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Abstract

We find the spectra and eigenfunctions of both ordinary and supersymmetric quantum-
mechanical models describing the motion of a charged particle over the CPn−1 manifold
in the presence of a background monopole-like gauge field. The states form degenerate
SU(n) multiplets and their wave functions acquire a very simple form being expressed
via homogeneous coordinates. Their relationship to multidimensional orthogonal poly-
nomials of a special kind is discussed. By the well-known isomorphism between the
twisted Dolbeault and Dirac complexes, our construction also gives the eigenfunctions
and eigenvalues of the Dirac operator on complex projective spaces in a monopole back-
ground.
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1 The Dirac monopole and its CPn−1 generalization

Back in 1931, a famous paper by Dirac appeared where he introduced the notion of magnetic
monopole [1]. In the same year, Tamm published a paper where he solved the Schrödinger
equation for the Hamiltonian Ĥ = (p̂ − eA)2/(2m) describing the motion of a scalar particle
of electric charge e and mass m in the field of a monopole [2].

To solve the mathematical problem addressed in this paper, we do not need to keep the
physical constants. We will set m = 1 and e = −1 (reflecting the negative sign of the electron
charge) in the following. This gives

Ĥ =
(p̂ + A)2

2
. (1.1)

The field density B of the magnetic monopole is spherically symmetric and the wave functions
are expressed in terms of spherical harmonics of a special kind, the monopole harmonics. The
vector potential A derived by Dirac included a singularity (the Dirac string). But it was later
realized that this field, when projected on S2 (the radial motion decouples), can be described as
a topologically nontrivial fiber bundle over the 2-sphere [3]. To this end, one has to introduce
two charts such that the fields A(1) and A(2) in these charts are not singular and are related by
a gauge transformation

A(1)µ = A(2)µ + ∂µχ , (1.2)

in the overlapping region. A necessary requirement is that the element ω = eiχ ∈ U(1) is
uniquely defined.

For S2, one can choose the whole sphere except one point (its north pole) as chart 1 and
a small neightbourhood of the pole as chart 2. Chart 1 can be parametrized by a complex
coordinate1 z = (x + i y)/

p
2 describing the stereographic projection onto the plane tangent

to the south pole. Then the metric of the “round” sphere reads

ds2 =
2dzdz̄
(1+ zz̄)2

. (1.3)

1We mostly use the conventions of Ref. [4]. For complex tensors, we will distinguish between four types of
indices: covariant and contravariant, holomorphic and antiholomorphic. The indices are lowered and raised with
the metric h jk̄ and its inverse hk̄ j so that, when an index changes a position, it acquires or loses the bar. But to make
the formulas more readable, we will not put the bars over the indices for the complex coordinates z̄ j , derivatives
∂̄ j , gauge fields Ā j and momenta π̄ j .
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It is regular at finite z. In the limit z→∞, we arrive at the north pole of S2.
Consider the gauge fields A(2) ≈ 0 and

A(1)z =
1
p

2
(Ax − iAy) = −

iq
2
∂

∂ z
ln(1+ zz̄) = −

iqz̄
2(1+ zz̄)

,

A(1)z̄ = A(1)z =
1
p

2
(Ax + iAy) =

iqz
2(1+ zz̄)

. (1.4)

Being projected onto a sphere centered at the origin, the Hamiltonian (1.1) acquires the form

Ĥ = −
(1+ zz̄)2

2

�

(∂x + iAx)
2 + (∂y + iAy)

2
�

= −
(1+ zz̄)2

2

§

∂

∂ z
+ iAz ,

∂

∂ z̄
+ iAz̄

ª

+
. (1.5)

For large |z|,

A(1)x ≈ −
q y

x2 + y2
, A(1)y ≈

qx
x2 + y2

. (1.6)

It is singular at the north pole (the circulation
∮

Aµd xµ along the small contour around the
north pole does not vanish). It is related to A(2) ≈ 0 by a gauge transformation (1.2) with
χ(x , y) = q arctan(y/x). To ensure that eiχ(x ,y) is uniquely defined, q should be integer.2 The
field (1.4) coincides with the projection of Dirac’s 3-dimensional field on a sphere centered at
the origin. Now q is nothing but the magnetic charge of the monopole.

Up to the factor of q, the field (1.4) coincides with the connection in the tautological line
bundle

Ataut
z =

i
4
∂

∂ z
ln deth = −

i
2
∂

∂ z
ln(1+ zz̄) . (1.7)

The reader could as well consult Ref. [6] for a detailed discussion of eigenfunctions on
the sphere written in terms of inhomogeneous variables. In this paper, we will mostly use
homogeneous variables. As we will argue, this simplifies the task considerably.

1.1 CPn−1 monopoles

When viewed as a complex manifold, the sphere S2 is known as the complex projective
space CP1. It has natural higher-dimensional generalizations, denoted CPn−1, which are de-
fined as the sets of complex n-tuples (w0, ..., wn−1) identified under the multiplication by a
nonzero complex number λ, i.e. (w0, ..., wn−1) ≡ (λw0, ...,λwn−1). They admit topologically
nontrivial gauge fields also for n> 2.

We choose the SU(n)-invariant metric on CPn−1 (the Fubini-Study metric):

ds2 =
1
X

� n
∑

α

dwαdw̄α −
1
X
�

�

n
∑

α

w̄αdwα
�

�

2
�

, (1.8)

where X :=
n
∑

α=1

wαw̄α . (1.9)

The latter shorthand notation will be widely used throughout the paper.
The complex projective space CPn−1 can be covered by n charts, each with topology Cn−1.

One of these charts excludes points with w0 = 0. The complex coordinates uniquely describing

2One can also consider the spectral problem on CP1 with one removed point for the Hamiltonian (1.5) with
a fractional magnetic charge [5]. But such Hamiltonians cannot be supersymmetrized, while the main point of
interest of this paper are supersymmetric CPn−1 models. So we stick to models with integer topological charges.
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points in this chart can be chosen as z j = w j/w0, j = 1, . . . , n−1. Then the metric (1.8) reduces
to ds2 = 2h jk̄dz jdz̄k with

h jk̄ = ∂ j ∂̄k ln(1+ z l z̄ l) =
1

1+ z l z̄ l

�

δ jk̄ −
z̄ jzk

1+ z l z̄ l

�

. (1.10)

Evidently, this metric is Kähler.
In analogy with (1.4), consider the gauge field

A j = −
iq
2
∂

∂ z j
ln(1+ z l z̄ l) = −

iqz̄ j

2(1+ z l z̄ l)
, A j̄ = A j , (1.11)

in the chosen chart. One can perform a similar analysis3 to what we have just done for CP1

and conclude that q must be integer. We will call the field (1.11) a CP monopole of charge q.
The spectrum and eigenfunctions of the Hamiltonian

Ĥ = −hk̄ j∂k̄∂ j , (1.12)

on CPn−1, with the tensor hk̄ j being the inverse Fubini-Study metric4 [this Hamiltonian is a
multidimensional analog of (1.5) in the absence of the gauge field] were found in [7, Chapter
3, C. III ], [8]. In a more general case, when theCPmonopoles (1.11) are present, the problem
was solved by Kuwabara [9]. In the next section, we will rederive his result using a different
method.5 The supersymmetric case will be considered in Sect. 3.

2 Ordinary CPn−1

Our approach has its roots in two-dimensional sigma models with target spaces such as CPn−1,
which have recently been reformulated in a more algebraic form by one of the authors [13–15].
Physically, this relation is an equivalence between sigma models and the Gross-Neveu models,
i.e. models with quartic interactions. Quantum mechanical models considered in the present
paper can be seen as dimensional reductions of those sigma models.

2.1 Hamiltonian formalism

We start with a mechanical problem of a particle on CPn−1 equipped with the metric (1.8).
The relevant Lagrangian is

L =
ẇαΠαβ̄ ˙̄wβ

X
, (2.1)

3See e.g. section 13.3 in the book [4]. Basically, one should require for the flux of the gauge field through a
sphere CP1 ⊂ CPn−1 to be integer:

1
2π

∫

CP1

dA = q ∈ Z .

4One can check that the operator hk̄ j∂ j ∂̄k coincides up to the factor of 2 with the Laplace-Beltrami operator on
CPn−1,

2hk̄ j∂ j ∂̄k =△LB =
1

det(h)
∂ j det(h)hk̄ j ∂̄k +

1
det(h)

∂̄k det(h)hk̄ j∂ j , det(h) =
1

(1+ z l z̄ l)n
. (1.13)

5There is also a general representation-theoretic method based on the identification of the Laplacian (both with
and without monopoles) with a Casimir operator acting on a certain (induced) representation of the symmetry
group, cf. [10–12] and references therein. As compared to those methods, the approach we propose in the present
paper is of a more algebraic nature and allows to solve the problem in very explicit terms.
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where X = wαw̄α and Παβ̄ = δαβ̄ − w̄αwβ/X is the projector on the directions orthogonal to
vector wα,

wαΠαβ̄ = w̄βΠαβ̄ = 0 . (2.2)

In the chart excluding the points with w0 = 0, this Lagrangian can be rewritten in terms of the
variables z j = w j/w0 and the metric (1.10):

L = h jk̄ż j ˙̄zk . (2.3)

But the form (2.1) is more convenient for our purposes. The Lagrangian (2.1) is invariant
under the gauge transformations

wα → λ(t)wα , λ(t) ∈ C∗ . (2.4)

These gauge transformations correspond to the C∗ quotient entering the definition of the
projective space.

