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Abstract

We extend and apply a recently introduced quasi-particle functional renormalisation
group scheme to the two-dimensional Hubbard model with next-nearest-neighbour hop-
ping and away from half filling. We confirm the generation of superconducting correla-
tions in some regions of the phase diagram, but also find that the inclusion of self-energy
feedback by means of a decreasing quasi-particle weight can suppress superconducting
tendencies more than anti-ferromagnetic correlations by which they are generated. As a
supplement, we provide sample results for the self-energy in second-order perturbation
theory and address some conceptual matters.
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1 Introduction and motivation

Background

Quantum many-body systems of correlated electrons exhibit a wide range of different physical
phenomena to be explored and understood. They have long been the subject of intense studies,
and in recent times various advances in experimental as well as theoretical areas have been
boosting this interest further. It is a ubiquitous and fundamental phenomenon in many-body
physics and (quantum) field theory, that seemingly simple rules for microscopic constituents
can lead to collective states and complex phenomena, which are entirely different from the un-
derlying building bricks and can be considered in themselves as effective constituents, obeying
different rules at a macroscopic level. This may even happen in several steps and over sev-
eral scales. Bridging this gap and trying to identify mechanisms leading from microscopic
“stand-alone” physics to macroscopic “collective” physics is a perpetual task. It requires not
only constant progress regarding the models which can serve to describe real materials and
effects therein, but also necessitates ongoing development, refinement and improvement of
the methods that are available to treat such models mathematically.
In this context, the interest in the two-dimensional Hubbard model (2dHM) [1] as a pro-
totype system and test ground for methods describing certain types of correlated electrons
systems remains unbroken. Apparently simple in its definition, it can serve as a basis for the
emergence of complex collaborative effects as a function of interaction, temperature, filling
and band structure, with various types of correlations, ordering tendencies and kinds of non-
Fermi-liquid behaviour competing and/or cooperating with each other. Even in the particle-
hole-symmetric case at half filling there is to this day no method that can reliably reveal the
physics of this model in the whole parameter range of interest. Rather, it has proven helpful to
consolidate and connect results from various approaches in order to arrive at a more thorough
and better understanding [2]. With the discovery of High-Tc cuprates, the attention paid to
the model rose significantly, due to its potential relevance for understanding the underlying
mechanism. We here revisit one such aspect of the model, namely the “coopetition” between
anti-ferromagnetic and superconducting correlations. Functional renormalization group (fRG)
methods have been an important tool for studying this aspect from early on [3]. Since then,
fRG methods have been extensively applied to the 2dHM and to many other models, for a com-
prehensive review see e.g. [4]. While the fRG is often employed in a perturbative manner, and
thus restricted to weak or at most moderate interactions, it has provided valuable information
on correlation effects, often so in low-dimensional systems. It reveals potential mechanisms
that can lead to superconductivity [3, 5–7], captures the transition from anti-ferromagnetism
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to superconductivity to ferromagnetism [8–11], and can be transferred to spin systems [12].
Generally speaking, it can extract the relative mutual strengths of a whole variety of corre-
lations, that are associated with different types of order, amongst each other. It does so as
a function of a continuous parameter and not as a single-step or iterative computation, and
therefore sometimes allows to better follow and identify the underlying mechanisms.
Yet, many of the features of interest are non-universal in their behaviour, and the correspond-
ing fRG results can depend on specific properties of the implementation - arguably an un-
favourable property of any approach. This also concerns the inclusion and feedback of self-
energy effects on the flow of the effective interaction. From a pure physical point of view, this
is a priori likely to be a relevant ingredient for gaining a better understanding of the mecha-
nisms. It accounts for certain changes of the underlying microscopic particles that are subject
to mutual interaction, eventually leading to the collective effects of interest. During the fRG
flow, this interaction feeds back on the constituent particles via scattering effects, which in
a Fermi liquid-like picture primarily induce a finite lifetime and a reduced spectral weight of
their coherent part, while spreading the remaining spectral weight over a wider energy range
in a mostly incoherent manner. This feedback effect was neglected in many of the first ap-
proaches, mainly due to a considerable increase in computational demand. Intense efforts in
method development and more efficient parameterisations of the relevant quantities allowed
to address this matter in subsequent works within different approaches [10,13–23], in which
the influence of the gradual change of nature of the interacting particles was analysed from
various perspectives. Some of these approaches are based on traditional RG regulators, such
as a momentum or frequency/energy cut-off. This does not connect different physical systems
during the flow, but approaches the physical system of interest in the limit of vanishing cut-off.
The latter, however, is not always reached, by the very purpose of detecting divergencies in
the flow and thereby instabilities. But that also means that self-energy effects near the Fermi
surface - the relevance of which is of particular interest - lack the chance to feed back onto
the flow. While this does by no means invalidate the approach, it motivates complementary
schemes for which the fRG flow connects physical systems to each other. Such schemes are
given e.g. by the temperature flow and the interaction flow.
Here, we use an extended version of the interaction flow method as a specific type of numerical
treatment of fRG equations, first applied to the 2dHM in the particle-hole symmetric case at
half filling in a previous work [24]. In a nutshell, it consists in a Z-factor-enhanced version of
the original interaction flow method [11]. This provides conceptually simple means to include
self-energy feedback in the coupled fRG flow equations for the self-energy and the effective
two-particle interaction, while computing the self-energy directly on the real-frequency axis.
The latter permits direct access to spectral features at a resolution of choice, which are not
always evident to obtain or extract when working on Matsubara frequencies on the imaginary
axis, in particular at weak coupling. Physically speaking, it accounts for a decrease in the
quasi-particle weight, and the rate thereof, of the interacting particles and will be referred to
as “quasi-particle enhanced fRG” (QP-fRG). As for the effective interaction, it neglects all fre-
quency dependence, but does not rely on further approximations concerning the momentum
dependence, such as channel decompositions [17] or truncated expansions/projections [25].
Rather, it is based on conventional patching schemes and provides a way to add self-energy
feedback on top of the original “brute force” parametrisation as employed in early works. The
additional a priori prospect of this extension was a potential improvement at the quantitative
level. Results for the reference case at half filling and perfect nesting indeed suggested such
an improvement [24], in the sense that the scales at which instabilities appear moved closer
to results from other methods, a tentative improvement compared to fRG treatments based on
bare propagators. However, here we move away from this reference case and find somewhat
unexpected additional variations already at a qualitative level under certain circumstances.
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Thus, rather than fully confirming previous results qualitatively and improving quantitatively,
we found qualitatively different behaviour in certain cases.

Outline

This work is a direct follow-up of a work in which the method was first applied, namely to
the half-filled and perfectly nested case [24]. We keep the overlap with this initial work at a
minimum, mostly focusing on additional aspects. We will briefly recall model and method, to
then treat a set of sample cases for which we present and discuss the results. We do also cover
some matters which were not considered in [24], some of them in the appendix.
The content is to a substantial degree quite technical in nature. When it comes to extracting
information about the physics, such aspects can be of relevant interest, and we observe that
the type of fRG equations that are used for the self-energy feedback are decisive in certain
ways. We will always compare computations for the case without any self-energy feedback to
two different but common implementations of flows that do include the self-energy flow and
its feedback on the flow of the effective interaction.

2 Model and method

The 2dHM is considered to be a prototype model in the context of correlated electrons, with
a strongly revived interest since the early 1990s, largely triggered by the discovery of High-Tc
cuprates. Lately, it has also been considered relevant for Nickelates in certain regimes [26].
Yet, the question in how far this highly reduced and idealised model can serve to describe
fundamental physical aspects and mechanisms related to those in real materials remains in
many respects open, or has not been answered beyond doubt. A general, exact solution is
not available, and in particular away from half-filling and perfect nesting also solid numerical
benchmarks are scarce, not to say not existent, owing e.g. to the sign problem in Quantum
Monte-Carlo methods. Thus, improving and developing approximate methods remains neces-
sary to gain further insight. This work constitutes an additional step in the treatment of the
2dHM by fRG methods in the regime of weak to intermediate bare onsite interaction. It shares
the original motivation from prior works in that area to investigate the potential of the fRG
to identify candidates for emergent properties of the model, with the intention to find ways
of improving the quality of the approximation. A major difficulty that arises in this approach
in the task to decide what is actually “better”, since we cannot in general gauge the results
against a known solution. We can however follow certain indications from other works and
present results which can then be compared to other approximate methods.

Model

We consider the one-band Hubbard model on a square lattice for Spin-1
2 Fermions in two

dimensions given by

H =
∑

j,j′

∑

σ

tjj′ c
†
jσcj′σ + U
∑

j

nj↑nj↓ ,

with a local interaction U and hopping amplitudes tjj′ = −t between nearest neighbours and
tjj′ = −t ′ between next-to-nearest neighbours on a square lattice. The sums run over all lattice
sites j and spin indices σ ∈↑,↓. The corresponding dispersion relation reads

ε0
k = −2t(cos kx + cos ky)− 4t ′ cos kx cos ky ,
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and has saddle points at k = (0,π) and (π, 0), leading to logarithmic van Hove singularities
in the non-interacting density of states at energy εvH = 4t ′. We measure kinetic energies with
respect to the bare Fermi surface and thus use the definition

ξ0
k = −2t(cos kx + cos ky)− 4t ′ cos kx cos ky −µ .

Throughout the paper we fix the energy scale by setting t ≡ 1. While in our previous work we
used t ′ = 0, we here move on to the case of t ′ ̸= 0 and µ ̸= 0.

Method

The general framework within which we operate are the functional renormalisation group
equations for the one-particle irreducible (1-PI) correlation functions. For a general and com-
prehensive review see e.g. [4]. While this framework fixes the hierarchy of equations and the
fundamental roles of the functions involved, it requires specific choices, steps and approxima-
tions when it comes to numerical implementations. Such technical elements are, in particular
but without claiming completeness,

(i) The choice of the regulator in the bare quadratic part of the action.

(ii) The choice of the explicit truncation level and/or the loop order for the flow equations.

(iii) Type and granularity of the discretisation used for the flowing functions.

(iv) The type of self-energy feedback opted for.

(v) Treatment of the Fermi surface and the flow (or not) thereof.

(vi) The choice of quantities chosen for the analysis of physical aspects.

(vii) The choice of the criterion when the flow is stopped, due to entering the strong coupling
region.

Within the QP-fRG implementation these choices and conditions are:

(i) The regulator is chosen as a homogeneous scaling parameter g with initial value g0 = 0. It
enters the action via a scale-dependent bare propagator defined as G0

g = gG0 [11,27].

(ii) The truncation level is chosen - as in most cases - by setting the explicit calculation and
consideration of the flowing six-point and higher correlation functions to zero. The loop order
at the conceptual level is one-loop, although technically two-loop contributions arise by means
of an additional differentiation.1

(iii) The frequency-dependent part of the self-energy (two-point function) is parametrised by
calculating its imaginary part directly on the real-frequency axis at an intermediate resolution
and subsequently employing a spline interpolation on a finer grid, to then compute the real
part via Kramers-Kronig. The effective interaction (four-point function) is parametrised as a
frequency-independent function of a finite number of discrete patches in momentum space,
illustrated in Fig. 21 in appendix B.1.
Neglecting the frequency-dependence can become a troublesome approximation, as will be
discussed below. It imposes itself in the QP-fRG mainly for reasons of feasibility and is a priori
justified at weak coupling since there is no frequency dependence in the bare model. It can

1This may be viewed as a differential variation of a reinsertion procedure, as employed in [6,28,29].
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however become relevant, up to a degree that it may invalidate the approach, as also discussed
in the preceding work [24].

(iv) The level of self-energy feedback turns out to be a decisive choice. We include three lev-
els: i) No such feedback, as in the original interaction flow scheme, ii) feedback according to
the truncated fRG hierarchy, and iii) feedback according to the replacement first proposed by
Katanin [30]. The latter induces an implicit inclusion of higher order terms of the hierarchy
and provides a certain amount of one-particle self-consistency.

(v) The treatment of the Fermi surface is possibly the most delicate part of the method, at least
conceptually. Technically, it is rather simple and happens implicitly. We here keep the Fermi
surface fixed in the sense that all propagators appearing in the diagrammatic representation
of the flow equation possess the Fermi surface of the bare system, and also its dispersion. The
quasi-particle feedback extends the original calculation based on bare propagators “only” by
the inclusion of a quasi-particle weight. We address some conceptual aspects of this in ap-
pendix C.
It would be desirable to contrast this strategy of fixating the Fermi surface to the case of fixing
the chemical potential and computing the flow of the density. This is however not feasible in
this setup, mainly since it would induce a continuous flow of the Fermi surface which would
imply a dynamical adjustment of the discretisation and parametrisation of self-energy and
effective interaction, similar in spirit to [31]. This seriously increases numerical effort and
complexity, yet it might be possible to extend the method in this direction in future work.

(vi) The quantities we will mainly focus on are the critical scale at which the enhancement
of the effective interaction becomes large, and the Eigenvalues of the effective interactions in
certain subspaces which correspond to specific types of correlations. As for the self-energy, we
focus on the flow of the quasi-particle weight.

(vii) The stopping criterion concerning the transition of the effective interaction to strong cou-
pling is another subtle aspect. In some works it is chosen to be rather low, of the order of the
bandwidth. This ensures to remain in the region of validity of the method, but can render it
difficult to identify the physical aspects, in particular when it comes to phase diagrams and
competing instabilities. On the other hand, choosing it higher allows to better access “ladder-
like” divergent behaviour, but compromises on mathematical rigour. Here, we opted to stop
the flow when the ladder-like increase exceeds a factor of 100. This is further specified below.
The fact that this criterion is not well defined makes it difficult to compare results, even more
so when other technical choices imply variations in the results, too.

We thereby continue and complement a previous study on the two-dimensional Hubbard
model within a specific numerical implementation [24] and extend its application to cases
away from half filling and perfect nesting. The main idea behind this particular scheme are: i)
The fact that it is based on a perfectly flat regulator at finite temperature renders the fRG flow
interpretable as a continuous increase of the bare interaction under certain conditions, hence
the name interaction flow. ii) The frequency dependence of the self-energy can be calculated
directly on the real frequency axis, which permits to iii) compute the flow of a quasi-particle
weight along its proper definition and insert this in the flow of the effective interaction.

The diagrammatic representation of the QP-fRG equations is given in Figure 1 for the stan-
dard self-energy feedback and Figure 2 for the Katanin replacement. Details of the method
are described in the initial presentation [24]. We here discuss several additional aspects and
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subtleties, some of which become relevant only when moving away from the perfectly nested
case. The interaction flow as such [11], as well as a self-energy feedback via quasi-particle
weight(s) [13, 14, 16, 29], have been employed in various works before, but to the best of
our knowledge not combined within the same implementation, and not based on a direct
real-frequency treatment of the self-energy. Also, the QP-fRG permits to include the Katanin
correction, which turns out to significantly influence the results for certain cases.

The standard fRG equations most often used in practice are obtained by truncating the equa-
tions after the level of the four-point function, i.e. by setting the six-point and all higher
functions to zero at all stages of the flow. The implicit extension to replace the single-scale
propagator in the flow of the effective interaction by the full scale-derivative of the propagator
was first proposed by Katanin, a main motivation being a better compliance with Ward identi-
ties [30]. Later, this extension was investigated further and justified in more detail [32]. When
applied to models with mean-field-type interactions it reproduces the exact solution, i.e. the
respective self-consistency equations, and lifts the method from being non-self-consistent to a
minimal degree of self-consistency. We here apply the Katanin extension in a wider context in
the sense that it affects also the dynamical part of the self-energy, and it is for various reasons
not a priori clear that it renders better results. We do this by conjecture with respect to other
works that have shown to profit from it [33, 34] and have thereby indicated that it can be a
favourable way to implement self-energy feedback. It has also become one of the standard
extensions that is commonly used.

