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Abstract

We identify the unique stress tensor deformation which preserves zero-birefringence con-
ditions in non-linear electrodynamics, which is a 4d version of the T T operator. We study
the flows driven by this operator in the three Lagrangian theories without birefringence
– Born-Infeld, Plebanski, and reverse Born-Infeld – all of which admit ModMax-like gen-
eralizations using a root-T T -like flow that we analyse in our paper. We demonstrate one
way of making this root-T T -like flow manifestly supersymmetric by writing the deform-
ing operator in N = 1 superspace and exhibit two examples of superspace flows. We
present scalar analogues in d = 2 with similar properties as these theories of electrody-
namics in d = 4. Surprisingly, the Plebanski-type theories are fixed points of the classical
T T -like flows, while the Born-Infeld-type examples satisfy new flow equations driven by
relevant operators constructed from the stress tensor. Finally, we prove that any theory
obtained from a classical stress-tensor-squared deformation of a conformal field theory
gives rise to a related “subtracted” theory for which the stress-tensor-squared operator
is a constant.
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1 Introduction

In the past several years, many interesting connections have emerged between special quantum
field theories and deformations involving operators constructed from the energy-momentum
tensor Tµν. By “special” we mean theories which enjoy some additional property such as in-
tegrability, conformal invariance, or supersymmetry, or models which emerge naturally from
string theory. The most well-studied example of a stress tensor deformation is the T T deforma-
tion of two-dimensional (2d) quantum field theories [1–3]. This perturbation is constructed
using the coincident point limit

OT T (x) = lim
y→x

�

Tµν(x)Tµν(y)− Tµµ (x)T
ν
ν (y)
�

, (1)

which can be shown to define a local operator in any translation-invariant 2d field theory.
This T T deformation has at least three properties which make it especially interesting:

1. The operator is universal, in the sense that it takes the form (1) regardless of the details
of the seed theory, and because this deformation is available in any translation-invariant
2d QFT.

2. The T T deformation is solvable, insofar as quantities in the deformed theory can often
be computed in terms of corresponding quantities in the undeformed theory. Examples
include the finite volume spectrum [2,3], flat space S-matrix [4], torus partition function
[5–7], and correlation functions [8,9].

3. Deforming by OT T preserves many symmetries and other desirable properties of the seed
theory, such as, for example, integrability [2] and supersymmetry [10–17]. For a T T -
deformed CFT, the deformed theory is even invariant under a certain modified (field-
dependent) conformal transformation [18–21].

The property of solvability is especially unusual because the operator OT T is irrelevant in the
sense of the renormalization group, and a deformation by an irrelevant operator is typically
not under analytic control. Because of these and other aspects of T T , several hundred papers
have appeared on the subject in the past few years, which we do not attempt to review in
detail here. We instead refer the reader to the lectures [22, 23] and references therein for an
introduction to the subject.

It is remarkable that OT T is always present in the spectrum of local operators and that
many properties of T T -deformed theories can be probed at the quantum level. However, it is
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also illuminating to think of this quadratic combination of stress tensors as a classical object
and study the flow equation

∂Lλ
∂ λ

= TµνTµν −
�

Tµµ
�2

(d = 2) , (2)

for the Lagrangian defining the field theory. Together with an initial condition L0 which de-
scribes the seed theory, the differential equation (2) defines a one-parameter family of La-
grangians Lλ labeled by the deformation parameter λ.

Many interesting theories arise from solving the flow equation (2). Perhaps the most strik-
ing result, as we will review in Section 2, is that the solution to this differential equation with
an initial condition that describes a free massless scalar, L0 = ∂ µφ∂µφ, is the Lagrangian of a
static gauge-fixed Nambu-Goto string in three target spacetime dimensions [3]. This is the first
hint of a relationship between the T T deformation and string theory, which has been further
developed in many directions. For instance, the high-energy density of states of a T T -deformed
CFT is Hagedorn and a single-trace version of the T T deformation is related to little string the-
ory [24–26], the operator OT T can be linked to the uniform light-cone gauge [10,27,28], and
there is a proposal for a non-perturbative definition of T T in terms of non-critical strings [29].
Solutions to the flow equation (2) with other initial conditions have been studied in [30,31].