The canonical momenta are

πα =
Παβ̄ ˙̄wβ

X
, π̄α =

Πβᾱẇβ

X
. (2.5)

As a consequence of the gauge symmetry (2.4), they obey the constraints

wαπα = w̄απ̄α = 0 . (2.6)

The canonical Hamiltonian is

H = X πβ π̄β . (2.7)

There is an alternative way to see how the constraints (2.6) emerge. To this end, one can
introduce a couple of extra nondynamic variables A, Ā and express the Lagrangian in the form

L′ =
(ẇα − Awα)( ˙̄wα − Āw̄α)

wβ w̄β
. (2.8)

The Lagrangian (2.1) is then restored after excluding A and Ā. The constraints (2.6) appear
from the equations of motion ∂ L′

∂ A =
∂ L′

∂ Ā = 0.
Formulations with auxiliary gauge fields, such as (2.8), are well known in the context of

two-dimensional sigma models under the name of gauged linear sigma models (GLSM). The
GLSM approach to the CPn−1-system dates back to [16–18]. Those authors, as well as most of
their successors, used a version of GLSM where one imposes the constraint wαw̄α = 1, which
breaks C∗ down to U(1), so that the auxiliary gauge field becomes a U(1) gauge field. We
prefer not to introduce any constraints and work with the C∗ quotient.

2.2 Quantization

To quantize the theory, we define the operators π̂β = −i∂ /∂ wβ , ˆ̄πβ = −i∂ /∂ w̄β . The standard
commutation relations hold:

[π̂β , wα] = −iδαβ , [ ˆ̄πβ , w̄α] = −iδαβ . (2.9)

To write the quantum version of (2.7), we should prescribe a particular way of ordering of the
operators in Ĥ. We make the following choice:

Ĥ = −X ∂ 2

∂ wβ∂ w̄β
≡ −X△ , (2.10)

5
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while the quantum constraints are chosen as

wα
∂

∂ wα
Ψ = w̄α

∂

∂ w̄α
Ψ = 0 . (2.11)

Thus, we are going to solve the spectral problem ĤΨ = EΨ in the Hilbert space

H0 := L2

�

CPn−1
�

, (2.12)

involving the constraints (2.11) and equipped with the norm6

〈Ψ|Ψ〉 =
∫ n−1
∏

α=0

dwαdw̄α exp{−X } |Ψ|2 . (2.13)

Note that the Hamiltonian (2.10) is Hermitian in this Hilbert space: when we flip the derivative
∂ /∂ wα in the matrix element

∫ n−1
∏

α=0

dwαdw̄α Ψ̄1(w, w̄)F(X ) ∂ 2

∂ wα∂ w̄α
Ψ2(w, w̄) ,

it acts only on Ψ̄1. The contribution arising from differentiating F(X ) vanishes due to (2.11).

In the unconstrained formulation, the spectral problem is

−hk̄ j∂ j ∂̄kΨ = −(1+ z l z̄ l)(z̄kz j +δk̄ j)∂ j ∂̄kΨ = EΨ , (2.14)

and the norm (2.13) transforms into the norm

〈Ψ|Ψ〉 =
∫ n−1
∏

j=1

dz jdz̄ j det(h) |Ψ|2 , (2.15)

in the unconstrained Hilbert space.

2.3 Eigenfunctions and eigenvalues

2.3.1 Without monopoles

We now proceed to solve the spectral problem formulated above, sticking to the description
(2.10), (2.11) with unresolved constraints. We will be looking for eigenfunctions of (2.10)
satisfying (2.11) of the following general form

Ψ(w, w̄) =
1
X L

Aα1...αL |β̄1...β̄L
wα1 · · ·wαL w̄β1 · · · w̄βL , (2.16)

with an integer L ≥ 0.

Theorem 1. The function (2.16) is an eigenfunction of the Hamiltonian (2.10) iff the tensor A
is traceless,

Aγ...αL |γ̄...β̄L
= 0 . (2.17)

The eigenvalue is

E(n, L, q = 0) = L(L + n− 1) . (2.18)

6One could take any rapidly falling function of X as the measure, but e−X is the most natural choice.
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n−1















L

L′

Figure 1: Young diagram for the relevant SU(n) representations.

Proof. First, if A is traceless, it can be easily checked that ĤΨ = L(L + n− 1)Ψ, so that (2.16)
is an eigenfunction with the eigenvalue (2.18).

If A is not traceless, one can subtract its trace parts, recasting the wave function in the form

Ψ(w, w̄) =
1
X L
bAβ̄1...β̄L
α1...αL

wα1 · · ·wαL w̄β1 · · · w̄βL +
1

X L−1
bAβ̄1...β̄L−1
α1...αL−1

wα1 · · ·wαL−1 w̄β1 · · · w̄βL−1 + . . . ,

(2.19)
where the tensors bA are traceless. The Hamiltonian acts on each of the terms via multiplication
by the eigenvalue (2.18) with different values of L. Thus, Ψ is an eigenfunction if only one of
the terms is present. This implies that A is traceless.

The ground state of Ĥ is Ψ = const. The corresponding eigenvalue is E = 0. At the next
level, we have the functions

Ψ =
Aα|β̄ wαw̄β

X
, (2.20)

with Aα|ᾱ = 0. There are n2 − 1 such independent functions. All of them have the energy
E = E(n, L = 1, q = 0) = n. These n2−1 degenerate states belong to the adjoint representation
of SU(n). Such a degeneracy should have been expected, because the Hamiltonian (2.10) is
obviously invariant under unitary transformations.

For higher L, the representations may be described by the Young diagram shown in Fig. 1
(with L′ = L). Alternatively, we can describe it by using Dynkin labels. They are simply the
differences of the row lengths of the Young diagram. As a result, these representations of
SU(n) have only two nonzero Dynkin labels for the leftmost and the rightmost node of the
Dynkin diagram:

ai=1,...,n−1 = (L, 0, . . . , 0,
n−3

L) . (2.21)

The dimensions of such representations7 are

#(n, L) =

�

L + n− 2
n− 2

�2
2L + n− 1

n− 1
. (2.22)

For example, for n= 3, #(3, L) = (L + 1)3. We have a singlet, an octet, a 27-plet, etc.
Hermiticity of the Hamiltonian means that the inner prodict of two wave functions (2.16)

with different L’s and hence with different energies vanishes. It is not always so for different
functions with the same L, but an orthogonal basis can always be chosen.

7See Appendix A.
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2.3.2 With monopoles

To describe a system in the presence of a CP monopole of charge q ∈ Z, we replace the
Lagrangian (2.1) by

L̃ = L − ẇαAα − ˙̄wαĀα , (2.23)

where

Aα = −i
qw̄α

2X
, Āα = i

qwα

2X
, (2.24)

is the monopole gauge field (1.11) in homogeneous coordinates.
The action corresponding to the new Lagrangian is still invariant under theC∗ gauge trans-

formations wα→ λ(t)wα. The canonical Hamiltonian reads

Hq = X (πα + Aα)(π̄α + Āα) . (2.25)

For its quantum counterpart, we choose a natural expression

Ĥq = −
X
2
{(∂α + iAα), (∂̄α + iĀα)}+ = −

X
2

§�

∂

∂ wα
−

qw̄α

2X

�

,
�

∂

∂ w̄α
+

qwα

2X

�ª

+
, (2.26)

the operator known as Bochner Laplacian.
The constraints are modified as follows:

wα
∂

∂ wα
Ψ = −

q
2
Ψ , w̄α

∂

∂ w̄α
Ψ =

q
2
Ψ. (2.27)

This means that, when the homogeneous coordinates are multiplied by a common phase factor,
wα→ eiθwα, the wave function transforms as Ψ → e−iqθΨ, implying that it is a section of the
qth power of the Hopf bundle over CPn−1. On the space of such sections, we define the same
scalar product (2.13), turning it into the Hilbert space that we denote as

Hq = L(q)2

�

CPn−1
�

. (2.28)

We will be looking for eigenfunctions of (2.10) satisfying the constraints (2.27) in the form

Ψ(w, w̄) =
1

X L+L′
2

Aα1...αL |β̄1...β̄L′
wα1 · · ·wαL w̄β1 · · · w̄βL′ ,

where L′ − L = q .

(2.29)

As earlier, for Ψ to be an eigenfunction, the tensor A... should be traceless. The eigenfunc-
tions form SU(n) multiplets that are characterized by the sets of Dynkin labels

(L, 0, . . . , 0,
n−3

L′) . (2.30)

The dimensions of these representations are

#(n, L, L′) =

�

L + n− 2
n− 2

��

L′ + n− 2
n− 2

�

L + L′ + n− 1
n− 1

. (2.31)

The energies are

E(n, L, L′) = LL′ + (n− 1)
L + L′

2
. (2.32)
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The wave functions (2.16) and the multiplicities (2.31) have been derived earlier by
Kuwabara [9] by a different method: he considered the fiber bundle S2n−1 → CPn−1 and
picked up the spherical harmonic on S2n−1 that “survive” the projection.

It is also instructuve to write out an explicit expression for the Hamiltonian in inhomoge-
neous coordinates. In the chart excluding the points with w0 = 0, a wave function satisfying
(2.27) can be presented in the form

Ψ(wα, w̄α) =

�

w̄0

w0

�q/2

Φ(z j , z̄ j) , with z j =
w j

w0
. (2.33)

The wave functions Φ(z j , z̄ j) live in the L2 Hilbert space with the norm (2.15).
One can derive that

ĤqΨ(w, w̄) =

�

w̄0

w0

�q/2

Ĥ ′qΦ(z
j , z̄ j) , (2.34)

where

Ĥ ′q = −
1
2

hk̄ j
§

∂

∂ z j
+ iA j ,

∂

∂ z̄ k̄
+ iĀk

ª

+

= (1+ z l z̄ l)

�

−(δ jk + z j z̄k)
∂ 2

∂ z j∂ z̄k
+

q
2

�

z j ∂

∂ z j
− z̄k ∂

∂ z̄k

�

�

+
q2z l z̄ l

4
. (2.35)

This Hamiltonian represents a multidimensional generalization of (1.5).

2.4 Orthogonal polynomials

It is well-known that the eigenfunctions of the Laplacian on the sphere S2 ≃ CP1 are expressed
in terms of the (associated) Legendre polynomials. Eigenfuctions of the Hamiltonian (2.10)
are also expressed in terms of certain multidimensional orthogonal polynomials.