3 Remarks and limitations

Before presenting fRG results we address a few issues which arise as part of the approximation
and which require some a priori discussion to be aware of certain limitations before interpret-
ing data.

3.1 Coherent vs. incoherent contributions and total spectral weight

The strategy of including a quasi-particle weight on internal lines on the right-hand side of the
flow-equation involves the following steps:

(i) Calculation of the imaginary part of the self-energy.

(ii) From this, calculation of the real part of the self-energy, followed by subtraction of the
value at zero frequency on to keep the the Fermi surface fixed.

(iii) If (!) the resulting spectral function is reasonably well approximated by a Fermi-liquid-
like Lorentzian plus incoherent background, calculate the quasi-particle weight.2 Strictly,
this is given as

Zg = Z(gΣg) :=
�

1− ∂ωRe(gΣg(ω,k))|ω=ξ0
k

�−1
.

But as outlined in [24] and also discussed below, the derivative of the real part is ap-
proximated as a finite difference at some distance from the origin, since in the region of
lowest energies the self energy does not fulfil Fermi liquid criteria in the strict sense.

2In the preceding paper [24] as well as previous drafts of this work we referred to a “Gaussian” shape. That is
a misnomer. Expanding the self-energy on the Fermi surface in analogy to Fermi liquid theory yields a Lorentzian
shape [35,36].
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(iv) Approximate the spectral function by its Lorentzian part, and further by a delta func-
tion times the quasi-particle weight, i.e. neglect the effects of damping/scattering rate.
Thereby, one-loop terms are approximated by renormalised coherent contributions in the
following sense (derivatives are omitted for simplicity):

Gg ∗ Gg = (GF L + Gincoh) ∗ (GF L + Gincoh)≈ GF L ∗ GF L ≈ G0
F L ∗ G0

F L ,

where G0
F L indicates that damping is neglected, i.e. the propagators behave like free

propagators, but include the renormalisation of the weight.

This approximation is motivated by the fact that the divergences as familiar from treatments
using bare propagators stem from ladder-like one-loop contributions based on perfectly co-
herent propagators. In physical terms, the QP-fRG approximation describes the one-loop flow
generated by fully coherent one-particle excitations, which are in addition renormalised in
terms of their scale-dependent quasi-particle weight (only). Incoherent combinations are ne-
glected, the argument being that the corresponding part of the spectral function is smeared
out over a wide frequency range and can thus be expected not to contribute substantially to
divergent contributions and/or the change thereof.
In case a second type of coherent structure appears in the spectral function, or even replaces
the Fermi-liquid shape completely, this procedure may become invalid, as also discussed in the
next section. Here, we shall find only small residual coherent structures reminiscent of a slight
dip in an otherwise essentially Lorentzian shape. These structures should not affect the flow
significantly when omitted, since they are quantitatively small compared to the Fermi-liquid-
like part.
We shall emphasise that the resulting full spectral function, as calculated from the flowing self-
energy, remains indeed normalised to unity, at all scales. In other words, the quasi-particle
weight acts as a filter on the rhs of the flow equation, extracting the coherent part of the
one-loop contributions from the full spectral function for the purpose of calculating an ap-
proximation to the self-energy.

Further more, isolated satellite states above and below the band edges in addition to a quasi-
particle peak can in principle appear in the familiar manner in SOPT and thus also in the
QP-fRG, but only for very high values of the bare interaction, say beyond U = 10, and thus
way outside the region of a priori validity. We do not observe this to happen up to the state
of the divergence of the flow, or rather up to the stopping criterion. That, also, is an internal
consistency check: If such states did appear at smaller U due to the growth of the effective
interaction - which was actually one of the tentatively anticipated scenarios - the method would
become inapplicable beyond that point.

3.2 Self-energy in SOPT

As outlined in preceding works [37] and mentioned in the original presentation of the QP-fRG
method [24], a Fermi-liquid-like description may be regarded as a priori not valid in the strict
sense due to the “if” in point iii) above: For the 2dHM, already bare second-order pertur-
bation theory (SOPT) leads to various non-Fermi-liquid effects in the single-particle spectral
function, in particular for the perfectly nested case [37–41]. We here note in particular the
appearance of a dip in the spectral function in a certain range of finite temperature and in-
teraction strength [24]. Since the QP-fRG flow is based on a Fermi-liquid-like parametrisation
of the spectral function and thereby of the scale-dependent single-particle propagators, it is
mandatory to check and comment on the applicability of this strategy in the simpler but closely
related SOPT. If it fails there, it also fails for QP-fRG purposes. We present sample data for
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self-energy and spectral function, obtained from raw data of the imaginary part of the self-
energy via subsequent Akima spline interpolation and numerical Kramers-Kronig calculation
of the real part. The resolution of the raw data is ∆ωlow = 0.004 for the low-energy region
−0.2 < ω < 0.2 and ∆ωhigh = 0.2 elsewhere. The value at ω = 0 is included in the direct
computation. The resolution after interpolation is ∆ωspl ine = 0.001 everywhere. While the
latter may seem a fine enough grid, we work at T = 0.001 and thus at the same scale. It is
thus the upper limit for a suitable resolution in frequency when directly looking at spectral
functions. For the QP-fRG purpose it is sufficient, since we require only a generalised slope of
the real part of the self-energy at higher scales and for that purpose need to compute the real
part during the flow only at two real frequencies [24]. We present sample results at various
temperatures, for momenta on the Fermi surface near the anti-nodal point, in order to illus-
trate the concept and motivate the quasi-particle description. The actual QP-fRG results are
quantitatively different, but qualitatively analogous.

The figures depict for each case in the top part

(a) real and imaginary parts of the self-energy at real frequencies

(b) a low-energy zoom thereof

(c) the imaginary part of the self-energy at Matsubara frequencies on the imaginary axis

and in the remaining part for three values of U = 1, U = 4 and U = 8

(d) the full spectral function, its Fermi liquid approximation, and the difference between the
two

(e) a low-energy zoom of the latter

all for the point on the Fermi surface at the anti-nodal region, i.e. kF = (π, 0).

Note that the self-energy is adjusted by a global shift to fixate the Fermi surface before the
spectral function is calculated, and also in the plots for the self energy - c.f. appendix B. In
case of half filling and perfect nesting this correction vanishes due to symmetry, but not in
general.

3.2.1 Reference case at elevated temperature: T = 0.2, t ′ = 0, µ = 0

We begin with the reference case of half filling and perfect nesting at an elevated but not ex-
ceedingly high temperature, the results of which are shown in Figure 3. This case illustrates
in how far a Fermi-liquid-like parametrisation of the spectral function can be a sufficiently
suitable approximation in a case where the self-energy clearly is non-Fermi-liquid-like by strict
conditions. A (negative) peak-like structure at ω = 0 is visible in the imaginary part of the
self-energy on the real-frequency axis, but not evident on the imaginary axis at Matsubara
frequencies. Thus, had we worked at imaginary Matsubara frequencies we would not have
access to this feature. This requires at least a computation on the continuous imaginary axis
including the low-energy region [42].
At U = 1.0, the Lorentzian approximation closely matches the full spectral function, with
a small dip-like feature at the peak position visible in the plot of the mutual difference. The
weight under the Lorentzian curve is slightly reduced with respect to the full spectral function,
consistent with the computed Z-factor, which is not evident by eye but checked and verified
numerically.
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While the applicability of SOPT is limited to small values of the bare interaction, it is still
instructive to insert larger values of U in these calculations, since this allows us to investigate
in how far not only the shape but also the magnitude of the self-energy translate into spectral
properties. Since in SOPT the self-energy factorises into an interaction-independent two-loop
contribution that yields the frequency-dependence, and a pre-factor of U2 that determines the
overall magnitude, this possibility is inherent. We thus show data for the same parameters but
larger values of U = 4 and U = 8 in the middle and lower part of Figure 3. We note that, when
U is increased,3

• The central peak becomes wider, as expected in a Fermi-liquid approximation and the
resulting Lorentzian approximation of the spectral function.

• The shift of spectral weight to incoherent regions starts to become noticeable at U = 4
and is evident at U = 8.

• The dip-like structure that decorates the central peak becomes more pronounced for
larger U , and larger in relation to the height of the central peak.

• Precursors of satellite bands start to develop at the band edges at U = 8. If we increase
U further, they will of course move out of the band eventually. To then detect them in
(non self-consistent) SOPT we need to account for true delta-peaks. Yet, the appearance
of truly detached states becomes visible quantitatively also when checking the sum rule
under the full spectral function within the band limits, which starts to decrease from
unity when such states develop. Since this effect sets in only for large bare couplings, it
is of no further relevance for the QP-fRG flow.

For our purposes regarding the applicability of QP-fRG, it is important to note that the quasi-
particle approximation of the spectral function seems a reasonable description in SOPT even
at U = 4, and it is not invalidated a priori. Even at U = 8 it still reflects the main features,
while it can of course not serve as a description for the split peaks that develop.

When moving away from half filling and perfect nesting, the parameter space we could cover
is of course vast, and we will not engage in presenting comprehensive data here. Several
aspects are however noteworthy when it comes to arguing about the validity and possible is-
sues of the QP-fRG method, conceptually as well as numerically. For that purpose, we choose
a set of parameters that escapes the delicate special case of perfect nesting at the van Hove
level, but remains near half-filling. As in the main part, we set t ′ = −0.2 and µ = 0.4, which
yields a curved non-interacting Fermi surface that intersects the Umklapp surface about half
way between the nodal and anti-nodal points. We see in Figure 4 that the features discussed
above for the reference case become less evident, with the negative peak in the self-energy
and the dip-like structure in the spectral function at low energies not being visible by eye, but
still present when plotting the difference between the full spectral function and the Lorentzian
approximation. Thus, the Fermi-liquid approximation improves when moving away from the
reference case.

For these two examples, we chose an elevated temperature of T = 0.2 to illustrate the thermal
origin of the negative peak in the imaginary part of the self-energy and the relevant non-Fermi-
liquid features associated with it. In the main part of this work, however, we choose a much
lower temperature, for which we will check the same aspects. In particular, at perfect nesting
the self-energy becomes linear in the low-frequency region for T → 0, and it is well-known

3SOPT, being second order in U , does not depend on the sign of the interaction. Thus, we should not interpret
any of this as uniquely related to repulsion.
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that this also affects Fermi-liquid behaviour in the strict sense of the definition [38–40], of-
ten associated with the concept of a marginal Fermi liquid, being distinct from the “thermal”
non-Fermi liquid discussed above. Here, we shall check whether this seriously affects or even
spoils the QP-fRG approximation.
In Figure 5 we show data for T = 0.001, again first for the reference case of perfect nesting.
The imaginary part of the self-energy shows a nearly linear behaviour far into the low-energy
regime within the numerical resolution, thus exhibiting everything but a negative-quadratic
shape required for a strict Fermi-liquid. As a consequence, by means of Kramers-Kronig-
relations, the real part has a slope that strongly varies in the low energy limit and becomes very
steep. Also, for U = 1 the spectral function as such can only just be resolved by the numeri-
cal resolution we use. While this could be adapted and refined, we also note that the chosen
approximation by a Lorentzian still coincides with the full spectral function at this resolution,
the relative difference between the two being of the order of 10−3. For U = 4 and U = 8 this
changes only slightly. For U = 4 and U = 8 the central peak broadens again, and the Fermi-
liquid approximation actually becomes easier to verify numerically. In all, the quasi-particle
approximation seems a reasonably valid option.
Finally, we repeat the analysis at T = 0.001 for a case away from perfect nesting, i.e. for
t ′ = −0.2 and µ = 0.4 and show the results in Figure 6. The self-energy is again more Fermi-
liquid-like and the Lorentzian approximation to the spectral function actually improves com-
pared to the reference case. In fact, now the imaginary part is very flat, with a small curvature
at ω = 0, inducing a nearly opposite effect compared to the nested case. This leads to very
sharp central peaks even for larger U . Looking at the differences of spectral functions, we still
note remnants of the dip-like feature, but only at very low scales, limited by the numerical
resolution. Working at T = 0.001 is already a numerical challenge. We could further refine
accuracy and resolution to better access asymptotic features, if we were to go beyond the pur-
pose of validating the QP-fRG approach.

We emphasise that these are purely numerical checks. In SOPT, Fermi-liquid behaviour in its
strict sense is in general not sustained in the 2dHM, neither for T → 0 nor at any finite tem-
perature, and at low temperatures we are trying to capture differences in delta-function-like
objects. It serves best as an approximation at low temperatures and away from perfect nesting,
i.e. strong enough frustration, which also favours the convergence of QP-fRG results as a func-
tion of the discretisation. The - physically motivated - idea of the approach is to do better than
pretending that the constituent one-particles excitations retain their unit spectral weight all
along the flow, but to instead parametrise their coherent part by resorting to an approximately
suitable candidate in the “space of fully coherent Fermi-liquid-like quasi-particles”.

3.3 Frequency-dependence of the effective interaction

In the preceding section we checked a necessary condition the self-energy has to fulfil for the
approach to be reasonable. Other conditions concern the effective interaction. During the
flow, i.e. with increasing bare interaction, the scheme becomes less accurate by construction,
being perturbative in nature. In addition, the effective interaction can develop a substantial
frequency-dependence, which is neglected within the QP-fRG. This frequency-dependence may
lead to pseudogap-like features which can in turn invalidate the approximation of the spectral
function by the combination of a coherent Lorentzian part and an incoherent background.
In some perturbative and fRG approaches at small enough temperatures the onset of such
a dip in the spectral function is indeed observable, albeit only in the very vicinity of critical
behaviour and not in all fRG schemes [21,28,42–44]. At elevated temperature this effect can
be more prominent [42], but then interferes with thermal effects already present in SOPT, as
discussed in the previous section. To add to the issue, some of the relevant fRG schemes which
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capture pseudogap-like aspects do not consider self-energy feedback [28,42–44], while others
do include it in terms of standard self-energy feedback [21]. That said, we can check the QP-
fRG flow and the use of a frequency-independent effective interaction for internal consistency.
But it seems quite clear that the onset of a divergence in any fRG flow signals the breakdown of
a quasi-particle description, at least in exclusive terms. A maybe even more difficult situation
arises when no divergence develops, a matter we will get back to in the conclusion. It would
remain very desirable to add a frequency dependence to the QP-fRG scheme in the future, but
that is a technically involved matter, and even conceptually not straight forward.4

We recall that, like other fRG schemes from which it is derived or to which it is intimately
related, the QP-fRG can capture the onset of strong correlations and some of their implica-
tions upon approaching some cross-over scale T ∗(U) (or U∗(T )) from the normal, metallic
phase, i.e. it is meaningful for T > T ∗(U) (U < U∗(T )). The divergences which appear in the
numerical treatment near T ∗ (U∗) are mean-field-like in nature, and the fRG in this scheme
cannot flow into an “anomalous” phase where correlations and their effects are strong, but
long-range order and symmetry breaking remain suppressed due to order parameter fluctu-
ations. Concerning the question of a pseudogap in the one-particle spectral function below
T ∗, other methods such as e.g. the two-particle self-consistent approach (TPSC) [37, 46–48]
and a self-consistent Ward identity approach [42] can give insight. They allow to investigate
the effect of a frequency-dependent effective interaction in separate channels, which, loosely
speaking, avoids long-range order and symmetry breaking while maintaining the near-critical
properties of the interaction that trigger pseudogap physics in the one-particle spectrum.

