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Abstract

Berry connection has been recently generalized to higher-dimensional QFT, where it can
be thought of as a topological term in the effective action for background couplings. Via
the inflow, this term corresponds to the boundary anomaly in the space of couplings,
another notion recently introduced in the literature. In this note we address the ques-
tion of whether the old-fashioned Berry connection (for time-dependent couplings) still
makes sense in a QFT on Σ(d)×R, where Σ(d) is a d-dimensional compact space and R is
time. Compactness of Σ(d) relieves us of the IR divergences, so we only have to address
the UV issues. We describe a number of cases when the Berry connection is well defined
(which includes the t t ∗ equations), and when it is not. We also mention a relation to
the boundary anomalies and boundary states on the Euclidean Σ(d)×R≥0. We then work
out the examples of a free 3D Dirac fermion and a 3D N = 2 chiral multiplet. Finally,
we consider 3D theories on T2 × R, where the space T2 is a two-torus, and apply our
machinery to clarify some aspects of the relation between 3D SUSY vacua and elliptic
cohomology. We also comment on the generalization to higher genus.
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1 Introduction

Berry connection provides one of the simplest links between quantum mechanics and topology,
as formulated by Berry [1] and Simon [2]. The construction involves a Hilbert space H and
a space of parameters M , such that the Hamiltonian H depends on the point of M , while the
Hilbert space does not. One picks an eigenstate (usually the vacuum) or, more generally, a
finite-dimensional eigenspace of H, separated by gaps from the rest of spectrum for all values
of the parameters. This determines a finite-dimensional subbundle V inside the trivial bundle
M×H, with the embedding denoted by I : V → M×H. The spectral projector onto the chosen
eigenspace gives another map1 Π : M ×H→ V . The bundle V is naturally equipped with the
projector connection, known in this context as the Berry connection, defined by ∇ = Π · d · I,
where d is a trivial connection on M × H. This construction was originally formulated in
a completely finite-dimensional context of a spin in the magnetic field, but it works more
generally, whenever the two conditions are met. First, H must be trivially fibered over M , with
the trivialization M ×H fixed [3] for the trivial connection d to make sense at all, and second,
the connection d on M×H must be well-defined (not take us “outside” the Hilbert space). Both
of these conditions are met in the ordinary quantum-mechanical systems with finite number
of degrees of freedom, even though the Hilbert space may be infinite-dimensional in general.

Physically, the Berry connection captures evolution of a gapped state under the adiabatic
change of parameters [4]. By this one means that the parameters move from point a ∈ M to
b ∈ M so slowly that only some sort of “leading” behavior matters. This can be made more
precise in the language of effective field theory. Let φ : R→ M describe background fields in
0+1D, i.e., the change of parameters with time. Integrating out all the dynamical degrees of
freedom produces an effective action for φ(t) that describes the vacuum response:

Γ [φ] =

∫

dt
�

a(0)(φ) + a(1)i (φ)φ̇
i + a(2)i j φ̇

iφ̇ j + . . .
�

. (1)

Here we assume the answer to be local, and write it in the form of derivative expansion. If the
change of parameters happens over the time T , the first term in (1) scales as T , the second one
is T -independent, and the remaining terms scale as negative powers of T . In the limit of large
T , only the first two terms survive. The first, extensive, term describes the energy of zero point
fluctuations. It is generically present, and its contribution is usually easy to account for and
subtract. Either by doing so or by focusing on supersymmetric theories (in which the vacuum

1Note that Π · I = Id ∈ End(V), and all the nontrivial data is contained in I · Π = P ∈ End(H), which is a
projector-valued function on M .
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energy vanishes, unless SUSY is broken), we isolate the second term. It can be written as

Γtop =

∫

γ

a(1)i (φ)dφ
i , (2)

where γ ⊂ M is a path connecting a and b in the parameter space. This term is T -independent,
or equivalently, independent of the worldline metric, which is why Γtop is called the topological
term. The T →∞ limit is precisely the adiabatic limit, and as we see it singles out the first
two terms in (1). The subleading topological term contains a one-form (in fact, a gauge field)
a(1) on M , which is precisely the Berry connection. When γ is a closed loop, Γtop is known as
the Berry phase.

It is natural to wonder how this generalizes to systems with infinitely many degrees of
freedom, such as quantum fields theories (QFT) or many-body systems, and the recent pa-
pers [5–9] were asking just that. The applicability conditions of the usual Berry connection
construction could break in this case. It may happen in QFT that the Hilbert bundle is not
naturally trivialized, basically due to the UV issues. Even if it is trivialized, the trivial connec-
tion d on M ×H may suffer from the IR divergences in a noncompact space, both in QFT and
many-body systems. In [9], the first issue is bypassed via the algebraic approach that does not
rely on the Hilbert space, and the second one is resolved [6, 9] by constructing an IR-finite
(D + 1)-form analog of the Berry curvature in D spacetime dimensions. The authors of those
works take the case of many-body systems more seriously, even though their constructions
seem to apply to QFT as well.

The effective field theory considerations on X = RD in fact do suggest to look for a D-form
Berry connection. By analogy with 1D, it captures topological terms in the effective action that
describe the vacuum response to adiabatic spacetime (rather than just time) variations of the
parameters. In D > 1 spacetime dimensions, a possible topological term may be written as an
integral of a pullback by φ : X → M of a D-form ω on M :

Γtop =

∫

X
φ∗ω , (3)

which more generally is a D-form gauge field on M . This is a higher-form generalization of the
Berry phase, according to [6]. One can also activate a background gauge field A on spacetime
to write more general topological terms, a simple one being the Thouless pump [7,10–12],

∫

X
A∧φ∗τ , (4)

where τ is a closed (D − 1)-form on M with quantized periods. Whenever A over X can be
extended to WD+1, such that X = ∂WD+1, the latter term is written as

∫

WD+1

F ∧φ∗τ , (5)

where F = dA. More general topological terms are built from the closed forms and charac-
teristic classes on WD+1. Since the characteristic classes of a G-bundle are universally pulled
back from H∗(BG), such topological terms are classified by

HD+1(BG ×M) =
⊕

p+q=D+1

H p(BG)⊗Hq(M) , (6)

where HD+1(BG) labels the pure Chern-Simons terms, the Thouless pump term lives in
H2(BG) ⊗ HD−1(M), and so on. Slightly more generally, the space of parameters M could
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be acted on by G, in which case the topological terms are classified by the equivariant coho-
mology group2

HD+1
G (M)≡ HD+1(EG ×G M) . (7)

In fact, the construction of an invariant in HD+1
G (M) for lattice systems was given in [9]. Such

an invariant of course captures the Berry curvature, thus ignoring flat connections and possible
torsion effects.

A few more generalizations are possible, such as incorporating the background metric
(which, in generally covariant theories, amounts to replacing BG by BG×BSpinD in the above)
and higher-form symmetries. Also, an extension to WD+1 is not always available, so general
topological terms are constructed via differential cohomology, as explained in [13, 14]. Most
of these questions are well-understood by now, since the classification of possible topological
terms is the same as classification of the deformation classes of invertible topological field
theories (TFT) [15], or classification of the generalized anomaly inflow terms in the sense
of [13, 14]. They are labeled by the Anderson dual of the appropriate bordism theory [15],
see also [16–21]. Its torsion part classifies global anomalies in (D− 1) dimensions, while the
free part corresponds to topological terms of the kind we discussed so far. In this paper we are
only interested in the free part, since it is directly related to the Berry curvature. For example,
if we include: (1) background gauge fields for the global 0-form symmetry G, (2) background
metric, and (3) spatially-modulated G-neutral scalar parameters (couplings) valued in M , then
the corresponding topological term is labeled by

HD+1
�

BG × BSpinD ×M
�

. (8)

It has the meaning of higher Berry curvature in the D-dimensional theory, where the said
parameters are adiabatically varied in spacetime. Alternatively, it is understood as the anomaly
polynomial for a (D − 1)-dimensional theory, in which “anomalies in the space of couplings”
are taken into account. Such (D−1)-dimensional theories can be realized, for example, at the
boundaries or interfaces of the former D-dimensional theory, receiving their anomaly through
the inflow mechanism.

The notion of generalized D-form Berry connection in a D-dimensional QFT does not, how-
ever, close the subject of old-fashioned Berry phase in QFT [5,22]. It would be problematic to
simply claim that the corresponding one-form Berry connection is ill-defined whenever D > 1.
Indeed, it has spectacular applications in SUSY field theories via the tt∗ equations. They de-
scribe the geometry of vacuum bundle, originally in 2d N = (2, 2) theories [23], and later for
their 3d and 4d uplifts [24–27]. Recently, similar constructions were used in [28, 29] in the
context of relating 3d N = 2 theories on an elliptic curve to the elliptic cohomology.3 The goal
of this note is to clarify the applicability of the “old” Berry phase in QFT, and to solidify certain
aspects of it that appeared recently in [28,29].

It is beyond doubt that the two-form Berry curvature on X = RD is IR divergent for D > 1
[6]. It would be captured by the term a(1)i (φ)φ̇

i in the effective action, and if the couplings only
vary in time, such a term is invariant under spatial translations leading to the IR divergence.
This issue is straightforward to overcome by only varying the couplings φ in a bounded region
of space, or alternatively by placing QFT on

Σ(D−1) ×R , (9)

with some compact spatial sliceΣ(D−1). At large distances such a theory looks one-dimensional,
and we again study its one-dimensional effective action (1). The Berry phase term a(1)i (φ)φ̇

i

2If the global symmetry does not act on parameters, then of course EG ×G M = BG ×M .
3In fact, [29] apply the machinery of tt∗ equations of [25], while [28] rely on the Berry connection for flat gauge

fields only, as will be elaborated later in this paper.
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then becomes perfectly IR-finite.4 This is enough to make it well-defined in the many-body
contexts, for example in a quantum Hall system on a torus (see, e.g., lecture notes [30]). In
QFT, however, we still have to deal with the UV issues. In a renormalizable theory, we generally
expect to get a UV-finite effective action, but the ambiguities present in general backgrounds
might render the answer regularization scheme dependent, i.e., sensitive to details of the UV
physics.

The question one should be asking, therefore, is whether the 1D effective action for time-
dependent parameters φ : R→ M of a D-dimensional theory placed on Σ(D−1) ×R contains
unambiguous terms of the form a(1)i (φ)φ̇

i . More generally, we can put a theory on

Σ(D−p) ×Rp , (10)

and study the p-form Berry connection as a topological term in the effective action on Rp. In
this case, all lower-form connections will be IR divergent. We do not consider such a more
general setup in this paper and only focus on the case p = 1.

It is thus clear that the question of whether the Berry connection is well-defined boils
down to a simple and well-known problem in effective field theory: The classification of finite
counterterms in a given background. Namely, one should check if a UV theory on Σ(D−1) ×R
admits any local D-dimensional counterterms (preserving the symmetries), which in a time-
dependent background φ : R → M contribute nontrivially to the term a(1)i (φ)φ̇

i in the 1D
effective action. The absence of such finite UV counterterms serves as a proof that the Berry
connection is unambiguous. On the contrary, if the finite counterterms do exist, the standard
naturalness considerations imply that they are generated, sensitive to the UV completion, and
render the answer (i.e., the effective action) ambiguous. Such a reasoning is used in the liter-
ature to extract the physical content of observables in non-trivial backgrounds (see [31,32]).
Note that we should be careful with the naturalness arguments, as one learns for example
from [33], where a naively allowed interaction is found to be excluded by more exotic sym-
metries. Once the counterterms are excluded, however, this firmly establishes the uniqueness
of the answer.

Note that the finite counterterms themselves can sometimes include the inflow actions,
such as the Chern-Simons (CS) terms in 3D. The latter may be generated, e.g., by some heavy
fermions living above the UV scale and decoupled from the IR physics. Such counterterms
are relatively mild and can be eliminated by the proper choice of a regularization scheme.
This is straightforwardly seen if the theory admits boundary conditions. Boundary conditions
can be viewed as an interface between our theory and an empty space, and it is natural to
require that the empty space has zero action, in particular no background inflow terms. This
fixes the said ambiguity, since adding a background anomaly inflow term on the non-empty
side would contribute to the boundary anomaly, which is not ambiguous. For example, such
considerations allow to state that a Dirac fermion in 3D with real mass m contributes the well-
known CS level 1

2sign(m) for its U(1) symmetry [34–36], and not just 1
2sign(m)+n with some

n ∈ Z.
We will also consider a closely related setup of Euclidean QFT on

ΣD−1 × [0,+∞) , (11)

where the (Euclidean) time R ∋ y is replaced by a half-line with some boundary condition
B at y = 0. It is represented by a boundary state |B〉, which encodes the topological data of

4When the IR divergence is treated in this way, the expected contribution to a(1)i (φ) is∝ Vol(Σ(D−1)). More
generally, the volume does not have to appear linearly: a(1)i (φ)φ̇

i may be the 1D reduction of terms in the effective
action on Σ(D−1)×R with nontrivial dependence on the metric of Σ(D−1). Also a(1)i (φ)may be volume-independent,
as in Section 3, where it descends from the topological (Chern-Simons) terms in 3D.
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boundary ’t Hooft anomalies supported byB, including the anomalies in the space of couplings.
The way it works is similar to how the topological data of the vacuum bundle is carried by
the Berry connection, which is of course natural given that the Berry connection terms in
the bulk effective action induce inflow for the boundary anomalies. These relations will be
demonstrated in the examples later in this paper.

We start the discussion in Section 2 by analyzing the background counterterms in a num-
ber of examples. The background fields in this analysis include scalar couplings, gauge fields,
and the metric. Considering examples of progressing complexity, we identify when the corre-
sponding Berry connection is well-defined. We also separately discuss an important case of tt∗

geometry, for which we also check that the Berry connection is well-defined.
In Section 3 we illustrate some of these ideas with an example of free massive Dirac fermion

in 3D, as well as its N = 2 generalization — a chiral multiplet. The 3D spacetime is T2 ×R,
where T2 is a flat two-torus, and the parameters include the flat U(1) connection on T2 and
the real mass. We show that the classic definition of Berry connection can be made sense of in
this case, and the results agree with our expectations. We also consider the geometry T2×R≥0
with an elliptic boundary condition B imposed at Euclidean time 0, and demonstrate how the
boundary state |B〉 captures the boundary anomaly.