2.4.1 n = 2

Consider first the simplest CP1 case. The eigenstates form SU(2) multiplets of dimension
L+ L′+ 1. The wave functions are expressed via the Jacobi polynomials [2,3], which can also
be understood in our approach.8 Consider as an example the case q = 1. At the level L = 0
(and hence L′ = 1), we have two states:

ΨL=0(w
0,1, w̄0,1) =

w̄0

p
wαw̄α

, and
w̄1

p
wαw̄α

. (2.36)

This gives

ΦL=0(z, z̄) =
1

p
1+ zz̄

, and
z̄

p
1+ zz̄

. (2.37)

At the level L = 1, a generic function (2.29) reads

ΨL=1(w
0,1, w̄0,1) =

1
X 3/2

Aα|β̄1β̄2
wαw̄β1 w̄β2 , (2.38)

with the tracelessness condition to be imposed on Aα|β̄1β̄2
. This gives in terms of z, z̄ four

functions:

ΦL=1(z, z̄) : =
z

(1+ zz̄)3/2
,

1− 2zz̄
(1+ zz̄)3/2

,
z̄(2− zz̄)
(1+ zz̄)3/2

,
z̄2

(1+ zz̄)3/2
. (2.39)

8The relation of Jacobi polynomials to the representation theory of SU(2) is nicely explained in [19].
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For L = 2, there are six functions:

ΦL=2(z, z̄) : =
z2

(1+ zz̄)5/2
,

z(2− 3zz̄)
(1+ zz̄)5/2

,
1− 6zz̄ + 3z2z̄2

(1+ zz̄)5/2
,

z̄(3− 6zz̄ + z2z̄2)
(1+ zz̄)5/2

,
z̄2(3− 2zz̄)
(1+ zz̄)5/2

,
z̄3

(1+ zz̄)5/2
. (2.40)

The functions (2.36), (2.39), (2.40) as well as all the functions with still higher L are
normalizable and mutually orthogonal with the measure

dµ =
dzdz̄
(1+ zz̄)2

. (2.41)

Introducing

eiφ =
z
p

zz̄
, and t = cosθ =

1− zz̄
1+ zz̄

,

this measure acquires a flat form, dµ= d tdφ with φ ∈ [0, 2π) and t ∈ [−1,1].
The eigenstates are distinguished by the (integer) eigenvalues of the angular momentum

operator m̂ = −i∂ /∂ φ. First let us pick the states with m = 0. Their wave functions read
Φm=0

L (t)∼
p

1+ t PL(t), where PL(t) are polynomials of degree L. The functions Φm=0
L (t) are

normalized in the interval [−1,1] with the flat measure. It follows that PL(t) are normalized
in this interval with the measure dµ= (1+ t)d t and represent the Jacobi polynomials9 P0,1

L (t).
The wave functions in the m= 1 sector have the form

Φm=1
L (t,φ) ∼ eiφ

p
1− t (1+ t) P1,2

L−1(t) (L ≥ 1) . (2.44)

The general formula for any positive q and any m reads [to verify that these expressions coin-
cide with the wave functions in (2.36), (2.39), (2.40), use the relations (2.43)]

Φm
L (t,φ) ∼ eimφ(1− t)−m/2(1+ t)(m+q)/2 P−m,m+q

L (t) , (2.45)

with L = L0, L0 + 1, . . ., where

L0 = −(m+ q) if m< −q , L0 = 0 if − q ≤ m≤ 0 , and L0 = m , if m> 0 .(2.46)

2.4.2 n = 3

For higher n, the eigenfunctions can also be expressed in terms of orthogonal polynomials,
in this case of several variables. Such polynomials were rather extensively studied by math-
ematicians [20, 21]. We will not come to grips with the description of a generic system but,
to illustrate how the orthogonal polynomials emerge in our problem, we will discuss in de-
tail only the simplest nontrivial case: the motion over CP in the absence of monopoles. The

9By definition, the Jacobi polynomials Pαβn (t) are orthogonal in the interval [−1,1] with the measure
(1− t)α(1+ t)β . The first three polynomials read

Pαβ0 = 1 , Pαβ1 (t) = α+ 1+
α+ β + 2

2
(t − 1)a ,

Pαβ2 (t) =
(α+ 1)(α+ 2)

2
+
(α+ 2)(α+ β + 3)

2
(t − 1) +

(α+ β + 3)(α+ β + 4)
8

(t − 1)2 . (2.42)

Note the relations [3]

P−α,β
s+α (t) = C(α,β , s)(t − 1)αPα,β

s (t) ,

Pα,−β
s+β (t) = C ′(α,β , s)(t + 1)β Pα,β

s (t) , (2.43)

which hold for integer α,β .

10

https://scipost.org
https://scipost.org/SciPostPhys.15.5.195


SciPost Phys. 15, 195 (2023)

eigenstates of the Hamiltonian (2.10) with the constraints (2.11) form the SU(3) multiplets
with Dynkin labels (L, L). When L = 0, the wave function is just a constant. In the simplest
nontrivial case L = 1, we have an octet of degenerate states. Their eigenfunctions can be
chosen as

Ψ1,2,4,5,6,7 =
wαw̄β

X
, with α ̸= β ,

Ψ3 =
w0w̄0 −w1w̄1

X
, and Ψ8 =

w0w̄0 +w1w̄1 − 2w2w̄2

X
. (2.47)

Let us concentrate on the states Ψ3 and Ψ8 having zero weight. Fixing the gauge w0 = 1 and
introducing x = z1z̄1, y = z2z̄2, their wave functions acquire the form

Ψ3 =
1− x

1+ x + y
, and Ψ8 =

1+ x − 2y
1+ x + y

. (2.48)

The functions (2.47) and (2.48) are orthogonal with the measure

dµ =
dz1dz̄1dz2dz̄2

(1+ z1z̄1 + z2z̄2)3
=

d xd ydφ1dφ2

(1+ x + y)3
, (2.49)

where φ1,2 are the phases of z1,2, on which the functions (2.48) do not depend. Introduce

t1 =
x

1+ x + y
, t2 =

y
1+ x + y

. (2.50)

Then

d xd y
(1+ x + y)3

= d t1d t2 , (2.51)

and the domain where the variables t1,2 change is a triangle (a 2-dimensional simplex10)

0≤ t1 ≤ 1 , 0≤ t2 ≤ 1− t1 . (2.52)

Being expressed in terms of t1,2, the wave functions (2.48) read

Ψ3 = 1− 2t1 − t2 , Ψ8 = 1− 3t2 . (2.53)

They are orthogonal on the simplex (2.52) with the flat measure (2.51).
Consider now the functions of zero weight in the higher multiplets: the 27-plet with the

Dynkin labels (L = 2, L = 2), the 64-plet with the labels (3, 3), etc. At level L, there are L + 1
such states. Indeed, a representation (L, L) can be thought of as a symmetrized product of L
adjoint representations, and the elements of zero weight in this representation can be thought
of as the symmetrized product of the Cartan subalgebras of su(3). The rank of su(3) is 2. The
number of elements at level L is the number of ordered sets p1 ≤ · · · ≤ pL−1 where each p j
acquires only two values. There are L + 1 such sets.

The wave functions of three naturally chosen zero-weight states at level L = 2 are

Ψ L=2
1 =

(w0w̄0)2 − 4w0w̄0w1w̄1 + (w1w̄1)2

X 2
= 1− 6t1 − 2t2 + 6t2

1 + t2
2 + 6t1 t2 ,

Ψ L=2
2 =

(w0w̄0)2 − 4w0w̄0w2w̄2 + (w2w̄2)2

X 2
= 1− 2t1 − 6t2 + t2

1 + 6t2
2 + 6t1 t2 ,

Ψ L=2
3 =

(w1w̄1)2 − 4w1w̄1w2w̄2 + (w2w̄2)2

X 2
= t2

1 + t2
2 − 4t1 t2 .

(2.54)
10We note in passing that there is a natural action of the torus [U(1)]n−1 on CPn−1. The variables t i are the

moment maps of this action, and the moment polytope is an (n − 1)-simplex. This is the geometric reason why
these variables are useful.
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They are linearly independent, but not mutually orthogonal: 〈1|1〉 = 〈2|2〉 = 〈3|3〉 = 1
30 ,

〈1|2〉= 〈1|3〉= 〈2|3〉 = 1
180 .

One can, of course, find their orthogonal linear combinations, which we will do below.
Notice that the functions (2.54) are orthogonal to (2.48) and to Ψ L=0 = 1.

2.4.3 Orthogonal polynomials on the simplex

The functions Ψ L=2
1,2,3 are quadratic polynomials in two variables t1 and t2. After orthogonal-

ization, they become orthogonal polynomials on the simplex (2.52) with flat measure. The
problem of finding a set of orthogonal polynomials on the simplex (2.52) with the weight
tα1 tβ2 (1 − t1 − t2)γ was addessed and solved long ago by P. Appell [22]. They represent a
generalisation of the Jacobi polynomials and are expressed through them. In our case, when
α= β = γ= 0, the Appell polynomials have the form11

Ap≥k(t1, t2) = (1− t2) P
0,2k+1
p−k (1− 2t2) Pk

�

2t1 + t2 − 1
1− t2

�

, (2.55)

where P0,2k+1
p−k are the Jacobi polynomials and Pk are the ordinary Legendre polynomials.