4 Results for QP-fRG

In a previous, first application of the QP-fRG flow to the 2dHM we investigated the case of
half filling and perfect nesting [24]. In that case, anti-ferromagnetic correlations dominate,
with superconducting correlations building up in a subdominant manner. The scale at which
a Slater/Thouless-like divergence in the flow of the effective (1-PI) interaction takes place is
reduced upon inclusion of self-energy feedback. Since this feedback is achieved in the simplest
manner by means of a quasi-particle weight, effects of quasi-particle damping, band structure
renormalisation, and contributions involving the one-particle incoherent background are ne-
glected. The main observation was a shift of the pseudo-critical scales, in general towards
larger values of the bare on-site interaction, or equivalently to smaller temperatures.
Moving away from this special case of the half-filled Hubbard model alters the situation. We
mainly varied the chemical potential µ and the strength of the next-nearest neighbour hopping
amplitude t ′, to some extent also temperature. This permits to tune the deviation from the
nesting property and/or move the non-interacting Fermi surface away from van Hove singu-
larities. In established fRG schemes, such parameter variations (can) lead to changes in dom-
inant correlations, such as cross-overs from dominating anti-ferromagnetism to dominating
d-wave superconducting or ferromagnetic correlations [4]. This picture has been consistently
corroborated within fRG schemes that neglect all self-energy effects on the flow. However,
in fRG schemes which calculate self-energy effects and do include the feedback thereof on
the flow of the effective interaction, these findings persist and agree only partly and up to
a certain extent, depending on specifics of the respective implementations and approxima-
tions [13, 15–18, 29, 49]. We will come back to this later, since we here observe yet another
type of effect.

4During the revision of the manuscript a work appeared as a preprint on a more general formulation of a
real-frequency dependence of also the effective interaction in fRG schemes [45].
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Table 1: Specific cases for µ and t ′ which are considered.

µ t ′ Description Figures

0 0 reference case, half filling, perfect nesting [7], [8]

−0.1 0 hole-doped, away from half filling, no frustration [9], [10]

4t ′ −0.28 hole-doped, van Hove level below half filling, frustration via
band structure

[11], [12]

4t ′ −0.2 hole-doped, van Hove level below half filling, frustration via
band structure

[13], [14]

2t ′ −0.2 “mimics” half filling at weak coupling, frustration via band
structure, intersections of Fermi surface with Umklapp surface

[15], [16]

0 −0.2 electron-doped, frustration via band structure, Fermi surface
touches Umklapp surface at (π/2,π/2)

[17], [18]

Most of the results presented in this work have been obtained for T = 0.001. This is in some
sense the lowest temperature for which the numerics remain feasible and reasonably well con-
trolled. At the same time, it is a low enough temperature to safely escape from purely thermal
non-Fermi-liquid effects as they appear in the self-energy already in simple second order per-
turbation theory [37, 50]. Some results on temperature dependences are also included up
to T = 0.05. In terms of granularity of the discretisation in momentum space, we mostly
use a discretisation of 32 angular patches and seven slices in energy measured from the non-
interacting Fermi surface, which was found to be a reasonable compromise in the half-filled
nested case and corresponds to 224 patches in total. We did adapt the patching slightly with
respect to [24] and use a finer patching resolution near (π, 0), to account for the somewhat
even more distinct role of the van Hove region away from perfect nesting. Some examples for
the patching are shown in appendix B.1. We present results for a number of specific parameter
sets, an overview of which is given in Table 1.

4.1 Reference case: µ = 0, t ′ = 0

As a baseline, we present data for the half-filled perfectly nested case at T = 0.001 in Figures
7 and 8. The quantities we focus on are the flow of the effective interaction, an Eigenvalue
analysis thereof and the flow of the quasi-particle weight.

4.1.1 Flow of the largest value of the effective interaction

We begin with the flow of the maximum value of the effective interaction Vmax(g) := max(|Vg |),
where we omit momentum and spin indices. The flow is stopped if max(|Vg |) > 100, which
defines the stopping criterion mentioned above. As shown in the left part of Figure 7, Vmax(g)
develops clear and similar signs of divergence in all three cases under consideration: i) the
case without feedback of the quasi-particle weight on the flow of Vg , ii) the case of standard
feedback as it is derived from the original perturbative expansion/truncation of the 1-PI fRG
equations, and iii) the inclusion of self-energy effects by means of the Katanin modification.
The scales at which the flow diverges are larger for the two cases with self-energy feedback,
while qualitatively the behaviour is very similar and quantitative differences are comparatively
small. It is important to keep in mind that the definition of Vg(U) is such that it represents the
final result for the effective interaction at g = 1, while for all other values of g it constitutes
an isolated generalised Slater/Thouless enhancement. To obtain the “real” final result of the
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effective interaction when stopping at an arbitrary scale g, one has to make use of the relation
Vf inal(g2U) = g2Vg(U) [11]. We do include this additional factor g2 in the Eigenvalue analysis
that follows below. In practice, we always set U = 1, use g as the flow parameter and plot
quantities as a function of g2. This permits to set g2 = U , by the very virtue of an interaction
flow.

4.1.2 Flow of the largest Eigenvalues in anti-ferromagnetic and superconducting sec-
tors

In order to extract information about the dominant correlations as related to specific order-
ing tendencies, in previous works mainly two approaches were used: a) by analysing specific
elements of the discretised coupling function, or b) by calculating susceptibilities, either by
means of their flow equation or a posteriori by means of their diagrammatic expression, see
e.g. [5, 51]. Here, we choose an intermediate way, neither based on susceptibilities, nor on
single components of the effective interaction. Instead, we compute the flow of the leading
Eigenvalues and Eigenvectors in certain sectors of the effective interaction, in a similar fash-
ion as they appear also in mean-field calculations that can be done in combination with fRG
flows [52]. This analysis is limited in the sense that we do not explicitly compute suscep-
tibilities and thus cannot compare their numerical values to other works. It is sufficient for
our purposes here, since it allows to identify in which of the associated coupling channels
a divergence appears and thereby which correlations dominate. The definitions we use for
these Eigenvalues are given in appendix B.2. We mainly focus on the competition of (com-
mensurate) anti-ferromagnetic and superconducting correlations. For the reference case at
half-filling and perfect nesting we expect anti-ferromagnetic correlations to be dominant, and
this is indeed what we see in the right plot of Figure 7 for all three different levels of self-energy
feedback. The Eigenvalues include the factor of g2 as described in the previous section and
thus constitute the physical solutions at each scale g2 = U . We again recall that the onset of
divergences does not permit to identify a true phase transition. Order parameter fluctuations
are not included in this description, and the dimensionalities of the order parameters which
compete are not all identical.

4.1.3 Flow of the quasi-particle weight on the Fermi surface

Concerning the self-energy we focus on the flow of the quasi-particle weight as defined in
[24] on the discrete patches of the non-interacting Fermi surface, see Figure 8. We notice an
accelerated decrease due to the diverging effective interaction, while the values as such remain
on a level close to one. Also, at this temperature and discretisation the Z-factor near the anti-
node is smaller than near the node, with a monotonous increase towards the nodal direction.
This is not fully the case for higher temperatures and finer discretisation, when thermal effects
become more relevant [24].

4.2 Moving below half filling: µ = −0.1 and t ′ = 0

We now set µ= −0.1 and thereby shift the bare Fermi surface to a position below the Umklapp
surface, defined via kx + ky = π, while keeping the next-nearest neighbour hopping at t ′ = 0.
This removes the property of perfect nesting and moves the Fermi surface away from the van
Hove level, thus reducing the density of states at the Fermi level. In direct comparison to the
reference case we observe the following.
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4.2.1 Flow of the largest value of the effective interaction

We see in the left part of Figure 9 that for the flow without any self-energy feedback the onset
of the divergence is shifted to higher values of the bare interaction, to about U ≈ 1.8. Including
self-energy feedback in the standard form additionally shifts this onset to U ≈ 2.1, maintaining
the overall qualitative shape. For the case of Katanin feedback the difference is more significant
and becomes qualitative in nature. The onset of a divergence disappears and the flow begins
to flatten at about U ≈ 3, still exceeding the chosen numerical limit at about U ≈ 3.4.

4.2.2 Flow of the largest eigenvalues in anti-ferromagnetic and superconducting sec-
tors

Similar to the reference case, the largest Eigenvalue consistently remains the anti-
ferromagnetic one for all three cases, as seen on the right of Figure 9. However, the strength
is reduced and the largest Eigenvalue in the (d-wave) superconducting sector builds up earlier
and more substantially than it does in the reference case. This is in contrast to results in e.g.
the Wick-ordered scheme at T = 0 with a sharp momentum cut-off [5], where superconduct-
ing correlations actually dominate in this region. This may however also be due to particular
technical aspects of the Wick-ordered scheme used in [5]. Since fRG flows become less ac-
curate when the flow develops a divergence, this contrasting behaviour is noteworthy but of
limited significance. The main observation remains the build-up of superconducting corre-
lations, triggered by the influence of structures in the particle-hole channel at intermediate
scales of the flow.

4.2.3 Flow of the quasi-particle weight on the Fermi surface

The flow of the Z-factor differs from the reference case in certain aspects. While at the be-
ginning of the flow there are little changes and the magnitude of the Z-factor(s) as such is
very similar, the accelerated downturn which was apparent for the reference case is much
less pronounced. This is already the case when no self-energy feedback is incorporated and
the effective interaction does develop a divergence. The additional changes upon inclusion
of self-energy feedback are rather small. Also, the spread between Z-factors along the Fermi
surface is smaller, i.e. the values at the four patches are much closer to each other than in
the reference case. We thus note that the self-energy affects the flow of the vertex more than
vice-versa, at least on a qualitative level.

4.3 van Hove filling without nesting 1: µ = 4t ′, t ′ = −0.28

Next, we choose t ′ = −0.28 and set µ such that the bare Fermi surface touches the van-Hove
points, i.e. we introduce frustration and remove the property of perfect nesting compared to
the reference case, while maintaining a high density of states at the Fermi level. In previous
fRG works it was found that in this range and without self-energy feedback anti-ferromagnetic
and d-wave superconducting correlations compete at about equal strength for U ≈ 3, with
superconducting correlations likely prevailing in a low temperature range of T ≈ 0.001−0.01
[7–9,11,15,17,51]. This is in accordance with the behaviour we find here in the case without
self-energy feedback, but it changes when self-energy feedback is included.

4.3.1 Flow of the largest value of the effective interaction

On the left of Figure 11 we again show the flow of Vmax . Similar to the case µ= −0.1, t ′ = 0,
the computation without self-energy feedback yields the familiar divergence in the effective
interaction, at U ≈ 2.2. When including the standard self-energy feedback, the divergence
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persists but is shifted to higher values of U ≈ 5.6, which has to be considered as outside the
weak-coupling regime but may still be of some significance. We note in both cases a kink, which
reflects the fact that superconducting correlations exceed antiferromagnetic correlations at this
point of the flow. Again, the influence of the quasi-particle weight and its rate of change on
the flow intensifies when the Katanin replacement is added. Then, the flow becomes regular
without any signs of a divergence, and Vmax(g), i.e. the generalised Slater/Thouless enhance-
ment, actually saturates. We show data up to U = 9, which is of course well outside the region
of applicability of the method, but serves as additional technical information. (We recall that
the effective interaction as such does not saturate but behaves as∝ g2Vg = UVg . Vmax reflects
an enhancement which is similar to the effect of the denominator in ladder approximations.)

4.3.2 Flow of the largest Eigenvalues in anti-ferromagnetic and superconducting sec-
tors

On the right of Figure 11 the corresponding flows of leading Eigenvalues are again shown.
Without self-energy feedback and for standard feedback, superconducting correlations exceed
anti-ferromagnetic correlations at an advanced stage of the diverging flow, as anticipated from
the kink in the flow of Vmax . However, when including the Katanin replacement both Eigenval-
ues eventually behave linearly as function of g2 = U , in accordance with the saturation of Vmax .
In particular, superconducting correlations remain much smaller than anti-ferromagnetic ones
at all stages of the flow. This is a significant qualitative difference to the case without feedback
and the case of standard feedback. It renders a different picture of the respective region in the
phase diagram, where the dominance of superconducting correlations was typically found to
prevail in prior works. It must however be stated that there remains the possibility of quali-
tatively relevant finite-size effects, as discussed below. Yet, what we consider to very likely be
robust is the fact that the onset of strong correlations is shifted to bare interactions outside of
the perturbative regime, and reliable statements on the outcome of the competition between
the correlations are not possible.

4.3.3 Flow of the quasi-particle weight on the Fermi surface

The respective flows of the quasi-particle weights on the patches located on the non-interacting
Fermi surface are very similar for the three cases, as shown in Figure 12. Similar to the refer-
ence case, the Z-factor decreases stronger near the anti-nodal direction than it does near the
nodal direction. Already when standard self-energy feedback is included, the decrease for all
Z-factors becomes slower and acquires an inflection point at about U = 2.2, in the sense that
the second derivative changes sign. This is an additional feature, albeit appearing at larger
values of U , not reached in the previous cases. While it is consistent with the saturation of
Vmax for the Katanin replacement, it also appears for the case of standard feedback. There,
the divergence is first hampered when Vmax behaves nearly linearly, and then restored in the
superconducting channel.

4.4 van Hove filling without nesting 2: µ = 4t ′, t ′ = −0.2

The case t ′ = −0.28 was chosen since it can be compared to a number of previous works,
and because it provides a setting in which the dominance of superconducting correlations was
found to prevail in a robust manner. Yet, it is also not far from the tentative quantum critical
point that marks the transition from AFM/SC to ferromagnetism, which in itself influences the
flow and reduces the critical scales, already without self-energy feedback. In order to move
further away from this transition point, we next show results for t ′ = −0.2 in Figures 13
and 14.
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4.4.1 Flow of the largest value of the effective interaction

Upon reduction of frustration while staying at van Hove filling frustration, we expect the di-
vergence in the effective interaction to develop earlier, that is at smaller values of U . This is
indeed what happens for the case without feedback and the case with standard feedback, the
transition being shifted to U ≈ 1.7 and U ≈ 2.3 respectively. For the Katanin feedback, Vmax
still saturates, but at a much larger value compared to the case t ′ = −0.28. Also, it cannot
be ruled out that finite size effects play a decisive role in this case, meaning that the saturat-
ing value may depend on the granularity of the momentum patching in such a way that the
divergence may eventually get restored, as discussed below.

4.4.2 Flow of the largest eigenvalues in anti-ferromagnetic and superconducting sec-
tors

Secondly, we also expect anti-ferromagnetic correlations to dominate over superconducting
tendencies when frustration decreases. We do indeed note this shift in the Eigenvalues, how-
ever for the chosen stopping criterion the coupling channel associated with superconducting
correlations still exceeds the one relevant for anti-ferromagnetism for the case without feed-
back and standard feedback. Had we however stopped the flow earlier we would assign this
parameter set to the anti-ferromagnetically dominated region [11]. For the Katanin feedback,
superconducting tendencies remain suppressed, but again it cannot be ruled out that finite
size effects in the patching granularity shift the results for much finer discretisations.

4.4.3 Flow of the quasi-particle weight on the Fermi surface

As for the flow of the Z-factors, there are no decisive differences in comparison to the case
t ′ = −0.28.