In Section 4 we consider a general (trivially) gapped 3D QFT on T2 × R or Σg≥2 × R,
where Σg is a genus g Riemann surface. We explain that the effective CS terms capture the
Berry connection for background gauge fields on Σg , and in particular we focus on the flat
background gauge fields. Their Berry connection determines the holomorphic structure on the
vacuum bundle, and we compute its holomorphic sections. We then note that supersymmetric
partition functions on T2 or T2× I , where I is an interval, provide such holomorphic sections.
This goes back to, e.g., [37], and we explicitly use the result of [38].

Finally, in Section 5 we apply all of these to clarify the relation between 3d N = 2 gauge
theories on T2×R and elliptic cohomology. The one sentence summary of this relation can be
formulated as follows: While the holomorphic bundle of vacua makes sense for any symmetric
gapped QFT on T2 ×R, in the SUSY case the supersymmetric partition function provides its
holomorphic section, interpreted as an elliptic cohomology class on the moduli space of vacua
(which also only exists in the SUSY context). An important ingredient in our analysis is a
careful computation of the effective CS terms on the Higgs branch, both with and without the
real mass deformation. We then comment on the higher genus generalization.

2 Finite counterterms

In the rest of this paper we consider a D-dimensional QFT on a compact space Σ(D−1),

Σ(D−1) ×R , (12)

and study the term a(1)i (φ)φ̇
i in the 1D effective action, where φ i are parameters promoted

to background fields. For many-body systems, the long-distance effective QFT description
is unambiguous, and identifying the UV-IR map is one of the central tasks. When we ask
the same questions in a renormalizable QFT, we are looking for terms in the effective action
that are intrinsic to the continuum description and independent of the UV completion. Such
universal terms are defined modulo local background counterterms allowed in the UV. In our
case, we must classify finite counterterms that contribute to a(1)i (φ) in the effective action.
If such counterterms are present, they make the Berry connection ill-defined. The “positive”
result is when they all vanish, implying that the Berry phase is well-defined.

The term a(1)i (φ)φ̇
i itself is a valid finite counterterm in 1D. However, it does no harm

because there are no UV issues in quantum mechanics, so the original definition of Berry
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connection [1, 2] is finite and unambiguous. In a D-dimensional QFT on Σ(D−1) × R with
D ≥ 2, we should look for the D-dimensional counterterms that could reduce to a(1)i (φ)φ̇

i .
Let us try to construct them from the background fields, which for us include:

1. Scalars φ, i.e., couplings promoted to background fields,

2. the metric,

3. gauge fields for flavor symmetries.

(Sometimesφ will denote all these parameters collectively.) Such counterterms, in the modern
language, correspond to invertible field theories. Their classification is known, and in partic-
ular classification modulo continuous deformations (i.e., deformation classes) corresponds to
the classification of anomaly inflow actions or SPT phases [15–17] . We will consider coun-
terterms in the trivial deformation class (i.e., deformable to zero) as “unprotected”, while the
counterterms corresponding to non-trivial deformation classes as “protected” by anomalies.
This is related to something that was already mentioned in the introduction: Both types of
counterterms can appear due to the unknown UV physics, but if the theory admits boundary
conditions, there is a way to partially fix the ambiguity via anomalies. Indeed, boundary con-
ditions carry some unambiguous boundary anomalies. The counterterms could contribute via
the inflow, but since they are ambiguous, they should not, and indeed they do not contribute as
they live on both sides of the boundary (their coefficients cannot jump in space). Thus we can
simply demand that the “empty” side of the boundary has zero inflow action. This uniquely
fixes the deformation class of the invertible field theory on the “filled” side of the boundary. In
the simplest example, such class is labeled by the effective CS level in a given gapped vacuum
of a 3D QFT. The remaining freedom only corresponds to the unprotected finite couterterms,
i.e., those in the trivial deformation class.

2.1 Classification in flat space

Throughout this subsection, we consider the space to be a flat torus Σ(D−1) = TD−1.

Scalar couplings in flat space

We start with the case of no background gauge fields. In the context of “old” Berry connec-
tion, we make φ time-modulated, while keeping them constant along the spatial slice Σ(D−1).
Therefore, the spatial derivatives of φ vanish and we only have φ and its time derivatives in
our disposal. Furthermore, we should have precisely one time-derivative φ̇ in the expression,
since the terms with more time derivatives vanish in the adiabatic limit, and those without
time derivatives are of no relevance for us. Thus ai(φ)φ̇ i is the only possibility, but since we
are in D > 1 dimensions now, it should be promoted to a local Lorentz-invariant expression.
In the absence of curvature or background gauge fields, this is clearly impossible.

This argument shows that the old Berry connection for time-dependent scalar couplings is
well-defined on TD−1 ×R, simply because there are no local counterterms that would render
the term a(1)i (φ)φ̇

i UV-sensitive. Notice that it is important to keep background gauge fields
at zero, for even a flat background connection can invalidate this argument, as we will see.

Scalar couplings in flat space and fixed gauge background

Let us now include time-independent background gauge fields on the Σ(D−1) for zero-form
symmetries.5 This enlarges the class of possible counterterms. For example, an abelian field A

5It is straightforward to generalize to the higher-form symmetries, but we skip it for brevity.
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allows to write the Thouless charge pump term in two dimensions [7,10–12],
∫

S1×R
A∧φ∗τ , [τ] ∈ H1(M ,Z) . (13)

Such a term is an examples of the equivariant higher Berry connection [9], here corresponding
to the integral cohomology class c1× [τ] ∈ H2(BU(1),Z)×H1(M ,Z). It could be UV sensitive
in general, but in a theory admitting boundary conditions, this topological term would give
a non-zero inflow contribution to the boundary mixed anomaly between the U(1) symmetry
and the couplings φ [13]. Thus according to our general philosophy, the UV ambiguity is
partially resolved by requiring that it agrees with the boundary anomaly. This only fixes the
cohomology class [τ] ∈ H1(M ,Z), not the representative, hence leaving the residual freedom
to shift τ by d f . If we denote the background holonomy as h =

∫

S1 A, the 1D limit of our
topological term is

hτi(φ)φ̇
i , (14)

where the cohomology class [τ] is fixed. The ambiguity of shifting τ by d f is harmless since
it corresponds to the gauge transformation of the Berry connection. Indeed, different ways to
regularize the Berry connection are expected to give gauge-equivalent answers here.

This has a straightforward generalization to D = 2k + 2 dimensions. Given a degree-2p
characteristic class Pp[F] and the Chern-Simons (2k−2p+1)-form, we write the counterterm:

∫

Σ(2k+1)×R
Pp[F]∧CS2(k−p)+1[A]∧φ∗τ , [τ] ∈ H1(M ,Z) , (15)

whose proper definition is via the differential cohomology, but an intuitive shortcut is to in-
tegrate Pp[F] ∧ Tr (F k−p+1) ∧ τ over the 2k + 3 manifold bounded by Σ(2k+1) ×R. This term
is again both an example of the higher Berry connection and, near the boundary, a source of
mixed boundary anomaly involving the couplings φ. Thus we can fix the ambiguity in the
cohomology class [τ] ∈ H1(M ,Z) but not in its representative. Denoting

hk =

∫

Σ(2k+1)

Pp[F]∧CS2(k−p)+1[A] , (16)

the 1D reduction becomes hkτi(φ)φ̇ i . Again, a shift τ 7→ τ + d f corresponds to the gauge
transformation of the Berry connection, which is a harmless ambiguity.

In D = 2k+ 1 dimensions we have another class of counterterms:
∫

Σ(2k)×R
Pk[F]∧φ∗ω , (17)

where ω is a one-form, or more generally a connection on M , and Pk[F] is a characteristic
class, such as Tr (F k). This term is in general not quantized (at least when ω is a global one-
form), it is not protected by the anomaly, so it leads to genuine ambiguity. There are three
possibilities to get rid of it. One is to only consider topologically trivial F on Σ(2k), such that all
the characteristic classes

∫

Σ(2k) Pk[F] vanish, implying that the counterterms vanish. Another
possibility is for the couplings φ to have positive mass dimensions, so the above counterterm
is not dimensionless and is suppressed by the inverse power of the UV cutoff. The third option
is to have some symmetries that prohibit the offending counterterm. If these conditions are
not met, the Berry phase for φ becomes ambiguous.
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Scalar couplings and time-dependent gauge fields in flat space

Now consider the Berry connection both for the scalar couplings φ and for the background
gauge fields (which are thus time-dependent). In the two-dimensional case, this activates the
counterterm

∫

S1×R
f (φ)F , (18)

which contributes f (φ)ḣ in the effective action, equivalent to the shift τ 7→ τ − d f in the
term hτi(φ)φ̇ i . This is no longer a gauge transformation, as h is not a constant, so the Berry
connection becomes truly ambiguous. The ambiguity can be resolved either when the coun-
terterm is disallowed by symmetries, or if all the couplings φ have positive mass dimensions,
such that the counterterm has positive mass dimension and is suppressed by the inverse power
of the UV cutoff.

In D = 2k+ 2 dimensions, similar arguments apply to the counterterm
∫

Σ(2k+1)×R
f (φ)Pk+1[F] , (19)

where Pk+1[F] is some characteristic class, making the Berry connection generally ambiguous.
In addition to the two previously mentioned possibilities, we can also resolve this ambiguity
by restricting the class of allowed F such that Pk+1[F] vanishes. For example, for k = 1,
Pk+1 = Tr (F ∧ F) or Tr (F) ∧ Tr (F), so it is enough to ask that the background gauge field
is flat along space, F

�

�

Σ(3)
= 0. This guarantees that the counterterm vanishes, and allows to

unambiguously define the Berry connection for flat background gauge fields on Σ(2k+1).
In D = 2k + 1 dimensions when the gauge fields are time-dependent, we activate new

background Chern-Simons counterterms, in general given by:
∫

Σ(2k)×R
Pp[F]∧CS2(k−p)+1[A] , (20)

for some characteristic class Pp[F]. Such terms of course have quantized coefficients and
provide non-trivial inflow contributions. Thus they are protected, and the ambiguity is fixed
by asking that they agree with the boundary anomalies. Thus the Berry connection just for
the background gauge fields can be made unambiguous in this case. Of course one still has to
deal with the counterterms (17) if we vary couplings φ with time. In this case, as usual, the
ambiguity is resolved either by symmetry requirements, or by making F topologically trivial
along Σ(2k), or by only considering φ’s of positive mass dimension.

2.2 Metric along Σ(D−1) in diverse dimensions

Next include metric, i.e., let Σ(D−1) be a general Riemannian (D− 1)-manifold.
If D = 2, then Σ(D−1) = S1 and its circumference β is the only metric invariant. Keeping

β fixed adds nothing to the story and returns us to the previous case. If we allow β to change
with time, the 1D effective action for φ and β can have two interesting terms:

a(1)i (β ,φ)φ̇ i + b(β ,φ)β̇ . (21)

It is fairly clear that none of the 2D local diff-invariant expressions built out of φ and metric
invariants can reduce to this (e.g., the Riemann tensor is proportional to β̈ here). Thus the
Berry connection is still well-defined if we vary both φ and β with time.

For D = 3, if we keep the metric of surface Σ(2) time-independent, there are no new
harmful counterterms, and the flat-space analysis applies. In this case one can have divergent
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counterterms like Λ
∫

R
p

g d3 x , where Λ is the UV cutoff, but they do not contribute to the
Berry connection of φ or A.

If we let the metric of Σ(2) vary with time, a new finite counterterm starts contributing:
∫

Σ(2)×R
CSgrav , (22)

where CSgrav is the gravitational Chern-Simons term that can be defined for example by

∫

W3×R

1
192π

Tr (R∧ R) , (23)

where W3 is a handle-body, such that ∂W3 = Σ(2) (metric always extends smoothly to W3).
We cannot multiply CSgrav by a function of φ, so this term clearly does not affect the Berry

connection a(1)i (φ)dφ
i for φ. It does contribute to the Berry connection for the metric of Σ(2),

but the ambiguity is fixed by demanding consistency with the boundary gravitational anomaly,
since the gravitational CS contributes to it via the inflow.

The divergent counterterm Λ
∫

Σ(2)×R f (φ)Rpg d3 x looks as if it could even make the Berry
connection divergent, but this does not happen. The scalar curvature of Σ(2)×Rwith the time-
dependent metric of Σ(2) is R= R2− gµν∂ 2

t gµν+
1
2 gµνgσρ∂t gµσ∂t gνρ, where gµν is the metric

of Σ(2) and R2 is its scalar curvature. This answer simply has no one-derivative terms. We thus
conclude that in 3D, making the metric of Σ(2) curved and time-dependent does not invalidate
the flat space analysis conducted previously, and furthermore, it even makes sense to study
the Berry connection for the metric moduli of Σ(2).

For D = 4, we can write another finite counterterm:
∫

Σ(3)×R
CSgrav ∧φ∗τ , (24)

where τ is a closed one-form on M with integer periods. Because φ only depends on time,
φ∗τ absorbs the R integration and the term factorizes:

∫

R
φ∗τ

∫

Σ(3)
CSgrav , (25)

making manifest that it contributes to a(1)i (φ)φ̇
i whenever 1

2π

∫

Σ(3)
CSgrav ∈ R/Z is nontriv-

ial. The term (24) is a secondary invariant that provides a nonzero inflow for the mixed
gravity-coupling anomaly whenever a boundary is present. Because of that, we fix the discrete
ambiguity labeled by [τ] ∈ H1(M ,Z) by demanding consistency with the boundary anomaly.
It leaves the ambiguity τ 7→ τ+ d f that, as before, amounts to a gauge transformation of the
Berry connection (if the metric of Σ(3) is static) and is harmless.

