record the mass dimension
and little group weights of the most complicated rational function in the basis. In
the final column, we state the number of terms in the common-denominator ansatz
for this function.

Contribution dim(span(ri)) max j([Num(r̃ j)]), {Num(r̃ jmax
)}

Common Den.
Ansatz Size

no
n-

pl
an

ar

R(2,1)
−++ 174 48, {1, -3, -6, 2, 2} 29059

R
(2,Ñ f )
−++ 88 47, {4, 4, -5, 3, 4} 24582

R(2,1)
+++ 49 21, {5, 4, 3, 3, 3} 1092

R
(2,Ñ f )
+++ 24 20, {2, 4, 6, 6, 6} 535

pl
an

ar

R(2,0)
−++ 87 35, {-3, 0, 6, -3, -2} 7358

R
(2,N f )
−++ 29 15, {-2, -2, 0, -3, -3} 378

R(2,0)
+++ 31 20, {-2, -4, -2, -2, -2} 1140

R
(2,N f )
+++ 6 8, {1, 3, 1, 1, 2} 44

4 Results

4.1 Efficiency of analytic reconstruction

In order to show the impact of our reconstruction procedure on the efficiency of the calcula-
tion, we gather here representative data at various stages of the calculation. In table 1, we
display a summary of the complexity of the amplitudes in common denominator form when
making use of spinor-helicity variables. Extending the notation of eq. (56), we denote the
collective little-group weights of Ni as {Ni}. For comparison, in the same table, we also re-
produce the corresponding information for the planar finite remainders previously obtained
in ref. [48]. In table 2, we summarize the size of the improved ansatz. For each remainder, we
provide the mass-dimension and little-group weights of the most complicated rational func-
tion. We use this information to construct the ansätze with the algorithm presented in ref. [36].
The Gröbner-basis computation is performed with SINGULAR [74]. Enumeration of the spinor
monomials is performed with OR-TOOLS CP-SAT [87]. The resulting dimension of the ansatz
can therefore easily be counted, and we provide this information in the final column of our
tables. We note that this cannot be determined from the mass dimension alone.

In summary, we see that reconstruction of the non-planar finite remainders with the orig-
inal common-denominator ansatz requires about four times more samples than in the planar
case. Furthermore, we see that the sampling requirement for the non-planar computation is
strongly reduced when we use the improved ansatz of eq. (66). In fact, with O(4000) required
samples, the complexity is below that of the common-denominator ansatz of the planar ampli-
tudes. We note that for the all-plus configurations, the ansatz size is unchanged with respect
to table 1 as the most complex function does not contain a 〈c|a+ b|c] pole and so is unaffected
by the procedure of section 3.3. After the analytic reconstruction, we perform further clean-up
following the partial-fraction strategies of refs. [35,36] and simplify the rational functions to
the point where none has more than about 100 free coefficients. The file size of the final results
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Table 2: Summary of size of the function space of the numerator Ñ in the improved
ansatz of eq. (66) that was used to reconstruct the analytic results. In the second
column, we record the mass dimension and little-group weights of the most compli-
cated numerator function in the basis. In the last column, we state the number of
terms in the numerator ansatz for this function. By comparison to table 1, we see
that the improved ansatz has greatly decreased the number of required samples.

Contribution max([Ñ ]), {Ñ } Improved ansatz Size

R(2,1)
−++ 30, {1, -3, -6, 2, 2} 4003

R
(2,Ñ f )
−++ 31, {4, 4, -5, 3, 4} 3810

R(2,1)
+++ 21, {5, 4, 3, 3, 3} 1092

R
(2,Ñ f )
+++ 20, {2, 4, 6, 6, 6} 535

is then dominated by the matrices of rational numbers, while the rational functions are about
one order of magnitude smaller. We discuss the ancillary files in more detail in section 4.3.

Let us now briefly comment on the analytic properties of the amplitudes. Firstly, we verified
that all iterated integrals with the letter W31 = tr5 cancel out in all finite remainders. Secondly,
we find that only 162 independent combinations of irreducible weight-four functions are re-
quired to express H(2), a number that is significantly lower than the 472 required to span the
full space of irreducible weight-four pentagon functions [56]. It is also interesting to compare
the functions arising in the planar triphoton amplitudes with those for leading-color three-jet
production. We find that only 48 independent combinations of irreducible weight-four func-
tions are required to express the planar triphoton amplitudes and that they span a proper
subspace of those needed for three-jet production.

4.2 Validation

In order to validate our computation, we have performed various checks at intermediate stages,
as well as on the final result which we now discuss. To verify the surface terms, we produced
numerical reduction tables on one phase-space point using FIRE6 [88] and checked that the
surface terms reduce to zero. The evaluation of the amplitudes with the numerical unitarity
method was carried out by the well-tested code CARAVEL [31]. The construction of finite re-
mainders was also carried out within CARAVEL, thus confirming the expected pole-structure
on every phase-space point. In particular we confirm that the contribution A(2,Ñ f ) is finite,
which is expected as its coupling structure is non-zero for the first time at two loops. This
furthermore implies that this contribution is invariant under scale variations, which we also
confirm. To validate the reconstruction methodology, we confirm that the analytic results re-
constructed in spinor variables agree with the results obtained using established Mandelstam-
variable reconstruction techniques. Furthermore, we check that the analytic results match
numerical evaluations from CARAVEL on finite fields of different characteristic. For the planar
contributions R(2,0) and R(2,N f ), we find full agreement between our result and a previous cal-
culation [48]. Finally, we evaluated the remainders in a number of collinear configurations
to verify the expected singular behavior. In particular, we validate the sign of the R(2,Ñ f ) con-
tribution by numerically checking that its behavior in collinear limits is consistent with the
universal expectation. To this end, we make use of the known two-loop four-point amplitudes
of ref. [52].
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4.3 Ancillary files

In the ancillary files associated to this paper, we present all finite remainders through two
loops. All finite remainders are presented in the form

R= r̃ j M jihi , (67)

where r̃ j are rational functions, M ji is a matrix of rational numbers and the hi are monomials
of pentagon functions. The ancillary files are provided in Mathematica format, organized by
gauge-invariant contributions, with naming conventions based on couplings and helicities.

To aid with the understanding of the ancillary files, we provide assembly scripts that eval-
uate the results of this paper and reproduce the benchmark values in appendix B, which are
also found in the file targets.m. For ease of use, we provide these assembly scripts both in
Mathematica (amp_eval.m) and in Python (amp_eval.py) format. The Python tests can
be run with pytest [89]. The assembly scripts make use of a series of raw analytic files for
each amplitude. Each finite remainder is associated to a subfolder of anc/amplitudes which
contains the following files:

• BasisCoefficients.m: The rational functions r̃ j in eq. (67). Each element of the list
is either a rational function of spinor variables or a list of integers. A list of integers
represents a permutation of the spinors in the previous element in the list. For a list of
integers {i1, i2, i3, i4, i5} the permutation to be applied is

(i1i2i3i4i5→ 12345) .