Overall, comparing the two cases t ′ = −0.2 and t ′ = −0.28, the question arises whether for the
Katanin replacement the much stronger saturating behaviour for t ′ = −0.28 could be induced
by the self-energy in the sense that its feedback shifts the system towards the ferromagnetic
transition and thus to smaller critical temperatures. However, we did not notice any indications
in that respect. In both cases, couplings in the ferromagnetic sector remain subdominant, and
we do not include any renormalisation of the band structure, i.e. there is no effective change
of the frustration which appears on internal propagators, which would of course add to the
matter, as shown e.g. in [18]. As also mentioned above and discussed below, to us it rather
seems to be an inverse logic: The Katanin replacement can lead to a saturation that converges
in the patching when the bare system is chosen far enough from the reference case of perfect
nesting and van Hove filling. This can be done by changing either of the two conditions, or
both simultaneously.

4.5 Near half filling: µ = 2t ′, t ′ = −0.2

The choice t ′ = −0.2 and µ = 2t ′ creates a situation where a curved bare Fermi surface
intersects the Umklapp surface roughly half way between the zone diagonal and the van Hove
points. In terms of energy, the chemical potential is in the middle between van Hove filling
and the case when the bare Fermi surface touches the Umklapp surface on the zone diagonal.
While this does not exactly correspond to half filling for the free system, it does mimic this
situation sufficiently well at weak coupling, meaning that we do not expect relevant variations
of the results compared to an exact adjustment. This parameter set falls in the approximate
nesting regime, as defined in [9].
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4.5.1 Flow of the largest value of the effective interaction

Similar to the case µ= −0.1 and t ′ = 0, the onset of the divergence in the effective interaction
is shifted to higher values of U for the case without self-energy feedback and for standard
feedback, while the Katanin replacement again eliminates the divergence altogether, see the
left plot in Figure 15. In contrast to the preceeding case of van Hove filling, there is no kink,
suggesting that no change in dominant correlations takes place.

4.5.2 Flow of the largest eigenvalues in anti-ferromagnetic and superconducting sec-
tors

The right plot in Figure 15 illustrates that in all three feedback cases correlations in the anti-
ferromagnetic sector dominate over those in the superconducting one, in agreement with pre-
vious results [9]. In comparison to the reference case, superconducting correlations appear
to come up stronger in relation to anti-ferromagnetic ones, while remaining subdominant. In
some ways this is expected, since frustration and the resulting reduction of the nesting property
disfavours anti-ferromagnetic tendencies. Yet, moving away from the van Hove level one may
expect a disadvantage for superconducting correlations in the d-wave sector, which remains
the leading channel.

4.5.3 Flow of the quasi-particle weight on the Fermi surface

The flow of the Z-factors along the Fermi surface is very similar for all three feedback cases,
even at the onset of a divergence for the cases of no feedback and standard feedback, see Figure
16. The weight near the anti-nodal direction actually remains a little higher than between
the anti-nodal and the nodal direction, as opposed to the reference case and the case of van
Hove filling. In other words, the weight seems to decrease more near the point where the
Fermi surface intersects the Umklapp surface, which is in accordance with previous findings
and might be interpreted as reminiscent of a hot spot scenario [44]. A related variation at
higher temperatures was also seen in [28]. The effect is however small here. It is consistent
but should not be overly stressed. There are little to no signs of a steep decent for the two
cases of diverging flows. For a thorough assessment of the hot spot scenario more detailed
computations would however be required.

4.6 At the verge of Umklapp scattering: µ = 0, t ′ = −0.2

The last set of parameters we present data for are µ = 0 and t ′ = −0.2. In that case, the
bare Fermi surface touches the Umklapp surface in the direction of the zone diagonal at
k= (π/2,π/2). The results are a smooth evolution from the above case of quasi-half-filling.

4.6.1 Flow of the largest value of the effective interaction

In the left part of Figure 17 we note that the scales at which the flow transitions to strong
coupling are further shifted to larger values of the bare interaction, and that the Katanin re-
placement once more suppresses divergences altogether. In the chosen range of U , the latter
becomes less of a saturation effect and more of a sub-linear increase. From a purely numerical
point of view, the saturation would set in at higher values of U .

4.6.2 Flow of the largest eigenvalues in anti-ferromagnetic and superconducting sec-
tors

The right plot in Figure 17 shows again the flow of the Eigenvalues as above. It is noteworthy
that there is little change compared to the case of quasi-half filling, also regarding the mutual
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competition between anti-ferromagnetic and superconducting correlations. One could have
expected that the superconducting tendencies are much less pronounced, given the fact that
the lowest order d-wave form factor has little overlap with the remaining phase space for Umk-
lapp scattering, the phases space for the latter being restricted to a narrow region around a
few points only. What does change, though, is the shape of the Eigenvector, meaning that the
overlap with the lowest order pure d-wave form factor becomes smaller compared to the cases
above. A complementary analysis for the case without feedback and standard feedback sug-
gests that at the transition to strong coupling the part of the particle-particle channel relevant
for superconducting correlations decouples from other channels and begins to diverge, while
this is not the case for the Katanin replacement.

4.6.3 Flow of the quasi-particle weight on the Fermi surface

The flow of the Z-factors becomes even more homogeneous than before and is essentially
isotropic, as shown in Figure 18. Also, there is very little variation of the flow as a function of
the feedback level. For the case with no feedback we note a faint sign of a steeper decrease
for the patch in the nodal direction. This may here reflect the fact that Umklapp scattering
remains active for this patch, while it is substantially more suppressed elsewhere.

4.7 Role of the patching granularity

Since we approximate the effective interaction by a discrete set of values on a finite number of
patches in momentum space, we need to check in how far the results vary when we change the
granularity thereof. Here, we find that it can have a crucial effect on the flow in the Katanin-
extended version, while for the case without self-energy feedback and standard feedback it
has much less impact. For the reference case, as it was also and originally treated in [24],
a patching scheme of 32 angular sectors and seven slices in the non-interacting energy is
sufficiently fine grained for the investigation of the critical value of U at which the flow enters
the regime of strong correlations. As it turns out here, a core reason for this resides in the
fact that the flow to strong coupling sets in early enough, i.e. for comparatively small values
of g2 = U . Also, we cannot rule out that beyond the softly defined stopping criterion of
Vmax = 100 the Katanin feedback will lead to a saturation at very high values of Vmax also for
the reference case, but that would be clearly outside the scope of applicability of the method
as such, being perturbative in U and V .
Conversely, when we move far enough away from the reference case, we also find it sufficient
to use this level of patching granularity, but for different reasons: i) The flow of Vmax converges
quickly enough as a function of the number of patches, but more importantly the flow in the
Katanin scheme remains completely regular in U even beyond the a priori regime of weak
coupling, which we might in an optimistic manner extend to U ∼ 4, but not really much
beyond. We illustrate this in the left part of Figure 19 for the case of µ = 2t ′ and t ′ = −0.2,
i.e. a sufficiently frustrated bare system at quasi-half-filling. We recall that the range in U
is extended to better describe and understand the numerical behaviour of the flow, but for
physical reasoning we should to restrict ourselves to about U ≲ 4. Even with this restriction,
the inclusion of the Katanin replacement leads to significant qualitative changes. While without
feedback and with standard feedback we have Vmax > 100 for U < 4, it remains as small as
U < 10 for U < 4 in the Katanin-extended flow. (We recall that V is the enhancement factor,
and the “true” effective interaction is given by g2V , such that eventually also this flow ends up
at large values, but in a linear and trivial fashion, and not driven by a ladder-like divergence.)
The intermediate region in parameter space between the reference case and cases far enough
away requires finer granularities in order to decide which condition sets in first. In the right
of Figure 19 a comparison is shown at a higher temperature of T = 0.05 between t ′ = −0.1
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and t ′ = −0.2 for µ = 2t ′. Moving closer to the nesting situation and closer to the van Hove
points leads to a situation in which the saturation depends substantially on the granularity, and
a divergent-like behaviour is actually restored also for the Katanin replacement. In contrast,
for t ′ = −0.2 convergence is reached already for 32× 7 patches. This implies that we cannot
choose a fixed granularity for parameter scans and from this compute a cross-over or phase
diagram. Instead, we need to check for convergence at each parameter set. A full check of
this convergence criterion is numerically expensive, but beyond the scope of this report. It
is a conditional caveat when interpreting the results, and in itself a remarkable and subtle
property of the coupled flow equations, which was unexpected. We noticed that a possibly
similar phenomenon was observed in a field-theoretical treatment [14].

4.8 Cross-over at van Hove filling as a function of t ′

A number of previous fRG works investigated the cross-over from anti-ferromagnetic to super-
conducting to ferromagnetic tendencies with increasing t ′ at van Hove filling [9,10,17,42,53].
Here, this picture depends on the approximation we use. While we observe the same cross
over without self-energy feedback, and to a sufficient extent also when including the standard
feedback, the Katanin extension as implemented here renders results that deviate from this
scenario. As a consequence of the saturation effect, the cross-over sequence AFM-dSC-FM is
no longer observed in the region U < 3 at the temperatures we could access. While techni-
cally we observe a saturation in the region of main interest, i.e. −0.2 < t ′ < −0.4, we avoid
any physical statement beyond U = 4, since this is a priori out of scope for a weak-coupling
method. Also, at van Hove filling the numerical delicacy is enhanced due to stronger angular
dependencies and the high density of states at the Fermi level, even more so for smaller values
of t ′, as discussed above. We conducted fRG runs for a granularity of 528 patches, a practical
limit set by the given compute conditions.5 The left of Figure 20 shows results for the flow of
Vmax at the selected cases t ′ = −0.15 and −0.2 and −0.35, for the flow without self-energy
feedback and the flow including the Katanin replacement. In line with the specific cases above,
the flow without self-energy feedback develops divergent behaviour in a region U < 3, while
this is not the case for the Katanin feedback. For the latter, the flow again develops an inflec-
tion point and eventually saturates. We shall also mention that the inclusion of self-energy
feedback in the standard way, i.e. without the Katanin replacement, leaves the qualitative be-
haviour unchanged compared to no feedback, but with the respective divergencies located at
larger values of U . The latter can also exceed the weak-coupling region, but an inflection point
never occurs and the flow always diverges at some point. In the right part of Figure 20, the ra-
tio between the respective largest Eigenvalues in the superconducting and anti-ferromagnetic
sectors are shown. It can be seen how superconducting correlations build up and start to grow
over anti-ferromagnetic correlations for the flow without self-energy feedback, while in the
Katanin version this ratio essentially saturates at a low value. We have also included data in
the region where the fRG typically finds ferromagnetic tendencies. There, too, without self-
energy feedback ferromagnetic correlations grow in a divergent manner, while in the Katanin
scheme the flow saturates. There, superconducting correlations remain small compared to
ferromagnetic ones, with the ferromagnetic instability not being present.

5Technically, we could further refine the granularity, however at high numerical cost that we could not account
for at this stage.
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5 Discussion and Outlook

In this work, we have applied a recently introduced extension of a particular fRG scheme, i.e.
the quasi-particle enhanced interaction-flow method [24], to the two-dimensional Hubbard
model away from half-filling and perfect nesting at low temperatures, presenting results for
selected parameter sets. We find that the inclusion of self-energy feedback shifts the transition
of the flow to strong coupling to larger values of the bare interaction, and for the Katanin
replacement in some cases even suppresses all signs of a divergence. Upon inclusion of self-
energy feedback, anti-ferromagnetic correlations are somewhat less diminished compared to
superconducting correlations, in particular for the Katanin replacement, for the parameter sets
that we considered. The flow of the quasi-particle weight is essentially smooth and regular,
even just before the flow reaches the vicinity of a divergence. Clear signs of pseudogap be-
haviour are absent. At the technical level, we find that convergence in the granularity of the
patching scheme is not homogeneous in parameter space, but varies substantially. It is well
achieved sufficiently away from van Hove filling and for large enough frustration, but becomes
numerically demanding and delicate in the intermediate region when moving towards perfect
nesting. This is unfavourable, because that is a region of particular interest. Yet, this kind of
numerical delicacy might reflect some of the physical complexity at work. Also, it should be
feasible to better explore the convergence and finite-size aspects in the future, with compute
power taking another major leap forward at this very point in time. As for the transition from
anti-ferromagnetism to superconductivity to ferromagnetism at van Hove filling as a function
of next-nearest neighbour hopping, we found qualitative agreement with prior results when
no self-energy feedback was used and for standard self-energy feedback. Including the Katanin
replacement, in contrast, leads to the disappearance of these transitions.

5.1 Comparison to previous works

Compared to various works on the role of self-energy feedback in fRG computations [10,13–
20], certain effects we found partially differ significantly upon inclusion of the Katanin replace-
ment, while most aspects are consistent when the feedback is implemented in the standard
way. Some of these prior approaches are based on self-energy feedback via a quasi-particle
weight, as also done in the QP-fRG. A field-theoretic approach for the perfectly nested case
showed saturation effects for the superconducting instability and a complete loss of the quasi-
particle weight in the anti-nodal region [13]. Also in a field-theoretic approach, a saturation
effect in the effective interaction was observed for the case of a flat Fermi surface away from
van Hove singularities in [14], where a dependence on the granularity of the Fermi surface
parametrisation was seen in a somewhat similar manner as for some cases in this work. The
relevance of a two-loop approximation was discussed in [16], which also includes the self-
energy feedback via a Z-factor, computed however on the imaginary axis and with a slightly
different implementation of the single-scale propagator.6 There, it was found that the inclu-
sion of two-loop effects leads to a stronger decrease of anti-ferromagnetic tendencies than it
does for superconducting ones, derived by means of susceptibilities. Other works included
the self-energy feedback on the flow of the effective interaction by a direct calculation on the
imaginary frequency axis. In [15], the changes to critical scales and the phase diagram as such,
as compared to the simpler case without self-energy feedback, were found to be of secondary
and only quantitative nature, while it was also concluded that the self-energy remains com-
patible with a quasi-particle picture. There, the Katanin replacement was not used, and these

6In the QP-fRG, two-loop diagrams also appear, but by other means. The QP-fRG conceptually works at the
one-loop level and acquires access to two-loop contributions via an additional derivative with respect to the flow
parameter.
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results are in line with what is found here in QP-fRG for the standard fRG feedback. In [10],
a related scheme was used, which does include the Katanin replacement, with a strong focus
on the relevance of band-structure renormalisation, which we neglected here. There, it is
also found that critical scales drop upon inclusion of self-energy feedback, but the dominance
of superconducting correlations prevails, whereas we find it to disappear. This is maybe the
most striking difference, albeit made by comparing schemes which are still very different in
many respects. A similar route was taken in [17], where it was also found that the inclusion
of a frequency-dependence in both, self-energy and vertex, still reproduces the dominance
of d-wave superconductivity at van Hove filling. Another dynamical approach [18] suggests
that superconductivity may be disfavoured in a broader range compared to the static case,
c.f. Figure 8. therein. There, however, critical scales actually increase compared to the static
computation, which is in contrast to our findings and assigned to the regulator.
The issue of regulator dependence, as mentioned in the introduction, hampers the comparison
between fRG results, in some respects even at the qualitative level, but even more so on the
quantitative level. This can be much improved within the multi-loop fRG approach as pre-
sented in [20], also including a comparison to the one-loop case with Katanin replacement.
The inclusion of self-energy feedback shifts the increase of susceptibilities to larger values of
the bare interaction, a direct comparison in terms of phase digram evolution is however not
straight forward, since the focus of that work was different. In a brief and informal numerical
comparison with external computations within a different technical implementation, the type
of saturation effect we find here was not present, but possible signs of a similar effect were
observed [54]. A systematic comparison of such kind might allow to further elucidate this
matter.
In all, we find some general agreement but also some fundamental differences between pre-
vious studies on the role of self-energy feedback in fRG flows and the QP-fRG for the 2dHM
at finite values of the next-nearest-neighbour hopping and different values of the chemical
potential. At the same time, we also note that we observe the differences mostly outside of the
(heuristic) region of perturbative validity of the fRG approach as such. Thus, we should also
not over-interpret them. It also shall be recalled that numerical results of fRG flow equations
sometimes depend significantly on details of the specific implementation, even more so for
cases when correlations compete on comparable footing. Let alone the choice of a stopping
criterion can alter things, in particular when comparing to results as we find them here, where
an inflection point can occur. As a consequence, also the question whether anti-ferromagnetic
or superconducting correlations are dominant is typically addressed by means of soft criteria.
Several other aspects add to the variations, in particular the choice of the regulator and the
parametrisation of self-energy and effective interaction and also the level of granularity when
discretising the latter. In order to resolve some of these discrepancies it seems desirable to
engage in a more direct numerical comparison under conditions which eliminate as much of
these root causes as possible. In general, the multi-loop approach may constitute the most
promising route within the fRG ecosystem to resolve the mutual discrepancies of previous
computations [19, 20, 55–57], but it also requires a substantially higher effort than other ap-
proaches.
Under these conditions we consider the QP-fRG results presented here as indicative rather than
conclusive, shedding light on the problem of interest from an additional perspective. The fact
that a saturation of the flow sets in at all is an unexpected and noteworthy and new observa-
tion, which may be worth clarifying.