If we restrict our attention to classical flow equations for the Lagrangian, and do not de-
mand that the corresponding combinations define local operators at the quantum level, then
there are a few ways to generalize and extend the 2d deformation (2). One way is to work in
higher spacetime dimensions. The most straightforward generalization of the two-dimensional
Lagrangian flow equation is

∂L
∂ λ
= aTµνTµν + b

�

Tµµ
�2

(d ≥ 2) , (3)

for some suitable choice of dimensionless constants a, b. Just as this classical flow generates
theories related to strings in d = 2 for a = 1 = −b, another appropriate choice of parameters
appears to generate theories related to branes in d = 4 spacetime dimensions: the solution
to one such 4d flow with a = 1 = −2b whose initial condition is the free Maxwell theory,
L0 = −

1
4 FµνFµν, is the Born-Infeld action1 that describes the gauge theory on a brane’s world-

volume [34].
A second way to extend the study of such classical flows is to consider deformations by

other combinations of stress tensors. One possibility is to consider a marginal flow

∂L
∂ γ
= R , (4a)

R= c
Ç

T̂µν T̂µν , T̂µν = Tµν −
1
d

gµνTρρ , (4b)

in any d ≥ 2, where T̂µν is the traceless part of the stress tensor and c is another dimensionless
constant. In two spacetime dimensions and for c = 1p

2
, this gives the classical root-T T flow

which has been studied in [35]; see also [36–42] for related work.
It is not known whether the marginal combination of (4b) leads to a well-defined operator

at the quantum level, even in two spacetime dimensions. However, even as a classical defor-
mation of the Lagrangian, the flow generated by this operator R has interesting properties. For
instance, this deformation appears to preserve integrability in several 2d models, as one can
explicitly write down a deformed Lax connection [43].

1A modified version of this flow equation, with an additional term that is non-analytic in the stress tensor,
generates the Born-Infeld theory in three dimensions [32]. This flow can be supersymmetrized and gives the
N = 1 supersymmetric BI theory discussed in [33].

3

https://scipost.org
https://scipost.org/SciPostPhys.15.5.198


SciPost Phys. 15, 198 (2023)

Further, deforming the free Maxwell Lagrangian in four spacetime dimensions by R leads
to the Modified Maxwell or “ModMax” theory of non-linear electrodynamics which has been
introduced in [44–47], and whose Lagrangian can be written as

LModMax = −
1
4

cosh(γ)F2 +
1
4

sinh(γ)
q

(F2)2 + (F eF)2 . (5)

Here eFµν = 1
2ε
µνρσFρσ is the Hodge dual of the Abelian field strength Fµν. The ModMax

theory is special in the sense that it is the unique deformation of the free Maxwell theory in
4d which preserves both conformal invariance and electric-magnetic duality invariance. The
preservation of conformal symmetry is in accord with the fact that this theory is obtained as
a (classically) marginal deformation of the Maxwell Lagrangian, which is itself conformally
invariant. In [48, 49], flow equations were presented for both the ModMax Lagrangian (5)
and its extension to the Born-Infeld-ModMax theory whose Lagrangian can be written as

LγBI =
1
λ

�

1−

√

√

1+
λ

2

h

cosh(γ)F2 − sinh(γ)
q

(F2)2 + (F eF)2
i

−
λ2

16
(F eF)2
�

. (6)

One can view the theory (6) as a doubly-deformed model which arises from flowing the free
Maxwell Lagrangian by both an irrelevant T T -like operator2 and a marginal root-T T -like op-
erator (in either order, as the flows can be shown to commute). For a recent review of theories
of non-linear electrodynamics, including the ModMax theory and its Born-Infeld-ModMax ex-
tension, see [50].

The motivation for the present work is to address several lingering questions about these
classical stress tensor flows. One question is: to what extent do stress tensor deformations
preserve special features of the seed theories? For instance, in d = 4, both the free Maxwell
theory and the Born-Infeld theory which arises as its T T -like deformation exhibit the special
property of exhibiting zero-birefringence. We will see that this is not a coincidence, and in fact
the classical T T -like flow generically preserves this property.