If we let the metric of Σ(3) change with time, such that its CS invariant becomes time-
dependent, the counterterm (25) with τ = d f no longer corresponds to the gauge transfor-
mation of the Berry connection. Rather, it represents a true ambiguity of the latter, unless
we are unable to write such a counterterm for dimension reasons.6 Furthermore, we earn a
few new finite counterterms (with dimensionless f (φ)): f (φ)Tr (R ∧ R), f (φ)RµνσρRµνσρ,
f (φ)W 2, and f (φ)E4, where W is the Weyl tensor and E4 =

1
2ϵ

abcdϵpqrsRabpqRcdrs is the Eu-
ler density. One can check that the R2, W 2 and E4 counterterms lack pieces with precisely

6Namely, we need a function f (φ) to be dimensionless and not constant, which is easy to achieve if φ itself is a
dimensionless coupling, but may be impossible otherwise. Note: Using the UV cutoff to compensate the dimension
is always possible but results in non-finite counterterms.
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one time derivative, so they cannot contribute to the Berry term. The only counterterm that
can potentially contribute is f (φ)Tr (R ∧ R). It is an invertible TFT in the zero deformation
class that does not generate any inflow. Therefore, according to our logic, it signals about the
true scheme-dependence and ambiguity in the Berry connection for the metric of Σ(3). This
ambiguity is subject to the same caveat of the footnote 6. However, even if one cannot write
a non-constant dimensionless f (φ), here we can always take f (φ) = c to be a dimensionless
constant, resulting in the allowed counterterm c

∫

Σ(3)×R Tr (R∧ R). An obvious relation:

∫

Σ(3)×R
Tr (R∧ R) = 192π

∫

R
dt

d
dt

∫

Σ(3)
CSgrav , (26)

shows that such a counterterm produces a pure gauge Berry connection for the metric, not
an actual ambiguity. Therefore, again, only when we can write a dimensionless non-constant
f (φ), the Berry connection involving time-dependent metric becomes truly ambiguous.

At D = 5 we find another harmful counterterm:
∫

Σ(4)×R
Tr (R∧ R)∧φ∗ω , (27)

where ω is an arbitrary one-form, or more generally a gauge field on M . Again, the factor of
φ∗ω absorbs the R integration, and the above expression factorizes as

�∫

Σ(4)
Tr (R∧ R)

�∫

R
φ∗ω= 24π2σ(Σ(4))

∫

R
φ∗ω , (28)

where σ(Σ(4)) is the signature of a four-manifold Σ(4). Thus this counterterm vanishes for
Σ(4) of zero signature, (for example, for S4 or S2×S2,) hence removing this sort of ambiguity
(of course other observables might still be ambiguous on such curved backgrounds). For Σ(4)

of non-zero signature, such as CP2, the counterterm gets activated and renders the Berry
connection of φ unphysical (even if the metric of Σ(4) is static).

One can also write a mixed CS term
∫

Σ(4)×R Tr (R∧R)∧A using the U(1) gauge field A, which
however contributes a nontrivial inflow for the boundary gauge-gravity anomaly, allowing to
fix this ambiguity. The only other term we should worry about in 5D is (17), which may
generate another actual ambiguity in the Berry phase.

At D = 6 the gravitational counterterms include Λ4 f (φ)R, Λ2R2, Λ2W 2, Λ2E4, and the
finite counterterms: R3, E6, and the three Weyl anomalies Ii [39]. None of these contribute
terms with precisely one time derivative, so they can be ignored. There are also no new
gravitational characteristic classes, so the only contributing counterterms activated on curved
backgrounds are built from the lower degree characteristic classes:

∫

Σ(5)×R
Tr (R∧ R)∧ A∧φ∗τ , [τ] ∈ H1(M ,Z) , (29)

∫

Σ(5)×R
f (φ)Tr (R∧ R)∧ F , (30)

where A and F = dA correspond to a U(1) global symmetry. The cohomology class [τ] is
fixed from the agreement with boundary mixed anomalies, since (29) is a secondary class.
The remaining ambiguity τ 7→ τ + d f again has two effects. If A and the metric are time-
independent, it corresponds to gauge transformations of the Berry connection for φ. On the
other hand, if τ= d f , upon integration by parts, (29) becomes the second term (30). For the
time-dependent gauge field A and/or metric, (30) makes the corresponding Berry connection
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ambiguous. The only other class of counterterms we should care about (for time-dependent
background gauge fields) is (19), which again can induce ambiguities.

It is clear how this analysis generalizes to higher dimensions. In D = 2k + 2 we have the
following two types of counterterms:7

∫

Σ2k+1×R
S2k+1[Γ , A]∧φ∗τ , [τ] ∈ H1(M ,Z) ,

∫

P2k+2[R, F] f (φ) , (31)

where S2k+1[Γ , A] represents some secondary invariant built out of the Levi-Civita connection
and the background gauge fields A, and P2k+2 is a characteristic (2k + 2)-form built from the
Riemann tensor and the background gauge curvatures F . Only counterterms of the latter type
introduce genuine ambiguities. Likewise, in D = 2k+ 1 dimension, we expect two analogous
types of counterterms:

∫

Σ2k×R
S2k+1[Γ , A] ,

∫

P2k[R, F]∧φ∗ω , ω ∈ Ω1(M) , (32)

where again only the latter one leads to genuine ambiguities.

2.3 tt∗ connection

Berry connection in QFT has been quite useful in deriving the tt∗ equations or vacuum ge-
ometries in theories with four supercharges. Originally formulated in [23] for 2D N = (2, 2)
theories on a cylinder, they were later generalized to 3D and 4D theories in [25, 27]. The
original constructions proceed under the assumption that the Berry connection makes sense
in the corresponding QFT setup. Let us briefly look at those constructions and confirm that
such an assumption agrees with our earlier analysis of counterterms.

1. In [23] the Berry connection for chiral couplings is considered in N = (2, 2) theories on
S1 ×R in the Ramond-Ramond (RR) sector. Such couplings are the background scalar
parameters, and there are no background gauge fields activated. This is the simplest
case of our analysis above, where the Berry connection is clearly well-defined as a term
in the 1D effective action.

2. Another application [25] is for the twisted chiral couplings in N = (2,2) theories on
S1 ×R in the RR sector. The scalar couplings are twisted masses m given by the vevs of
scalars in the background vector multiplets for flavor symmetries. Additionally, flavor
holonomies h along S1 in the same background multiplets are considered as parameters.
The Berry connection for such an extended set of parameters could be ambiguous due to
the counterterm f (m)Tr F . Here f (m)must be dimensionless, while the mass dimension
of m is one, so f (m) = const = α, and the only finite counterterm is the flavor theta-
angle αTr F , which gives the contribution αTrdh to the Berry connection. This makes
holonomy (not the curvature!) of the Berry connection ambiguous whenever the flavor
group has abelian factors. In many cases, it is nonabelian, thus the theta-term is absent
and there are no ambiguities.

7Let us remind once again that the terms of the kind S2s+1 ∧ φ∗τ, [τ] ∈ H2(k−s)+1(M ,Z) and P2s+1 ∧ φ∗ω,
ω ∈ Ω2(k−s)(M), do exist, however, they are not activated on backgrounds with spatially constant φ.
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3. In the generalization to 3D N = 2 theories on T2×R, [25] studied the Berry connection
for real twisted masses m and the corresponding flat flavor connections on T2. Thus for
each unit of rank of the flavor group, we have an R×Ť2 worth of parameters. According
to our analysis, we should worry about the counterterm

∫

T2×R F ∧φ∗ω, where ω is a
one-form built out of masses. This counterterm does not get activated because the flavor
connections are flat along T2, F

�

�

T2 = 0, and φ∗ω absorbs the integral along R.8 There
are also Chern-Simons terms for flavor symmetries that contribute non-trivially to the
Berry connection. Their coefficients are unambiguously fixed to agree with the boundary
anomalies.

4. In [25], the generalization to 4D N = 1 theories on T3 × R was also studied. The
parameters include flat flavor connections on T3. Additionally, for each U(1) factor of
the gauge group, there is an extra Ť3×R worth of parameters. Here ζ ∈ R is the FI term,
and Ť3 labels flat connections for the topological one-form symmetry on T3 (whose
background gauge field Bµν couples to the dynamical U(1) gauge field via

∫

B ∧ F).
Our analysis above did not include higher-form symmetries, but it is straightforward to
generalize it. The only potentially harmful counterterms involving ordinary background
gauge fields are (19):

∫

f (ζ)Tr (F ∧ F) and
∫

f (ζ)Tr (F)∧ Tr (F). They vanish because
our background is flat along T3. The counterterms including B are

∫

dB ∧φ∗ω, where
ω is a one-form built out of the FI terms, and

∫

B ∧ F . The former vanishes because B
is flat, and the latter is a nontrivial inflow term for the boundary mixed anomaly (thus
the ambiguity can be fixed). We can also build more general counterterms but they are
suppressed by the inverse powers of the cutoff Λ. We see that all the ambiguities are
resolved and the Berry connection is well defined.

Therefore, all the cases of vacuum geometry studied in the literature are based on the un-
ambiguous instances of Berry connection (up to a mild ambiguity for abelian factors of the
flavor group in 2d). This is not so unexpected, for in all those cases the underlying mathemat-
ical structures turn out to be tractable thanks to SUSY. Such things do not happen by accident.
Also note that in the above analysis, we ignored the possibility of having several vacua leading
to the nonabelian Berry connection, which is usually the case in the tt∗ contexts. When this
happens, the IR theory can be approximately described as a direct sum of sectors attached to
each vacuum, and the above is expected to hold in each sector.

2.4 Adiabatic connections

Our previous analysis shows when the Berry connection makes sense as an unambiguous term
in the 1D effective action of a higher-dimensional QFT. This does not mean, however, that the
original definition [1,2] via projection of the trivial connection immediately applies. Although
the Hilbert bundle over the space of parameters is trivial (see [40, page 67] and [41]), there
is no canonical trivialization in a general QFT. To choose a trivial connection on the Hilbert
bundle, we need to make a choice of trivialization first [3].

A family of QFTs is equipped with a Hilbert bundle

π : H→ M , (33)

over the parameter space M , and as emphasized in [3], we need a connection∇H on it to define
the projector Berry connection on the gapped subbundle. Generally, there is no canonical
choice of ∇H, and for a generic interacting QFT, it is not even clear how to characterize at
least some such connection (although something can be done in the free case, as we will see

8Even if it was activated, it would be suppressed by Λ−1 for dimension reasons.
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later). Nevertheless, as the effective action considerations show, there exists the adiabatic
connection describing response to the slowly varying parameters. Can we characterize it on
general grounds?

The authors of [9] take the algebraic approach. In this case one deals with the C∗-algebra
A of observables, and a state ψ is a functional ψ : A→ C that computes expectation values.
The GNS construction connects this to the usual notion of a vev in a pure state in the Hilbert
space or in a mixed state described by a density matrix. One can study families of states ψm
labeled by m ∈ M , and [9] consider smooth families characterized by

dψm(O) =ψm(DO) , DO = dO+ [G,O] , (34)

where d is the de Rham differential on M , and G is some operator-valued one-form on M .
The algebraic version of the adiabatic theorem would claim that as the parameters m(t)

slowly vary with time, a gapped instantaneous vacuumψ(0)m(t0)
approximately evolves asψ(0)m(t).

In this context, one can call G the adiabatic connection since

d
dt
ψm(t)(O) = ṁiψm(t)(DiO) +ψm(t)

�

1
i
[H,O]

�

= ṁiψm(t)(DiO) . (35)

In [9], the authors essentially use such an algebraic approach to construct the topological term
in the effective action on RD. It also naturally leads to the topological terms on Rp with p < D,
when we compactify the theory on Σ(D−p). In particular, G itself encodes our Berry connection
given by a topological term in the effective action on R.

3 Example: Free fermions in 3D

Let us explore an important example of free fermions on T2 ×R coupled to flat background
gauge fields on T2. We choose the periodic spin structure on T2, although the answer will be
easily generalized to other spin structures as well. We also turn on real masses m to keep the
theory gapped. Flat gauge fields and masses may slowly vary in timeR, as long as the gap does
not close. In this background, the counterterm (17) vanishes due to F

�

�

T2 = 0,9 while (20),
as usual, is fixed via the inflow argument (although, we will briefly return to (20) in the end
of Section 3.1). One could simply integrate out the fermions and look at the effective action:
General considerations imply that the effective CS terms will govern the Berry connection. We
will look at the problem from this angle in Section 4.

The theory is free, so it is straightforward to construct its Hilbert space as the Fock space,
determine the vacuum vector as a function of parameters, and run the standard Berry con-
struction. In this Section we do just that, and in later parts of the paper we compare it with
the analysis based on the effective CS terms.