5.2 Caveats, limitations and additional remarks

We outlined certain aspects of the approximations which are made within the QP-fRG method
in [24] and in the introductory part of this work. We here come back to some of these aspects
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in light of the results, since they motivate a more specific discussion. We shall also offer some
tentative thoughts which are to a certain extent speculative but might nourish some fruitful
lines of thinking.7

5.2.1 Frequency-dependence of the effective interaction and pseudogap physics

Within the QP-fRG, the effective interaction is approximated to be frequency-independent. As
discussed above, a number of works has added a frequency-dependence on the imaginary axis,
with mixed conclusions. While in essence the current status quo can be summarised as a con-
firmation that the original calculations based on a frequency-independent effective interaction
(aka. vertex) remain qualitatively unaltered, there remains the question in how far this is the
case for the QP-fRG method, on a purely internal level and in comparison to other works.
Considering the results that have been presented here, we note that for the cases where the
effective interaction develops a divergence, the QP-fRG leads to a shift in critical scales and the
relative strength of correlations, but not to a drastic deviation from the physical picture found
in previous works. We note that in the initial stage of the flow, during which the mutual influ-
ence between particle-particle and particle-hole channels begins to induce the relevant struc-
tures in momentum space that first cooperate and later compete, the frequency-dependence
of the effective interaction remains weak by perturbative arguments. At the advanced stage of
the flow there are two distinct situation:

1. If the effective interaction develops a divergence, as familiar from essentially all previ-
ous fRG calculations, it is clear, or at least very much to be expected, that its frequency-
dependence will eventually become relevant. However, there is no clear-cut criterion
that permits to asses at which stage of the flow this becomes essential, in particular
regarding its influence on the one-particle spectrum that in turn is crucial to be close
enough to a Fermi-liquid-like description within the QP-fRG. To some extent this ques-
tion has been addressed in methods that consider a frequency dependence of the effec-
tive interaction on the imaginary axis [21]. There, it was found that the self-energy can
develop clear signatures of pseudogap behaviour in the single-particle spectral function
when the flow enters far enough into the critical regime. Yet, while the appearance of a
pseudogap - which is the main phenomenon which we have to worry about in QP-fRG
when using a Fermi-liquid-like spectral function - is observed in the so-called Schwinger-
Dyson version, it is however not clearly observable in the standard computation, as to
be compared with the QP-fRG method, even when the effective interaction is allowed
to flow to values of up to 103. We thus note that even when a frequency-dependence is
included in an fRG computation, this does not provide clear-cut evidence of the actual
influence it has on one-particle quantities.
Quite clearly, as stated in [24], any fRG flow will cease to render proper results when it
enters a critical region of a divergent effective interaction, already for perturbative rea-
sons and without worrying about the frequency dependence of the effective interaction.
However, when and how that happens remains largely elusive. This can be regarded as
one of the reasons why the stopping scales chosen for fRG computations do vary over
several orders of magnitude, which constitutes another source of variation when trying
to compare the mutual results, as mentioned above.

2. In contrast to the generic case of a divergent effective interaction, we have also observed
cases where the flow does not diverge and the Slater/Thouless enhancement saturates.

7We recall that we restrict the discussion to two dimensions to avoid further complexity in the arguments, since
in lower and higher dimensions other effects can arise.
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For those cases, we consider the validity of the method to be restricted primarily on
perturbative grounds, with respect to the bare as well as the effective interaction. A
strong frequency dependence of the effective interaction within such limits, say values
of U ⪅ 4, is unlikely to develop, given that the dominant frequency-independent part
remains finite and regular, not leaving much room for a strong or even singular fre-
quency dependence. That said, the matter is in principle more subtle, since we cannot
rule out that including a frequency-dependent effective interaction from the beginning
would in turn restore a divergence. However, at least for the specific clear-cut cases of a
saturation discussed and presented here, it seems unlikely that even if that was the case
at all, it would restore the divergence at a scale below U ≈ 4. There may of course be
corner-cases and there certainly is a cross-over region between divergent behaviour and
saturating behaviour.

These aspects need to be kept in mind when the results are compared to those of other sources.

5.2.2 Relation to the symmetry-broken case

The Katanin replacement is motivated by the fact that it improves the fulfilment of Ward iden-
tities in the truncated hierarchy of fRG equation for 1-PI schemes [30]. This led to the obser-
vation that it can connect fRG equations to mean-field solutions. More precisely, for certain
reduced models, for which a mean-field treatment is exact, the Katanin substitution, in con-
junction with an RPA-like treatment of the one-loop flow of the effective interaction, leads to
an fRG flow that reproduces this exact solution when all modes are integrated out. In [32], this
was shown formally as well as numerically, treating the specific example of a superconducting
order parameter for a reduced BCS model. There, the Katanin replacement leads to the cor-
rect value of the gap in the fRG treatment. Its role is then discussed further by also providing
results obtained within a standard computation using the non-modified fRG equations. For
this case, a gap can still be found, but with a lower value compared to the exact result. This
appears to likely be at odds with our findings, since in the QP-fRG the Katanin replacement
leads to a stronger suppression of correlations compared to the standard case and thus to a
lower mean-field-like critical temperature scale, which in analogy to BCS theory would trans-
late into the opposite, namely a smaller gap in the ground state for the Katanin replacement,
and not for the standard scheme. While we cannot identify a clear reason for this discrepancy,
we consider the following aspects and differences to be potentially relevant:

1. In this work we do not treat a reduced model, but the “full” Hubbard model.

2. We do not restrict the one-loop flow of the effective interaction to RPA.

3. The regulators are different, which does not affect the final results in the exact compu-
tation, but may be relevant when the Katanin replacement is not employed.

4. The effects which enter the numerics and affect the transition scales are quite distinct:
For the calculations in the reduced model, the superconducting gap is included, but no
quasi-particle renormalisations. Here, it is the opposite.

5. In the computation of the mean-field-model, the Katanin replacement enters in the
frequency-independent static part of the (off-diagonal) self-energy, while in the QP-fRG
it enters via the dynamical part of the self-energy.

In all, we cannot fully and reliably clarify this issue and its potential relevance here. Somewhat
related to this, we note that in [58], where a more general model, namely the attractive Hub-
bard model, is treated in the symmetry-broken state, the gap obtained via fRG and the Katanin
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replacement is found to be reduced compared to the mean-field gap, see Fig. 16 in [58]. This
reflects the fact that fluctuations which are not present in mean-field models can suppress the
ordering tendencies. The value of the superconducting gap in the ground state was then inves-
tigated in more detail in a two-loop fRG scheme that extended the Katanin replacement and
which includes a frequency-dependent self-energy and vertex, as parametrised on the imagi-
nary axis [59]. There, the frequency-dependent scheme gives a lower value for the gap within
the two-loop computation as compared to the one-loop case, while the purely static one-loop
case yields an again smaller gap. However, no comparison to the standard fRG scheme is given
in these works.

5.3 Outlook

While the QP-fRG as one particular implementation of a functional renormalisation group
scheme provides some appealing features, such as direct access to one-particle low-energy
features for real frequencies and the inclusion of self-energy feedback as calculated on the
Fermi surface, it remains to be further compared and calibrated with respect to other methods
in general and specific fRG implementations in particular. Due to the multiple possible choices
and the non-universality of some of the quantities of interest in fRG approaches to the 2dHM,
this seems a mandatory step for fRG implementations to advance on the quantitative level,
as has been recognised and addressed in multi-loop approaches [19, 55–57]. An additional
sensible test case might be the attractive Hubbard model away from half filling, since it elim-
inates some of the complexity of competing correlations and may allow to better disentangle
certain underlying technical aspects when comparing different methods, as mentioned above
for the symmetry-broken case. Some computations in this direction have been started within
the QP-fRG framework.
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A Figures

A.1 Diagrammatic representation of the flow equations
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Figure 1: Diagrammatic representation of the QP-fRG equations, for the case of
self-energy feedback based on the standard truncation of the 1-PI flow equations.
The factor Āg is the average over the discrete Fermi surface patches of the quantity
Ag = 2Żg/Zg = 2 d

d g lnZg .
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Figure 2: As Figure 1, for the case of self-energy feedback based on the Katanin
replacement.
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A.2 Figures for SOPT
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Figure 3: SOPT results for the reference case t ′ = 0, µ = 0 - i.e. at perfect nesting -
and T = 0.2, on the Fermi surface and near the anti-nodal point, as described in the
text. The real part of the self-energy is adjusted to fixate the Fermi surface and thus
shifted by a constant to match ReΣ(ω= 0) = 0.
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Figure 4: As figure 3, for t ′ = −0.2, µ= −0.4 and T = 0.2.
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Figure 5: As figure 3, for t ′ = 0, µ= 0 and T = 0.001.
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Figure 6: As figure 3, for t ′ = −0.2, µ= −0.4 and T = 0.001.
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A.3 Figures for reference case - T = 0.001, t ′ = 0, µ = 0
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Figure 7: Reference case T = 0.001, t ′ = 0.0 and µ = −0.1 , for the three ver-
sions of self-energy feedback. left: Flow of the largest value of the effective inter-
action. right: Flow of the largest Eigenvalues for the coupling sectors relevant for
anti-ferromagnetic and superconducting correlations.
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Figure 8: Flow of the Z-factors for the reference case for the three versions of self-
energy feedback.

A.4 Figures for t ′ = 0 and µ = −0.1
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Figure 9: As Figure 7 , for t ′ = 0.0 and µ= −0.1.
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Figure 10: Flow of the Z-factors along the Fermi surface, for parameters as in Fig-
ure 9.

A.5 Figures for t ′ = −0.28 and µ = 4t ′
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Figure 11: As Figure 7 , for t ′ = −0.2 and µ= 4t ′ - van Hove filling.
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Figure 12: Flow of the Z-factors along the Fermi surface, for parameters as in Fig-
ure 11.
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A.6 Figures for t ′ = −0.2 and µ = 4t ′
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Figure 13: As Figure 7 , for t ′ = −0.2 and µ= 4t ′ - van Hove filling.
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Figure 14: Flow of the Z-factors along the Fermi surface, for parameters as in Fig-
ure 13.

A.7 Figures for t ′ = −0.2 and µ = 2t ′
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Figure 15: As Figure 7, for t ′ = −0.2 and µ= 2t ′ - near half-filling.
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Figure 16: Flow of the Z-factors along the Fermi surface, for parameters as in Fig-
ure 15.

A.8 Figures for t ′ = −0.2 and µ = 0
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Figure 17: As Figure 7, for T = 0.001, t ′ = −0.2 and µ= 0.
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Figure 18: Flow of the Z-factors along the Fermi surface, for the same cases as in
Figure 17.
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A.9 Figures for role of patching granularity
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Figure 19: Dependence of the flow on the granularity of the patching. If not specified,
the patching is 32 angular patches × 7 energy slices, as defined in the text. Left: Flow
of Vmax as a function of patching granularity for T = 0.001, µ = 2t ′ and t ′ = −0.2.
Right: Comparison of flows of Vmax for the Katanin extension as a function of patching
granularity for t ′ = −0.1 and t ′ = −0.2 at T = 0.05, µ= 2t ′.

A.10 Figures for the cross-over at van Hove filling
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t ′ at T = 0.01. Left: Flow of Vmax . Right: flow of the ration of Eigenvalues in the
superconducting anti-ferromagnetic, respectively ferromagnetic Eigenvalues.

B Supplementary material

B.1 Patching scheme

In order to give an impression of the patching granularity, in Figure 21we here show some cases
of the discretisation in momentum space that was used. The grid is chosen finer towards the
anti-nodal direction than in the nodal direction, to adapt to the variation of the local density
of states, which becomes more relevant when frustration is included.
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Figure 21: Patching granularity for different combinations of angular sectors and
energy slices. We mostly applied the variant with 32x7= 224 patches.

B.2 Definition of Eigenvalues/-vectors as relevant for certain correlations

The general conventions of parametrising the effective interaction are chosen to be in line
with [5] and [52], splitting it in singlet and triplet parts V S and V T . We then select the
relevant combinations and subsets of the interaction corresponding to the respective ordering
tendencies and compute the respective Eigenvalues and Eigenvectors. The Eigenvalues are
normalised with respect to the size of the discrete matrices, i.e. the number of angular patches
on the Fermi surface. The definitions (non normalised) we used are:

V SC
kF ,k′F

:= V S(kF ,−kF ,−k′F , k′F ) + V T (kF ,−kF ,−k′F , k′F ) ,

V AF M
kF ,k′F

:= V T (kF , k′F , k′F +Q, kF −Q)− V S(kF , k′F , k′F +Q, kF −Q) ,

V F M
kF ,k′F

:= V T (kF , k′F , k′F , kF )− V S(kF , k′F , k′F , kF ) ,

V C DW
kF ,k′F

:= 3V T (kF , k′F , k′F +Q, kF −Q) + V S(kF , k′F , k′F +Q, kF −Q) ,

V POM
kF ,k′F

:= 3V T (kF , k′F , k′F , kF ) + V S(kF , k′F , k′F , kF ) .

The definition of the scale-dependence within the interaction flow implies a flow of Eigenvalues
as a function of U , as described in the main text and [24], given as

V X
f inal(g

2U) := g2V X
g .
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We then use basic form factor functions which represent the symmetries of interest, onto which
the Eigenvectors are projected, following [64]

s-wave: 1 ,

p-wave: sin(kx) ,

d-wave: cos(kx)− cos(ky) ,

g-wave: (A2g) sin(kx) sin(2ky)− sin(2kx) sin(ky) .

These functions are normalised with respect to the discretisation granularity first and then used
to project out the respective symmetries from Eigenvectors. While this does not account for all
information contained in susceptibilities, it provides more information than single components
of the coupling function.

B.3 Scale invariance of QP-fRG equations

In the original set up of the interaction flow, the regulator is introduced as a homogeneous
factor g in the denominator of the bare quadratic action, i.e. in the numerator of the bare
propagator of the non-interacting system, which starts from zero and continuously and homo-
geneously switches on all modes in the course of the flow. This can be interpreted as a continu-
ous increase of the bare interaction in its exact formulation, which can be seen by means of the
functional definitions and also in a simple manner directly in the truncated equations when
self-energy effects are neglected [11]. When other approximations are applied, however, it is
mandatory to check this property. This is what we do here, much analogous to the route in
Appendix A of [21], to validate the following properties:

Σg/l(l
2U) = lΣg(U) , (S0)

Vg/l(l
2U) = l2Vg(U) . (V0)

For this to hold at all scales g for an arbitrary auxiliary scale l > 0 we need to show that the
derivatives with respect to g are identical and that the initial conditions coincide.