Another special feature that a seed theory might possess is supersymmetry. It is already
known that, in many examples, T T and other T T -like deformations can be presented in a
manifestly supersymmetric form by writing the perturbing operator in superspace [10–13,15–
17]. Most relevant for the context of four-dimensional gauge theories is the observation of [15]
that the 4d T T -like flow can be written as a supercurrent-squared deformation in N = 1
superspace, and that the result of deforming a free vector multiplet is the supersymmetric Born-
Infeld action. This was extended to supercurrent-squared deformations of the supersymmetric
Born-Infeld-ModMax theory in [49].

Given the especially nice interplay between irrelevant T T -like deformations and supersym-
metry, one is led to wonder: can the marginal root-T T -like operator in 4d also be written in
such a manifestly supersymmetry-preserving way? We will see that the answer to this question
is also affirmative, at least in certain examples involving supersymmetric gauge theories. This
is encouraging because the additional control provided by supersymmetry is most powerful
when it is made geometric by such a superspace construction.

A third question concerns the degree to which the stress tensor deformations that generate
these special theories are unique. Can one find flow equations driven by other combinations of
energy-momentum tensors which theories like Born-Infeld and ModMax also satisfy? Indeed,
we will find that many of these theories also obey differential equations driven by relevant

2We will use the terms “T T -like flows” or “T 2 flows” for classical flow equations driven by a quadratic combi-
nation of stress tensors in any number of spacetime dimensions, reserving the term “T T flow” for d = 2. Similarly,
we say “root-T 2 flow” or “root-T T -like flow” for marginal stress tensor deformations in any dimension, saying
“root-T T flow” only in d = 2. We will also sometimes use the terms “λ-flow” for a T 2 deformation and “γ-flow”
for a root-T 2 deformation.
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operators constructed from Tµν, unlike the irrelevant T T or marginal root-T T . These relevant
flows are generated by adding an appropriate constant term to the Lagrangian which causes
the classical T T -like combination of stress tensor bilinears to become a constant, independent
of fields.

The layout of this paper is as follows. In Section 2, we will develop some general ob-
servations about classical T T -like deformations, focusing on special theories where the T2

operator is a constant. Section 3 applies these results to several four-dimensional gauge theo-
ries, explaining the relationship between stress tensor flows and additional properties such as
zero-birefringence conditions and electric-magnetic duality invariance; Section 4 then presents
analogues of these theories in two spacetime dimensions. In Section 5, we develop a version
of the 4d root-T T -like flow with manifest N = 1 supersymmetry and apply it to two exam-
ples. Finally, in Section 6 we summarize these results and identify several directions for future
investigation.

2 Relevant T T -like flows and T2 fixed points

In this Section, we will consider certain deformations which arise from combining classical
T T -like flows with the addition of a suitable constant term to the Lagrangian. In a theory with
dynamical gravity, this constant term can be interpreted as a cosmological constant whose
value is correlated with the T T flow parameter, as studied in [51–53].3

In our case, we will be motivated by examples in two and four spacetime dimensions where
a classical T T -like flow generates a string or brane action along with a constant term in the
Lagrangian. For instance, it is well-known [3] that the solution to the two-dimensional T T
flow equation

∂L
∂ λ
=

1
4

�

TµνTµν −
�

Tµµ
�2�

, (7)

with initial condition L0 = −∂ µφ∂µφ, is

LNG
λ =

1
λ

�

1−
q

1+ 2λ∂ µφ∂µφ
�

. (8)

The Lagrangian (8) represents a static gauge Nambu-Goto string in three target spacetime
dimensions, although the conventional way of writing the Nambu-Goto Lagrangian does not
include the constant term 1

λ . From the perspective of the classical T T flow, this λ-dependent
constant term is needed to ensure that the deformed Lagrangian correctly reduce to the initial
condition L0 at λ = 0; physically, one can interpret this term as a worldsheet coupling to a
constant target-space B field. We will be interested in the corresponding “subtracted” form of
the Lagrangian,

eLλ = Lλ −
1
λ

. (9)

Throughout this section, we will use a tilde to denote the subtracted form of any Lagrangian,
defining

eL= L− 1
λ

, (10)

for any L.
A similar structure appears in deformations of four-dimensional gauge theories. Let Fµν

be the field strength associated with an Abelian gauge field Aµ, and define the two Lorentz