• Matrix.m: The matrix of rational numbers M ji in eq. (67). The matrices are given in the
sparse coordinate list (COO) format. In this format, only the non-zero values are stated
and all unspecified entries are implicitly zero. The non-zero entries in COO format are
specified as {row index, column index} -> value.

• BasisPentagons.m: The pentagon functions in eq. (67).

Cached values for the pentagon-function monomials at the kinematic point in appendix B (see
eq. (B.1)) are given in FValues.m. The files Benchmark.m contain target values for the
individual pentagon-function coefficients ri = r̃ j M ji at this kinematic point.

Explicit example: R
(2,Ñ f )
+++ In order to elucidate the structure of the results accompanying

this paper, we discuss in detail the structure of one of the non-planar finite remainders, R
(2,Ñ f )
+++ .

The dimension of the rational function space is 24 (see table 1). The number of contributing
pentagon-function monomials is 71. The sparse rational matrix M has dimension 24 × 71,
with 177 nonzero entries. The basis of rational functions r̃ can be written as

r̃ =
¦

r̃1 , r̃1

�

�

453→345 , r̃1

�

�

534→345 , r̃4 , r̃4

�

�

453→345 , r̃4

�

�

534→345 , r̃4

�

�

543→345 , r̃4

�

�

435→345 ,

r̃4

�

�

354→345 , r̃10 , r̃10

�

�

453→345 , r̃10

�

�

534→345 , r̃13 , r̃13

�

�

453→345 , r̃13

�

�

534→345 , r̃16 ,

r̃16

�

�

453→345 , r̃18 , r̃18

�

�

453→345 , r̃18

�

�

534→345 , r̃18

�

�

543→345 , r̃18

�

�

435→345 , r̃23 , r̃24

©

,

(68)

where we make explicit that many of the basis functions are obtained by permuting momenta
in previous elements. It is interesting that owing to the symmetries of the rational function
space it suffices to give 8 explicit spinor-helicity expressions. The basis elements that generate
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the others under permutations are given by

r̃1 = 16
[13]2

[12]〈45〉2
,

r̃4 = −8
〈12〉[13][34](〈34〉〈12〉+ 2〈24〉〈13〉)

〈14〉2[14]〈15〉〈25〉〈34〉
,

r̃D
10 = −24

〈12〉〈24〉[34]
〈14〉〈15〉〈25〉〈34〉

, r̃S
10 = −16

〈12〉[15][34]
〈15〉〈34〉〈1|2+ 5|1]

,

r̃10 = r̃D
10 + r̃D

10

�

�

345→435 + r̃S
10 ,

r̃D
13 = 24

〈12〉[15]
〈13〉〈34〉〈45〉

− 48
[15]〈25〉2

〈24〉〈35〉2〈45〉
+ 24

〈12〉2[15]
〈13〉〈14〉〈23〉〈45〉

,

r̃S
13 = 48

[15]〈24〉
〈34〉2〈45〉

− 24
[15]〈25〉
〈34〉〈35〉〈45〉

,

r̃13 = r̃D
13 + r̃D

13

�

�

345→435 + r̃S
13 ,

r̃D
16 = −48

〈23〉2[23]
〈15〉〈34〉2〈35〉

+ 24
[23]〈24〉〈25〉
〈15〉〈34〉〈45〉2

,

r̃S
16 = 16

〈12〉[13][45]
〈13〉〈45〉〈1|2+ 3|1]

− 48
〈12〉〈23〉[23]
〈14〉〈15〉〈34〉〈35〉

,

r̃16 = r̃D
16 + r̃D

16

�

�

345→354 + r̃S
16 ,

(69)

where the superscripts refer to doublets (D) and singlets (S) under the permutation transfor-
mation used to express the coefficient. We omit the three functions r̃18, r̃23 and r̃24 as they are
too complicated to print in the text.

4.4 Numerical evaluation

To facilitate the use of our results in phenomenological applications, we have implemented
our analytic expressions into the C++ library FivePointAmplitudes [49], making use of
PentagonFunctions++ [56] for the numerical evaluation of the pentagon functions. For
use in such applications, it is important that our implementation is capable of producing
numerically-stable results while maintaining reasonable evaluation times. To demonstrate the
numerical performance of our implementation, we study the (helicity) finite remainders and
the hard function H on a sample of 100k phase-space points generated by MATRIX v2 [90].
We adopt the phase-space definition from ref. [13], and we set the renormalization scale to
µ= mγγγ.

We characterize the numerical stability of our implementation in fig. 3, where we plot the
distributions of correct digits R,

R := − log10

�

�

�

�

1−
Xdouble

Xquad

�

�

�

�

, (70)

for various quantities X . In this way, we use a quadruple-precision evaluation (Xquad) to cal-
culate the accuracy of the double-precision evaluation (Xdouble) on each point. To catch and
correct unstable evaluations we recycle the precision rescue system developed in ref. [91] for
the amplitudes describing three-jet production at hadron colliders. We note however that in
this case it triggers only on a few points from the whole sample, so its effect on the evaluation
time is insignificant. In fig. 3a we show the R-distribution for the hard function H defined
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(a) Distributions of correct digits for full H(2) with five active
flavours, i.e. Nc = 3, N f = 5. The dashed line shows the cumu-
lative distribution.
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(b) Relative error of the contributions defined in eq. (20) to the
hard function H(2).

Figure 3: Distributions of correct digits R (see eq. (70)) that characterize the
numerical performance of the C++ implementation of our analytic results in
FivePointAmplitudes [49]. The phase-space sample of 100k phase-space points
is defined in ref. [13] and generated by MATRIX v2 [90]. The renormalization scale
is set to µ= mγγγ.

in eq. (20) for the dominant partonic process uū→ γγγ with five active massless flavors, i.e.
Nc = 3, N f = 5. We observe overall excellent numerical stability, and the average evaluation
time of less than a second on a single CPU core. We can therefore conclude that our imple-
mentation is suitable for phenomenological applications. Since the analytic complexity of the
subleading-color contributions is notably higher than that of the leading contributions, it is of
interest to compare their relative numerical stability. In fig. 3b we show the R-distributions for
each of the four contributions to H separately. Indeed, we observe that the subleading func-
tions H(2,1) and H(2,Ñ f ) are slightly less numerically stable than the leading functions H(2,0),
H(2,N f ). Nevertheless, their numerical behavior is clearly adequate for the anticipated phe-
nomenological applications.