The calculation gives

A00 = 1 ,

A10 = 1− 3t2 , A11 = 2t1 + t2 − 1 ,

A20 = 1− 8t2 + 10t2
2 , A21 = −1+ 2t1 + 6t2 − 5t2

2 − 10t1 t2 ,

A22 = 2(1− 6t1 − 2t2 + t2
2 + 6t2

1 + 6t1 t2) . (2.56)

The second line coincides with (2.53). The functions A2k represent (mutually orthogonal)
linear combinations of the functions (2.54):

A20 =
3(Ψ L=2

2 +Ψ L=2
3 )−Ψ L=2

1

2
, A21 = Ψ

L=2
3 −Ψ L=2

2 , A22 = 2Ψ L=2
1 . (2.57)

A similar analysis can be carried out for higher n. Suppose one still has q = 0, and consider
only the wave functions of zero weight. In terms of z j , z̄ j , the wave functions (2.16) with
different L’s are orthogonal to one another with the measure

dµ =

∏n−1
j=1 dz jdz̄ j

(1+ zkz̄k)n
∼

∏n−1
j=1 d x j
�

1+
∑n−1

j=1 x j

�n . (2.58)

The functions of the same L can be orthogonalized. Introduce the variables

t j =
x j

1+
∑n−1

j=1 x j

. (2.59)

Lemma. The measure (2.58) corresponds to a flat measure

dµ=
n−1
∏

j=1

d t j , (2.60)

on the simplex

0≤ t1 ≤ 1, 0≤ t2 ≤ 1− t1, . . . , 0≤ tn−1 ≤ 1−
n−2
∑

j=1

t j . (2.61)

11For a general expression, see Eq.(29) in chapter 10 of the book [20].
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Proof. The Jacobian reads (here R= 1+
∑n−1

j=1 x j):

J =
D(t1, . . . , tn−1)
D(x1, . . . xn−1)

=

�

�

�

�

�

�

�

�

1
R −

x1
R2 . . . . . . − x1

R2

− x2
R2

1
R −

x2
R2 . . . − x2

R2

. . . . . . . . . . . .
− xn−1

R2 . . . . . . 1
R −

xn−1
R2

�

�

�

�

�

�

�

�

. (2.62)

If the terms 1/R were crossed out, one would obtain a matrix of rank 1. The determinant and
all the minors of such a matrix vanish. This means that the only remaining contributions in
the determinant (2.62) are

J =
1

Rn−1
−

n−1
∑

j

x j

Rn
=

1
Rn

,

from which (2.60) follows.

As in the n = 3 case, the wave functions at level L represent polynomials of degree L in
n− 1 variables t j , which are orthogonal on the simplex (2.61) with the flat measure.

3 Supersymmetric CPn−1

Our next goal is to find the spectrum of the supersymmetric CPn−1 model in a monopole back-
ground. We will do it using the homogeneous coordinates wα, w̄α and their superpartners. It
is instructive, however, to outline first the description of this model in terms of the inhomoge-
neous coordinates z j = w j/w0, z̄ j = w̄ j/w̄0, which is mostly found in the literature.

3.1 Inhomogeneous description

To do so, we consider the 1-dimensional superspace (t,θ , θ̄ ) and introduce n chiral super-
fields Z j satisfying the condition D̄Z j = 0 and their conjugates Z̄ j satisfying DZ̄ j = 0, where12

D =
∂

∂ θ
− iθ̄

∂

∂ t
, D̄ = −

∂

∂ θ̄
+ iθ

∂

∂ t
, (3.1)

are the supersymmetric covariant derivatives. The component expansions of Z j and Z̄ j are

Z j = z j(tL) +
p

2θψ j(tL) , Z̄ j = z̄ j(tR)−
p

2 θ̄ ψ̄ j(tR) , (3.2)

with tL,R = t ∓ iθθ̄ . Here ψ j and ψ̄ j are the fermion superpartners of z j and z̄ j .
The action of the model reads13

S =

∫

dθdθ̄d t
�

1
4

h jk̄(Z , Z̄)DZ j D̄Z̄k +R(Z , Z̄)
�

, (3.3)

where

R = −
q
2
K = −

q
2

ln(1+ Z j Z̄ j) . (3.4)

12See e.g. Chap. 7 and Chap. 9 of the book [4].
13More known is the model involving real superfields and describing the geometry of the de Rham complex

[27,28]. The model (3.3) describes the Dolbeault complex and, in contrast to the model considered in Refs. [27,28],
allows one to include gauge fields in the dynamics.
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The last term describes the monopole gauge field. Indeed, the corresponding component La-
grangian reads14

L = h jk̄

�

ż j ˙̄zk +
i
2

�

ψ j ˙̄ψk − ψ̇ jψ̄k
�

�

−
i
2

�

∂ jhl k̄ ż l − ∂̄kh j l̄
˙̄z l
�

ψ jψ̄k

− A j ż
j − Āk ˙̄zk + i(∂ jĀk − ∂̄kA j)ψ

jψ̄k , (3.5)

with

A j = i∂ jR = −
iqz̄ j

2(1+ z l z̄ l)
, Āk = −i∂̄kR =

iqzk

2(1+ z l z̄ l)
, (3.6)

which coincides with (1.11). The function K is nothing but the Kähler potential, h jk̄ = ∂ j ∂̄kK.
By construction, the Lagrangian (3.5) is invariant w.r.t. the supersymmetry transforma-

tions,

δz j = εψ j , δψ̄ j = iε˙̄z j ,

δz̄ j = −ε̄ ψ̄ j , δψ j = −iε̄z j . (3.7)

The classical supercharges can be calculated using Noether’s theorem. They read [29]

QR =ψ
j
�

π j −
i
2
∂ jhl k̄ψ

lψ̄k + i∂ jR
�

,

Q̄R = ψ̄
k
�

π̄k +
i
2
∂k̄h j l̄ψ

jψ̄l − i∂̄kR
�

, (3.8)

where the canonical momenta π j and π̄k are obtained by differentiating the Lagrangian over
ż j and ˙̄zk, while keeping ψm and ψ̄m fixed.

To define the corresponding supersymmetric quantum problem, one should15

1. Pass from fermion variables ψ j and ψ̄ j carrying world indices to tangent space vari-
ables ψa = ea

jψ
j , ψ̄a = ēa

j ψ̄
j , where ea

j are the vielbeins. The advantage of this de-
scription is that the classical Poisson bracket of the fermion variables becomes trivial
{ψa, ψ̄b}PB = iδab, while the Poisson brackets like {ψ, z}PB vanish. The classical super-
charges will then acquire the form

QR = e j
cψ

c
�

p j − iωab̄, jψ
aψ̄b + i∂ jR
�

,

Q̄R = ēk
c ψ̄

c
�

p̄k − iωab̄,k̄ψ
aψ̄b − i∂̄kR
�

, (3.9)

where p j and p̄k are obtained from the variation of the Lagrangian keeping ψc and ψ̄c

fixed (they do not coincide with π j , π̄k) and ωab̄, j , ωab̄,k̄ are the spin connections.

2. Pass from classical supercharges to quantum ones using the Weyl (symmetric) ordering
prescription. These quantum supercharges act in the Hilbert space with the flat measure.

3. Make a similarity transformation and define the covariant quantum supercharges acting
in the Hilbert space with the measure (2.15). Such quantum supercharges are nilpotent.
The anticommutator {Q̂R, ˆ̄QR} gives the quantum Hamiltonian.

Inspecting the quantum supercharges Q̂R and ˆ̄QR thus obtained, one can notice that

14For a generic complex manifold, the Lagrangian also involves a quartic fermionic term. But for the Kähler
manifolds it is absent.

15See [4,29,30] for detailed explanations.
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1. The action of Q̂R on the wave functionsΨ(zm, z̄m;ψa)maps to the action of the nilpotent
operator

∂R = ∂ − ∂
�

R− 1
4

ln deth
�

∧ (3.10)

of the twisted Dolbeault complex, where ∂ is the operator of the exterior holomorphic
derivative. ˆ̄QR maps to the Hermitian conjugate operator.16

Thus, the Hilbert space of wave functions Ψ(z j , z̄ j;ψa)where the quantum supercharges
and Hamiltonian act may be mathematically described as the set of all (k, 0)-forms on
CPn−1 or else as

H := L2

�

ΠTCPn−1
�

, (3.11)

where ΠTCPn−1 is the (1,0) tangent bundle17 to CPn−1 with fermionic fibers.

2. For Kähler manifolds, the sum Q̂R + ˆ̄QR is isomorphic to the Dirac operator 18

D/ = eM
A γ

A
�

−i∂M −
i
4
ωBC ,Mγ

BγC + AM

�

, (3.12)

where eM
A are the (real) vielbeins, ωBC ,M are the spin connections and AM is the gauge

field. For CPn−1, the latter is given by Eq. (1.11). The Euclidean gamma matrices γA

satisfy the Clifford algebra:

γAγB + γBγA = 2δAB . (3.13)

The Dirac operator acts on the spinors19 living in CPn−1.

Note that the gauge field that twists the Dolbeault complex does not coincide with the
physical gauge field that enters the Dirac operator and is determined by the second term in
the integrand in Eq.(3.3), but is shifted. For CPn−1, this shift amounts to the shift of charge,

q → q−
n
2

def
= s . (3.14)

This is illustrated by the explicit expression for the covariant supercharge Q̂R with R written
in Eq.(3.4):

Q̂ = −iψk

�

∂

∂ zk
+

1
2

�

q−
n
2

� z̄k

1+ z l z̄ l
+ψa ˆ̄ψb̄ωab̄,k

�

. (3.15)

16See e.g. Propositions 1.4.23 and 1.4.25 in the book [31] or Theorem 9.2 in the book [4]).
17At every point p ∈ M of a complex manifold M we may decompose the complexified tangent space as

(TpM)C = T (1,0)
p M⊕ T (0,1)

p M.
18To the best of our knowledge, this fact was first noticed by Hitchin [32]. The operator (3.12) is Hermitian.

(Note the difference with the conventions of Ref. [4] where the Dirac operator involved an extra factor of i and
was anti-Hermitian.)