3Said differently, the constant term in the Lagrangian affects the vacuum energy; the vacuum energy of a T T
deformed CFT, which is proportional to 1

λ , was considered in the recent analysis of [54].
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invariants

S = −
1
4

FµνFµν , P = −
1
4

FµνeF
µν , (11)

where eFµν =
1
2ε
µνρσFρσ is the Hodge dual of Fµν. It is also known [34] that the solution to

the four-dimensional stress-tensor-squared flow equation,

∂L
∂ λ
=

1
8

�

TµνTµν −
1
2

�

Tµµ
�2
�

, (12)

with initial condition L0 = S, is

LBI
λ =

1
λ

�

1−
p

1− 2λS −λ2P2
�

, (13)

which is – again, up to the overall scaling and the addition of the λ-dependent constant term
– the Born-Infeld Lagrangian representing the gauge theory on the worldvolume of a D-brane
with tension

T =
1
λ

. (14)

Note that the tension T is not to be confused with the symbol T appearing in OT2 , which refers
to the stress tensor Tµν. As in the two-dimensional case, we will be interested in the subtracted
Lagrangian

eLBI
λ = LBI

λ −
1
λ

. (15)

Although the procedure of removing a constant term from the Lagrangian appears trivial, we
will see that these subtracted theories possess some unusual properties from the perspective
of stress tensor flows. For instance, after performing the subtraction and computing the stress
tensor eTµν of the modified theory, the combination which defines our T2 operator in the mod-
ified theory is constant:

eOT2 =
1

2d

�

eTµνeTµν −
2
d

�

eTµµ
�2
�

= −
2
λ2

. (16)

We will see that this constant-T2 property allows us to write a new flow equation for the
subtracted theories in terms of a relevant operator,

∂ eL
∂ T
=

1
d

eTµµ
q
�

�2eOT2

�

�

=
eTµµ

s

�

�

�d eTµνeTµν − 2
�

eTµµ
�2
�

�

�

, (17)

where T = 1
λ . This property is a generic feature of the solutions to T T -like flows with clas-

sically conformal seed theories in any spacetime dimension d, and is therefore not special to
deformations of free scalars in d = 2 or the free Maxwell theory in d = 4.

2.1 Trace flow equation

To study these subtracted flows, we will need a standard fact about classical T T -like flows
which is often referred to as the trace flow equation.

This trace relation has been used many times in the T T literature, especially in the context
of cutoff AdS3 holography [55]. For instance, the trace relation can be used to identify the
dictionary between the T T flow parameter λ and the bulk Newton constant G as explained in
[9]; this correspondence is further refined in [56–58] where again the T T trace flow equation
plays an important role. See also Section 5.3 of the lecture notes [22] for a review of the trace
relation and its applications.
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Although this result is elementary, we will review it here for completeness and to fix our
conventions. We first work in a slightly more general setting. Consider a seed theory L0, in
d spacetime dimensions, which is classically conformally invariant. In particular, we assume
that there is no characteristic length scale ℓ associated with L0, such as the length ℓ= 1

m which
would be associated with the theory of a massive particle with mass m. Let Lλ be the one-
parameter family of theories which solves a flow equation driven by any operator f

�

Tµν (λ)
�

which is a Lorentz scalar constructed from the stress tensor:

∂Lλ
∂ λ

= f
�

Tµν (λ)
�

. (18)

For instance, the function f
�

Tµν (λ)
�

could be the trace of the stress tensor Tµµ , or a bilin-

ear combination such as aTµνTµν + b
�

Tµµ
�2

with adimensional constants a and b, or more
generally any function of the d independent traces Tr

�

T i
�

for i = 1, . . . , d:

f
�

Tµν (λ)
�

= f
�

Tr(T ) , Tr(T2) , . . . , Tr(T d)
�

. (19)

Here we have written Tµν(λ) to emphasize that the operator driving the flow is constructed
from the stress tensor of the deformed theory, at finite λ, rather than from the stress tensor
Tµν(0) of the undeformed theory L0. However, to lighten our notation, we will suppress the
dependence on λ and simply write Tµν when it is clear from context which stress tensor is
indicated. We also write f (T ) rather than f (Tµν) for short. Note that in the function f (Tµν)
we might also allow dependence upon derivatives of the stress tensor. However, for simplicity,
we neglect this option in the present work, though we believe the arguments below would
generalise to this case too.