Finally, let us recall that we employ a spinor representation of rational coefficients in our
numerical implementation. Nevertheless, as discussed in section 3.3, we also reconstructed
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−++ sij variables
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Figure 4: Numerical stability of the rational functions contributing to the finite re-
mainder R(2,0)

−++ in two different representations: one in terms of Mandelstam invari-
ants and the other in terms of spinor-helicity variables. At each phase-space point,
we plot the lowest number of correct digits R over the pentagon-function coefficients
ri of eq. (22). See the caption of fig. 3 for details of the phase-space definition.

the rational coefficients in terms of Mandelstam variables. With this data at hand, it is inter-
esting to study the impact of the choice of variables on the numerical stability of the analytic
expressions. In fig. 4 we show the R-distributions for the coefficients ri of pentagon functions
as defined in eq. (22). Specifically, on each phase-space point we compute the value of R for
each ri and plot minri

(R). As a representative example, we show this distribution for the finite

remainder R(2,0)
−++, first using the compact spinor representation of the ancillary files, and then

in a representation in terms of Mandelstam variables that has been put into a partial fractions
representation using MultivariateApart [92]. We see that the tail of the distribution of R in
the spinor case is improved by about two digits with respect to the Mandelstam case, a be-
havior that we find is consistent across all helicity amplitudes. It is therefore evident that the
spinor representation improves the numerical stability compared to the representation through
Mandelstam invariants. In spite of this, for the contribution H(2,0) we observe overall similar
behavior as in ref. [48]. This implies that the numerical accuracy of H(2) is limited by the
accuracy of the pentagon-function evaluation.

5 Subleading color corrections to hard function

In all phenomenological studies of triphoton production at hadron colliders to date, the double-
virtual NNLO QCD corrections have been included in the leading-color approximation. Given
our results for the subleading color contributions to the double-virtual corrections, it is inter-
esting to consider the numerical impact of these corrections. Specifically, in refs. [12,13] the
hard function was taken to be

H(2) → H(2)l.c. :=
Nc

2

4
H(2,0) , (71)

instead of the full result in eq. (20). In this section, we study the impact of the subleading-color
contributions that we have calculated in this work relative to H(2)l.c. . We focus on the dominant
partonic channel uū→ γγγ, and we consider distributions of the relative sizes of corrections
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with respect to the leading-color result,

δH(2)x =
∆H(2)x

H(2)l.c.

, (72)

over the same phase-space points used in section 4.4. Here ∆H(2)x is one of the three correc-
tions in eq. (20):

∆H(2)Nc
:= −

1
4
(H(2,0) +H(2,1)) +

1
4Nc

2 H(2,1) ,

∆H(2)N f
:= CF TF N f H(2,N f ) ,

∆H(2)
Q2

f

:= CF TF

 N f
∑

f=1

Q2
f

!

H(2,Ñ f ) ,

(73)

such that H(2) = H(2)l.c. +∆H
(2)
Nc
+∆H(2)N f

+∆H(2)
Q2

f
, and δH(2) := H(2)/H(2)l.c. − 1. We note that

the δHx are scheme dependent, and can vary substantially between different schemes. In
fig. 5, we plot the distribution of the δHx over phase space in the qT , MS and Catani schemes
(see appendix A.2 for our scheme definitions). The average correction size in fig. 5 should
provide a reasonable proxy for the subleading-color effects in fiducial cross sections, whereas
the shape demonstrates how the corrections vary over phase space. Our phase-space sample
and conventions are the same as that used in the studies of numerical stability. Specifically,
our 100k sample points are taken from the phase space used in the Monte-Carlo cross-section
computation of ref. [13], as generated by MATRIX v2 [90]. We work with five active flavors,
i.e. N f = 5, and set Nc = 3 and the renormalization scale to µ= mγγγ.

Let us now discuss key features of these distributions. First, we consider the impact of the
choice of IR subtraction scheme and see in fig. 5 that the qT and MS schemes behave similarly,
and both differ noticeably from the Catani scheme. Next, we note that a highly peaked distri-
bution implies a simple correction by a factor in all differential cross sections, while a smeared
distribution implies that the corrections are observable-dependent. Focusing specifically on
fig. 5a (the schemes used in refs. [12,13]), we see that all corrections are negative, but behave
differently over phase space. The correction from the Nc-suppressed terms is sharply peaked
at about −10%, in good agreement with the common subleading-color behavior. The H(2,Ñ f )

corrections on the contrary demonstrate significant phase-space dependence. On average, the
combined correction is about −35%, and the shape of the distribution suggests that for some
observables the correction could reach up to about −50%. Nevertheless, taking into account
the smallness of the overall contribution of H(2) to NNLO cross sections, we expect that the
approximation employed in refs. [12,13] should be largely adequate. Finally, it is worth not-
ing that in the dd̄ partonic channel the contribution from H(2,Ñ f ) to H(2) is four times larger
than in uū, while all other contributions are unchanged. Therefore, H(2,Ñ f ) becomes numeri-
cally as important as H(2)l.c. in this channel and the approximation of eq. (71) is no longer valid.
However, the overall contribution of the dd̄ channel to the cross section is highly suppressed
by the ratio of quark electric charges, so this effect is invisible.

6 Conclusion

In this work, we have computed the complete set of two-loop helicity amplitudes that con-
tribute to the NNLO QCD corrections for triphoton production at hadron colliders, including
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Figure 5: Distribution of separate subleading-color corrections δHx defined in
eq. (73) to the the hard function H alongside the total correction δH. The phase-
space sample of 100k phase-space points is defined in ref. [13] and generated by
MATRIX v2 [90]. The renormalization scale is set to µ= mγγγ.
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all previously unknown non-planar contributions. We have derived compact analytic expres-
sions for the two-loop finite remainders that we make available as supplementary material. In
addition, we have implemented our analytic results in a C++ library, providing a stable and
efficient numerical evaluation that is suitable for phenomenological applications.

To carry out our computation, we employed the numerical unitarity approach as imple-
mented in CARAVEL, which we have suitably extended to take care of the reduction of non-
planar five-point integral topologies. To handle the ensuing increase in complexity, we have
proposed a new approach for the construction of surface terms that capitalizes on formulating
the associated syzygy problem in embedding space, and on the numerical nature of the compu-
tational framework. To reconstruct the analytic form of the results from numerical evaluations
of the amplitude over finite fields we have constructed an optimized ansatz in spinor-helicity
variables. This resulted in a more efficient reconstruction procedure, with the most compli-
cated ansatz having only around 4000 free parameters. We anticipate that the advancements
in both of these technical aspects will greatly assist in computations of two-loop amplitudes
with more kinematic scales that currently pose significant computational challenges.

Using our results, we have estimated the effect of including the subleading-color correc-
tions in the double-virtual contributions to the cross section. We have found that, on average,
over a representative sample of phase space, the two-loop hard function receives an extra neg-
ative contribution of around 25-35%. The exact effect is observable and scheme dependent.
Due to an overall small contribution from double-virtual corrections to the NNLO cross sec-
tions [12, 13], we conclude that the approximation employed in ref. [12–14] should be valid
within a few percent, although in practice it is important to verify this conclusion for each ob-
servable. Nevertheless, it is clear that in view of the excellent numerical stability and efficiency
of our results, including the subleading-color corrections to the double-virtual contributions
in future phenomenological studies of triphoton production is straightforward.