As a preparatory step we look in more general terms at a function fg(U) = f (g, U):

fg/l(l
2U) = ln fg(U) , on the whole carrier for arbitrary l > 0 if, and only if (G0a)

fg0/l(l
2U) = ln fg0

(U) , at some g0 in the carrier of interest, and (G0i)

d
d g

fg/l(l
2U) =

d
d g

ln fg(U)
�

�

� d
d g f (g/l)= 1

l
d

d(g/l) f (g/l)= 1
l ḟ (g/l)

⇐⇒ ḟg/l(l
2U) = ln+1 ḟg(U) , on the whole carrier. (G0d)

We have to verify these conditions for the case of an ODE, i.e. not for given explicit expressions,
but starting from initial conditions at g0 = 0, and we need to show that the following relations
hold for all g in the carrier, grouping the equations such that the role of the initial condition
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is on the left, and the resulting relations implied by these conditions on the right:

Σg/l(l
2U) = lΣg(U) , (S0)

Σ̇g/l(l
2U) = l2Σ̇g(U) , (S1)

Vg/l(l
2U) = l2Vg(U) , (V0)

Σ̈g/l(l
2U) = l3Σ̈g(U) , (S2)

V̇g/l(l
2U) = l3V̇g(U) . (V1)

To prove G0d for this set on the whole carrier, we argue similar to [21] as follows: Given that
S0, S1 and V0 hold at some g, we will show that this implies also S2 and V1 to hold at that
point g. In return, by means of S2 and V1 at that point g, an infinitesimal step by means of
the closed set of differential equations then ensures that S0, S1 and V0 remain valid at g+δg,
and with this also S2 and V1 remain valid at g + δg, and thus by integration/repetition on
the whole carrier. This completes the argument and is a differential version of the discrete
induction proof in [21].8

B.3.1 Scaling of standard propagators

Core quantities on the rhs of the flow equation are the propagators, standard and “derived”
ones. We first assume that the conditions S0, S1 and V0 hold at some g and look at the
behaviour of S2 and V1 under this assumption. This also requires an analysis of the Z-factors
involved. By means of the definition we have [24]

Gg(U) =
g

iω− ξ0 − gΣg(U)
,

Gg/l(l
2U) =

g/l

iω− ξ0 −
g
l Σg/l(l2U)

�

�

use assumption S0

=
1
l

g
iω− ξ0 − gΣg(U)

=
1
l

Gg(U) .

The approximation of the full scale-dependent propagator by inclusion of a quasi-particle
weight reads [24]

Gg(U)≈
gZg

iω− ξ0
,

and for Z we have

Zg(U) = Z(gΣg(U)) =
1

1− ∂ωRe(gΣg(U)|ω=0,k=kF

Zg/l(l
2U) = Z(

g
l
Σg/l(l

2U)) =
1

1− ∂ωRe( g
l Σg/l(l2U)|ω=0,k=kF

�

�

use assumption S0

=
1

1− ∂ωRe(gΣg(U)|ω=0,k=kF

= (l0)Zg(U) ,

8This is actually quite a strong implication: If the conditions hold at one point, they hold everywhere. In that
sense they are as firm as the uniqueness property for an ODE, i.e. when two functions have the same value at some
point and fulfil the same ODE, they are identical. But here the case is more general.
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and thus

Gg/l(l
2U)≈

g
l

Zg/l(l2U)

iω− ξ0

=
1
l

Gg(U) .

The scaling property thus remains valid. Also, if we omit the self-energy feedback altogether,
this property is trivial by definition.

B.3.2 Scaling of derived propagators

The single-scale propagator is defined as

Sg(U) =
iω− ξ0

(iω− ξ0 − gΣg(U))2

Sg/l(l
2U) =

iω− ξ0

(iω− ξ0 −
g
l Σg/l(l2U))2

�

�

use assumption S0

=
iω− ξ0

(iω− ξ0 − gΣg(U))2

= (l0)Sg(U) .

In the quasi-particle flow it is approximated as

Sg(U)≈
Z2

g

iω− ξ0
.

Thus, by virtue of the above scaling of Z the scaling for Sg also remains valid.
Including the Katanin correction leads to the use of a derived full propagator:

Ġg(U) =
1

iω− ξ0 − gΣg(U)
+ g

Σg(U) + gΣ̇g(U)

(iω− ξ0 − gΣg(U))2
,

Ġg/l(l
2U) =

1

iω− ξ0 −
g
l Σg/l(l2U)

+
g
l

Σg/l(l2U) + g
l Σ̇g/l(l2U)

(iω− ξ0 −
g
l Σg/l(l2U))2
�

�

use assumptions S0 and S1

=
1

iω− ξ0 − gΣg(U)
+ g

Σg(U) + gΣ̇g(U)

(iω− ξ0 − gΣg(U))2

= Ġg(U) .

In the quasi-particle flow the full derivative is obtained as [24]

Ġg(U) = Kg(U)Sg(U) , with Kg(U) =
�

1+ g2∂ωRe
�

Σ̇g(U)
�

|ω=0,k=kF

�

.

Since

Kg/l(l
2U) =
�

1+
� g

l

�2
∂ωRe
�

Σ̇g/l(l
2U)
�

|ω=0,k=kF

�

�

�

use assumption S1

=
�

1+
� g

l

�2
∂ωRe
�

l2Σ̇g(U)
�

|ω=0,k=kF

�

=
�

1+ g2∂ωRe
�

Σ̇g(U)
�

|ω=0,k=kF

�

= Kg(U) ,
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we have the same scaling for Kg as for Sg and thus for their product. Also, when neglecting
self-energy feedback the same scaling applies trivially.

To conclude and generalise, propagators Pg(U) and derived propagators dPg(U) scale like

Pg/l(l
2U) = l−1Pg(U) , (P0)

dPg/l(l
2U) = l0dPg(U) , (P1)

where P and dP represent whichever type of dressed, non-dressed or approximately dressed
versions we use.

B.3.3 Scaling consistency for the flow of the effective interaction

We proceed to analyse the behaviour of condition V1. The flow equation consists of diagrams
of the type

V̇g(U) =
�

Vg(U)
�2

Pg(U)dPg(U) ,

V̇g/l(l
2U) =
�

Vg/l(l
2U)
�2

Pg/l(l
2U)dPg/l(l

2U)
�

�

use assumptions/conditions V0,P0,P1

=
�

l2Vg(U)
�2

l−1Pg(U)l
0dPg(U)

= l3V̇g(U) ,

fulfilling the condition V1.

B.3.4 Scaling consistency for the flow of the self-energy

The flow of the self-energy is computed based on the second derivative. It has to contributions,
an effective one-loop part and a two-loop part:

Σ̈g(U) = Σ̈
1l
g (U) + Σ̈

2l
g (U) ,

The two-loop part Σ̈2l
g (U) is of the sunset type and has the structure [24]

Σ̈2l
g (U) =
�

Vg(U)
�2

Pg(U)dPg(U)dPg(U) ,

Σ̈2l
g/l(l

2U) =
�

Vg/l(l
2U)
�2

Pg/l(l
2U)dPg/l(l

2U)dPg/l(l
2U)
�

�

use V0,P0,P1

=
�

l2Vg(U)
�2

l−1Pg(U)l
0dPg(U)dPg(U)

= l3Σ̈2l
g (U) ,

fulfilling the condition S2.

The one-loop part Σ̈1l
g (U) is an approximate term involving Σ̇ and reads [24]

Σ̈1l
g (U) = Āg(U)Σ̇g(U) .

Here,

Ag(U) = 2
Żg(U)

Zg(U)
, and Ā= average(A) |Fermi surface ,
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To check the scaling of this expression we also need to refer to the expression that results for
Żg [24], omitting the explicit restriction for the ω-derivative for readability:

Żg(U) = Z2
g (U)
�

∂ωRe
�

Σg(U)
�

+ ∂ωRe
�

gΣ̇g(U)
�	

,

Żg/l(l
2U) = Z2

g/l(l
2U)
n

∂ωRe
�

Σg/l(l
2U)
�

+ ∂ωRe
� g

l
Σ̇g/l(l

2U)
�o

= Z2
g (U)
�

∂ωRe
�

lΣg(U)
�

+ ∂ωRe
�

glΣ̇g(U)
�	

= l Z2
g (U)
�

∂ωRe
�

Σg(U)
�

+ ∂ωRe
�

gΣ̇g(U)
�	

= l Żg(U) , (Z1f)

where we used S1 and the previous scaling properties and conditions from above. We then
get

Ag/l(l
2U) = 2

Żg/l(l2U)

Zg/l(l2U)
= 2l

Żg(U)

Zg(U)
= lAg(U)

=⇒ Āg/l(l
2U) = lĀg(U) , (B.1)

with the scaling carrying over to the average Ā. We can now evaluate the scaling for the
one-loop contribution:

Σ̈1l
g/l(l

2U) = Āg/l(l
2U)Σ̇g/l(l

2U)

= lĀg(U)l
2Σ̇g(U)

= l3Σ̈1l
g (U) , (B.2)

in line with S2 and the scaling of the two-loop part.
At this point, we have verified that the flow equations consistently conserve the scaling proper-
ties, the remaining condition being their fulfilment at a specific value of g. The natural choice
for this are the initial conditions of the flow at g0 = 0.

B.3.5 Scaling property for initial conditions

Let us check the initial conditions:

Condition S0 is trivial since the self-energy starts at zero:

Σ(g/l)=0(l
2U) = 0 ,

lΣg=0(U) = 0 .

Condition V0 is set by the very definition of the bare interaction and actually determines the
exponent of the internal scaling with respect to the dependence of the functions on the bare
interaction:

V(g/l)=0(l
2U) = (l2U) ,

l2Vg=0(U) = l2(U) .
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What remains to be checked is a slightly more tricky part, concerning condition S1. In fact,
this term does not vanish at g = 0. Rather, it is a Hartree-type contribution. Without resorting
to the second derivative the right-hand side for flow of the self-energy at g = 0 reads

Σ̇(g/l)=0(l
2U) = (l2U) ◦ G0 =

(l2U)n0

2
,

l2Σ̇g=0(U) = l2(U ◦ G0) = l2 (U)n0

2
.

While this verifies S1, we recall that we compute the flow of the imaginary part only. The
initial Hartree-contribution to Σ̇ is however purely real, and thus for our purposes the condi-
tion S1 is also trivially fulfilled since it vanishes for the imaginary part of the self-energy at
g = (g/l) = 0. However, the fact that we keep the Fermi surface fixed and neglect the Hartree
contribution calls for some more comments, which we shall offer below in section C. What
really happens at the conceptual level is an implicit change of the chemical potential during
the flow, which keeps the Fermi surface at its non-interacting location.

For the sake of completeness of the equations at the initial value, we can double-check the
validity of V1 and S2 at g = g0 = 0. Condition V1 is again trivial since it vanishes at g = 0
due to a factor of g in one of the internal propagators on the rhs:

V̇(g/l)=0(l
2U) = (l2U)2P(g/l)=0(l

2U)dPg/l(l
2U) = 0 ,

V̇g=0(U) = U2Pg=0(U)dPg(U) = 0 .

Also S2 is fulfilled at g = 0. For the two-loop part this is due to the vanishing of one of the
internal propagators:

Σ̈2l
(g/l)=0(l

2U) = (l2U)2P(g/l)=0dPg/l dPg/l = 0 ,

Σ̈2l
g=0(U) = U2Pg=0dPg dPg = 0 .

The one-loop part vanishes due to the vanishing of Ż according to Z1f . With Zg=(g/l)=0 = 1
this translates to

Ż(g/l)=0(l
2U) = ∂ωRe
�

Σ(g/l)=0(l
2U)
�

+ ∂ωRe
� g

l
Σ̇(g/l)=0(l

2U)
�

= 0 ,

Żg=0(U) = ∂ωRe
�

Σg=0(U)
�

+ ∂ωRe
�

gΣ̇g=0(U)
�

= 0 .

The first terms vanishes, since the self-energy itself vanishes, and the second due to the factor
g = (g/l) = 0.9

B.3.6 Scaling summary

We have shown that the conditions that are required for the scaling property of the flow equa-
tions are obeyed by the specific implementation and approximations upon which we have
based the numerical treatment. The scaling condition is mandatory for the interpretation of
the flow as a gradual increase of the bare interaction. The fact that all derivatives vanish at the
initial point is somewhat more demanding for the algorithm that solves the ODE, in particular
when using an explicit forward scheme as done here, and it is important to choose a small
enough initial step size. We verified the scaling property for some test cases explicitly, since it
also provides an important check for the numerical implementation.

9It is also sufficient that both terms are frequency-independent and thus the frequency-derivatives vanish.

43

https://scipost.org
https://scipost.org/SciPostPhys.15.5.192


SciPost Phys. 15, 192 (2023)

C Hartree-shift and fixating the Fermi surface

In perturbative, diagrammatic treatments, the lowest order contribution to the self-energy of
a many-body system of interacting electrons is given by the Hartree and Fock terms, computed
in the non-self-consistent version, and for the local density-density interaction in the Hubbard
model the Fock term vanishes.10

In fRG treatments, the Hartree term is often eliminated from the formalism, the argument
for instance being that it is merely a shift in the chemical potential. If we neglect self-energy
contributions on the rhs of the flow equation altogether, the character of the resulting fRG
approximation is analogous to bare perturbation theory, in which the self-energy is computed
using non-interacting propagators and vertices, and then plugged into the Dyson equation,
followed by a one-step shift of the chemical potential if the density shall be kept constant.

Yet, it is one of the very virtues of fRG equations that they are exact in their fundamental and
complete form, and leaving out any terms ad hoc in principle spoils that very property. Still,
this is often done in practical applications, let alone for reasons of feasibility, not only by ne-
glecting self-energy effects, but also by truncating the hierarchy of equations, simplifying the
parametrisation, etc. With respect to the Hartree shift, in the interaction flow the matter be-
comes more transparent: This flow smoothly connects solutions for different bare interactions,
and the flow equation does include the Hartree term. Obviously, we cannot appropriately ad-
just the chemical potential for all these bare interactions using only one simple shift in the
chemical potential. We can - and do - of course omit the self-energy in the propagators alto-
gether in many fRG applications, but that really is not a very controlled mathematical step,
and it would be nice to justify or at least understand it a little better. In particular, when
we do include self-energy effects in propagators on the rhs of the flow equation, we should
worry first and foremost about the lowest order contribution to this. While we will not be able
to clarify this aspect completely, we will offer some views to better understand some of the
approximations that are involved when we keep the Fermi surface fixed by keeping the bare
dispersion in the propagators, while “only” adding effects from the frequency-dependence of
the self-energy via a quasi-particle weight.

In what follows, we will walk through the probably simplest possible case of a mean-field
approximation in a two-dimensional Fermi system, namely the self-consistent Hartree approx-
imation in the normal phase, considering the total density as the “order parameter”.11 The
main purpose of the exercise will then be an elementary comparison to approximations that
stem from the 1-PI fRG equation, related to the connection of the Katanin replacement [30]
to self-consistent mean-field-type solutions, guided by the route in [32,66,67].

C.1 Toy model

We resort to a very simple model at T = 0 with a local interaction. We use a simple quadratic
dispersion, as e.g. taken from the low-density expansion of a lattice dispersion, and write

ε(k) = t (k2
x + k2

y) = t |k|2 . (C.1)

Denoting by n(ε) the density for all modes with energies up to ε, and |k(ε)| the radius of the

10More precisely speaking, the Fock term vanishes upon fixing the quantisation axis and choosing to decouple
the degrees of freedom with respect to the density, see F. Lechermann in [65].