19More exactly, on the bispinors belonging to the representation SR ⊕ SL , where SR and SL are two irreducible
spinor representations of Spin(D), D being the real dimension of the manifold. In our example D = 2(n−1). One
can observe in particular that the total number of independent components in Ψ(w, w̄,χ),

N =
n−1
∑

j=0

�

n− 1
j

�

= 2n−1 ,

coincides with the number of bispinor components in the space of real dimension D = 2(n− 1).
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3.2 Homogeneous description

The Kähler potential on CPn−1 is expressed via homogeneous coordinates as

K = ln(w̄αwα) ≡ lnX . (3.16)

We now introduce n chiral and n antichiral superfields

Wα = wα(tL) +
p

2θχα(tL) , W̄α = w̄α(tR)−
p

2 θ̄ χ̄α(tR) , (3.17)

and write the action as

S =

∫

dθdθ̄d t
�

1
4

hαβ̄(W, W̄ )DWαD̄W̄β +R(W, W̄ )
�

, (3.18)

where R= −(q/2)K and

hαβ̄ = ∂α∂̄βK =
Παβ̄

X
, (3.19)

with Παβ̄ = δαβ̄ − w̄αwβ/X . It is convenient to write the component Lagrangian in the follow-
ing form:

L = hαβ̄
�

ẇα ˙̄wβ − iχ̇αχ̄β
�

− i∂αhγβ̄ ẇγχαχ̄β − 2Āα ˙̄wα + i(∂αĀβ − ∂̄βAα)χ
αχ̄β

=
Παβ̄

X
(ẇα ˙̄wβ − iχ̇αχ̄β) +

iχγχ̄β ẇα

X 2
(w̄γΠαβ̄ + w̄αΠγβ̄)−

iq
X

wα ˙̄wα −
qΠαβ̄
X

χαχ̄β . (3.20)

This complex Lagrangian differs from the real Lagrangian (3.5) (expressed in homogeneous
coordinates) by a total derivative and brings about the same dynamics. It is invariant under
the C∗ gauge transformations:

wα → λ(t)wα , χα → λ(t)χα , (3.21)

(the terms ∝ λ̇ in the transformed Lagrangian cancel). Due to supersymmetry, it is also
invariant (as is not difficult to check) under the Grassmann-odd gauge transformations

δχα = η(t)wα , δχ̄α = η̄(t)w̄α . (3.22)

Bearing this in mind, one can present the supersymmetry transformations δwα = εχα etc. in
a C∗-covariant form,

δwα = εχα , δχ̄α = iεDw̄α ,

δw̄α = −ε̄ χ̄α , δχα = −iε̄Dwα , (3.23)

where the C∗ transformation law for

Dwα = ẇα −
w̄β ẇβ

X
wα and Dw̄α = ˙̄wα −

wβ ˙̄wβ

X
w̄α , (3.24)

is the same as for wα and w̄α.
The canonical momenta for the Lagrangian (3.20) are

pα =
∂ L
∂ χ̇α

= −
iΠαβ̄ χ̄

β

X
, π̄α =

∂ L

∂ ˙̄wα
=

ẇβΠβᾱ
X
−

iq
X

wα ,

πα =
∂L
∂ ẇα

=
Παβ̄ ˙̄wβ

X
+ i

w̄γΠαβ̄ + w̄αΠγβ̄
X 2

χγχ̄β . (3.25)
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The following constraints hold:

C1 = wαπα +χ
α pα = 0 , C2 = w̄α π̄α = −iq , C3 = wα pα = 0 , (3.26)

(one can check the validity of (3.26) directly, substituting the momenta (3.25) into (3.26) and
using wαΠαβ̄ = w̄βΠαβ̄ = 0, but the true origin of the constraints are the gauge symmetries
(3.21) and (3.22)). The canonical Hamiltonian reads

H = X
�

πα −
i
X 2
(w̄γΠαβ̄ + w̄αΠγβ̄)χ

γχ̄β
��

π̄α +
iq
X

wα
�

+
q
X
Πγβ̄χ

γχ̄β . (3.27)

Taking into account the constraints (3.26), it reduces to a simple expression

H = Xπαπ̄α + w̄γχγpαπ̄α , (3.28)

one and the same for all q !
The supersymmetries (3.23) bring about conserved supercharges. For the complex La-

grangian (3.20), Noether’s procedure gives

Q = χα
�

πα −
i
2
∂αhβγ̄χ

β χ̄γ
�

= χαπα ,

Q̄ = χ̄α
�

π̄α +
i
2
∂̄αhβγ̄χ

β χ̄γ − 2i∂̄αR
�

= χ̄α
�

π̄α +
iqwα

X

�

= iX pαπ̄α (3.29)

(The terms ∼ ∂ hχχ̄ vanish by symmetry: the factor ∂αhβγ̄ is symmetric under α↔ β due to
Kählerian nature of the manifold while the factor χαχβ is skew-symmetric; the last formula
for Q̄ is valid in virtue of the expression for pα in (3.25) and the constraint w̄απ̄α = −iq).

For readers familiar with the 2D sigma model setup [14, 15], it is instructive to compare
the Hamiltonian (3.28) with the one appearing in 2D Gross-Neveu models. To match the two
formulations, one rewrites the Hamiltonian as follows:

H = Tr [(w⊗π+χ ⊗ p)(π̄⊗ w̄)] . (3.30)

One notices the evident asymmetry between the holomorphic and anti-holomorphic pieces. On
the contrary, in the study of N = (2, 2) sigma models in [15], the expression for the Hamilto-
nian is symmetric. The reason is that (3.30) should arise from the dimensional reduction of an
N = (0, 2) SUSY sigma model in 2D (see Ref. [23] for a general introduction and Refs. [24–26]
for applications to the CPn−1-model). Models with this amount of supersymmetry have not
been formulated in Gross-Neveu language so far, but we expect that this could be done along
the lines of the mechanical system discussed here.

3.2.1 Quantization

The canonical momenta (3.25) become differential operators:

π̂α = −i
∂

∂ wα
, ˆ̄πα = −i

∂

∂ w̄α
, pα = −i

∂

∂ χα
. (3.31)

To write the quantum versions of the constraints (3.26), the supercharges (3.29) and the
Hamiltonian (3.28), we should resolve possible ordering ambiguities in such a way that su-
persymmetry of the classical problem is preserved. This requirement eliminates almost all
ambiguities.

The quantum supercharge Q̂ and the quantum constraint Ĉ3 are restored without ambigu-
ities. The requirement Ĉ3Ψ = wα p̂αΨ = 0 also eliminates the ambiguities in ˆ̄Q. The quantum
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Hamiltonian is then restored as the anticommutator {Q̂, ˆ̄Q}. We obtain

Q̂ = −iχα
∂

∂ wα
, ˆ̄Q = −iX ∂ 2

∂ χβ∂ w̄β
,

Ĥ = −X△− w̄αχα
∂ 2

∂ χβ∂ w̄β
.

(3.32)

(3.33)

The classical constraint C1 is equal to the Poisson bracket {Q,C3}PB. To keep supersymmetry,
we have to restore Ĉ1 as the anticommutator i{Q̂, Ĉ3}. Then Ĉ1 = wαπ̂α + χα p̂α, which
amounts to Weyl ordering of C1.

The only ambiguity not yet resolved dwells in Ĉ2. We can write it as w̄α ˆ̄πα = s with any
integer s and supersymmetry will still be respected. In fact, this ambiguity reflects the fact
that there are many different quantum problems with different integer (for even n) or half-
integer (for odd n) charges q. If q is defined as the physical charge of the gauge field as
it appears in the Dirac operator and if we want to make contact with the literature where
inhomogeneous coordinates are mostly used, we have to resolve the ambiguity in Ĉ2 using the
Weyl prescription:

w̄απ̄α →
1
2
(w̄α ˆ̄πα + ˆ̄παw̄α) = w̄α ˆ̄πα −

in
2

.

This gives w̄α ˆ̄πα = −i(q− n/2) = −is with s defined in (3.14).
To reiterate, admissible wave functions Φ(wα, w̄α;χα) satisfy the constraints

iĈ1Ψ =
�

wα
∂

∂ wα
+χα

∂

∂ χα

�

Ψ = 0 ,

iĈ2Ψ =
�

w̄α
∂

∂ w̄α

�

Ψ = sΨ , iĈ3Ψ =
�

wα
∂

∂ χα

�

Ψ = 0 , (3.34)

with s = q− n/2. The constraints are compatible with supersymmery due to

[Q̂, Ĉ1] = [Q̂, Ĉ2] = 0 , {Q̂, Ĉ3}= −iĈ1 ,

[ ˆ̄Q, Ĉ1] = [ ˆ̄Q, Ĉ2] = { ˆ̄Q, Ĉ3} = 0 . (3.35)

The supercharges (3.32) and the Hamiltonian (3.33) act on the Hilbert space with the inner
product

〈Ψ1|Ψ2〉=
∫

Ψ̄1(w, w̄, χ̄)Ψ2(w, w̄,χ)X n exp
§

−X −
χγχ̄γ

X

ª n−1
∏

α=0

dwαdw̄αdχαdχ̄α . (3.36)

Then the supercharges Q̂ and ˆ̄Q are mutually conjugate20 and the Hamiltonian is Hermitian.
The wave functions in the sectors with different fermion numbers have the form

ΨF=0 = Ψ(0)(w, w̄) , ΨF=1 = Ψ(1)α (w, w̄)χα , ΨF=2 = Ψ(2)
αβ
(w, w̄)χαχβ , etc.(3.37)

These functions should obey the constraints (3.34). To make contact with the standard for-
mulation of the supersymmetric CPn−1 QM model, we have to resolve the constraints. In
particular, the constraint

wα
∂

∂ χα
Ψ = 0 , (3.38)

20When flipping the derivative ∂ /∂ wα in a matrix element 〈Ψ1|Q̂Ψ2〉 and replacing simultaneously the operator
χα acting on the right by −X ∂ /∂ χα acting on the left, the contribution coming from differentiating the measure
is proportional to Ĉ3Ψ1 and therefore vanishes.
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reduces the number of independent fermionic variables by 1, and the Hilbert space splits into
n sectors with the fermion numbers F = 0, . . . , n− 1. Indeed, an immediate corollary of the
constraint (3.38) is the absence of the sector F = n. The wave function in this sector would
have the form

ΨF=n(w, w̄,χ) = A(w, w̄)ϵα1...αn
χα1 · · ·χαn . (3.39)

Substituting this in (3.38), we obtain

A(w, w̄)ϵα1...αn
χα1 · · ·χαn−1 wαn = 0 ⇒ A(w, w̄) = 0 . (3.40)

In other words, the Hilbert space is still (3.11) despite the presence of an extra fermionic
variable.21

3.3 The top/bottom fermion sectors and the zero modes

Before considering the sector of arbitrary fermion number F , let us analyze the sector of min-
imal and maximal fermion numbers, i.e. F = 0 and F = n−1. First of all, the supersymmetric
Hamiltonian simplifies considerably in these sectors. Besides, it is precisely these sectors that
potentially contain zero modes, which are of special geometric significance.