A IR renormalization

A.1 Conventions in Catani scheme

The remainders R are defined in eq. (18) using the functions I(1) and I(2) [51, 52] which we
quote here for convenience,

I(1)(ε) = CF
eγEε

Γ (1− ε)

�

1
ε2
+

3
2ε

��

−
s12

µ2
− i 0

�−ε
,

I(2)(ε) =
1
2

I(1)(ε)I(1)(ε)−
β0

ε
I(1)(ε) +

e−γEεΓ (1− 2ε)
Γ (1− ε)

�

β0

ε
+ K

�

I(1)(2ε)−H(ε) .
(A.1)

In I(2)(ε), we have introduced the functions

K =

�

67
18
−
π2

6

�

CA−
10
9

TF NF , H(ε) =
eγEε

2εΓ (1− ε)
Hq ,

Hq =

�

π2

2
− 6ζ3 −

3
8

�

C2
F +

�

13
2
ζ3 +

245
216
−

23
48
π2
�

CACF +

�

π2

12
−

25
54

�

TF CF N f .

(A.2)

A.2 IR-subtraction scheme change

Consider two different IR subtraction schemes, in which finite remainders are

R= IA , R̃= ĨA , (A.3)
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where we suppress the helicity labels. We write the difference between the squared finite
remainders as

∆ := |R̃| 2 − |R| 2 =
�

|̃I| 2 − |I| 2
�

|A| 2 , (A.4)

where the absolute values do not include helicity sums. Overall colour factors have been
removed as in eq. (8) and no colour sums are implied.

Upon expansion to the second order in αs we find

∆(1) = δ(1)|A(0)| 2 , δ(1) := 2Re
�

Ĩ(1) − I(1)
	

,

∆(2) = δ̄(2)|A(0)| 2 +δ(1)2Re
�

A(0)⋆A(1)
	

, δ̄(2) := 2Re
�

Ĩ(2) − I(2)
	

− |̃I(1)|
2
+ |I(1)|

2
.

(A.5)

We can rewrite ∆(2) such that it is defined explicitly through finite quantities as

∆(2) = δ(2)|A(0)| 2 +δ(1)2 Re
�

A(0)⋆R(1)
	

, δ(2) := δ̄(2) +δ(1)2 Re
�

I(1)
	

. (A.6)

Using the definitions in eq. (19), and taking advantage of the factorization of |I| 2 in the
sum, we can therefore write the scheme shift for the hard functions as

H̃(1) =H(1) +δ(1) ,
H̃(2) =H(2) +δ(1)H(1) +δ(2) ,

(A.7)

dependence of the remainder definition in eq. (A.3) enters in a linear way, the conversion
formulas apply equally to helicity-summed hard functions H(L).

Let us consider converting the finite remainders in the Catani scheme, that is employed
in this work, to the ones defined in the MS scheme. Taking the definitions of Ĩ = IMS from
ref. [53],4 we obtain

δ
(1)
MS
= CF

�

7π2

6
+ 3lµ − l2

µ

�

,

δ
(2)
MS
= C2

F

�

49π4

72
+

7π2

2
lµ +

�

9
2
−

7π2

6

�

l2
µ − 3l3

µ +
1
2

l4
µ

�

(A.8)

+ CF CA

��

691π2

108
−

25π4

144
−

11ζ3

12

�

+

�

67
6
−

157π2

72

�

lµ +

�

−
233
36
+
π2

6

�

l2
µ +

11
18

l3
µ

�

+ CF TF N f

�

−
56π2

27
+
ζ3

3
+

�

−
10
3
+

11π2

18

�

lµ +
19l2

µ

9
−

2l3
µ

9

�

,

where lµ := log
�

s12/µ
2
�

.
Similarly, taking the definitions from eqs. (50-60) from ref. [93] for the qT scheme we get

δ(1)qT
= CFπ

2 ,

δ(2)qT
= C2

F

�

�

−12ζ3 −
3
4
+π2

�

lµ +
π4

2

�

+ CF CA

��

13ζ3 +
245
108
−

67π2

24

�

lµ −
187ζ3

36
−

7π4

48
+

1181π2

216
+

607
81

�

+ CF TF N f

��

5π2

6
−

25
27

�

lµ +
17ζ3

9
−

97π2

54
−

164
81

�

.

(A.9)

4Explicitly, Ĩ(1) = −Z(1)/2, Ĩ(2) = ((Z(1))2 − Z(2))/4, with the Z(i) defined in ref. [53].
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B Reference values

To facilitate comparison with our results, we present values for the finite remainders evaluated
at a specific kinematic point. The phase-space point we use is:

pµ1 = {−0.575,−0.575, 0,0} ,
pµ2 = {−0.575,0.575, 0,0} ,
pµ3 = {0.458858239,0.405584802, 0.207778343,−0.053665747} ,
pµ4 = {0.231129408,−0.097079562,0.009377939,−0.209543351} ,
pµ5 = {0.460012351,−0.308505239,−0.217156282,0.263209099} .

(B.1)

This phase-space point was chosen to match the values given in ref. [48] for the kinematic
invariants.

For the spinors, we follow the conventions used, for example, in ref. [85], i.e. we take

λα =

 p

p0 + p3 ,
p1+ip2
p

p0+p3

!

, and λ̃α̇ =
�

p

p0 + p3, p1−ip2
p

p0+p3

�

. (B.2)

This implies that with real kinematics we have λ∗α = λ̃α̇, when the energy is positive, and
λ∗α = −λ̃α̇, when the energy is negative. In table 3 we provide the evaluations of the finite
remainders at the point of eq. (B.1). In addition, in tables 4 to 6 we show the evaluations of
the tree, one-loop and two-loop bare amplitudes, which can be used to derive the results of
table 3 following the definitions in eqs. (13) to (15) and (18). The one- and two-loop bare
amplitudes are normalized by the following factors

Φ+++ =
[31]〈12〉3〈13〉
〈14〉2〈15〉2〈23〉2

, and Φ−++ = A(0)−++ = −
〈12〉〈23〉2

〈14〉〈15〉〈24〉〈25〉
. (B.3)

The one-loop and two-loop planar remainders reproduce the values of ref. [48]. In this work
the finite remainders were not normalized by any spinor weight, hence a little care is needed
when comparing with table 6 of ref. [48]. The last four lines are the new subleading-color,
non-planar contributions.

Table 3: Finite remainder evaluations at the point of eq. (B.1) with the spinors de-
fined as in eq. (B.2). The remainders are evaluated in the Catani scheme as defined
in the text.

Finite Remainder Numerical Evaluation

R(1)−++ 31.76842068− 98.20723767 i
R(1)+++ 67.16227913+ 20.80380252 i

R(2,0)
−++ 726.0944727− 748.8429540 i

R(2,0)
+++ 1085.896384+ 310.5673949 i

R
(2,N f )
−++ −198.2921242+ 257.4649652 i

R
(2,N f )
+++ −233.4239202− 112.3516487 i

R(2,1)
−++ −548.9464331− 12.71176526 i

R(2,1)
+++ −197.0006137− 822.9175634 i

R
(2,Ñ f )
−++ 35.98395348− 188.6772927 i

R
(2,Ñ f )
+++ 321.0180068+ 179.1161201 i

30

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157


SciPost Phys. 15, 157 (2023)

Table 4: Tree amplitude evaluated at the point of eq. (B.1) with the spinors defined
as in eq. (B.2).