For concreteness, consider a single Dirac fermion of real mass m coupled to the flat U(1)
connection (a1, a2), so the full set of parameters is (a1, a2, m) ∈ Ť2 ×R:

S =

∫

d3 x
�

ψ−(D1 + iD2)ψ− −ψ+(D1 − iD2)ψ+ +ψ−(∂3 +m)ψ+ +ψ+(∂3 −m)ψ−
�

, (36)

where Djψ± = (∂ j + ia j)ψ±, Djψ± = (∂ j − ia j)ψ±. Equations of motion in the Minkowski
signature (such that ∂0 = i∂3) are:

(∂0 + im)ψ+ + (iD1 − D2)ψ− = 0 , (∂0 + im)ψ+ + (iD1 − D2)ψ− = 0 ,

(∂0 − im)ψ− − (iD1 + D2)ψ+ = 0 , (∂0 − im)ψ− − (iD1 + D2)ψ+ = 0 . (37)

9It would be interesting to generalize our analysis to include a non-trivial flux F
�

�

T2 ̸= 0. It appears to activate
(17), however, because F∧ dm has dimension 4, this counterterm is suppressed by the UV cutoff. Something like
F∧ dm

m would work, but is not a naturally allowed counterterm.
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In the momentum space, the canonical anti-commutators are

[ψ−(p),ψ+(q)]+ = [ψ+(p),ψ−(q)]+ = δ
2(p+ q) , (38)

where p, q are spatial momenta. As the space is torus, p = (p1, p2) ∈ Z2 is discrete, so the
anti-commutators of the Fourier modes are more properly written as:

[ψ+(p),ψ−(−q)]+ = [ψ−(p),ψ+(−q)]+ = δp1,q1
δp2,q2

, (39)

with the remaining anti-commutators zero. All the Fourier modes together form an infinite
dimensional Clifford algebra that we denote as:

C = C
�

{ψ±(p),ψ±(−p)|p ∈ Z2}
�

/(relations) . (40)

The equations of motion (EOM) imply the dispersion relation:

E2(p) = m2 + bp2
1 + bp

2
2 , bpi = pi + ai , (41)

which holds for the quartet of modes ψ±(p) and ψ±(−p). The solutions to EOM are:

ψ±(p) =
1

p

2E(p)

�

v±(p)c
+(p)eiE+(p)t + u±(p)b(p)e

−iE+(p)t
�

,

ψ∓(−p) =
1

p

2E(p)

�

u∗±(p)b
+(p)eiE+(p)t + v∗±(p)c(p)e

−iE+(p)t
�

, (42)

where

v+(p) =
Æ

E(p)−m , v−(p) =
ibp1 + bp2

p

E(p)−m
,

u+(p) =
Æ

E(p) +m , u−(p) = −
ibp1 + bp2

p

E(p) +m
. (43)

Now the anti-commutators are

[c+(p), c(q)]+ = [b
+(p), b(q)]+ = δp1,q1

δp2,q2
, (44)

and the Dirac’s vacuum obeys:

b(p)|0〉= c(p)|0〉= 0, for all p . (45)

3.1 Berry phase

Now let us consider how all these structures depend on the parameters (a1, a2, m) ∈ Ť2 ×R.
The algebra of modes C is clearly trivially fibered over R. As for Ť2, we should take into ac-
count that a1 ∼ a1+1 and a2 ∼ a2+1 are periodic variables, whose periodicity is implemented
by the large background gauge transformations eiϕ1 and eiϕ2 , where (ϕ1,ϕ2) are angular co-
ordinates on the spatial torus T2. For example, the gauge transformation with parameter eiϕ1

acts as:

(a1 + 1, a2) 7→ (a1, a2) ,

ψ± 7→ eiϕ1ψ± ,

ψ± 7→ e−iϕ1ψ± . (46)
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At the level of Fourier modes, this defines a homomorphism of the Clifford algebra:

g1 :C →C ,

ψ±(p1, p2) 7→ψ±(p1 + 1, p2) ,

ψ±(−p1,−p2) 7→ψ±(−p1 − 1,−p2) , (47)

which implements the identification a1 ∼ a1 + 1. Likewise, there is another homomorphism:

g2 :C →C ,

ψ±(p1, p2) 7→ψ±(p1, p2 + 1) ,

ψ±(−p1,−p2) 7→ψ±(−p1,−p2 − 1) , (48)

which implements a2 ∼ a2+1. We thus obtain a Clifford bundle on Ť2 by starting with a trivial
bundle R2×C , where (a1, a2) ∈ R2, and identifying the fibers over (a1, a2) and (a1+1, a2) via
g1, while the fibers over (a1, a2) and (a1, a2 + 1) are glued via g2. Let us denote the resulting
Clifford bundle by ÒC . Each of its fibers isC , the algebra of fermionic creation and annihilation
operators, which admits a representation on the Hilbert space realized as a Fock space. We
want to build the corresponding Hilbert bundle ÒH over Ť2.

For each p ∈ Z2, we have two canonically conjugate pairs of Grassmann variables,
(ψ+(p),ψ−(−p)) and (ψ−(p),ψ+(−p)). They are fixed, independent of the parameters and
act on a four-dimensional Fock space:

Fp = C4 = Span{| ↓↓〉p, | ↓↑〉p, | ↑↓〉p, | ↑↑〉p} , (49)

defined, for concreteness, via:

ψ±(p)| ↓↓〉p = 0 ,

ψ−(−p)| ↓↓〉p = | ↑↓〉p , ψ+(−p)| ↓↓〉p = | ↓↑〉p ,

ψ−(−p)ψ+(−p)| ↓↓〉p = | ↑↑〉p , (50)

with the inner product:

p〈↓↓ | ↑↑〉p = p〈↓↑ | ↑↓〉p = p〈↑↓ | ↓↑〉p = p〈↑↑ | ↓↓〉p = 1 . (51)

The total space of states on T2 can be defined as10

V[T2] =
⊗

p∈Z2

Fp . (52)

This space is too large to be “the Hilbert space” of the theory: It contains a lot of unphysical
non-normalizable states. The Hilbert space is identified as (the closure of) the subspace of
normalizable states:

H ≡H[T2] = {ψ ∈ V[T2] : 0< 〈ψ,ψ〉<∞} . (53)

Let us define the shift operators
s1,2 : H→H , (54)

10Infinite tensor product is the universal object for the multilinear maps from the direct product
∏

p∈Z2 Fp (which
is allowed to be infinite) to C.
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which shift either the p1 or the p2 label by one, respectively. More precisely, if we denote the
bispinor at momentum p = (p1, p2) by |σ1(p),σ2(p)〉p, then

s1

⊗

p∈Z2

|σ1(p),σ2(p)〉p =
⊗

p∈Z2

eiθ1(a,p)|σ1(p),σ2(p)〉p+δ1
, (55)

s2

⊗

p∈Z2

|σ1(p),σ2(p)〉p =
⊗

p∈Z2

eiθ2(a,p)|σ1(p),σ2(p)〉p+δ2
, (56)

where δ1 = (1,0), δ2 = (0,1). Here θ1(a, p) and θ2(a, p) are some ambiguous functions,
which we will discuss momentarily. The above definitions of s1 and s2 extend to H by linearity.
The maps of Hilbert spaces s1,2 should be compatible with the maps of Clifford algebras g1,2
in the sense that the following diagrams commute:

C End(H) C End(H)

C End(H) C End(H)

ρ

g1

ρ

g2

ρ

ads1

ρ

ads2

where ρ is the representation morphism, and for M ∈ End(H), ads1
M = s−1

1 Ms1 and
ads2

M = s−1
2 Ms2. These diagrams say that g1 and g2 are compatible with the adjoint ac-

tion of s1 and s2, respectively. Note that the unknown θ1,2(a, p) drop out of these conditions.
We next use s1 and s2 as the gluing cocycles to build the Hilbert bundle ÒH over Ť2. Hence the
only other condition is that θ1,2(a, p) are compatible with the bundle structure (there are no
monodromy defects):

eiθ1(a+δ1+δ2,p)+iθ2(a+δ2,p+δ1) = eiθ2(a+δ1+δ2,p)+iθ1(a+δ1,p+δ2) . (57)

What is the remaining ambiguity in choosing θ1,2(a, p)? It corresponds to the possibility
of having background CS terms for the U(1) symmetry coupled to our spinor. Such CS terms
could be generated by some extra-heavy fermions at the UV scale. They are completely decou-
pled from the physics ofψ,ψ, which is why the Clifford bundle ÒC , the EOMs, the spectrum do
not depend on them. However, the global structure of the Hilbert bundle over Ť2 is sensitive
to the presence of background CS terms, possibly generated by the UV physics. This is why
we get the ambiguity in constructing ÒH.

The minimal choice is of course θ1(a, p) = θ2(a, p) = 0, which corresponds to no back-
ground CS level at all. In this case the Hilbert bundle ÒH admits a trivial connection d, as in
the standard Berry connection setup. The annihilation operators depend on the parameters
(m, ai), and up to proportionality factors are given by:

b(p)∝ (bp2− ibp1)ψ−(p)−(E(p)+m)ψ+(p) , c(p)∝ (bp2− ibp1)ψ−(−p)+(E(p)+m)ψ+(−p) .
(58)

We can thus identify the vector |Ωp(a)〉 ∈ Fp annihilated by b(p) and c(p):

|Ωp(a)〉=
(bp2 − ibp1)| ↑↓〉p + (E(p) +m)| ↓↑〉p

q

(bp2
2 + bp

2
1) + (E(p) +m)2

, m> 0 , (59)

which is smooth in the variable a = a1 + ia2 for m > 0. For m < 0 it is not, so we scale away
the bad factor to obtain a better expression:

|Ωp(a)〉=
(E(p)−m)| ↑↓〉p + (bp2 + ibp1)| ↓↑〉p

q

(bp2
2 + bp

2
1) + (E(p)−m)2

, m< 0 , (60)

which is smooth in a for m< 0.
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The state |Ωp(a)〉 depends on (m, ai) and undergoes a Bogolyubov rotation as (m, ai) vary.
The total physical vacuum is:

|Ω(a)〉=
⊗

p∈Z2

|Ωp(a)〉 . (61)

The trivial connection d on ÒH then induces the Berry connection. It is trivial for m:

Am = 〈Ω(a)|
∂

∂m
|Ω(a)〉= 0 . (62)

For flat gauge fields, it appears to be non-trivial and is contributed by each mode:

Ai = 〈Ω(a)|
∂

∂ ai
|Ω(a)〉=

∑

p∈Z2

A(p)i , (63)

where A(p)i = 〈Ωp(a)|
∂
∂ ai
|Ωp(a)〉, computed for both signs of m using (59) and (60), is:

A(p)1 = i
m
|m|

bp2

2(bp2
1 + bp

2
2)





|m|
q

m2 + bp2
1 + bp

2
2

− 1



 ,

A(p)2 = −i
m
|m|

bp1

2(bp2
1 + bp

2
2)





|m|
q

m2 + bp2
1 + bp

2
2

− 1



 . (64)

One can easily recognize these as gauge potentials for the singular Dirac monopole of magnetic
charge one sitting at the location (−p1,−p2, 0) in the space parameterized by (a1, a2, m). These
formulae are written in the patches m > 0 and m < 0 precisely in such a way that we never
encounter the Dirac string.

After the summation over p ∈ Z2, the total Berry connection thus describes a doubly-
periodic Dirac monopole of charge 1 on Ť2 × R. This object is slightly problematic because
on the left and on the right from the monopole, the flux through Ť2 (i.e., the Chern number,)
is precisely ±1

2 , which indicates that the bundle over Ť2 cannot be smooth.11 This can be
checked explicitly for our connection, since the curvature is:

F12 = ∂1A2 − ∂2A1 = im
∑

(p1,p2)∈Z2

1

2 (m2 + (p1 + a1)2 + (p2 + a2)2)
3
2

, (65)

and we can compute the Chern class:

1
2πi

∫

Ť2

F =
m
2π

∫

R2

dk1dk2

2
�

m2 + k2
1 + k2

2

�
3
2

=
m

2|m|
. (66)

This is of course related to the known parity anomaly [34–36]: The Dirac fermion of charge
1 and real mass m generates the CS level 1

2sign(m) in the IR, which is understood via the
η-invariant in [42], see also [43]. The half-integral level means that the large gauge transfor-
mation responsible for the periodicity a1 ∼ a1 + 1, a2 ∼ a2 + 1 is in fact broken. Instead, the
true periodicity of the holonomies is:

a1 ∼ a1 + 2 , a2 ∼ a2 + 2 , (67)

11Note that the authors of [25] have also run into this issue in the tt∗ geometry of a free chiral multiplet, which
coincides with the Berry connection of a free Dirac spinor that we are looking at.
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and the vacuum bundle should be considered over the torus eT2 labeled by such (a1, a2), which
is the four-fold covering of the original Ť2. The magnetic flux through eT2 then becomes ±2,
and the Berry connection is described by the doubly-periodic Dirac monopole of magnetic
charge 4 on eT2 ×R. This subtlety disappears if the spinor ψ has charge 2, in which case we
would get the monopole of magnetic charge 4 already on Ť2 ×R.

It is also straightforward to write the gauge potential for |m| →∞. This limit means that
we are infinitely far away from the monopoles located at m= 0 and a ∈ Z+ iZ. From that far,
they look like a magnetically charged wall at m= 0, and the magnetic field is almost uniform
and constant. The appropriate potential (the Berry connection itself) is then:

A= i
π

2
m
|m|
(a1da2 − a2da1) . (68)

More generally, for spin structure (s1, s2) on the spatial T2, where si = 0 for periodic and si = 1
for anti-periodic, the answer would match the expectation from abelian spin CS [44]:

A= i
π

2
m
|m|
(a1da2 − a2da1 + s1da2 + s2da1) . (69)

Let us briefly address the important case of massless fermion, m = 0. Without the real
mass, at the lattice points a ∈ Z + iZ the gap closes and the Berry connection is ill defined.
These points of course corresponds to a single point µ ∈ Ť2 × {0} ⊂ Ť2 × R, which is the
location of the monopole. Away from this point along the torus (Ť2 \ µ) × {0}, the Berry
curvature is clearly zero. This is not only seen from (65) at m= 0, but also obvious physically:
The lattice of monopoles sits along plane m = 0, thus the magnetic field at this plane (away
from the monopoles) is parallel to it. This means that the pull-back of curvature Fi j to the
plane vanishes. What about the holonomies along the one-cycles of Ť2 \ µ? If we write a
monopole of charge b in the angular coordinates as A= b

2 (1−cosθ )dϕ, we can orient them in
such a way that the plane m= 0 corresponds to θ = π

2 . Then the monopole potential becomes
simply b

2 dϕ alogn the plane. For concreteness, we take b even (to avoid issues with the parity
anomaly). Then the total potential sourced by the lattice becomes:

A=
b
2

∑

n,m∈Z
dϕn,m , (70)

where at a point a ∈ C, we define ϕn,m = arg(a− n− im). This can be carefully regularized to
show that there are no holonomies, at least when b is even. We therefore conclude that the
Berry connection is trivial on Ť2\µ at m= 0. It is ill defined at the point µ, however, if we only
focus on the m = 0 case, (not the entire parameter space Ť2 ×R carrying the monopole-like
connection,) it makes sense to extend the trivial connection over the point µ. Note also that
for the non-zero mass, the Berry connection was proportional to m

|m| = sign(m), thus the useful
mnemonic to include the trivial connection at m= 0 is to define sign(0) = 0.