3.3.1 Minimal fermion number: F = 0

In this sector, only the first term in the Hamiltonian (3.33) is relevant, and the problem is
almost the same as in the bosonic case modulo a slight modification of the Hamiltonian22 and
the constraints. The wave functions can now be presented in the form

ΨF=0(wα, w̄α) = (w̄0)sΦ(z j , z̄ j) , with z j =
w j

w0
. (3.41)

We derive:

ĤwΨ = (w̄
0)sĤzΦ = (w̄

0)s(1+ z̄ lz l)

�

sz j ∂Φ

∂ z j
−

∂ 2Φ

∂ z j∂ z̄k
(δ jk + z j z̄k)

�

. (3.42)

As follows from (3.36), the wave functions ΨF=0(wα, w̄α) are normalized with the measure
(2.13). This implies that the functions Φ(z j , z̄ j) are normalized with the measure

∼

∏

j dz jdz̄ j

(1+ z l z̄ l)n+s
.

To go over to the functions normalized with the standard measure (2.15) and to the Hamilto-
nian acting on them, we have to perform a similarity transformation,

Φ′ = (1+ z l z̄ l)−s/2Φ , Ĥ ′z = (1+ z l z̄ l)−s/2Ĥz(1+ z l z̄ l)s/2 . (3.43)

We derive

Ĥ ′z = (1+ z l z̄ l)
h

−(δ jk + z j z̄k)∂ j ∂̄k +
s
2
(z j∂ j − z̄ j ∂̄ j)
i

+
s2

4
z l z̄ l +

s
2
(1− n) . (3.44)

21From the mathematical standpoint, constraints (3.34) correspond to a description of the holomorphic tangent
bundle to CPn−1 in terms of the tautological bundle, cf. [33] or [15].

22Now it has the form −X△ even in the presence of monopoles, whereas our previous bosonic choice was the
Bochner laplacian (2.26).
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The Hamiltonian (3.44) has a form similar to the bosonic Hamiltonian (2.35) where one should
replace q by s and add the constant s(1− n)/2.

The spectrum is23

EF=0(n, L, L′) = L(L′ + n− 1) , (3.45)

with L ≥ 0 and L′ = L + s ≥ 0.
The multiplicity is given by Eq.(2.31). For s ≥ 0, the spectrum includes

#F=0
0 =

�

s+ n− 1
n− 1

�

, (3.46)

states with zero energy. They are the vacuum states of the full supersymmetric Hamiltonian.
Their number (3.46), related to the Witten index of the CPn−1 SQM system, is well known [35]
(see also [36]) and can as well be easily computed in our approach. For s ≥ 0, the wave func-
tions (3.41) describing the states of minimal energy are linear combinations of the monomials

Ψvac =
n−1
∏

α=0

(w̄α)kα , with
n−1
∑

α

kα = s . (3.47)

In other words, these are homogeneous polynomials of degree s in n variables. The dimension
of this vector space is given by the binomial coefficient in Eq.(3.46).

The geometric meaning of this index is not the standard Euler characteristic of the mani-
fold, as is the case for the SQM sigma model describing the de Rham complex [28], but rather
the holomorphic Euler characteristic of the vector bundle E describing the wave functions,24

χ(CPn−1,E) =
n−1
∑

i=0

(−1)i dimCH i(CPn−1,E) , (3.48)

which is related to the Hirzebruch-Riemann-Roch theorem [37] (see also [38,39]).
If s < 0, the states with zero energy in the sector F = 0 are absent.

3.3.2 Maximal fermion number: F = n − 1.

Consider now the sector F = n− 1. The constraint (3.38) dictates

ΨF=n−1(w, w̄,χ) = B(w, w̄)ϵα1...αn
χα1 · · ·χαn−1 wαn . (3.49)

Two other constraints give

wα
∂

∂ wα
B = −nB , w̄α

∂

∂ w̄α
B = sB . (3.50)

Consider the action of the Hamiltonian (3.33) on the function (3.49). There are two contri-
butions: (i) the term ∼ −X△B; (ii) the cross term. The latter gives

−w̄β
��

wβ
∂

∂ wγ
+χβ

∂

∂ χγ

�

ϵα1...αn
χα1 · · ·χαn−1 wαn

�

∂ B
∂ w̄γ

. (3.51)

Simple algebraic manipulations allow one to observe:

[· · · ]βγ = δβγ ϵα1...αn
χα1 · · ·χαn−1 wαn .

23For n= 2 it was derived in [34].
24In our applications, E =O(s) is a power of the tautological line bundle.
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It follows that

The cross term = −w̄β
∂ B
∂ w̄β

ϵα1...αn
χα1 · · ·χαn−1 wαn = −sB ϵα1...αn

χα1 · · ·χαn−1 wαn , (3.52)

in virtue of the second constraint in (3.50).
Thus, we are in a position to solve the spectral problem

(−X△− s)B = EB , (3.53)

with the constraints (3.50). We write

B(w, w̄) =
(w̄0)s

(w0)n
Φ(z j , z̄ j) . (3.54)

Acting on this by the Hamiltonian in (3.53) and performing a proper similarity transfor-
mation to arrive at the Hilbert space with the measure (2.15),

Φ′ = (1+ z l z̄ l)(n−s)/2Φ , Ĥ ′z = (1+ z l z̄ l)(n−s)/2Ĥz(1+ z l z̄ l)(s−n)/2, (3.55)

we derive the Hamiltonian

Ĥz = (1+ z l z̄ l)
h s+ n

2
(z j∂ j − z̄ j ∂̄ j)− (δ jk + z j z̄k)∂ j ∂̄k

i

+
(s+ n)2

4
z̄kzk +

s+ n
2
(n− 1) . (3.56)

It is instructive to rewrite this Hamiltonian and also the Hamiltonian in (3.44) in terms of the
monopole charge q. We derive

Ĥ ′z(F = 0) = (1+ z l z̄ l)
�

q− n/2
2

(z j∂ j − z̄ j ∂̄ j)− (δ jk + z j z̄k)∂ j ∂̄k

�

+
1
4

�

q−
n
2

�2
z l z̄ l −

q− n/2
2

(n− 1) ,

Ĥ ′z(F = n− 1) = (1+ z l z̄ l)
�

q+ n/2
2

(z j∂ j − z̄ j ∂̄ j)− (δ jk + z j z̄k)∂ j ∂̄k

�

+
1
4

�

q+
n
2

�2
z l z̄ l +

q+ n/2
2

(n− 1) . (3.57)

We observe that these Hamiltonians differ from one another by the sign of q and by the inter-
change z↔ z̄. In other words, the spectrum of the Hamiltonian in the sector F = n− 1 is the
same as in the sector F = 0 for the system with the opposite monopole charge. Also the wave
functions Φ′ there are the same up to the exchange z↔ z̄. Accordingly,

B(w, w̄, q) = ΨF=0(w̄, w,−q)X q−n/2 . (3.58)

In particular, for negative q, the system has no zero modes in the sector F = 0, but they may
appear in the sector F = n − 1. This happens if q ≤ −n/2 (or s ≤ n). Their wave functions
read

Ψvac =
ϵα1...αn

χα1 · · ·χαn−1 wαn

X n/2−q

n−1
∏

α=0

(wα)kα , with
n−1
∑

α

kα = −q−
n
2

. (3.59)

There are

#F=n−1
0 =

�

−s− 1
n− 1

�

, (3.60)
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Table 1: Energies of the lowest states on CP2.

q -5/2 -3/2 -1/2 1/2 3/2 5/2

ΨF=0 8 6 4 2 0 0

ΨF=1
+ 8 6 4 2 3 4

ΨF=1
− 4 3 2 4 6 8

ΨF=2 0 0 2 4 6 8

such modes. In the range −n/2 < q < n/2, the zero modes are absent, supersymmetry is
spontaneously broken, and the Witten index,

IW = n(0)B − n(0)F (3.61)

(n(0)B is the number of zero modes with even fermion charge and n(0)F is the number of zero
modes with odd fermion charge), is equal to zero. For q ≥ n/2 or q ≤ −n/2, the zero modes
are present and their number is given by the binomial coefficient in Eq.(3.46) with s = q−n/2
for positive q and s→−n− s = −(q+n/2) for negative q. If n is odd, the Witten index is equal
to this number both for positive and negative q, whereas, for even n and q ≤ −n/2, it acquires
an extra minus factor.25

3.4 The full spectrum

The zero modes of the supersymmetric Hamiltonian have been well known, but our technique
allows one to obtain the whole spectrum. We have already done so in the sectors F = 0 and
F = n− 1. For CP1, there is nothing else.

The results of the previous section also allow one to find the full spectrum for CP2. The
states in the intermediate sector F = 1 are superpartners of the states with either F = 0 or
F = 2, and their wave functions can be found by acting with Q̂ or ˆ̄Q on the corresponding
states. There are therefore two different chains of F = 1 states: the states ΨF=1

+ representing
the upper components of the supersymmetric doublets and the states ΨF=1

− representing the
lower components. The energies of the lowest states in the sectors F = 0, 1,2 are given in
Table 1.

For n≥ 4, this procedure gives some states in the sectors F = 1 and F = n− 2, but not all
of them. For example, for CP3, there are supersymmetric doublets involving the states in the
sectors F = 0,1 and F = 2,3, but also the doublets with the states in the sectors F = 1, 2, which
cannot be “reached” from the leftmost and the rightmost sectors. Still, the wave functions of
the states in the “intermediate” sectors F = 1, . . . , n− 2 can be found if we concentrate on the
lower components Ψ− of the supersymmetric doublets.