ε0

A(0)−++ 6.73642828+ 10.02454999 i
A(0)+++ 0

Table 5: Bare, normalized one-loop amplitudes evaluated at the point of eq. (B.1).

ε−2 ε−1 ε0 ε1 ε2

A(1)−++
�

Φ−++
−1 −3.17428470

−3.14159265 i
−3.43768120
−16.69077767 i

−4.54236420
−48.29215997 i

−28.34154957
−104.73071157 i

A(1)+++
�

Φ+++ 0 0
−122.48761401
−218.20999082 i

−613.16200128
−1772.24966259 i

−1264.78147357
−6727.58375625 i

Table 6: Bare, normalized two-loop amplitudes evaluated at the point of eq. (B.1).

ε−4 ε−3 ε−2 ε−1 ε0

A(2,0)
−++

�

Φ−++ 0.5
2.25761803
+3.14159265 i

−3.31724534
+20.90350062 i

−55.54942677
+44.34772278 i

−248.76993460
−87.79211642 i

A(2,0)
+++

�

Φ+++ 0 0
122.48761401
+218.20999082 i

−132.67559542
+2049.61318591 i

−9927.84571218
+3575.60761772 i

A
(2,N f )
−++

�

Φ−++ 0 0.16666667
1.33587268
+1.04719755 i

4.64626451
+12.87251436 i

10.33373683
+83.15472522 i

A
(2,N f )
+++

�

Φ+++ 0 0 0
81.65840934
+145.47332721 i

895.94750003
+2327.53809534 i

A(2,1)
−++

�

Φ−++ 0.5
3.17428469
+3.14159265 i

3.54092067
+26.66308714 i

−38.30735107
+112.07323410 i

−265.12342759
+331.32292317 i

A(2,1)
+++

�

Φ+++ 0 0
122.48761401
+218.20999082 i

316.44565596
+2849.71648558 i

−6265.18093537
+17706.12335722 i

A
(2,Ñ f )
−++

�

Φ−++ 0 0 0 0
−11.30451464
−11.18613860 i

A
(2,Ñ f )
+++

�

Φ+++ 0 0 0 0
−390.31606513
−1248.74833374 i

References

[1] G. Aad et al., Search for new phenomena in events with at least three photons collected
in pp collisions at

p
s = 8 TeV with the ATLAS detector, Eur. Phys. J. C 76, 210 (2016),

doi:10.1140/epjc/s10052-016-4034-8.

[2] H. Denizli, K. Y. Oyulmaz and A. Senol, Testing for observability of Higgs effective cou-
plings in triphoton production at FCC-hh, J. Phys. G: Nucl. Part. Phys. 46, 105007 (2019),
doi:10.1088/1361-6471/ab2bae.

[3] H. Denizli and A. Senol, Sensitivity reach on anomalous Higgs couplings via triphoton
production for the post-LHC circular high-energy hadron colliders, Acta Phys. Pol. B 52,
1377 (2021), doi:10.5506/APhysPolB.52.1377.

31

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157
https://doi.org/10.1140/epjc/s10052-016-4034-8
https://doi.org/10.1088/1361-6471/ab2bae
https://doi.org/10.5506/APhysPolB.52.1377


SciPost Phys. 15, 157 (2023)

[4] J. A. Aguilar-Saavedra, J. M. Cano and J. M. No, More light on Higgs flavor at the LHC:
Higgs boson couplings to light quarks through h+γ production, Phys. Rev. D 103, 095023
(2021), doi:10.1103/PhysRevD.103.095023.

[5] A. Senol, H. Denizli and C. Helveci, Sensitivity of anomalous quartic gauge couplings via
tri-photon production at FCC-hh, (arXiv preprint) doi:10.48550/arXiv.2303.14805.

[6] A. Zerwekh, C. Dib and R. Rosenfeld, Triple photon production at the Tevatron in techni-
color models, Phys. Lett. B 549, 154 (2002), doi:10.1016/S0370-2693(02)02896-4.

[7] N. Toro and I. Yavin, Multiphotons and photon jets from new heavy vector bosons, Phys.
Rev. D 86, 055005 (2012), doi:10.1103/PhysRevD.86.055005.

[8] G. Das and P. Mathews, Neutral triple vector boson production in Randall-Sundrum model
at the LHC, Phys. Rev. D 92, 094034 (2015), doi:10.1103/PhysRevD.92.094034.

[9] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at
hadron colliders: A fully differential QCD calculation at next-to-next-to-leading order, Phys.
Rev. Lett. 108, 072001 (2012), doi:10.1103/PhysRevLett.108.072001.

[10] J. M. Campbell, R. K. Ellis, Y. Li and C. Williams, Predictions for diphoton pro-
duction at the LHC through NNLO in QCD, J. High Energy Phys. 07, 148 (2016),
doi:10.1007/JHEP07(2016)148.

[11] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton produc-
tion at the LHC: A QCD study up to NNLO, J. High Energy Phys. 04, 142 (2018),
doi:10.1007/JHEP04(2018)142.

[12] H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections
to three-photon production at the LHC, J. High Energy Phys. 02, 057 (2020),
doi:10.1007/JHEP02(2020)057.

[13] S. Kallweit, V. Sotnikov and M. Wiesemann, Triphoton production at hadron colliders in
NNLO QCD, Phys. Lett. B 812, 136013 (2021), doi:10.1016/j.physletb.2020.136013.

[14] ATLAS collaboration, Modelling of isolated multi-photon production in Monte Carlo genera-
tors in ATLAS, CERN, Geneva, Switzerland (2021), http://cds.cern.ch/record/2750740.

[15] M. Aaboud et al., Measurement of the production cross section of three isolated photons
in pp collisions at

p
s = 8 TeV using the ATLAS detector, Phys. Lett. B 781, 55 (2018),

doi:10.1016/j.physletb.2018.03.057.

[16] R. K. Valeshabadi, M. Modarres and S. Rezaie, Three-photon productions within the kt -
factorization at the LHC, Eur. Phys. J. C 81, 961 (2021), doi:10.1140/epjc/s10052-021-
09771-9.

[17] A. V. Karpishkov and V. A. Saleev, Production of three isolated photons in the par-
ton Reggeization approach at high energies, Phys. Rev. D 106, 054036 (2022),
doi:10.1103/PhysRevD.106.054036.

[18] M. Czakon, A. Mitov and R. Poncelet, Next-to-next-to-leading order study
of three-jet production at the LHC, Phys. Rev. Lett. 127, 152001 (2021),
doi:10.1103/PhysRevLett.127.152001.

[19] X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss and M. Marcoli, Automation of antenna
subtraction in colour space: Gluonic processes, J. High Energy Phys. 10, 099 (2022),
doi:10.1007/JHEP10(2022)099.