Finally, if we add a background CS level k (which is a counterterm of the type (20)), the
phases θ1,2(a, p) cannot be zero any more. As a result, the trivial connection ∇ = d is not
define. Instead we have ∇ = d+Θ with some local one-form Θ. The shortcut to determining
Θ is the following observation. The only effect of the background CS level k is to replace the
Hilbert bundle ÒH by ÒH ⊗ Lk, where Lk is the line bundle of Chern class k on Ť2 × R. The
CS term equips Lk with the connection determined by the local one-form ikπ(a1da2− a2da1)
(see Section 4). This is precisely our Θ, which thus clearly shifts the Berry connection, adding
k units of flux.

3.2 Boundary states

Let us also explore the dependence of boundary states on the parameters (m, ai), which turns
out to be a closely related question. Namely, for a Euclidean QFT on T2 × R, we cut R and
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impose local elliptic boundary conditions along the boundary T2. Boundary states are defined
as special vectors in V[T2] (but not in H[T2]) that, for all practical purposes of computing
partition functions and correlators, imitate the effect of boundary conditions.

Consider two types of chiral boundary conditions, which eliminate either the right-moving
or the left-moving components of fermions along the boundary:

B+ : ψ+
�

�=ψ+
�

�= 0 ,

B− : ψ−
�

�=ψ−
�

�= 0 . (71)

Both are elliptic boundary conditions. Their corresponding boundary states are defined as

|B+〉=
⊗

p

p
2| ↓↑〉p , 〈B+|=

⊗

p

p
2〈↓↑ |p ,

|B−〉=
⊗

p

p
2| ↑↓〉p , 〈B−|=

⊗

p

p
2〈↑↓ |p , (72)

where vectors and covectors represent the right and the left boundaries, respectively.
The somewhat arbitrary-looking coefficients

p
2, on the one hand, ensure the key prop-

erty of boundary states: Their overlaps, such as 〈B+|e−T H |B+〉, compute the interval partition
functions. Indeed, a calculation shows that

〈B+|e−T H |B+〉=
∏

p

bp2 − ibp1

E(p)
(1− e−2T E(p)) , (73)

which can be checked to agree with the B+B+ interval partition function (assuming we subtract
the zero point energy), and similarly for other pairs of boundary conditions.

On the other hand, |B±〉 are manifestly not normalizable, they belong to V[T2] but not
H[T2]. The Euclidean evolution for arbitrarily short time ε > 0, however, makes it normaliz-
able. Indeed, we can compute the norm,

|e−εH |B+〉|2 =
∏

p

E(p) +m+ (E(p)−m)e−4εE(p)

E(p)
, (74)

which is convergent for any ε > 0 but not at ε = 0. The boundary states have finite overlaps
with physical states. In particular, the overlaps with the vacuum (59) for m> 0 are:

〈Ω(a)|B+〉=
∏

p∈Z2

√

√ E(p) +m
E(p)

, 〈B+|Ω(a)〉=
∏

p∈Z2

bp2 − ibp1
p

E(p)(E(p) +m)
, (75)

while with the vacuum (60) written for m< 0, the overlaps are:

〈Ω(a)|B+〉=
∏

p∈Z2

bp2 − ibp1
p

E(p)(E(p)−m)
, 〈B+|Ω(a)〉=

∏

p∈Z2

√

√ E(p)−m
E(p)

. (76)

Recall from the analysis of Berry connection that for m > 0, |Ω(a)〉 is a section of some line
bundle L

1
2 over Ť2, while 〈Ω(a)| is a section of L−

1
2 . For m< 0, the bundles are swapped, and

|Ω(a)〉 is a section of L−
1
2 . Now notice that 〈Ω(a)|B+〉 in (75) is a global function of a, not a

section, precisely when m > 0, while for m < 0, 〈B+|Ω(a)〉 in (76) is globally defined. Thus
|B+〉 and 〈B+| must be, in some sense, sections of the same bundle L

1
2 :

|B+〉, 〈B+| “ ∈ ” Γ
�

Ť2,L
1
2

�

. (77)
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At the same time, 〈B+|Ω(a)〉 in (75) and 〈Ω(a)|B+〉 in (76) must be sections of L
1
2 ⊗L

1
2 . Up

to a globally defined function, these sections behave as
∏

p(bp1 + ibp2). This is a well known
infinite product that is regularized to a theta-function ϑ(a), where a = a1 + ia2, defined as

ϑ(a) = (x1/2 − x−1/2)
∏

n>0

(1− qn x)(1− qn/x) , where x = e2πia , (78)

and q determines the complex structure of the spatial torus T2 (in our conventions q = e−2π).
Thus the bundle L

1
2 ⊗L

1
2 = L is characterized by the same factor of automorphy as

ϑ(a) . (79)

The square root on L
1
2 is of course an artifact of the parity anomaly.

Equation (77) clearly reflects the boundary ’t Hooft anomaly carried by B+. In the absence
of bare Chern-Simons terms, the left and right boundary conditions B+ carry the same bound-
ary anomaly A, which is why we see L

1
2 both for |B+〉 and 〈B+|. For B−, the anomaly would

be −A and the bundle would be L−
1
2 .

Yet, (77) looks very confusing given that the definitions (72) of the boundary states contain
no a-dependence. In fact, equations (72) rightfully suggest that |B±〉 are constant sections of
a trivial bundle over Ť2. Then what does (77) mean? It turns out that the more precise
statements (that can now be written without the quotation marks) are:

e−εH |B+〉 ∈ Γ
�

Ť2,L
1
2

�

, 〈B+|e−εH ∈ Γ
�

Ť2,L
1
2

�

, (80)

where ε > 0 is the regularization parameter that makes the boundary state normalizable (the
zero point energy is subtracted from H). At ε = 0 we would have constant sections (of a
trivial bundle over Ť2 with fibers V[T2]) valued outside the Hilbert space. At any ε > 0, we
find sections of a non-trivial line bundle over Ť2 whose fibers lie inside the physical Hilbert
space H[T2]. This singular behavior of the boundary states is expected to be typical in QFT.
If some boundary condition B is independent of the parameters that we vary (like our a) and
supports a non-trivial anomaly with respect to that parameter, then in fact |B〉 must lie outside
the Hilbert space (have infinite norm). If it did not, e−εH |B〉 would be a section of the trivial
bundle, which is prohibited by the anomaly.12

Let us see this more explicitly. Dropping the zero point energy again, the regularized bound-
ary state is

e−εH |B+〉=
⊗

p

p
2
(| fp|2 + e−2εE(p))| ↓↑〉p + fp(1− e−2εE(p))| ↑↓〉p

| fp|2 + 1
, where fp =

bp2 − ibp1

E(p)−m
.

(81)
The norm of this state is finite (74) but not unit. We thus normalize it:

|NB+〉=
⊗

p

(| fp|2 + e−2εE(p))| ↓↑〉p + fp(1− e−2εE(p))| ↑↓〉p
Æ

| fp|2 + 1
q

| fp|2 + e−4εE(p)
. (82)

The projector connection for the line bundle spanned by |NB+〉 is

Bi = 〈NB+|
∂

∂ ai
|NB+〉=

∑

p

B(p)i , (83)

12That the boundary ’t Hooft anomalies demand e−εH |B〉 to be a section of the nontrivial bundle can be seen from
the interval partition function. Indeed, after the interval reduction, the boundary anomalies become ordinary ’t
Hooft anomalies of the 2d theory. As is well-known, they imply that the partition function is a section of a nontrivial
bundle over the space of background connections (flat connections in our case). Viewing the interval partition
function as the overlap of regularized boundary states e−

T
2 H |B〉 and 〈B|e−

T
2 H , we immediately conclude that they

should also be sections of the nontrivial bundles.
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where B(p)i is a contribution from the mode p in (82). The answer strongly depends on ε. For
ε = 0, (82) becomes |NB+〉 = ⊗p| ↓↑〉p, so clearly Bi = 0. In the opposite ε→ +∞ limit, the
answer coincides with the vacuum Berry connection. In particular, the curvature:

∂1B2 − ∂2B1 =
∑

p

im
2(m2 + (p1 + a1)2 + (p2 + a2)2)3/2

, (84)

which has the Chern number 1
2

m
|m| , as we have seen before.

Interestingly, the answer is different for finite ε. The curvature is
∑

p F (p)12 , where

F (p)12 = ∂1Sp∂2Sp − ∂2Sp∂1Sp , (85)

and

Sp =
f p(1− e−2εE(p))

Æ

| fp|2 + 1
q

| fp|2 + e−4εE(p)
. (86)

We next integrate it over the base to find the Chern class:
∫

Ť2

∑

p

F (p)12 da1da2 =

∫

R2

F (p=0)
12 da1da2 =

∫

C
dS0 ∧ dS0 . (87)

If we write a1+ia2 = ρeiϕ, then one can see that at infinity inC, asymptotically S0→ ie−iϕ/
p

2
and S0→−ieiϕ/

p
2. Thus, applying the Stokes theorem, the integral evaluates to

∫

S1
∞

S0dS0 =
i
2

∫

dϕ = iπ , (88)

and the Chern number is 1
2πi

∫

F = 1
2 .

We thus find that the Chern class c1(B+) of the bundle that e−εH |B+〉 is valued in depends
discontinuously on ε:

c1(B+) =











0 , ε= 0 ,
1
2 , 0< ε <∞ ,

m
2|m| , ε=∞ .

(89)

This counter-intuitive property, on the practical level, is traced back to limε→∞ S0 being sin-
gular at a1 = a2 = 0 precisely for m < 0. This makes the Stokes theorem inapplicable in such
a limit, explaining why the finite ε and ε=∞ answers differ for m< 0.

The ε = 0 case is unphysical (boundary state is not in the Hilbert space). The ε =∞
case just captures the Berry curvature of the vacuum. The case of 0 < ε <∞ is the most
interesting one: the regularized boundary state e−εH |B+〉 spans the line bundle of Chern class
c(B+) =

1
2 that captures the boundary anomaly!

3.3 SUSY extension

Let us also consider the N = 2 extension, i.e., enrich the story by adding a complex scalar φ
of real mass m, such that together with fermions we have a 3d N = 2 chiral multiplet Φ of
real mass m. In this case, the zero point energy automatically vanishes, so we do not need
to subtract it by hands in various formulas. This case is also of direct relevance for our main
applications discussed in Section 5.

We use the same boundary conditions on fermions and SUSY-complete them into the (0, 2)
boundary conditions:

B+ : φ
�

�= 0 , ψ+
�

�=ψ+
�

�= 0 ,

B− : ∂⊥φ
�

�= 0 , ψ−
�

�=ψ−
�

�= 0 .
(90)
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Quantization of the complex scalar field gives:

φ =
1

2π

∑

p∈Z2

1
p

2E(p)

�

a+p eipx+iE(p)t + apeipx−iE(p)t
�

,

φ =
1

2π

∑

p∈Z2

1
p

2E(p)

�

a+p e−ipx+iE(p)t + ape−ipx−iE(p)t
�

, (91)

where E(p) is the same as in (41), and the commutators of creation/annihilation operators
for particles and anti-particles, respectively, are:

[ap, a+q ] = [ap, a+q ] = δp,q . (92)

The bosonic Fock vacuum is defined as

ap|Ω〉b = ap|Ω〉b = 0 . (93)

The boundary state |B+〉= |B+〉 f |B+〉b has the fermionic part from the previous subsection and
the following bosonic part:

|B+〉b = Ne−
∑

p a+p a+p |Ω〉b , (94)

which obeys the required condition

φ(t = 0)|B+〉b = φ(t = 0)|B+〉b = 0 . (95)

This |B+〉b is an infinite-norm state, but its Euclidean evolution,

e−
T
2 H |B+〉b = Ne−

∑

p e−T E(p)a+p a+p |Ω〉b , (96)

is a finite-norm state of the norm:

|N |2
∏

p∈Z2

1
1− e−2T E+(p)

. (97)

The normalization N must be taken as |N |2 =
∏

p E(p), so that 〈B+|be−T H |B+〉b agrees with
the interval partition function. This |N |2 cancels against the similar factor for the fermions.
We also see that the T -dependent terms (1− e−2T E+(p)) and (1− e−2T E+(p))−1 cancel between
the fermions and the bosons, respectively. Thus the interval partition function of the chiral
multiplet agrees with the overlap of Euclidean-evolved boundary states when we include both
bosons and fermions:

〈B+|e−T H |B+〉=
∏

p

(bp1 + ibp2) =N · ϑ(a) , (98)

where N is an infinite constant. This agrees with the 2d (0, 2) Fermi multiplet index [45–50],
as expected (indeed, the interval zero modes in the case of B+ boundary conditions form a
Fermi multiplet, hence the I ×T2 partition function computes its index).

We can also equally easily write the bosonic part of |B−〉:

|B−〉b = e
∑

p a+p a+p |Ω〉b , (99)

which obeys:

φ̇(t = 0)|B−〉b = φ̇(t = 0)|B−〉b = 0 . (100)

The norm of e−
T
2 H |B−〉b is the same as for e−

T
2 H |B+〉b, and the rest of analysis goes through.
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To compute the possible Berry phase, we also write the creation/annihilation operators in
terms of modes φ(p):

ap =

√

√ E(p)
2

�

φp +
1

E(p)
∂

∂ φp

�

, ap =

√

√ E(p)
2

�

φp +
1

E(p)
∂

∂ φp

�

,

a+p =

√

√ E(p)
2

�

φp −
1

E(p)
∂

∂ φp

�

, a+p =

√

√ E(p)
2

�

φp −
1

E(p)
∂

∂ φp

�

. (101)

Then the normalized vacuum is represented by the wave function:

〈φ,φ|Ω〉b =
∏

p∈Z2

√

√2E(p)
π

e−E(p)φpφp . (102)

Its contribution to the Berry connection is trivial:

〈Ω|b
∂

∂m
|Ω〉b = 〈Ω|b

∂

∂ ai
|Ω〉b = 0 . (103)

This immediately follows from the wave function being real and normalized. In a similar
situation in quantum mechanics, a one-line proof of this fact is:

〈ψ|
∂

∂ ai
|ψ〉=

∫

dn xψ(x)
∂

∂ ai
ψ(x) =

1
2
∂

∂ ai

∫

dn xψ(x)2 =
∂ 1
∂ ai
= 0 . (104)

We could of course make the Berry connection Ai non-zero by multiplying the wave function
by a non-constant phase (and hence making it complex), but this would only amount to a
gauge transformation of Ai .