Our general ansatz for the wave functions is a straightforward generalization of the bosonic
one (2.29):

Ψ(w, w̄,χ) =
1

X M
Aα1...αL |β̄1...β̄L′ |γ1...γF

wα1 · · ·wαL w̄β1 · · · w̄βL′ χγ1 · · ·χγF , (3.62)

The bosonic constraints imply

M = L + F , L′ −M = s . (3.63)

25Note in passing that basically the same formula describes the Witten index in the 3-dimensional supersymmetric
Yang-Mills-Chern-Simons theory, and such a coincidence is not accidental [40].
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Figure 2: Young diagram for the multiplet of supersymmetric monopole harmonics.

Consider the states Ψ−, which by definition are annihilated by the action of the supercharge ˆ̄Q
in Eq.(3.32):

ˆ̄QΨ− = 0 . (3.64)

Hence they are also annihilated by the action of the second term in the Hamiltonian (3.33)
and only the first term is relevant. We can then repeat the reasoning of Theorem 1 and con-
clude that, for the function (3.62) satisfying the condition (3.64) to be an eigenstate of the
Hamiltonian, the tensor A should satisfy the αβ tracelessness condition,26

Aδ...αL |δ̄...β̄L′ |γ1...γF
= 0 . (3.65)

The energies can then be found by a direct action of the Hamiltonian Ĥ ≡ −X△ on (3.62),
where the fermion factors play the role of “spectators”. We derive

E−(n, L, L′, F) = (L + F)(L′ − F + n− 1) , (3.66)

where F = 0, . . . , n−2, L′ = L+ F + s ≥ 0. When F = 0, the integer L may be positive or zero,
but for nonzero F , L is necessarily positive — this is a corollary of the fermionic constraint
wα∂Ψ/∂ χα = 0. It cannot be fulfilled if Ψ has no w factors. The formula (3.66) describes also
the zero modes in the sector F = n− 1, which exist when L′ = 0 and s+ n ≤ 0. These are the
only states in the sector F = n− 1 that are annihilated by ˆ̄Q.

The eigenstates of the Hamiltonian belong to degenerate in energy SU(n)multiplets. What
remains is to describe these multiplets explicitly.

Theorem 2. The states Ψ− defined by (3.64), which additionally satisfy the constraints (3.34)
and are eigenstates of the Hamiltonian (3.33), fall into one of the following classes:

• F ̸= 0 and F ̸= n− 1 , L ≥ 1 , L′ = L + F + s ≥ 0 ,

• F = 0 , L ≥ 0 , L′ = L + s ≥ 0 ,

• F = n− 1 , L′ = 0 , L = −(n− 1+ s)≥ 1 .

The energies of the states are given by (3.66). Their SU(n)-representations are described by the
Young diagram shown in Fig. 2.

For F = 0 , L = 0 or F = n− 1 , L′ = 0 , these states are zero modes.

26This is not so for the states Ψ+, which are not annihilated by ˆ̄Q and the second term in the Hamiltonian (3.33)
cannot be disregarded in the action ĤΨ+. This means in particular that the tensor A for these states need not satisfy
the tracelessness condition (3.65). And it never does! (See Appendix B for a proof).
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Unless the state Ψ− is a zero mode, it has a superpartner Ψ+ with the same energy and fur-
nishing the same representation of SU(n). The states Ψ± exhaust all the eigenstates of the Hamil-
tonian.

Proof. An arbitrary function (3.62) comprises a symmetric tensor in w̄’s, another symmetric
tensor in w’s and a skew-symmetric tensor in the χ ’s. In terms of SU(n) representations, this
corresponds to the tensor product:

⊗ ⊗ (3.67)

This product is expanded into a sum of many irreps. To pick out the representation that
describes the eigenstates of our Hamiltonian, we should take into account the constraints
(3.34), the condition (3.64) and the tracelessness condition (3.65).

Let us start with the last two factors in (3.67). The condition Ĉ3Ψ = 0 dictates that, if one
replaces one of χ ’s with a w, the result should be zero, i.e. the fermions are anti-symmetrized
with the bosons. As a result, this condition ensures that only the following representation
survives in the tensor product:

⊗ 7→ (3.68)

It remains to compute the tensor product of this hook with the big rectangular box in (3.67).
In computing the tensor product, we will take into account the condition ˆ̄QΨ = 0. Let us

see what additional constraints on the wave function it imposes. The derivative ∂ /∂ w̄α in ˆ̄Q
may act on the numerator or on the denominator of (3.62). The action on the numerator gives
βγ traces. The action on the denominator gives the structure wα∂Ψ/∂ χα; this contribution
vanishes due to the constraint Ĉ3Ψ = 0. As a result, the tensor A must satisfy, on top of (3.65),
also the condition

Aα1...αL |δ̄...β̄L′ |δ...γF
= 0 . (3.69)

Now consider the product box× hook. By the rules for the products of Young diagrams [41]
we should take the small boxes from the hook and glue them to the box either on the right or
on the bottom. While doing so, we should abide by certain rules, which however are irrelevant
for us at the moment. As a result, we obtain

⊗ = ⊕ ⊕ (3.70)

⊕ ⊕ · · · ⊕ ⊕ ⊕ · · ·

Note however that placing a blue or red box in the last (nth) row means taking a trace, either
an αβ trace in case of a blue box, or a βγ trace in case of a red one. These traces vanish,
however, and all the representations where at least one of the boxes is glued on the bottom
drop out. Then the only representation that remains (assuming F ≤ n− 2) is the one where
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the whole hook is glued on the right of the large rectangle, the first one in the r.h.s. of (3.70),
which coincides with the one shown in Fig. 2.

In the simplest case F = 0, the Young diagram acquires the form (2.21), the same as in the
nonsupersymmetric case, so that only the left and right nodes of the Dynkin diagram carry non-
zero labels. If, in addition, L = 0, the corresponding wave function (3.62) has no dependence
on wα and is therefore annihilated by Q̂. Therefore the state with F = 0 and L = 0 is a zero
mode.

Finally, in the case F = n − 1 there are ‘too many’ red boxes in (3.70), and one of them
would be inevitably glued to the bottom of the rectangle, so that the resulting wave function
would be zero by the constraints. The only exception is when there is no rectangle altogether,
i.e. L′ = 0, which is the third case of the theorem. Since the supercharge Q̂ raises the fermion
number by one, and there are no admissible states with F = n, one concludes that these states
are annihilated by both Q̂ and ˆ̄Q, implying that they are zero modes. The corresponding Young
diagram is a row including L − 1 = −(s + n) boxes. The dimension of this representation is
given by Eq. (3.60).

So far we discussed the states Ψ− representing lower components of the supersymmetric
doublets. Whenever Ψ− is not a zero mode, one can construct its superpartner Ψ+ := Q̂Ψ−. By
supersymmetry, it has the same energy E ̸= 0 and furnishes the same SU(n) multiplet.27 In
Appendix B, we will illustrate this by analysing the relevant Young diagrams. If Ψ− is a zero
mode, it is annihilated by both supercharges, so that it has no superpartner.

It follows from the proof that the only representation that survives in the tensor prod-
uct (3.70), once all constraints are taken into account, is the one whose highest weight is
equal to the sum of the highest weights of the factors.

Generically (for F > 0) it has the form

ai=1,...,n−1 = (L − 1, 0, . . . , 0,
F−1

1, 0, . . . , 0,
n−3−F

L′) . (3.71)

One can then compute the dimensions of the representations either by the hook formula from
the Young diagram, or by the Weyl formula (A.1) using the Dynkin labels.

3.5 Dirac operator and its spectrum

As we have already mentioned on p. 15, on a Kähler manifold, the Dirac operator is isomorphic
to the sum of the supercharges (which are in turn isomorphic to the exterior holomorphic
derivative in the Dolbeault complex and its conjugate):

D/ ≃ Q̂+ ˆ̄Q . (3.72)

Then the supersymmetric Hamiltonian H = {Q, ˆ̄Q}+ is isomorphic to the square of the Dirac
operator28 (/D)2. In the main part of Sect. 3, we have determined the eigenvalues E of the
supersymmetric Hamiltonian onCPn−1 in a field of aCPmonopole, and this immediately gives
us the Dirac eigenvalues:

λD = ±
p

E . (3.73)

27It may be worth reminding that the states Ψ+ and Ψ− annihilated either by Q̂ or by ˆ̄Q constitute the complete
spectrum of a supersymmetric quantum system.

28In three dimensions, this operator, furnished with the factor 1/2m, is known to physicists as the Pauli Hamil-
tonian describing the motion of an electron in an external magnetic field.
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The eigenfunctions of /D are the bispinors isomorphic to the linear combinations of the func-
tions Ψ− and Ψ+ found above. The zero modes of /D, if they exist, map to either Ψ− or Ψ+,
depending on the sign of the monopole charge, and nonzero modes map to

Ψ1 = Ψ− +Ψ+ , and Ψ2 = Ψ− −Ψ+ , (3.74)

with Ψ+ = /DΨ−/
p

E.
The eigenstates of /D form the SU(n) multiplets described by the Young diagram in Fig. 2.
While preparing our paper for publication, we came across the paper [42], where the spec-

trum of the Dirac operator on fuzzy CPn−1 was found (see also the much earlier paper [43]
where this spectrum was determined on CP2k+1 in the absence of the gauge field). Their ex-
pression for the eigenvalues of (/D)2 coincides with our formula (3.66) and the SU(n)multiplets
are described by the same Young diagram.

4 Conclusions and Outlook

In the first half of the paper we reproduced the known results for the spectrum of the Laplacian
on CPn−1 using the homogeneous coordinates wα to describe its geometry. We did so also for
the Bochner Laplacian (2.26) which includes the background gauge field (2.24) representing
a straightforward generalization of the Dirac monopole on CP1 ≃ S2.