32

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157
https://doi.org/10.1103/PhysRevD.103.095023
https://doi.org/10.48550/arXiv.2303.14805
https://doi.org/10.1016/S0370-2693(02)02896-4
https://doi.org/10.1103/PhysRevD.86.055005
https://doi.org/10.1103/PhysRevD.92.094034
https://doi.org/10.1103/PhysRevLett.108.072001
https://doi.org/10.1007/JHEP07(2016)148
https://doi.org/10.1007/JHEP04(2018)142
https://doi.org/10.1007/JHEP02(2020)057
https://doi.org/10.1016/j.physletb.2020.136013
http://cds.cern.ch/record/2750740
https://doi.org/10.1016/j.physletb.2018.03.057
https://doi.org/10.1140/epjc/s10052-021-09771-9
https://doi.org/10.1140/epjc/s10052-021-09771-9
https://doi.org/10.1103/PhysRevD.106.054036
https://doi.org/10.1103/PhysRevLett.127.152001
https://doi.org/10.1007/JHEP10(2022)099


SciPost Phys. 15, 157 (2023)

[20] S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and C. Savoini, Higgs boson
production in association with a top-antitop quark pair in next-to-next-to-leading order
QCD, Phys. Rev. Lett. 130, 111902 (2023), doi:10.1103/PhysRevLett.130.111902.

[21] H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to dipho-
ton production with an additional jet at the LHC, J. High Energy Phys. 09, 093 (2021),
doi:10.1007/JHEP09(2021)093.

[22] S. Badger, T. Gehrmann, M. Marcoli and R. Moodie, Next-to-leading order QCD corrections
to diphoton-plus-jet production through gluon fusion at the LHC, Phys. Lett. B 824, 136802
(2022), doi:10.1016/j.physletb.2021.136802.

[23] S. Badger et al., Virtual QCD corrections to gluon-initiated diphoton plus jet production at
hadron colliders, J. High Energy Phys. 11, 083 (2021), doi:10.1007/JHEP11(2021)083.

[24] S. Badger, M. Czakon, H. B. Hartanto, R. Moodie, T. Peraro, R. Poncelet and S. Zoia,
Isolated photon production in association with a jet pair through next-to-next-to-leading
order in QCD, (arXiv preprint) doi:10.48550/arXiv.2304.06682.

[25] B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop helicity ampli-
tudes for diphoton plus jet production in full color, Phys. Rev. Lett. 127, 262001 (2021),
doi:10.1103/PhysRevLett.127.262001.

[26] G. ’t. Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72, 461 (1974),
doi:10.1016/0550-3213(74)90154-0.

[27] H. Ita, Two-loop integrand decomposition into master integrals and surface terms, Phys.
Rev. D 94, 116015 (2016), doi:10.1103/PhysRevD.94.116015.

[28] S. Abreu, F. F. Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-loop four-
gluon amplitudes from numerical unitarity, Phys. Rev. Lett. 119, 142001 (2017),
doi:10.1103/PhysRevLett.119.142001.

[29] S. Abreu, F. F. Cordero, H. Ita, B. Page and M. Zeng, Planar two-loop five-
gluon amplitudes from numerical unitarity, Phys. Rev. D 97, 116014 (2018),
doi:10.1103/PhysRevD.97.116014.

[30] S. Abreu, J. Dormans, F. F. Cordero, H. Ita and B. Page, Analytic form of planar two-
loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett. 122, 082002 (2019),
doi:10.1103/PhysRevLett.122.082002.

[31] S. Abreu, J. Dormans, F. F. Cordero, H. Ita, M. Kraus, B. Page, E. Pascual, M. S.
Ruf and V. Sotnikov, Caravel: A C++ framework for the computation of multi-loop
amplitudes with numerical unitarity, Comput. Phys. Commun. 267, 108069 (2021),
doi:10.1016/j.cpc.2021.108069.

[32] A. von Manteuffel and R. M. Schabinger, A novel approach to integration by parts reduc-
tion, Phys. Lett. B 744, 101 (2015), doi:10.1016/j.physletb.2015.03.029.

[33] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,
J. High Energy Phys. 12, 030 (2016), doi:10.1007/JHEP12(2016)030.

[34] J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys.
Commun. 247, 106951 (2020), doi:10.1016/j.cpc.2019.106951.

33

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157
https://doi.org/10.1103/PhysRevLett.130.111902
https://doi.org/10.1007/JHEP09(2021)093
https://doi.org/10.1016/j.physletb.2021.136802
https://doi.org/10.1007/JHEP11(2021)083
https://doi.org/10.48550/arXiv.2304.06682
https://doi.org/10.1103/PhysRevLett.127.262001
https://doi.org/10.1016/0550-3213(74)90154-0
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevLett.119.142001
https://doi.org/10.1103/PhysRevD.97.116014
https://doi.org/10.1103/PhysRevLett.122.082002
https://doi.org/10.1016/j.cpc.2021.108069
https://doi.org/10.1016/j.physletb.2015.03.029
https://doi.org/10.1007/JHEP12(2016)030
https://doi.org/10.1016/j.cpc.2019.106951


SciPost Phys. 15, 157 (2023)

[35] G. De Laurentis and D. Maître, Extracting analytical one-loop amplitudes from numerical
evaluations, J. High Energy Phys. 07, 123 (2019), doi:10.1007/JHEP07(2019)123.

[36] G. De Laurentis and B. Page, Ansätze for scattering amplitudes from p-adic numbers and al-
gebraic geometry, J. High Energy Phys. 12, 140 (2022), doi:10.1007/JHEP12(2022)140.

[37] V. Magerya, Rational tracer: A tool for faster rational function reconstruction, (arXiv
preprint) doi:10.48550/arXiv.2211.03572.

[38] A. V. Belitsky, A. V. Smirnov and R. V. Yakovlev, Balancing act: Multi-
variate rational reconstruction for IBP, Nucl. Phys. B 993, 116253 (2023),
doi:10.1016/j.nuclphysb.2023.116253.

[39] F. V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group func-
tions, Phys. Lett. B 100, 65 (1981), doi:10.1016/0370-2693(81)90288-4.

[40] K. G. Chetyrkin and F. V. Tkachov, Integration by parts: The algorithm to calculate β-
functions in 4 loops, Nucl. Phys. B 192, 159 (1981), doi:10.1016/0550-3213(81)90199-
1.

[41] J. Gluza, K. Kajda and D. A. Kosower, Towards a basis for planar two-loop integrals, Phys.
Rev. D 83, 045012 (2011), doi:10.1103/PhysRevD.83.045012.

[42] K. J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic
geometry, Phys. Rev. D 93, 041701 (2016), doi:10.1103/PhysRevD.93.041701.

[43] S. Caron-Huot and J. M. Henn, Iterative structure of finite loop integrals, J. High Energy
Phys. 06, 114 (2014), doi:10.1007/JHEP06(2014)114.

[44] Z. Bern, M. Enciso, H. Ita and M. Zeng, Dual conformal symmetry, integration-by-parts re-
duction, differential equations, and the nonplanar sector, Phys. Rev. D 96, 096017 (2017),
doi:10.1103/PhysRevD.96.096017.