11Note that this excludes a priori other kinds of sectors in which instabilities may or may not arise through
mean-filed solutions, such as e.g. Stoner magnetism, superconductivity or charge-density waves.
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Figure 22: Diagrammatic representation of the self-consistent Hartree approximation
to the self-energy.

circle enclosing them, we have

n(ε)∝ 2π |k(ε)|2 = 2Dε . (C.2)

Here, we implicitly define the total density of states (DOS) of the non-interacting system as
2D, the factor 2 stemming from the spin degree of freedom. We note that D is constant, i.e.
independent of ε.

In the grand-canonical framework, the density of the free system is controlled by the chemical
potential µ, which also defines the free Fermi surface via ε(kF ) = µ. At constant D and at
T = 0, by Eq. C.2 it is thus simply given as

n(µ) = 2µD . (C.3)

We further assume that the bare two-particle interaction is given by a simple local term U .

C.2 Self-consistent Hartree approximation

The self-consistent Hartree approximation (scH) consists in an implicit equation for the self-
energy ΣscH at first order in the bare interaction from a tad-pole diagram, as sketched in
Fig. 22.
Upon fixing the quantisation axis, the bare interaction couples spin-up electrons only with
spin-down electrons and vice versa, and the self-consistency equation reads

ΣscH =
1
2

U n(µ,ΣscH) . (C.4)

By means of the Dyson equation we have12

G−1
0 (iω,k) = iωn − εk +µ ,

G−1(iω,k) = G−1
0 −Σ(iω,k) .

Since the bare interaction is chosen as a local density-density-coupling U , ΣscH is a simple
number, independent of frequency and momentum. It depends only on µ and U and is often
referred to as a shift in the chemical potential. Further more, in the resulting description of

12This is already a non-trivial aspect, since the Dyson equation as such constitutes a resummation to infinite
order in U and is thus non-perturbative in nature. It is a choice to use it and to apply perturbative approximations
to the self-energy, rather than computing corrections to the propagator directly.
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the interacting system the density n(µ,ΣscH) depends on µ and ΣscH only via the difference
µ − ΣscH , with propagators remaining structurally as they are in the free system. We can
thus use the very same constant DOS as in the non-interacting system to compute the density
n(µ,ΣscH) and can explicitly write the self-consistency equation and its solution:

ΣscH = U
n
2
(µ,ΣscH) = U D (µ−ΣscH) (C.5)

=⇒ ΣscH = µ
U D

1+ U D

=⇒ µ̃ := µ−ΣscH = µ
1

1+ U D
.

Here, we chose µ̃ to define an effective chemical potential. We can make some simple plausi-
bility checks:

• µ→ 0, at U fixed =⇒ ΣscH → 0 and µ̃→ 0: When the free system becomes empty, so
remains the interacting one. “No particles, no effect”.

• U → 0, at µ fixed =⇒ ΣscH → 0: When switching off the interaction, the self-energy
vanishes. “No interaction, no change”.

• U → +∞ at µ fixed =⇒ ΣscH → µ−, µ̃ → 0+: Cranking up a repulsive interaction
at fixed chemical potential introduces higher costs for adding an electron to the system.
Thus, the filling in the interacting system is reduced. But it cannot be reduced below
zero filling, and that is indeed the asymptotics here.

• For a negative interaction, the opposite is the case: Particles get more and more “sucked
in” when cranking up an attraction, and thus µ̃ and with it the filling increases. There is a
simple view on this, when we treat the interaction energy via this mean-field approxima-
tion:13 At 1= U D we reach the point where the gain in potential energy upon adding a
particle exceeds the cost in kinetic energy: δEkin = µδn, δEint = (Un/2)δn = µU Dδn,
and thus δE = µ(1+ U D)δn. For U D → −1 from above the cost off adding a particle
goes to zero and the situation becomes instable. Of course, real systems are usually
defined by a given density or at least a limit thereof, and we use the grand canonical de-
scription only for practical purposes, to later invert the relation n(µ) after all calculations
are done. E.g. for the Hubbard model this means that at a certain value of U the filling
will reach its upper limit for the case of an attractive interaction. Further increasing the
interaction strength then pushes the band below the (external) chemical potential and
there is no one-to-one mapping between µ and n anymore, at least not without further
arguments or extending the situation to finite temperature.

We finally note that we can alternatively write the self-consistency equation in terms of the
(interacting) density nscH :

2D(µ−ΣscH) = nscH = 2D
�

µ− U
nscH

2

�

=⇒ nscH =
2Dµ

1+ U D
=

n f ree

1+ U D
. (C.6)

This is related to Kanamori screening in the context of the (in)stability of the paramagnetic
state towards ferromagnetism [68].

13This is analogous to a familiar criterion for Slater ferromagnetism, but simpler.
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C.3 Contact with fRG and interaction flow

The above calculations are simple and of one-step character. The issue with which we are
concerned appears when we try to approach the self-consistent solution continuously in some
parameter, e.g. U , rather that by a single-step procedure at fixed parameters. Such a con-
tinuous approach is inherent in fRG calculations, one of the core issues being the movement
and/or deformation of the Fermi surface, i.e. the change of the manifold of infrared singular-
ities in the propagator. The above sketched scH approximation has prepared us to isolate this
very effect in a most simplistic manner.

We recall the definition of the scale-dependent propagator in the interaction flow version of
the fRG [11]:

G0,g =
g

iωn − εk +µ
,

G−1
g = G−1

0,g −Σg =
iωn − εk +µ

g
−Σg ,

i.e. Gg =
g

iωn − εk +µ− gΣg
.

Here, as in the main part of this work, g is the flow parameter and amounts to the homo-
geneous and continuous activation of all modes. In the 1-PI scheme which we use, we can
interpret this scaling as a continuous increase of the bare interaction [11]. As outlined above,
the corresponding scaling property of the interaction flow with given bare interaction U reads

gΣg(U) = Σg=1(g
2U) = Σ f inal(g

2U) ,

and as usual allows to read off the final solution for a bare interaction of the strength g2U by
taking the value of the self-energy at that value of g and multiplying it by g.

An important step in the evolution of fRG methods was the observation that self-consistent,
“mean-field-exact” approximations can be reproduced in the 1-PI fRG by using a subset of RPA
contributions to the flow of the effective interaction and applying the Katanin replacement
(RPA+Katanin) [30,32,67]. The resulting equations of this procedure are summarised graph-
ically in Figure 23. To follow this very mechanism for our simplistic case, we start from the
known solution above and will then make contact with the fRG path. Similar to the results
in the main part, we will also contrast the self-consistent case with two other cases, when the
equations are truncated after first order in U , namely the standard fRG case as well as the
again simpler case where the feedback of the self-energy is completely neglected on the rhs of
the flow equation, see Figure 24.

Building the bridge from the self-consistency equation

We operate on the self-consistency equation (C.5) directly and suitably insert the scaling pa-
rameter g, to extract an expression which permits a comparison to the fRG route. Defining (!)
Σg via gΣg := Σ(g2U) and omitting the label scH for brevity, the g-dependent self-consistency
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Ġ
<latexit sha1_base64="Kb5r7jXjSevEx3a4rzZYQ8bEOp0="></latexit>

G

<latexit sha1_base64="RsUsGD4waz6rmF3nJ5SfcIvVQLY="></latexit>

V̇
<latexit sha1_base64="zajBAAOqlD4GssoRQE8Hzl0mQ7U="></latexit>

V

<latexit sha1_base64="zajBAAOqlD4GssoRQE8Hzl0mQ7U="></latexit>

V

<latexit sha1_base64="0lj4+OCC++zDNugWMLplumbjiZY=">AAACynichVFLS8NAEJ7GV1tfVY9egkUQhJJIUY/FFx4UWrC2UIts0m1dmhebbaEWb9686o/T3+LBL2sqaJFu2MzsNzPfvJzIE7GyrPeMMTe/sLiUzeWXV1bX1gsbm7dxOJAur7uhF8qmw2LuiYDXlVAeb0aSM9/xeMPpnyb2xpDLWITBjRpFvO2zXiC6wmUKUG3/vlC0SpY+5rRip0qR0lMNCx90Rx0KyaUB+cQpIAXdI0YxvhbZZFEErE1jYBKa0HZOT5RH7ABeHB4MaB//Hl6tFA3wTjhjHe0ii4crEWnSLu6FZnTgnWTl0GPIT9xHjfX+zTDWzEmFI0gHjDnNeA1c0QM8ZkX6qeekltmRSVeKunSsuxGoL9JI0qf7w3MGiwTW1xaTzrVnDxyOfg8xgQCyjgqSKU8YTN1xB5JpyTVLkDIy8EnIZPqoB2u2/y51Wrk9KNmHpXKtXKycpAvP0jbt0B62ekQVuqQq6nCR54Ve6c24MqQxMsbfrkYmjdmiX8d4/gJXNI7F</latexit>

+ <latexit sha1_base64="sKJyNnhvMX5E9vvdRNyCFY9L9x4="></latexit>...

<latexit sha1_base64="FIuy9EL7mvVCwHw3DTyonpN9mSc="></latexit>

U
<latexit sha1_base64="/dnRXNbCUqmHiLjJgUYjEqZvseM=">AAAC13ichVFLT8JAEB7qC/CFevRCJCaeSDFGPRJf8WKCUR4GkGzLUjf0lXYhQUK8Ga/evOq/0t/iwa9rMVFi2GY7s9988+3MjuHbIpS6/p7QZmbn5heSqfTi0vLKamZtvRJ6vcDkZdOzvaBmsJDbwuVlKaTNa37AmWPYvGp0j6N4tc+DUHjutRz4vOkwyxUdYTIJ6LbR9uSwcSUsh41aViuT0/O6WtlJpxA7OYpXyct8UIPa5JFJPXKIk0sSvk2MQnx1KpBOPrAmDYEF8ISKcxpRGrk9sDgYDGgXfwuneoy6OEeaoco2cYuNHSAzS9vYZ0rRADu6lcMPYT+x7xVm/XvDUClHFQ5gDSimlOIFcEl3YEzLdGLmuJbpmVFXkjp0qLoRqM9XSNSn+aNzgkgArKsiWTpVTAsahjr38QIubBkVRK88VsiqjtuwTFmuVNxYkUEvgI1eH/VgzIW/Q510Krv5wn5+73IvVzyKB56kTdqiHUz1gIp0TiXUYUL5hV7pTbvRHrRH7embqiXinA36tbTnL6C7lMo=</latexit>

⌃̇g

<latexit sha1_base64="n3La1oVjV1HfLraluxNgZsXVPbs="></latexit>

Ġg
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Figure 23: The RPA+Katanin subset of fRG equations for the effective interaction re-
produces the self-consistent Hartree solution for the self-energy, c.f. Figure 2 in [32].

equation reads

Σ(g2U) = g2U n(µ,Σ(g2U)) = g2U D (µ−Σ(g2U))

=⇒ Σg = gU D (µ− gΣg)

=⇒ Σ̇g :=
d

d g
Σg = U Dµ− 2gU DΣg − g2U DΣ̇g

=⇒ (1+ g2U D)Σ̇g = U Dµ− 2gU DΣg . (C.7)

While this expression will be sufficient to check the matching to the fRG case, we can go a
little further if we wish:

=⇒ Σ̇g =
U Dµ− 2gU DΣg

1+ g2U D

�

�

�

�

gΣg=Σ(g2U)=g2U D/(1+g2U D)

=⇒ Σ̇g =
µΣg

g
− 2Σ2

g .

Building the bridge from the “mean-field-exact” fRG equation Coming from the fRG side,
the self-consistent Hartree solution is obtained by replacing the single-scale propagator Sg
in the one-loop equation for the effective interaction by the total derivative Ġg of the full
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Figure 24: Three variants of the flow equation for the self-energy that are compared
for the toy model. While the standard fRG equation and the case without feedback
stem from a hard truncation of the hierarchy after first order in U, the equation that
reproduces the self-consistent Hartree solutions requires the RPA+Katanin choice for
the flow of the effective interaction.

propagator at scale G, as it results from the RPA+Katanin subset, as mentioned above [32].
This derivative reads

Ġg =
d

d g
g

iωn − εk +µ− gΣg

=
1

iωn − εk +µ− gΣg
+

g(Σg + gΣ̇g)

(iωn − εk +µ− gΣg)2
.

The one-loop flow equations for the self-energy then yields, by means of the usual analytic
treatment of the Matsubara sums,

Σ̇g = U D(µ− gΣg) + gU(Σg + gΣ̇g))

∫

d2k f ′(εk −µ+ gΣg)

= U D(µ− gΣg) + gU(Σg + gΣ̇g))

∫

dεD(ε)(−δ(εk −µ+ gΣg))

= U D(µ− gΣg)− gU D(Σg + gΣ̇g))

=⇒ (1+ g2U D)Σ̇g = U Dµ− 2gU DΣg , (C.8)

and equation (C.8) coincides with equation (C.7). Here, we have directly worked with the
one-loop equation for the self-energy that results from the completion of S to Ġ before solving
the fRG equation [32]. This equation is nothing else but the derivative of the self-consistency
equation, but in this step we evaluated it along the fRG route. With identical initial conditions,
we thus arrive at the same result that we got when taking the derivative of the self-consistency
equation directly. This may seem of little surprise, since we have been massaging the very same
approximation, only from different angles. Yet, it is the very specific choice of the RPA+Katanin
subset of the 1-PI fRG equations that ensures this. This choice does not emerge from the fRG
formalism in an obvious or natural manner, but was identified step-wise, or rather discovered.
In particular, a technically trivial consequence of this is that the “normal” rhs of the truncated
1-PI equation does not reproduce the self-consistent solution. Thus, we shall now compare
the result we have obtained so far to the flow equation we get without feeding the Katanin-
corrected RPA-ladder back into the equation of the self-energy, i.e. we will truly truncate the
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hierarchy at first order in the effective interaction and use the single-scale propagator Sg to
repeat the calculation.
The single-scale propagator is given as

Sg = −Gg
˙G−1
0,g Gg

=
g

iωn − εk +µ− gΣg

iωn − εk +µ
g2

g
iωn − εk +µ− gΣg

=
1

iωn − εk +µ− gΣg
(iωn − εk +µ− gΣg + gΣg)

1
iωn − εk +µ− gΣg

=
1

iωn − εk +µ− gΣg
+

gΣg

(iωn − εk +µ− gΣg)2
.

This is the usual result, i.e. Sg differs from Ġg by the term involving Σ̇g . For the calculation as
such we can simply read off the result from the previous calculation that led to equation (C.8)
and omit the Σ̇g term to arrive at

Σ̇g = U Dµ− 2gU DΣg

= U D(µ− 2gΣg) . (C.9)

This time, the flow equation can not be simplified further by reinserting the explicit self-
consistent solution, since this equation does not reproduce it. Also, we need to take some
care: If µ − gΣg was to change sign, the integral over the derivative of the Fermi function
f ′ would not run over the peak of the delta function anymore and the second term would
vanish. In fact, that will not happen since at an earlier point a sign change takes place when
(µ−2gΣg) = 0, leading to a maximum, followed by a decrease. This, however, is unphysical,
since it means that further increasing the repulsion leads to a re-increase of the density. Be-
yond the maximum, the curve will asymptotically saturate when (µ− 2gU DΣg)→ 0, due to
the decrease of Σg .

In many fRG calculations the self-energy is neglected completely on the right-hand side of the
flow equation, which here yields

Σ̇g = U Dµ .