The regularized and normalized boundary state for bosons is:

|NB+〉b =
∏

p∈Z2

�p

1− e−2εE(p)e−e−εE(p)a+p a+p
�

|Ω〉b . (105)

Without much work, we see that the corresponding wave function is real. Indeed, |Ω〉b is
represented by the real wave function, E(p) is real, and the differential operator

a+p a+p =
E(p)

2

�

φp −
1

E(p)
∂

∂ φp

�

�

φp −
1

E(p)
∂

∂ φp

�

, (106)

is real. Therefore, by the same argument, the projector connection one-form on the line bundle
spanned by |NB+〉b is zero.

We see that bosons do not contribute to the vacuum bundle and connection. This matches
our expectation that the Berry connection is captured by the effective CS terms generated by
the fermions. Likewise, only fermions contribute to the boundary anomaly and thus to the
topology of the bundle of boundary states.

The presence of bosons, however, improves the behavior of partition functions. As we saw,
the interval partition function (with SUSY boundary conditions) becomes independent of the
interval length. Furthermore, its dependence on parameters simplifies: We find a holomorphic
answer ϑ(a) in the B+B+ case and a meromorphic answer ϑ(a)−1 in the B−B− case (unlike a
more complicated non-SUSY partition function (73)).

Also, the Berry connection of a chiral multiplet is the simplest instance of 3d tt∗ geometry
[25]. It manifestly coincides with the free fermion Berry connection (see footnote 11).
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3.4 What did we learn?

The main lesson of this section is that the original Berry connection can still be defined and
studied in QFT, at least when the counterterm analysis of Section 2 shows that it is unam-
biguous. On the flip side, the technicalities can be messy. Even for a free Dirac fermion, we
had to be careful with the details, encountering, among other things, an ambiguity associated
with the background CS level along the way (this ambiguity is easily resolved, as explained
in Section 2). There is certainly very little hope to use the original definition via projectors in
a general interacting QFT, however. The viewpoint of effective field theory, where we study
particular terms in the low energy effective action (those with precisely one time derivative),
appears to be more powerful, since we understand effective actions way better than the Hilbert
bundle of a family of interacting QFTs. Thus in the remaining sections, we use the effective
action approach to the Berry connection.

4 General gapped 3D QFT

Suppose we have a family of (trivially) gapped 3D theories that we put on Σ × S1, where
both Σ and S1 are very large. More specifically, Σ should be so large that: (1) any possible
curvature couplings do not affect the QFT dynamics and can be neglected; (2) after zooming
out (RG-flowing) sufficiently far, such that only the gapped vacuum remains in the spectrum,
Σ is still of finite size. Additionally, the length β of S1 is kept much larger than the energy gap,
such that only the vacuum propagating along S1 contributes to the partition function:

Z[Σ× S1] = TrH[Σ]U(β) = e−θ +O(e−#β) , (107)

where U(β) is the evolution operator, e−θ is the leading vacuum contribution. We were not
specific about the boundary conditions along S1, but if the vacuum is unique and bosonic,
these are not so important. We can always assume the periodic boundary conditions (which
is especially useful if we have SUSY to preserve).

When we do not vary parameters with time (along S1), the leading contribution is simply
due to the vacuum energy. It is called the dynamical phase e−iE0 t , and in Euclidean signature,
i t = β , it becomes a real number e−βE0 often referred to as the Casimir factor. When we vary
parameters adiabatically along S1 (without closing the gap), we find an additional contribution
to θ – the geometric or Berry phase [1, 2, 4], which is phase even in the Euclidean signature.
In SUSY theories E0 = 0, so the Berry phase is the only leading contribution.

As we go around S1, we can let the theory trace out any loop in the space of parameters.
Thus Z[Σ × S1] will capture the Berry phase along such a loop, and in this way, at least in
principle, we can determine holonomies of the Berry connection along all possible loops. They
capture the complete data of the gauge equivalence class of a connection. In such an approach,
we do not need to think about the Hilbert spaces or projector connections. We only have a
fiber C of the vacuum bundle over a fixed point in the parameter space, (which corresponds,
say, to the moment of time 0 ∈ S1,) and we have holonomies along all possible loops that start
and end at this point. These data fully determine the bundle and the connection.

The computation can be formulated in the language of effective field theory, as explained
in the Introduction. We promote parameters to background fields φ that slowly vary along S1.
The partition function is

Z[Σ× S1] = e−Γ [φ] , (108)

where Γ [φ] is the effective action. The Berry connection is captured by terms in Γ [φ] with
precisely one time derivative.
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When Σ is very large, Γ [φ] is the 3D action of the invertible field theory that captures
response of the gapped vacuum to the variations of parameters φ. We compactify this 3D
classical action on Σ, and in the resulting 1D action identify the one-derivative terms.

If the only parameters we consider are background gauge fields, then the important term
in Γ is the effective Chern-Simons coupling at the given gapped vacuum. This is precisely
the term that captures the geometric phase in such a case. Assuming that a given vacuum
only preserves the maximal torus T = U(1)r of the global symmetry group, we thus write the
effective abelian CS term:

θBerry =
1

4π

∫

Σ×S1

ki jA
idAj . (109)

If we assume that Ai is some abelian connection on the surface Σ that slowly changes along
the time direction S1, the above can be written as:

θBerry =

∫

γ

B , (110)

where γ ⊂ A[Σ] is a loop in the space A[Σ] of U(1)r -connections on Σ, and B is the Berry
connection (local) one-form on this space:

B = 1
4π

∫

Σ

ki jA
iδAj . (111)

Here we keep the wedge product implicit, and δ denotes the de Rham differential on A[Σ].
The curvature is

F = δB = 1
4π

∫

Σ

ki jδAiδAj . (112)

4.1 Flat connections

The above constructions become cleaner if we consider flat T = U(1)r connections on Σ as
the parameters, in which case the space of parameters will be denoted as:

ET [Σ] = Hom(π1(Σ), T )∼=
�

H1(Σ,R)/H1(Σ,Z)
�r

. (113)

Note that ET [Σ]∼= J(Σ)r , where J(Σ) is the Jacobian of Σ. In case Σ is a torus T2, J(Σ) = Ť2,
and ET (T2) = (Ť2)r will be simply denoted ET .

Genus one. The case of Σ = T2 is the most straightforward and interesting to us: Indeed,
it was analyzed in detail for free theories in Section 3. The space of flat connections ET is
parameterized by the holonomies 2πai

1 =
∫

A Ai and 2πai
2 =

∫

B Ai along the A and B cycles of
T2, which are periodic variables:

ai
1 ∼ ai

1 + 1 , ai
2 ∼ ai

2 + 1 . (114)

The Berry connection becomes:

B = πki j(a
i
1da j

2 − a j
2dai

1) , (115)

in agreement with the results of Section 3. From the equation (115) we see that as we go
around a cycle a j

1 7→ a j
1 + 1, the connection B undergoes a gauge transformation by

g j
1 = eiπk jr ar

2 , (116)
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and likewise a j
2 7→ a j

2 + 1 corresponds to

g j
2 = e−iπk jr ar

1 . (117)

These transformations are clutching functions of the line bundle over ET . The composition of
transformations associated to a j

1 7→ a j
1 + 1, ar

2 7→ ar
2 + 1, a j

1 7→ a j
1 − 1 and ar

2 7→ ar
2 − 1 must be

trivial, which is the standard smoothness condition for the bundle that here reads as:

e2πik jr = 1 . (118)

Thus the bundle is smooth for k jr ∈ Z, while for the half-integral k jr , we must pass to the torus
eT2 covering Ť2 to get a smooth bundle. This is the same effect related to the parity anomaly
that was mentioned in Section 3.

The complex structure τ of Σ= T2 induces one on ET , with the complex coordinates:

x i = ai
1 +τai

2 . (119)

Then the Berry connection and its curvature take the form:

B = π

τ−τ
ki j(x

idx j − x idx j) , F = 2π
τ−τ

ki jdx idx j . (120)

Since F has type (1, 1) in this complex structure, the (0,1) connection ∇ = ∂ − iB(0,1) obeys
∇2
= 0 and defines a holomorphic structure on the vacuum line bundle. Holomorphic sections

obeying ∇ψ= 0 take the form:
ψ= e−Kχ(x) , (121)

where χ(x) is locally holomorphic and the Kähler potential is

K(x , x) =
iπ
τ−τ

ki j x
i x j . (122)

A global section must obey:

ψ(x j + 1) = g j
1ψ(x) , ψ(x j +τ) = g j

2ψ(x) . (123)

It is convenient to redefine χ(x) = e
iπ
τ−τ ki j x

i x j
Θ(x), such that

ψ(x , x) = e
iπ
τ−τ ki j x

i(x j−x j)Θ(x) . (124)

Then the property (123) written in terms of Θ(x) reads:

Θ(x j + 1) = Θ(x) , Θ(x j +τ) = e−2πik jr x r−iπτk j jΘ(x) . (125)

More generally, if µ + ντ ∈ (Z+τZ)r is an arbitrary shift, where µ and ν are r-component
integral vectors, we find:

Θ(x +µ+ ντ) = e−2πik(ν,x)−iπτk(ν,ν)Θ(x) . (126)

The coefficient that appears on the right,

λ(µ+τν, x) = e−2πik(ν,x)−iπτk(ν,ν) , (127)

is the factor of automorphy [51–54] that uniquely fixes the data of a holomorphic line bundle
on ET (see [55–57]). Given a symmetric matrix of Chern-Simons coefficients ki j ∈ Z, we can
easily construct Θ(x) obeying (126) using theta functions.

Such a characterization of the holomorphic sections will be important to us very soon,
but so far the consideration of holomorphic structure associated to the Berry connection has
certainly not been motivated in any way, and is just an exercise. This will change in the next
subsection.
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Higher genus. Though not of immediate importance to our applications later in this note, let
us now briefly consider Σ of higher genus g > 1. The necessary mathematical background for
this subsection can be found in the textbook [58]. Pick one-cycles (αs,βs), s = 1..g representing
a basis in H1(Σ,Z) such that only αs with βs have a nonzero intersection (equal to one) for
all s = 1..g. Let one-forms (αs,β s) represent the dual basis in H1(Σ,Z), which means that
αs(αr) = δs

r , β
s(βr) = δs

r , while the other contractions vanish. Then the intersection numbers
are captured by

∫

Σ

αs ∧ β t = δst ,

∫

Σ

αs ∧αt =

∫

Σ

β s ∧ β t = 0 . (128)

A general flat U(1)r -connection on Σ can be written as:

Ai = 2π
g
∑

s=1

(ai
sα

s + bi
sβ

s) , (129)

subject to the identifications ai
s ∼ ai

s + 1 and bi
s ∼ bi

s + 1. Then the Berry connection is:

B =
g
∑

s=1

πki j(a
i
sdb j

s − bi
sda j

s ) . (130)

Next consider a basis of holomorphic differentialsωs, s = 1..g on Σ, and denote their complex
conjugates by ωs. In the decomposition

ωs =
g
∑

r=1

�

Ωs,rα
r +Ωs,g+rβ

r
�

, (131)

the g×2g matrix Ω is known as the period matrix of Σ. The period matrix is defined for more
general bases of one-forms as well, but for our choice of (αs,βs), there exists a unique basis of
holomorphic differentials ωs, such that

∫

αs

ωr = δsr , 1≤ s, r ≤ g , (132)

and the remaining periods are given by
∫

βs

ωr = τsr , (133)

where τ= (τsr) is a symmetric complex g×g matrix, whose imaginary part is positive definite.
By definition, such τ belongs to the Siegel upper half-space of rank g. So, in other words,
holomorphic differentials take the form:

ωs = α
s +

g
∑

r=1

τsrβ
r . (134)

We can define complex coordinates on the space ET [Σ] = J(Σ)r :

x i
s = −bi

s +
g
∑

r=1

τsr ai
r , (135)

in terms of which the flat abelian gauge field is written as:

Ai = 2π
g
∑

r,s=1

�

(τ−τ)−1
�

rs (x
i
sωr − x i

sωr) , (136)
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and the Berry connection becomes:

B =
g
∑

r,s=1

πki j

�

(τ−τ)−1
�

rs (x
i
sdx j

r − x i
sdx j

r) . (137)

Again ∇ = ∂ − iB(0,1) determines a holomorphic structure on the vacuum line bundle over
J(Σ)r , and we can write a holomorphic section in the familiar form:

ψ= eiπ
∑

r,s ki j[(τ−τ)−1]rs x i
s(x

j
r−x j

r )Θ(x) . (138)

Agreement with the clutching functions of the bundle, — that under a j
s 7→ a j

s + δ
j
lδ

p
s we

perform the gauge transformation by eiπkl i b
i
p , and under b j

s 7→ b j
s +δ

j
lδ

p
s we perform the gauge

transformation e−iπkl j a
j
p , — again fixes the periodicity properties of Θ as

Θ(x i
s +δ

i
lδ

p
s ) = Θ(x

i
s) , Θ(x i

s +τspδ
i
l) = e−2πikl j x

j
p−iπkl lτppΘ(x) , (139)

which clearly and in the most straightforward way generalizes the genus-one case. We can
also pick integer-valued vectors µi

s,ν
i
s and write the general formula:

Θ(x +µ+τν) = e−2πik(ν,x)−iπk(ν,τν)Θ(x) . (140)

Again this gives us the factor of automorphy that, for every symmetric matrix of Chern-Simons
levels ki j , determines the data of a holomorphic line bundle on J(Σ)r . One can construct Θ(x)
obeying (140) using the multi-dimensional theta functions.