[45] S. Abreu, R. Britto, C. Duhr and E. Gardi, Cuts from residues: The one-loop case, J. High
Energy Phys. 06, 114 (2017), doi:10.1007/JHEP06(2017)114.

[46] S. Abreu, F. F. Cordero, H. Ita, B. Page and V. Sotnikov, Planar two-loop five-
parton amplitudes from numerical unitarity, J. High Energy Phys. 11, 116 (2018),
doi:10.1007/JHEP11(2018)116.

[47] S. Abreu, F. F. Cordero, H. Ita, M. Klinkert, B. Page and V. Sotnikov, Leading-color two-loop
amplitudes for four partons and a W boson in QCD, J. High Energy Phys. 04, 042 (2022),
doi:10.1007/JHEP04(2022)042.

[48] S. Abreu, B. Page, E. Pascual and V. Sotnikov, Leading-color two-loop QCD corrections
for three-photon production at hadron colliders, J. High Energy Phys. 01, 078 (2021),
doi:10.1007/JHEP01(2021)078.

[49] V. Sotnikov, FivePointAmplitudes-cpp, GitLab https://gitlab.com/five-point-amplitudes/
FivePointAmplitudes-cpp.git.

[50] W. H. Furry, A symmetry theorem in the positron theory, Phys. Rev. 51, 125 (1937),
doi:10.1103/PhysRev.51.125.

[51] C. Anastasiou, E. W. N. Glover and M. E. Tejeda-Yeomans, Two-loop QED and QCD
corrections to massless fermion-boson scattering, Nucl. Phys. B 629, 255 (2002),
doi:10.1016/S0550-3213(02)00140-2.

34

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157
https://doi.org/10.1007/JHEP07(2019)123
https://doi.org/10.1007/JHEP12(2022)140
https://doi.org/10.48550/arXiv.2211.03572
https://doi.org/10.1016/j.nuclphysb.2023.116253
https://doi.org/10.1016/0370-2693(81)90288-4
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1103/PhysRevD.83.045012
https://doi.org/10.1103/PhysRevD.93.041701
https://doi.org/10.1007/JHEP06(2014)114
https://doi.org/10.1103/PhysRevD.96.096017
https://doi.org/10.1007/JHEP06(2017)114
https://doi.org/10.1007/JHEP11(2018)116
https://doi.org/10.1007/JHEP04(2022)042
https://doi.org/10.1007/JHEP01(2021)078
https://gitlab.com/five-point-amplitudes/FivePointAmplitudes-cpp.git
https://gitlab.com/five-point-amplitudes/FivePointAmplitudes-cpp.git
https://doi.org/10.1103/PhysRev.51.125
https://doi.org/10.1016/S0550-3213(02)00140-2


SciPost Phys. 15, 157 (2023)

[52] E. W. N. Glover and M. E. Tejeda-Yeomans, Two-loop QCD helicity amplitudes for
massless quark-massless gauge boson scattering, J. High Energy Phys. 06, 033 (2003),
doi:10.1088/1126-6708/2003/06/033.

[53] H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, Two-loop leading-color helicity
amplitudes for three-photon production at the LHC, J. High Energy Phys. 06, 150 (2021),
doi:10.1007/JHEP06(2021)150.

[54] S. Catani, The singular behaviour of QCD amplitudes at two-loop order, Phys. Lett. B 427,
161 (1998), doi:10.1016/S0370-2693(98)00332-3.

[55] D. Chicherin, T. Gehrmann, J. M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master inte-
grals for three-jet production at next-to-next-to-leading order, Phys. Rev. Lett. 123, 041603
(2019), doi:10.1103/PhysRevLett.123.041603.

[56] D. Chicherin and V. Sotnikov, Pentagon functions for scattering of five massless particles, J.
High Energy Phys. 12, 167 (2020), doi:10.1007/JHEP12(2020)167.

[57] S. Abreu, L. J. Dixon, E. Herrmann, B. Page and M. Zeng, Two-loop five-point am-
plitude in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122, 121603 (2019),
doi:10.1103/PhysRevLett.122.121603.

[58] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with
Kira 2.0 and finite field methods, Comput. Phys. Commun. 266, 108024 (2021),
doi:10.1016/j.cpc.2021.108024.

[59] T. Peraro, FiniteFlow: Multivariate functional reconstruction using finite fields and dataflow
graphs, J. High Energy Phys. 07, 031 (2019), doi:10.1007/JHEP07(2019)031.

[60] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105, 279 (1993),
doi:10.1006/jcph.1993.1074.

[61] A. Ochirov and B. Page, Full colour for loop amplitudes in Yang-Mills theory, J. High Energy
Phys. 02, 100 (2017), doi:10.1007/JHEP02(2017)100.

[62] A. Ochirov and B. Page, Multi-quark colour decompositions from unitarity, J. High Energy
Phys. 10, 058 (2019), doi:10.1007/JHEP10(2019)058.

[63] F. R. Anger and V. Sotnikov, On the dimensional regularization of QCD helicity amplitudes
with quarks, (arXiv preprint) doi:10.48550/arXiv.1803.11127.

[64] S. Abreu, J. Dormans, F. F. Cordero, H. Ita, B. Page and V. Sotnikov, Analytic form of the
planar two-loop five-parton scattering amplitudes in QCD, J. High Energy Phys. 05, 084
(2019), doi:10.1007/JHEP05(2019)084.

[65] V. Sotnikov, Scattering amplitudes with the multi-loop numerical unitarity method,
PhD thesis, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany (2019),
doi:10.6094/UNIFR/151540.

[66] S. Laporta, High-precision calculation of multiloop Feynman integrals by difference equa-
tions, Int. J. Mod. Phys. A 15, 5087 (2000), doi:10.1142/S0217751X00002159.

[67] R. M. Schabinger, A new algorithm for the generation of unitarity-compatible integration
by parts relations, J. High Energy Phys. 01, 077 (2012), doi:10.1007/JHEP01(2012)077.

35

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157
https://doi.org/10.1088/1126-6708/2003/06/033
https://doi.org/10.1007/JHEP06(2021)150
https://doi.org/10.1016/S0370-2693(98)00332-3
https://doi.org/10.1103/PhysRevLett.123.041603
https://doi.org/10.1007/JHEP12(2020)167
https://doi.org/10.1103/PhysRevLett.122.121603
https://doi.org/10.1016/j.cpc.2021.108024
https://doi.org/10.1007/JHEP07(2019)031
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1007/JHEP02(2017)100
https://doi.org/10.1007/JHEP10(2019)058
https://doi.org/10.48550/arXiv.1803.11127
https://doi.org/10.1007/JHEP05(2019)084
https://doi.org/10.6094/UNIFR/151540
https://doi.org/10.1142/S0217751X00002159
https://doi.org/10.1007/JHEP01(2012)077


SciPost Phys. 15, 157 (2023)

[68] D. Cabarcas and J. Ding, Linear algebra to compute syzygies and Gröbner bases, in ISSAC
’11: Proceedings of the 36th international symposium on Symbolic and algebraic compu-
tation, Association for Computing Machinery, New York, USA, ISBN 9781450306751
(2011), doi:10.1145/1993886.1993902.