This of course is nothing but the flow version of the non-self-consistent Hartree approximation,
yielding gΣg = g2U Dµ.14

The genuine, standard fRG equation for the self-energy, when the exact hierarchy is truncated
after first order in the effective interaction without any further modifications, thus seems to
fall in between the non-self-consistent and the self-consistent Hartree approximation. Also,
while there are explicit expressions for the self-energy in the latter two, this is not so simple
for the standard fRG case.

14Note that the property of the interaction flow regarding the equivalence of scaling the interaction and scaling
the flow parameter is valid for all these cases. This is “easy” to verify, c.f. [21], but in general by no means
guaranteed to be the case. When working with counter terms, or additional terms that are fixed at the end of the
flow at g = 1, this may be violated. Then, we have to be careful when interpreting the flow.
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Figure 25: Comparison of the three versions of the self-energy flow gΣ(g) for U D = 1
and µ= 2 as a function of g2.

As an illustrating example, it is is instructive to perform a numerical treatment of the three
cases we now have at hand. The result of this is shown in Figure 25, for the choice U D = 1
and µ= 2, where we plot gΣg as a function of g2, i.e. the final solution for the self-energy as
a function of the bare coupling. We note:

• All curves start with the same value and slope, as they should.

• The non-self-consistent straight line is familiar. When it reaches gΣg = µ we know that
the resulting interacting system is empty and beyond that point the curve is meaningless.

• The self-consistent, i.e. RPA+Katanin, case is in line with the checks above: Increas-
ing the interaction squeezes particles out of the system, and the empty state is reached
asymptotically.

• The standard fRG case, however, is particular in two aspects:
i) The maximum of Σg mentioned above translates into a maximum of gΣg at some
point g2 = U ≈ 2, to then fall off again.
ii) gΣg reaches an asymptotic value that is half of the self-consistent one.
Both aspects can easily be understood from the equation, but are physically not sound:
The system should become empty for large interaction. In the non-self-consistent case
this happens way too early, i.e. for much too small interaction, but it happens. In the
self-consistent case it happens asymptotically, for large U D. But for the standard fRG
case it does not happen at all. Instead, half of the original particles stay in the system.
The maximum is even more unphysical, since increasing a repulsion can certainly not
lead to a (re-)increase of the density. Clearly, both effects are unphysical and to our
understanding likely related to the violation of Ward identities, the reduction of which
was the very driving force leading to the suggestion of the Katanin replacement [30,69].

This very simple example provides an explicit and instructive view on how the standard fRG
equation for the self-energy relates to the self-consistent one. As stated before, we know from
general arguments that we can obtain a self-consistent solution for the self-energy by restricting
the flow of the effective interaction to the subset of the RPA channel and at the same time adding
contributions from higher orders of the hierarchy via the Katanin replacement. The familiar
solution of this RPA being Vg = U/(1 − UΠph) yields Vg = U/(1 + g2U Dµ). Indeed, that is
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what we find when comparing equation C.8 and C.9:

(1+ g2U D)Σ̇g = U Dµ− 2gU DΣg

=⇒ Σ̇g =
U

(1+ g2U D)
︸ ︷︷ ︸

Vg,RPA

�

Dµ− 2gDΣg

�

︸ ︷︷ ︸

Standard loop over Sg

= Vg ◦ Sg .

The fact that the convolution V ◦ Σ factorises into a simple product is of course due to the
restriction to the single RPA channel.

A next step towards a more fair comparison between the standard fRG equations and the
Katanin replacement would be the inclusion of second order terms in the effective interaction
and keeping the single-scale propagator within the RPA calculation. This is however beyond
the scope of the conceptual illustration we try to give here. However, with increasing trun-
cation level we expect that deviations become smaller. This can only be checked numerically,
since the usage of Sg in a one-loop RPA does not allow for a closed analytic solution, for the
very reason that is does not constitute the full scale derivative of a quantity that can be inte-
grated explicitly. This is the very property that is cured via the Katanin replacement.

C.4 Working at fixed density

So far we have been working at fixed chemical potential and determined the density n= n(µ)
as a function thereof. But often we wish to treat the case of fixed density, the chemical po-
tential to be determined, or at least being allowed to vary. So how can we work at fixed
density? Again, the toy model offers explicit ways to do look into this. Imagine we crank up
the interaction starting from the non-interacting case, as reflected in the interaction flow. The
self-consistency equation (C.5) provides us with a whole family of solutions for each value of
g2U , where we use the continuous flow parameter g of the interaction flow as we did above:

ΣscH(g
2U ,µ) = g2U

n
2
(µ,ΣscH(g

2U)) = g2U D (µ−ΣscH(g
2U)) .

If we want to describe a family of systems with the same density we thus have to adjust the
chemical potential as a function of g to ensure that

(µg −ΣscH(g
2U)) =

n
2D
= const.

In particular, this applies to the non-interacting case, and we trivially have

(µg −ΣscH(g
2U)) = µg=0 =: µ0 .

We arrive at the obvious, namely that the change in self-energy has to be compensated by a
change in the chemical potential. This can be viewed as a scale-dependent Hartree shift which
we have to include in the bare action of the model for the purpose of the fRG flow. Note
also, that we will have ΣscH(g) = gΣg to match the respective definitions. We thus generalise
µ→ µg and follow the fRG recipe:

G0,g =
g

iωn − εk +µg
,

G−1
g = G−1

0,g −Σg =
iωn − εk +µg

g
−Σg ,

i.e. Gg =
g

iωn − εk +µg − gΣg
.
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Note: The introduction of a scale-dependent chemical potential alters and extends the original
“regulator”-dependence of the bare action, as defined in the original interaction flow method [11].
Thus, we need to validate that the scaling properties remain valid, as we did for the QP-fRG equations
in section B.3. This can be done by following the procedure in Appendix A of [21] or similar to section
B.3. As discussed above, it is not guaranteed that the scaling property of the interaction flow remains
valid for arbitrary choices of the function µg = µ(g). One condition is set by the fact that µ appears
in direct conjunction with gΣg through all propagators, thus it needs to fulfil the very same scaling
properties as gΣg .

We continue with the same steps as in the previous section and get

Ġg =
d

d g
g

iωn − εk +µg − gΣg

=
1

iωn − εk +µg − gΣg
−

g
(iωn − εk +µ− gΣg)2

d
d g
(µg − gΣg) .

A technically simple but conceptually non-trivial step now consists in implementing the con-
dition µg −ΣscH(g2U) = µ0 = const implicitly by demanding d

d g (µg − gΣg) = 0. This implicit
definition of µg yields

Ġg =
d

d g
g

iωn − εk +µg − gΣg

=
1

iωn − εk +µg − gΣg

=
1

iωn − εk +µ0
.

Thus, we have Ġg = G0,g=1. That is, the differentiated full propagator at scale g is identi-
cal to the free propagator without any scale dependence (!). The one-loop equation using
RPA+Katanin diagrams thus yields an fRG equation for the self-energy that looks as if we had
ignored all self-energy feedback and as if we were doing the non-self-consistent calculation
we did before at fixed chemical potential. This is however not the case, and this matters when
we generalise the argument. To be precise, we now solve two equations simultaneously, one
for the self-energy and one for the chemical potential:

Σ̇g = U D(µg − gΣg) = U Dµ0 ,

µ̇g =
d

d g
(gΣg) .

The conceptual difference with respect to the non-self-consistent case is the fact that the phys-
ical chemical potential flows as well and compensates the flow of the self-energy. The non-
trivial aspect of this becomes more obvious if we continue as above and again also look at
the case of the standard self-energy feedback of the flow equation, when truncated after first
order in the effective interaction, i.e. without the RPA+Katanin replacement. In that case, the
fRG does not reproduce the self-consistent solution. We repeat the corresponding calculation,
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including µg . The scale-dependent free propagator reads

G−1
0,g =

iωn − εk +µg

g
,

˙G−1
0,g = −

1
g2
(iωn − εk +µg) +

1
g

dµg

d g
,

and the single-scale propagator Sg is given as

Sg = −Gg
˙G−1
0,g Gg

=
g2

(iωn − εk +µg − gΣg)2

�

iωn − εk +µg

g2
−

1
g

d
d g
µg

�

=
1

(iωn − εk +µg − gΣg)2

�

iωn − εk +µg − gΣg + gΣg − g
dµg

d g

�

=
1

iωn − εk +µg − gΣg
+

g(Σg −
dµg

d g )

(iωn − εk +µg − gΣg)2
.

We again impose µg − gΣg = µ0, which fixates the Fermi surface and with it the filling of the
system we use to compute the rhs of the flow equation. Technically, the computation is then
equivalent to ignoring all self-energy effects in the denominators of internal propagators. We
can again read off the result by analogy with the initial calculation above and get

Σ̇g = U D(µg − gΣg)− gU D

�

Σg −
dµg

d g

�

= U Dµ0 − gU D(Σg −Σg − gΣ̇g)

= U Dµ0 + g2U DΣ̇g

=⇒ (1− g2U D)Σ̇g = U Dµ0

=⇒ Σ̇g =
U Dµ0

1− g2U D
. (C.10)

Noticeably, now the standard, truncated fRG equation renders an expression on the rhs of the
flow equation that looks like an RPA-corrected non-self-consistent term, but with the “wrong”
sign. In contrast, the conceptually more elaborate case of the self-consistent RPA+Katanin
approach led to a much simpler and - for this toy model - even trivial equation.
What remains to look at to complete the comparison with the previous section is the case
where we omit all self-energy effects on the rhs of the flow equation. We follow the route once
again, with the single-scale propagator Sg reading

Sg = Ġ0,g =
1

iωn − εk +µg
−

g
dµg

d g

(iωn − εk +µ)2
,
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and the flow of the self-energy is given as

Σ̇g = U Dµg + gU D
dµg

d g
.

The condition of fixed density again reads µg − gΣg = µ0 which we can insert:

Σ̇g = U D(µ0 + gΣg) + gU D
�

Σg + g
d

d g
Σg

�

=⇒ (1− g2U D)Σ̇g = U Dµ0 + 2gU DΣg

=⇒ Σ̇g =
U Dµ0 + 2gU DΣg

1− g2U D
. (C.11)

This is again similar to a previous equation, namely to equation (C.8), but with different signs
on either side. This is not too surprising, since the structure of this simple model does not leave
a lot of room for variations, and we actually invert the relation n(µ) to µ(n), such that we can
expect some similarities in the structure of the equations. Yet, it is somewhat counterintuitive
that for the case of the RPA+Katanin subset and the case of omitting self-energy feedback the
roles are inverted: While RPA+Katanin yields the more involved equation for fixed µ, and no
self-energy feedback the simple non-self-consistent Hartree solution, it is the opposite when
working at fixed density.

The standard fRG flow equation under the constraint of fixed density, as well as the version
without any self-energy feedback at all, thus lead to an issue: For g2U D → 1 the rhs in Eqs.
(C.10) and (C.11) diverge. It is again instructive to look at sample plots, shown in Fig. 26.
The flow of the self-energy diverges in both cases at U D = g2 = 1, which means the flow of
the chemical potential also diverges in the same manner, since we keep the difference between
the two at a fixed value of µg − gΣg = µ0. Unlike for the case of fixed chemical potential, for
which the standard flow yielded a wrong but finite asymptotic value, the issue now appears in
an inverted manner:

1. We cannot even conduct the flow beyond U D = 1, i.e. the bounding value is on the
U-axis, rather than on the Σ-axis.

2. The behaviour is again unphysical, since a finite interaction at a finite density of states
should not render it impossible to keep the particle number fixed.

As mentioned above, a more thorough comparison of the standard fRG equations, based on
the single-scale propagator, to the Katanin replacement requires additional numerical checks
beyond the truncation after first order in U . Thus, the message from the above findings is to
keep an eye on such conceptual matters, but it does not invalidate prior approaches. It does
however point to potential conceptual issues when self-energy effects are omitted and/or the
Hartree term is treated as a simple energy shift, which are worth addressing. On the up side,
the fact that the toy model allows to interpret the feedback-less computation as the proper
way to work self-consistently at fixed density, may serve as an anchor around which we might
argue in favour of the numerical paths that have been and are used in practice.

C.5 From toy model to QP-fRG

A key aspect in relating the above results for the very simple toy model to the QP-fRG scheme
consists in the fixation of the Fermi surface. The toy model shows a) how the RPA+Katanin
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approximation reproduces the self-consistent Hartree solution, and b) that this turns out to be
technically equivalent to using bare propagators on the rhs of the flow equation, if we want
to work at fixed density. It thereby provides a useful anchor case, since it puts the more gen-
eral calculations into perspective and hopefully in a useful vicinity of such an exact case. In
turn, omitting self-energy feedback ad hoc and using the standard fRG truncation without the
Katanin replacement, does not provide such an anchor case.
We should of course not be deceived by this tentative conceptual insight given by the toy
model, due to its oversimplification. Many of these aspects are lost in the case of the 2dHM
at finite temperature, such as the constant density of states, the sharp features at T = 0, etc.
All we can argue is, that the QP-fRG flow conceptually extends this anchor case when keeping
the Fermi surface fixed, but for the more general case of all coupled one-loop contributions
to the flow of the effective interaction. As in the toy model, this is achieved by an implicitly
flowing momentum-dependent chemical potential, with frequency-dependent effects added via
the inclusion of the flow of the quasi-particle weight.
This choice of implicitly fixating the Fermi surface is an additional approximation to an al-
ready approximate machinery, needed to maintain numerical feasibility. The chemical poten-
tial, even when we allow it to flow, is of course not momentum-dependent, and in contrast
to the toy model we would have to account for a deformation of the Fermi surface. That is a
notoriously difficult task, though. Alternatively, we can check if the momentum-dependence
of the self-energy at the Fermi level that determines the deformation is sizeable or weak. We
did this for various cases and always found it to be very moderate at most, but that is not a
general result and it does not include some residual frequency-independent tad-pole contri-
butions, induced by the momentum-dependence of the effective interaction. Therefore, we
also rely on information from prior works, which indicate that Fermi surface deformations can
expected to be small for the bare interactions we look at [7, 10, 16, 70–73]. In this context,
also a Pomeranchuk instability may occur and eventually lead to an effectively anisotropic
hopping [73–77] and open Fermi surfaces. We did not present data for the corresponding
susceptibility here, since this effect is not part of the focus here.
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Figure 26: Comparison at fixed density of the of the self-energy flow gΣ(g) for
U D = 1 and µ = 2 as a function of g2 for the standard fRG one-loop flow,
the RPA+Katanin case, and without any feedback at all. At fixed density, the
RPA+Katanin flow is numerically identical to the flow without feedback at fixed
chemical potential, but the conceptual interpretation differs.
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While the above arguments may serve to better understand what we actually approximate
and how, they are conjectures at best, and transferring the Katanin replacement to the QP-fRG
scheme is not guaranteed to ameliorate the results. It is not obvious, in how far its favourable
properties survive, when the effective interaction is computed by the full one-loop expres-
sion of coupled channels, required to capture the effect of competing correlation. It has been
proven to cure certain fRG deficiencies and to be correct for static properties in mean-field-
like situations [32], and worked better in practice for dynamical properties in zero-dimensional
systems [33, 34]. But we here extend its use to dynamical properties of the normal state in
a two-dimensional system, a very different situation. Also, we use a frequency-independent
vertex and a frequency-dependent self-energy, a combination that it was not tailored for. For
that reason, we have always included results also for the standard case without the Katanin
replacement. Yet, only the Katanin replacement, together with the RPA restriction, provides
a physically sound way to fix the Fermi surface in the toy model. This is not the case for the
standard truncation that raises issues. Which of the two approaches is actually better in QP-
fRG for the values of U that are of interest needs to be cross-checked by complementary fRG
implementations as well as other methods.
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