4.2 Holomorphy of partition functions

We found that for flat background gauge fields viewed as parameters, the Berry connection
equips the vacuum bundle with the holomorphic structure. We described its holomorphic sec-
tions in the previous subsection. One may ask if such sections have any physical significance,
– and they indeed do in the presence of SUSY.

This is related to the well-known question of (non)holomorphy of the supersymmetric
partition functions, which are in fact sections of non-trivial bundles over the parameter space
in the presence of the ’t Hooft anomalies [37, 38, 49, 59] (determinant line bundles [60]).
One naively expects the partition function to be holomorphic in parameters13 x i , since x i

couple to some Q-exact operators, which therefore must decouple [61]. In reality, these Q-
exact operators fail to decouple in the presence of background gauge fields for symmetries
with non-zero ’t Hooft anomalies. This is because the Q transformation, in the Wess-Zumino
gauge [62], is accompanied by the compensating gauge transformation, including that of the
background gauge fields [63]. The latter produces anomalous contributions proportional to
the ’t Hooft anomalies. Following [38], such a “holomorphic anomaly” of the torus partition
function is captured by:

∂

∂ x i log ZT2(x , x) = −
iπ
τ−τ

κi j x
j , (141)

where κi j is the coefficient of F i ∧ F j in the anomaly polynomial. Furthermore, it was argued
that the partition function in the scheme that preserves gauge-invariance of |ZT2 |2 must take
the form

ZT2(x , x) = e
iπ
τ−τκi j x

i(x j−x j)I(x) , (142)

13This applies to a wider class of theories, but for us the parameters x i are flavor fugacities in the elliptic genus
of a 2D N = (0, 2) theory.
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where I(x) is meromorphic and captures the supersymmetric index defined as a super-trace
over the Hilbert space. This answer matches our expression (124) for a holomorphic section,
provided that κi j = ki j , which is not a coincidence, of course. The equation (141) precisely
says that the partition function is a holomorphic section of the line bundle over ET

∼= (Ť2)r

with respect to the holomorphic structure

∇= ∂ +
iπ
τ−τ

κi j x
idx j . (143)

The old literature interprets this as a clash between holomorphy and gauge invariance.
Note that (143) coincides with the holomorphic structure ∂ −iB(0,1) derived from the Berry

connection if κi j = ki j . Then the answer (124) or (142) and the periodicity (large gauge trans-
formations) (126) are obtained simply by asking that we have a global meromorphic section
written in the unitary gauge/trivialization (the one where B(0,1) and B(1,0) are conjugate to
each other). The latter, in particular, implies that it acquires a known phase under the large
gauge transformations, and so |ZT2 |2 is gauge invariant.

Thus the holomorphic sections encountered in the previous subsection naturally appear
in 2D N = (0,2) theories as supersymmetric partition functions on T2, with the matrix ki j
capturing the ’t Hooft anomalies. In the context of 3D N = 2 theories, the natural ways to
obtain similar objects include:

• A state generated by the cigar geometry, i.e., partition function on D2 ×q S1, with D2

either having a round hemisphere HS2 background (a half-index) or an A-twisted infinite
cigar background (a holomorphic block.14) Consider for concreteness the half-index
geometry. Along the boundary one imposes 2D N = (0,2) boundary conditions B with
the boundary anomaly polynomial κi j F

i F j . The same argument that determines the
non-holomorphy of the T2 partition function in 2D also applies to the HS2×q S1 partition
function in 3D, where now it is the ’t Hooft anomaly supported at the T2 boundary that
appears in the holomorphic anomaly equation. The boundary torus has q = e−β , where
β is the circumference of the S1. As a result, we find

ZHS2×S1(B) = e
iπ
τ−τκi j x

i(x j−x j) IB(x) , (144)

where IB(x) is the usual operator-counting half-index. The holomorphic (or meromor-
phic) combination e

iπ
τ−τκi j x

i x j
IB(x) has previously appeared in the literature [49, 65],

but we need to include the non-holomorphic piece in (144) to get the answer in the
regularization scheme compatible with gauge transformations. Such ZHS2×S1(B) picks
up only a phase under the large gauge transformation x i 7→ x i+1 (so that |Z |2 is gauge-
invariant), provided that IB(x i+1) = IB(x), which holds for the half-index. It is possible
to interpret ZHS2×S1(B) as the overlap:

ZHS2×S1(B) = 〈B|H〉 , (145)

where 〈B| is a boudnary state and |H〉 is the state created by the hemisphere. Since
ZHS2×S1(B) is a holomorphic section with respect to (143), it is natural to interpret 〈B|
and |H〉 as holomorphic sections of some line bundles L1 and L2, such that 〈B|H〉 is a
holomorphic section of L1⊗L2. In particular, 〈B| is holomorphic15 with respect to (143),
because the anomaly κi j is carried entirely by the boundary, while |H〉must be holomor-

phic with respect to ∂ . The latter agrees with the fact known from the tt∗ geometry
that the hesmisphere creates states in the holomorphic basis, in which the holomorphic
structure is simply ∇= ∂ .

14The two are related via a more general squashed background [64].
15Strictly speaking, just like in Section 3.2, we should be talking about 〈B|e−εH rather than 〈B| here.

30

https://scipost.org
https://scipost.org/SciPostPhys.15.4.167


SciPost Phys. 15, 167 (2023)

• A regularized (via Euclidean evolution) boundary state e−εH |B〉 corresponding to some
N = (0,2) boundary conditions B. Such states generally represent non-trivial Q-
cohomology classes, same as SUSY vacua. By varying the values of flat flavor connections
x , the state e−εH |B〉 (or rather its Q-cohomology class) assembles into a holomorphic
section of a line bundle over ET . This follows from the same arguments as before: The
antiholomorphic parameter x couples to some Q-exact operator, which fails to decouple
only due to the ’t Hooft anomaly supported by the boundary. This is most cleanly seen in
the case of the interval partition function on T2× I (here I = (0,2ε)) with the boundary
conditions B1,2. On the one hand, it is just an overlap:

〈B1|e−2εH |B2〉 . (146)

On the other hand, in the IR it is the T2 partition function of some 2D N = (0, 2)
theory. If the boundaries B1,2 support boundary anomalies with the coefficients k(1,2)

i j ,
then such a partition function is a holomorphic section with respect to (143), with the
total anomaly coefficients κi j = k(1)i j +k(2)i j . We can also think of it as a section of L1⊗L2,

where 〈B1|e−εH and e−εH |B2〉 are holomorphic sections of L1 and L2 individually, with
the holmorphic structure (143) with κi j = k(1)i j and κi j = k(2)i j , respectively.

5 Relation to elliptic cohomology

Let T = U(1)r be the global symmetry preserved by the vacuum, and let x i , as before, param-
eterize the flat T -connections on Σ = T2. If the vacuum remains gapped and isolated for all
values of x ∈ ET , the above analysis fully applies and we straightforwardly obtain a holomor-
phic line bundle L over ET . This happens, for example, in a class of 3D N = 2 theories whose
vacua remain isolated and gapped due to large generic real masses, so that flat connections x
do not change the potential and vacua qualitatively. In this case the moduli space of vacua is
a point X = pt (or a discrete set of points), and we identify the space of flat connections with
the equivariant elliptic cohomology variety of a point:

ET (pt) = ET . (147)

For the approach to elliptic cohomology that we follow see [66] and references therein. In
particular, this ET (pt), or more generally ET (X ), is a variety that generalizes Spec HT (X ) and
Spec KT (X ) in the cohomological and K-theoretic cases. ET (X ) is not affine, so there is no
corresponding cohomology ring whose Spec it would be. Nonetheless, one can talk about
elliptic cohomology classes. Just like the cohomology and K-theory classes can be interpreted
as functions on Spec HT (X ) and Spec KT (X ), respectively, the elliptic cohomology classes are
understood as sections of line bundles on ET (X ). That is, an elliptic class is given by a line
bundle L on ET (X ) and its holomorphic section.

More generally, X can be a positive-dimensional moduli space of vacua, such that for
generic x ∈ ET \ D only a discrete set X T =

⊔

a pa of fixed points stays at zero energy. For
example, this happens in the above mentioned class of 3D N = 2 theories, which can be fully
gapped via the real masses. Turning off the real masses, we get back the moduli space X ,
which can be again gapped out via the generic flat connections x . Physically, x are similar to
masses, – they are just doubly-periodic. For non-generic x ∈ D (discriminant locus) a non-
trivial subspace of X remains in the space of vacua (the whole X at x = 0 ∈ D). Suppose an
isolated vacuum pa stays gapped for x ∈ ET \ Da, so

D =
⋃

a
Da . (148)
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To be more concrete, consider the tangent space Tpa
X at the a’th fixed point. It is acted by T ,

so let Φa be the set of weights for this action. An infinitesimal deformation δ ∈ Tpa
X of weight

w ∈ Φa away from pa acquires a periodic mass w · x mod Z+τZ. It being zero,

w · x = 0 mod Z+τZ , (149)

is precisely the condition for δ to represent a flat direction in the space of vacua. Thus we
identify the subset of x ’s for which pa fails to be isolated:

Da = {x ∈ ET

�

� ∃w ∈ Φa, w · x ∈ Z+τZ} . (150)

Let ∆ab ⊂ Da ∩ Db denote the locus at which the vacua a and b get reconnected by some
Cab ⊂ X . This ∆ab ⊂ ET parameterizes flat connections for a certain subtorus that will be
denoted as Tab ⊂ T .

Each gapped vacuum pa has an associated matrix k(a)i j of the effective CS levels for coupling
to the background T gauge field. Even though physically the vacuum line bundle (for the
vacuum pa) is only well defined over ET \ Da, it is clear that it can be extended over the
discriminant locus to the entire ET . Indeed, using the construction discussed earlier, which is
based only on the matrix k(a)i j , we formally obtain a holomorphic line bundle La with the Berry
connection over the entire r-dimensional complex torus ET .

Given two such bundles La and Lb associated to the vacua a and b, let us restrict them to
∆ab ⊂ ET and prove that they become isomorphic there. If the vacua cannot be reconnected,
∆ab is empty and the statement is trivially true. If ∆ab is zero-dimensional (a collection of
points), the statement is still obvious because any two line bundles restricted to a point become
isomorphic. Now if ∆ab is a positive-dimensional subtorus, we should note that the data of
La

�

�

∆ab
is encoded in the Berry connection for flat gauge fields parameterized by ∆ab, which

are valued in the subtorus Tab ⊂ T . This Berry connection is computed from the CS levels,
as we explained earlier. Now the key point is that the CS terms for vacua a and b become
equivalent upon restriction to the subtorus Tab, which can be written as follows:

CS(a)
�

�

Tab
= CS(b)

�

�

Tab
. (151)

Restriction to Tab means that we consider the Lie(Tab)-valued gauge fields. To understand
the equality (151), note that not only each isolated vacuum is equipped with the effective CS
levels, but also each connected component of the moduli space of vacua is decorated by the
effective CS levels for global symmetries preserved everywhere along that component. Since
CS levels are integers, by continuity they remain constant along each connected component.
Now because for flat connections x ∈ ∆ab, i.e., those valued in the subtorus Tab, the vacua
a and b become reconnected by Cab, this means that the effective CS levels CS(a) and CS(b),
though different on the full torus T , must become equal upon restriction to Tab, which is
precisely the statement (151). Since the CS levels fix the line bundle data, we conclude that
La

�

�

∆ab
and Lb

�

�

∆ab
are indeed isomorphic.

These statements motivate the following definitions. To each isolated vacuum pa, associate
a copy of ET , and identify them along the loci ∆ab, resulting in a certain variety. This variety
is identical to the (reduction of) the elliptic cohomology scheme:

ET (X ) = ET ⊔ ET ⊔ · · · ⊔ ET/∼ , (152)

where ∼ means that the a’th and b’th copies of ET are glued along ∆ab. Since they also carry
the line bundles La and Lb, which are isomorphic along ∆ab, we can glue such line bundles
into a single L over ET (X ). With these data, it makes sense to talk about elliptic cohomology
classes, that is holomorphic sections of L. Precisely such a setting plays central role in the
constructions of elliptic stable envelopes in mathematics [66] and physics [28,29]. See also a
somewhat different in approach but similar in goals series of papers [67–71].
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5.1 Chern-Simons couplings in N = 4 theories

For completeness and with the view towards applications [28], let us study the structure of
effective CS couplings on the Higgs branch X of 3D N = 4 gauge theories. We look at the
effective CS terms for the global symmetry torus T , which only make sense in the vacua labeled
by the fixed points X T = ⊔apa, since other vacua break T . Such terms were denoted CS(a)

before. The CS terms for a subtorus Tab ⊂ T make sense on X Tab , which can be larger than
X T , and may include positive-dimensional components Cab connecting pa and pb.