[69] G. Chen, J. Liu, R. Xie, H. Zhang and Y. Zhou, Syzygies probing scattering amplitudes, J.
High Energy Phys. 09, 075 (2016), doi:10.1007/JHEP09(2016)075.

[70] J. Böhm, A. Georgoudis, K. J. Larsen, M. Schulze and Y. Zhang, Complete sets of logarith-
mic vector fields for integration-by-parts identities of Feynman integrals, Phys. Rev. D 98,
025023 (2018), doi:10.1103/PhysRevD.98.025023.

[71] B. Agarwal, S. P. Jones and A. von Manteuffel, Two-loop helicity amplitudes for
g g → Z Z with full top-quark mass effects, J. High Energy Phys. 05, 256 (2021),
doi:10.1007/JHEP05(2021)256.

[72] Z. Wu, J. Boehm, R. Ma, H. Xu and Y. Zhang, NeatIBP 1.0, A package gener-
ating small-size integration-by-parts relations for Feynman integrals, (arXiv preprint)
doi:10.48550/arXiv.2305.08783.

[73] D. Simmons-Duffin, Projectors, shadows, and conformal blocks, J. High Energy Phys. 04,
146 (2014), doi:10.1007/JHEP04(2014)146.

[74] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-3-0 — A computer
algebra system for polynomial computations (2022), http://www.singular.uni-kl.de.

[75] G. De Laurentis and D. Maître, Two-loop five-parton leading-colour finite remain-
ders in the spinor-helicity formalism, J. High Energy Phys. 02, 016 (2021),
doi:10.1007/JHEP02(2021)016.

[76] D. Chicherin, T. Gehrmann, J. M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic
result for a two-loop five-particle amplitude, Phys. Rev. Lett. 122, 121602 (2019),
doi:10.1103/PhysRevLett.122.121602.

[77] D. Chicherin, J. M. Henn and G. Papathanasiou, Cluster algebras for Feynman integrals,
Phys. Rev. Lett. 126, 091603 (2021), doi:10.1103/PhysRevLett.126.091603.

[78] B. Page, Sagex mathematica and maple schools: Lectures on finite fields and large Ansätze
(2021), https://indico.desy.de/event/28075/ (2021).

[79] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of the tree-level scattering
amplitude recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94, 181602 (2005),
doi:10.1103/PhysRevLett.94.181602.

[80] K. Risager, A direct proof of the CSW rules, J. High Energy Phys. 12, 003 (2005),
doi:10.1088/1126-6708/2005/12/003.

[81] H. Elvang, D. Z. Freedman and M. Kiermaier, Proof of the MHV vertex expansion for
all tree amplitudes in N = 4 SYM theory, J. High Energy Phys. 06, 068 (2009),
doi:10.1088/1126-6708/2009/06/068.

[82] G. De Laurentis and B. Page, Constructing compact Ansätze for scattering amplitudes, Proc.
Sci. 416, 038 (2022), doi:10.22323/1.416.0038.

[83] Z. Bern, L. Dixon and D. A. Kosower, One-loop corrections to five-gluon amplitudes, Phys.
Rev. Lett. 70, 2677 (1993), doi:10.1103/PhysRevLett.70.2677.

36

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157
https://doi.org/10.1145/1993886.1993902
https://doi.org/10.1007/JHEP09(2016)075
https://doi.org/10.1103/PhysRevD.98.025023
https://doi.org/10.1007/JHEP05(2021)256
https://doi.org/10.48550/arXiv.2305.08783
https://doi.org/10.1007/JHEP04(2014)146
http://www.singular.uni-kl.de
https://doi.org/10.1007/JHEP02(2021)016
https://doi.org/10.1103/PhysRevLett.122.121602
https://doi.org/10.1103/PhysRevLett.126.091603
https://indico.desy.de/event/28075/
https://doi.org/10.1103/PhysRevLett.94.181602
https://doi.org/10.1088/1126-6708/2005/12/003
https://doi.org/10.1088/1126-6708/2009/06/068
https://doi.org/10.22323/1.416.0038
https://doi.org/10.1103/PhysRevLett.70.2677


SciPost Phys. 15, 157 (2023)

[84] Z. Bern, L. Dixon and D. A. Kosower, One-loop amplitudes for e+e− to four partons, Nucl.
Phys. B 513, 3 (1998), doi:10.1016/S0550-3213(97)00703-7.

[85] G. De Laurentis, Numerical techniques for analytical high-multiplicity scattering ampli-
tudes, PhD thesis, Durham University, Durham, UK (2020).

[86] G. De Laurentis, Lips: p-adic and singular phase space, (arXiv preprint)
doi:10.48550/arXiv.2305.14075.

[87] L. Perron and V. Furnon, OR-tools, Google (2023), https://developers.google.com/
optimization/.

[88] A. V. Smirnov and F. S. Chukharev, FIRE6: Feynman Integral REduction with modular arith-
metic, Comput. Phys. Commun. 247, 106877 (2020), doi:10.1016/j.cpc.2019.106877.

[89] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher and F. Bruhin, pytest
7.1 (2004), https://github.com/pytest-dev/pytest.

[90] M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with
MATRIX, Eur. Phys. J. C 78, 537 (2018), doi:10.1140/epjc/s10052-018-5771-7.

[91] S. Abreu, F. F. Cordero, H. Ita, B. Page and V. Sotnikov, Leading-color two-loop QCD cor-
rections for three-jet production at hadron colliders, J. High Energy Phys. 07, 095 (2021),
doi:10.1007/JHEP07(2021)095.

[92] M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions, Com-
put. Phys. Commun. 271, 108174 (2022), doi:10.1016/j.cpc.2021.108174.

[93] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Universality of transverse-
momentum resummation and hard factors at the NNLO, Nucl. Phys. B 881, 414 (2014),
doi:10.1016/j.nuclphysb.2014.02.011.

37

https://scipost.org
https://scipost.org/SciPostPhys.15.4.157
https://doi.org/10.1016/S0550-3213(97)00703-7
https://doi.org/10.48550/arXiv.2305.14075
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1016/j.cpc.2019.106877
https://github.com/pytest-dev/pytest
https://doi.org/10.1140/epjc/s10052-018-5771-7
https://doi.org/10.1007/JHEP07(2021)095
https://doi.org/10.1016/j.cpc.2021.108174
https://doi.org/10.1016/j.nuclphysb.2014.02.011

	Introduction
	Notation and conventions
	Calculation
	Overview
	Surface terms
	Embedding-space formalism
	IBP-generating vectors in embedding space
	Computing IBP-generating vectors
	Computing surface terms

	Analytic reconstruction in spinor helicity formalism

	Results
	Efficiency of analytic reconstruction
	Validation
	Ancillary files
	Numerical evaluation

	Subleading color corrections to hard function
	Conclusion
	IR renormalization
	Conventions in Catani scheme
	IR-subtraction scheme change

	Reference values
	References