The C∗ invariance of the metric (1.8) is reflected in the gauge symmetry of the correspond-
ing dynamical system. In the quantum setup, the symmetry is implemented via the constraints
(2.27). We use a natural polynomial ansatz (2.29) for the wave functions, in which case the
constraints can be easily resolved. The eigenstates form degenerate multiplets corresponding
to the irreducible representations of SU(n) with the Young diagrams drawn in Fig. 1.

In Sect. 3, we applied the same machinery to the N = 2 supersymmetric quantum-
mechanical CPn−1 sigma model involving chiral superfields and describing the Dolbeault com-
plex. In contrast to a more widely known N = 4 model with real superfields which describes
the Kähler – de Rham complex, the Dolbeault complex can be twisted by a background gauge
field. Choosing the background in the form of the CP monopole (2.24), we resolved the spec-
tral problem, finding the eigenvalues and the wave functions expressed in the form (3.62).

The twisted Dolbeault complex is isomorphic to the Dirac complex, and our results for the
eigenvalues and the structure of SU(n) multiplets conform with the results of Ref. [42].

The use of homogeneous coordinates brings about considerable simplifications, and one
can apply it for studying other problems. One possibility is to consider in these terms the
Kähler – de Rham N = 4 supersymmetric quantum mechanics. It arises after performing the
dimensional reduction of N = (2, 2) two-dimensional sigma models studied in [15]. Besides,
this method could be applied to solve similar spectral problems on more complicated complex
manifolds such as homogeneous manifolds or even to the wider class of models with quiver
phase spaces (see Ref. [14] for an overview).
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A Multiplicities of degenerate multiplets

We address the reader to the excellent Slansky’s review including extensive group theory in-
formation and the tables where the dimensions and other properties of many SU(n)multiplets
are listed [44]. Here we only wish to illustrate the derivation of the formula (2.31) for the
number of states (2.29) in a multiplet at level L in the bosonic CPn−1 model in the presence of
a CPmonopole of charge q ≥ 0. As was mentioned, this number coincides with the dimension
of the representation of SU(n) with highest weight Λ= (L, n− 3 zeros, L + q).

The dimension of a representation with the highest weight Λ is given by the Weyl formula,

#(Λ) =
∏

α∈∆+

(Λ+δ,α)
(δ,α)

, (A.1)

where the product is taken over all positive roots of the algebra and δ is the highest root. In
our case,

Λ= (L, 0, . . . , 0
︸ ︷︷ ︸

n−3

, L + q) , and δ = (1, . . . , 1
︸ ︷︷ ︸

n−1

) . (A.2)

Figure 3: The positive roots of su(5).

Take for example the case n = 5. The system of positive roots is drawn in Fig.3. The low
side of the triangle represents the simple roots,

β1 = (1, 0,0, 0) , β2 = (0,1, 0,0) , β3 = (0, 0,1,0) , β4 = (0, 0,0, 1) , (A.3)

and the summit of the triangle is the highest root, δ = β1 + β2 + β3 + β4. The boxes mark
the roots α where the inner products (Λ + δ,α) and (δ,α) coincide, so that these roots do
not contribute in the product (A.1). The circles mark the roots where (Λ+ δ,α) ̸= (δ,α) and
which give a contribution. We obtain

#(n= 5, L, q) = (L + 1) ·
L + 2

2
·

L + 3
3
·

2L + q+ 4
4

·
L + q+ 3

3
·

L + q+ 2
2

· (L + q+ 1)

=

�

L + 3
3

��

L + q+ 3
3

�

2L + q+ 4
4

, (A.4)

which agrees with (2.31).
The generalization to arbitrary n is straightforward. Only the roots dwelling on the lateral

sides of the triangle of positive roots contribute.
Note that the same result for the multiplicity could be derived in a more elementary way

without invoking group theory wisdom. The tensor A(α1...αL)|(β̄1...β̄L+q)
would have

�

L + n− 1
n− 1

��

L + q+ n− 1
n− 1

�

, (A.5)
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independent components if no constraints were present. But the constraint of tracelessness
imposes

�

L + n− 2
n− 1

��

L + q+ n− 2
n− 1

�

, (A.6)

conditions. The difference of (A.5) and (A.6) coincides with (2.31).

B Upper components of the superdoublets

The upper components of the supersymmetric doublets are obtained from the lower ones by
the action of the supercharge Q̂ = −iχα∂ /∂ wα. Since the supercharges commute with SU(n),
the upper components furnish the same representation of SU(n) as the lower ones.

As an illustration, let us take n = 4 and consider the action of Q̂ on a wave function Ψ−
characterized by the parameters L = 2, L′ = 1, F = 1 and decribed by the diagram

(B.1)

The corresponding wave function has the form

Ψ− =
Aα1α2|β̄ |γwα1 wα2 w̄βχγ

X 3
. (B.2)

For its superpartner, we derive

Ψ+ = iQ̂Ψ− = Aα1α2|β̄ |γw
α2 w̄βχγ

2w̄δwδχα1 − 3χδw̄δwα1

X 4
. (B.3)

This is a wave function (3.62) with L = L′ = F = 2. It satisfies the constraint Ĉ3Ψ+ = 0
and hence, as was explained in the main text, is described by a hook

(B.4)

The irreducible representation to which Ψ+ belongs is given by one of the terms in the decom-
position

⊗ = ⊕ ⊕ ⊕ (B.5)

And we see that the second term of this decomposition exactly coincides with (B.1)!
It is not the first highest weight diagram, as was the case in Eq.(3.70), because the trace-

lessness conditions (3.65) and (3.69) are now absent. The second term in (B.5) is obtained
when one of the red “fermion” boxes in the hook is glued down on the left to the large rectangle
so that the left column of the rectangle disappears. Previously, we dropped this contribution
due to the condition ˆ̄QΨ− = 0 and its corollary (3.69). But29 ˆ̄QΨ+ ̸= 0. The described rule of
thumb to draw the Young diagram for the relevant multiplet of Ψ+ — consider the product of

29We are not discussing zero modes here, which may appear in the sector F = n − 1 and are singlets under
supersymmetry.
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a rectangle associated with w̄ factors and a hook associated with w and χ factors, take a fermion
box in the wχ hook, attach it down on the left to the w̄ rectangle and glue the rest of the hook on
the right of the rectangle — also works in all other cases.

Finally, let us prove the fact mentioned in the footnote on p. 23.

Theorem 3. Let

Ψ+ = Q̂Ψ− =
1

X M
Bα1...αL |β̄1...β̄L′ |γ1...γF

wα1 · · ·wαL w̄β1 · · · w̄βL′ χγ1 · · ·χγF ̸= 0 , (B.6)

where Ψ− is an eigenfunction of the Hamiltonian (3.33) satisfying ˆ̄QΨ− = 0. Then the tensor B
does not fulfil the αβ tracelessness condition (3.65).

Proof. Note first that, for the function defined in (B.6),

ˆ̄QΨ+ ∝ Ψ− ̸= 0 , (B.7)

and F ≥ 1.
Suppose that B is αβ traceless. Then, in virtue of Theorem 1, (B.6) would be an eigen-

function of the first term in (3.33) and therefore of the second term as well, meaning that

w̄αχα
∂ 2Ψ+
∂ χβ∂ w̄β

= aΨ+ . (B.8)

Lemma. a must be different from zero.

Proof. If a is zero, then ∂ 2Ψ+
∂ χβ∂ w̄β must be proportional to w̄αχα. To show that it is not possible,

we represent Ψ+ as Ψ+ =
Φ+
X M to find

∂ 2Ψ+
∂ χβ∂ w̄β

= −
M
X

iĈ3Ψ+ +
1

X M

∂ 2Φ+
∂ χβ∂ w̄β

=
1

X M

∂ 2Φ+
∂ χβ∂ w̄β

. (B.9)

If the tensor B entering Φ+ were βγ traceless, the wave function Ψ+ would be annihilated by
the action of ˆ̄Q∝ ∂ 2

∂ χβ∂ w̄β in contradiction with (B.7). However, we may cast Φ+ in the form

Φ+ = B(1)
α1...αL |β̄1...β̄L′ |γ1...γF

wα1 · · ·wαL w̄β1 · · · w̄βL′ χγ1 · · ·χγF

+ (w̄αχα) B(2)
α1...αL |β̄1...β̄L′−1|γ1...γF−1

wα1 · · ·wαL w̄β1 · · · w̄βL′−1 χγ1 · · ·χγF−1

≡ Φ(1)+ + (w̄
αχα) Φ(2)+ , (B.10)

where both B(1) and B(2) are βγ traceless.
We act on (B.10) with the operator ∂ 2

∂ χα∂ w̄α . The first term does not contribute due to the

βγ tracelessness of B(1), and it is easy to derive

∂ 2Φ+
∂ χβ∂ w̄β

=
�

n+ L′ − F
�

Φ
(2)
+ . (B.11)

Since Φ(2)+ does not contain a factor of w̄αχα, one cannot have ∂ 2Ψ+
∂ χβ∂ w̄β ∝ w̄αχα. Hence a ̸= 0.
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It then follows from (B.8) that Ψ+ is proportional to w̄αχα, i.e.

Ψ+ =
Φ
(2)
+

X M
(w̄αχα) , (B.12)

and Φ(1)+ = 0.
On the other hand, Ψ+ is obtained by acting with Q̂ on a state Ψ− with a wave func-

tion (3.62) including a tensor30

Aα1...αL+1|β̄1...β̄L′ |γ1...γF−1
,

satisfying both the αβ and βγ tracelessness conditions (3.65), (3.69). As a result of such
action, one can get the factor (w̄αχα), as in the formula above, only when the derivative ∂

∂ wα

acts on the X -factors in the denominator of Ψ−. Indeed, when the derivative acts on the
numerator, one obtains a structure including the tensor

Bα1...αL |β̄1...β̄L′ |γ1...γF−1αL+1
= Aα1...αL+1|β̄1...β̄L′ |γ1...γF−1

. (B.13)

This tensor is βγ traceless due to the αβ and βγ tracelessness of A and gives a nonzero con-
tribution to Φ(1)+ . We are thus led to a contradiction.
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