5.1.1 No additional CS terms from Higgsing

Let us first consider the case without real masses, so the full Higgs branch X is present. Focus
on the Higgs vacuum corresponding to an isolated T -fixed point pa ∈ X , which thus preserves
the full torus T . Then the dynamical gauge field is locked to a specific value determined by
the background gauge fields for global symmetries. For 3D N = 4 gauge theories studied
in [28], the global symmetries are T = U(1)ħh × A× A′. Here A is the maximal torus of flavor
symmetries acting on the hypermultiplets, U(1)ħh is the anti-diagonal subtorus of the maximal
torus U(1)H × U(1)C of the R-symmetry SU(2)H × SU(2)C , and A′ is the torus of topological
symmetries, under which the fields are neutral and the charged objects are monopole oper-
ators.16 The currents for A′ are given by ⋆F for abelian factors in the gauge group, thus the
background gauge field Bµ for A′ couples to the dynamical fields via a supersymmetric BF term
tr
∫

B ∧ F + . . . (see [28, 29, 65] for details, or [72, 73] specifically on the BF terms). At the
vacuum pa, the gauge fields are locked to linear combinations:

F i
µν =

∑

f

c i
f F f
µν + hi Fħhµν , (153)

where F f
µν and Fħhµν are gauge field strengths for the A× U(1)ħh symmetries. The combinations

(153) are chosen such that the hypermultiplets that develop vevs in the vacuum pa are neutral
under the combined G×A×U(1)ħh transformations (they are not acted on by A′ anyways). As
a result of (153), the BF couplings between A′ and the center of gauge group induce the A′×A
and the A′×U(1)ħh BF couplings (mixed CS terms). Such terms are simply associated with the
gauge fields developing vevs, not with integrating out anything, thus they may be called the
“classical” part of the effective CS coupling K(a):

K(a) = K(a)cl + K(a)q ,

K(a)cl = κa + κ
C
a ,

(154)

where we followed the notation from [29] for the A× A′ and U(1)ħh × A′ mixed CS levels κa
and κC

a , respectively.
The “quantum” contribution K(a)q to the matrix of CS levels comes from integrating out

massive fields. Since we do not turn on real masses at the moment, the fields become massive
through the Higgs mechanism only. Indeed, we are on the Higgs branch after all. In the
vacuum pa, a subset of hypermultiplets remains massless, – they represent the moduli fields
in the low-energy theory, and they are not integrated over. These hypermultiplets are charged
under the global torus T , and naturally they have zero vev in the T -invariant vacuum (any vev
would break T and move us into the nearby vacuum). The other hypermultiplets develop vevs
and, together with the vector multiplets, become massive. In the region of large FI parameters,
these fields have large masses and can be integrated out semiclassically.

16Because A′ does not act on X , ET (X ) ∼= EU(1)ħh×A(X )× EA′ , where EU(1)ħh×A(X ) is often denoted as EllU(1)ħh×A(X ).
Note that in this paper, T = U(1)ħh ×A×A′, while in [28] it was T = U(1)ħh ×A.
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We represent each hypermultiplet as a pair of chirals, and denote the hypers that develop
vevs by (I i , Ji), where the constituent chiral multiplets I i develop vevs and Ji do not (note that
I i and Ji cannot have vevs simultaneously, so such a splitting is always possible). The CS terms
can only be generated at the one loop order,17 namely via fermionic determinants, so let us
focus on the relevant terms involving fermions. The gaugini λ from 3D N = 2 vectormultiplet
and the fermionsψI from I together obtain masses via the SUSY kinetic term of the I multiplet.
The relevant terms are:

−iλ /Dλ− iψI /DψI + iψIλI − i IλψI . (155)

As for the adjoint chiral Φ (from the 3D N = 4 vectormultiplet) and the chirals Ji , they obtain
mass through the superpotential W = JΦI . Denoting their fermionic components by λΦ and
ΨJ , the relevant terms are:

−iλΦ /DλΦ − iψJ /DψJ + iψJλΦ I − iψJλΦ I . (156)

Assuming the gauge group is fully Higgsed, all dim G components of λ become massive by
pairing with precisely dim G components of ψI in (155), and similarly all dim G components
of λΦ receive masses by pairing with the same number of components of ψJ . In this way, the
massless vector multiplets double their fermion content, as appropriate for the massive vectors
that they become. Explicitly, if (T a)αβ with a = 1 . . . dim G are the generators of G acting on
the (possibly reducible) representation R ∋ I , we may write:

iψIλI = i(ψI)
α
�

(T a)α
β Iβ

�

λa , (157)

where we abuse notations and write I for the vev of I . Here

(ψI)
α
�

(T a)α
β Iβ

�

=: Ψ
a
I , (158)

are precisely the dim G components of ψI that become massive. We thus see that (155) really
contains a pair of adjoint-valued Dirac fermions, (λ,λ) and (ΨI ,Ψ I), and an off-diagonal mass
term iΨ Iλ− iλΨI for them. This mass matrix can be diagonalized by rotating λ with ΨI , and it
has real eigenvalues that come precisely in pairs ±m for some m. Integrating out the (adjoint-
valued) fermions associated to the corresponding eigenvectors looks just like integrating out
two fermions of opposite real masses, and they of course produce opposite CS terms for G that
cancel each other.

The same argument applies to the fermions (λΦ,λΦ) and (ψJ ,ψJ ) in (156). The only
difference is what gauge fields they couple to. In (155) the fermions λ and ΨI are effectively
in the adjoint representation of G, while in (156) the fermions λΦ and the massive components
(ψJ )α

�

(T a)αβ Iβ
�

= Ψa
J , in addition to being in the adjoint of G, also have charge +1 under

the U(1)ħh. What matters, however, is that λΦ and ΨJ have the same charges under G×U(1)ħh,
thus we can still rotate them and diagonalize the mass matrix. Again, the resulting real masses
come in pairs, and the CS terms that they generate simply cancel.

We thus see that integrating out the multiplets that become massive purely via the Higgs
mechanism generates no CS terms. Hence the effective CS couplings in the fixed point vacuum
pa on the unlifted Higgs branch are equal to their classical values introduced earlier:

K(a) = K(a)cl = κa + κ
C
a . (159)

Once we start turning on flavor connections x ∈ ET on T2, the potential appears, the Higgs
branch gets lifted (except for the fixed points pa), and the vacuum pa becomes isolated. Even

17The easiest way to see it is by introducing the loop-counting parameter α, known as the Plank constant. Since
CS terms are quantized, they cannot be multiplied by continuous parameters, thus they appear at the α0 order,
which is precisely the one-loop order.
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though the fluctuations away from pa are massive (with the elliptic masses w · x), they do not
generate any further CS terms. Essentially, this is the result we saw in Section 3, where the
Berry connection (given by the magnetic potential of the monopole wall) was trivial for zero
real mass and generic x ∈ ET . Likewise, here we assume the regularization scheme, in which
no CS terms are generated via fermions on T2 ×R that have no real masses but are coupled
to flat connections x on T2 (even though x is very reminiscent of mass).

Thus the line bundles La associated to fixed points on the unlifted Higgs branch are deter-
miend by the classical CS levels (159). Such levels obey (151), confirming that these bundles
are pulled back from a single line bundle L on ET (X ). This slightly differs from the choice of
La in [29] (their CS levels differ by an overall shift).

5.1.2 Real masses

Now let us make the fixed point vacua pa gapped by large real masses, not just the “elliptic
masses” x . Unlike the latter, the presence of real masses modifies the effective CS levels,
because chiral multiplets contain fermions, and fermions of real mass m in the representation
R of some simple G are well known [34–36] to contribute

sgn(m)
2

TRCS, (160)

to the effective action, where CS is the level-one CS functional of the G gauge fields, and TR is
the Dynkin index of R. In principle, scheme-dependent background CS terms could shift CS
level in (160) by an m-independent integer, without affecting the jump of level at m= 0. This
jump is scheme-independent and related to the fact that the mass profile m(y) = msgn(y) in
3d supports a chiral Fermi mode at y = 0. The ambiguity of background CS counterterms
is easily removed by assuming that the theory possesses boundary conditions.18 Thinking of
a boundary as an interface between our theory and the empty theory, the background CS
counterterms do not feel the interface and live in the entire space. It is natural to require that
the CS term is identically zero on the empty side. This fixes the CS counterterm ambiguity,
and corresponds to the answer given in (160).

Let us compute quantum corrections to the effective CS levels due to the real masses. The
vacuum equations include (σ +m)φ = 0, where φ stands for the chiral multiplet scalars, m
means real masses, and σ – real scalars in dynamical vector multiplets. At the given isolated
vacuum,σ has a vev that partially screens m, such thatσ+m acts by zero on those components
of φ that develop vevs. Thus such components do not receive any real masses. They still do,
together with the vector multiplets, receive masses via the Higgs mechanism, as in the previous
subsection. The analysis from that subsection still applies, and in particular, integrating out
such multiplets does not generate any CS terms.

The rest of chiral multiplets, namely those acted on nontrivially by σ + m, receive real
masses. These are precisely the multiplets that parameterize normal directions NX/pa

∼= Tpa
X

to the given isolated fixed point pa ∈ X . Recall that the set of weights for the T -action on Tpa
X

is denoted Φa. The normal bundle to the fixed locus breaks into the attracting and repelling
directions, NX/pa

∼= N>a ⊕N<a . The attracting/repelling nature of a given direction is determined
by the sign of the effective real mass of the corresponding chiral multiplet. According to this
sign, the weights are broken into two subsets Φa = Φ+a ∪Φ

−
a :

Φ+a = {w ∈ Φa, 〈w,σa +m〉> 0} , (161)

where σa is the vev of σ in the a’th vacuum. Integrating out such massive fields generates the

18We thank Zohar Komargodski for a discussion of this point.
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quantum correction to the effective CS level as in [29]:

K(a)q =
1
2

 

∑

w∈Φ+a

w⊗w−
∑

w∈Φ−a

w⊗w

!

. (162)

Indeed, the chiral multiplet corresponding to w ∈ Φ+a has positive mass and couples to the T
gauge field A through the linear combination A(w) = 〈w, A〉. Integrating out this chiral pro-
duces the 1/2

4π

∫

A(w)dA(w) CS term, while a weight w ∈ Φ−a would contribute −1/2
4π

∫

A(w)dA(w).
Altogether we find (162), where the CS level is understood as an invariant bilinear form on
the Lie algebra.

The answer (162) holds even if the T -fixed locus is positive-dimensional. For example,
this could happen if we turn on the non-generic real masses. In such cases, the weights Φ±a in
(162) still correspond to the attracting/repelling directions (i.e., chirals of positive/negative
effective real masses). The multiplets that remain massless describe the fixed locus, they are
not integrated out and hence do not contribute to K(a)q .

Notice also that Φ−a = ħh−Φ
+
a , because of which

K(a)q =
1
2

∑

w∈Φ+a

(ħh⊗w+w⊗ħh−ħh⊗ħh) . (163)

This K(a)q generally contains half-integral CS levels. To get rid of this inconvenience (recall
Section 3), we may redefine the ħh charges by 2, thus replacing the weight ħh by 2ħh above.

5.1.3 Mini summary

There are Higgs branch vacua corresponding to the isolated fixed points pa ∈ X , which preserve
the full torus T = A × A′ × U(1)ħh of global symmetries. We turn on real masses for some
subtorus A1 ⊂ A of the N = 4 flavor symmetries, with the fixed locus X A1 not necessarily
zero-dimensional. The effective CS terms in the vacuum pa ∈ X A1 are given by

K(a) = K(a)cl + K(a)q , (164)

where the tree level contribution K(a)cl (159), as discussed around (153), contains A× A′ and
U(1)ħh × A′ CS terms resulting from the classical BF term evaluated at the a’th vacuum. The
one-loop correction K(a)q is described in (162) and captures effects of the multiplets with real
masses, which parameterize the normal bundle NX/X A1 , and whose T -weights Φa = Φ+a ∪ Φ

−
a

split into those of positive/negative real masses in Φ+a and Φ−a , respectively.
At one extreme, A1 = A, we turn on generic real masses, X A1 is a set of isolated fixed

points, and our K(a) agrees with the one in [29]. At anther, A1 = 1, all real masses vanish, our
answer is purely classical, K(a) = K(a)cl , which differs from [29] by the shift of CS levels.

Our CS terms obey the property (151). Thus the bundles La and Lb over ET , associated
to the vacua pa, pb ∈ X , agree over the locus ∆ab ⊂ ET where pa and pb reconnect, and are
pulled back from the line bundle L on ET (X A1). The vacuum geometry encoded in L (with
the holomorphic structure dictated by the Berry connection) is our main application of the
Berry connection in SQFT. Note that relating sections of such bundles for different subtori
A2 ⊂ A1 ⊂ A is done via the ellictic stable envelopes, as discussed extensively in [28,66].

5.2 Higher genus

It is natural to wonder about generalizations of the above, where the higher genus curve Σ
replaces the elliptic curve of elliptic cohomology, leading to some generalized cohomology.
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This was anticipated in Section 4.1, where we replaced ET ≡ ET [T2] by ET [Σ] ∼= J(Σ)r and
saw how the effective CS couplings still determine the holomorphic line bundle on J(Σ)r .

A single gapped vacuum is the simplest ingredient from this perspective, for it leads to
the generalized cohomology of a point. To make it interesting, we need richer spaces to arise
as moduli spaces of vacua for the theory on Σ × R. It is known how to achieve this with
N = 2 SUSY (or in free theories). More specifically, it requires a holomorphic-topological
(HT) twist, such that Σ is holomorphic [74–77]. Hilbert spaces H[Σ] of twisted 3D N = 2
theories were studied in [78, 79], and it would be interesting to clarify their relation to the
generalized cohomology of moduli spaces. Such a generalized cohomology is not complex-
orientable, i.e., lacks the underlying formal group law. However, there are still reasons to
believe it is interesting enough, see for example a discussion in [67, Section 6].

6 Conclusions

This paper is an amalgamation of various facts, ideas, and applications of the Berry connection
in higher-dimensional QFT. The old-fashioned Berry connection [1, 2], along with its recent
generalizations [6–9], are all well defined in QFT, as long as the IR issues are treated by mak-
ing the space compact, and the UV ambiguities are absent. The latter is easy to address by
analyzing finite counterterms, as explained in Section 2. We also spent a considerable amount
of time on exploring free 3D theories on the torus T2 in Section 3, and devoted the rest of
paper to more general trivially gapped 3D QFTs, as well as relation to the elliptic cohomology
as the main application of our techniques.

One interesting direction of the future work is to follow up on the results of Section 2.
We found a few QFT setups there, in which the old Berry connection is well defined. It is
interesting to explore them further, especially cases of the unambiguous “gravitational Berry
connection”, i.e., when we vary geometric moduli of the spatial slice Σ with time.

Another interesting future direction was mentioned in Section 5.2. It involves clarifying
the relation between twisted Hilbert spaces of 3D N = 2 theories on the higher genus curves
Σ, the corresponding spaces of SUSY vacua, and the generalized cohomolory theories.
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