Now consider a scale transformation of the deformed theory Lλ. Under an infinitesimal
scale transformation gµν→ e2εgµν ≃ gµν + 2εgµν, the change in the action Sλ is

δSλ =
δSλ
δgµν

δgµν = −ε
∫

dd x
p

−g Tµµ , (20)

where we have used the definition of the Hilbert stress tensor, Tµν = −
2p
−g

δS
δgµν . Such a scale

transformation dilates lengths by a factor of eε and thus diminishes mass scales by a factor of
e−ε.

Because L0 is assumed to be conformally invariant, and thus there is no characteristic scale
in the undeformed theory, the only scale in the deformed theory is the one set by λ. If λ has
length dimension ∆, we can define an energy scale Λ by

λ=
1
Λ∆

. (21)

For a theory with a single energy scale Λ, the effect of a scale transformation is identical to
the effect of modifying this energy scale as Λ→ e−εΛ or log(Λ) −→ log(Λ)− ε. Thus such a
change in the energy scale is controlled by the trace of the Hilbert stress tensor as

dSλ
d log(Λ)

= Λ
dSλ
dΛ
=

∫

dd x
p

−g Tµµ . (22)

Although we have derived this relation using the Hilbert stress tensor, it also holds for other
stress tensors obtained by an improvement transformation, since they differ by an on-shell
total derivative which vanishes when integrated over spacetime as in (22).

On the other hand, we can rewrite the flow equation ∂λL= f (T ) in terms of Λ:

∂ Sλ
∂ λ
= −
Λ∆+1

∆

∂ Sλ
∂Λ

=

∫

dd x
p

−g f (T ) . (23)
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Comparing (22) and (23) and equating the integrands4 we find that

−
1
∆
Λd Tµµ = f (T ) , (24)

or in terms of the flow parameter λ,

Tµµ = −∆λ f (T ) ⇐⇒ λ
∂Lλ
∂ λ

= −
1
∆

Tµµ . (25)

Equation (25) is the general trace flow equation for deformations by any scalar operator con-
structed from the stress tensor passing through a seed conformal field theory.5

Note that, as a consequence of this trace flow equation, any stress tensor deformation of a
CFT can be rewritten in a form that is driven by the trace:

∂Lλ
∂ λ

= f
�

Tµν(λ)
�

⇐⇒
∂Lλ
∂ λ

= −
Tµµ
λ∆

. (26)

One might be tempted to conclude that a generic stress tensor flow can therefore be replaced
with a deformation by the trace. However, the equivalence (26) is misleading because the right
side of the rightmost equation is indeterminate: both the numerator Tµµ and denominator
λ∆ are vanishing in the limit λ→ 0. Such a trace flow equation, therefore cannot correctly
reproduce the deformation around a conformal seed theory L0. For this reason, although the
trace flow equation is useful, we will view the deformation by the operator f

�

Tµν(λ)
�

as the
more fundamental one since it is well-defined as λ→ 0.

We will now specialize to the combination of interest, which is the d-dimensional T2 op-
erator with ∆= d which we study in the present work:

f (T ) = OT2 ≡
1

2d

�

TµνTµν −
2
d

�

Tµµ
�2
�

. (27)

We stress that, at the quantum level, the combination OT2 only defines a local operator by
point-splitting in d = 2. In the present work we will primarily restrict attention to classical
flow equations for the Lagrangian, thinking of the object (27) as a combination of classical
field variables rather than as a local operator in the spectrum of the theory. However, we note
in passing that the trace flow equation is believed to hold at the quantum level for theories
which arise as T T deformations of two-dimensional conformal field theories. In that context,
one has the operator equation

Tµµ (x) = −2λOT T (x) , (28)

where on the right side we write OT T (x) rather than OT2 to emphasize that this object is now
the local operator defined for d = 2 by

OT T (x) = lim
y→x

�

Tµν(x)Tµν(y)− Tµµ (x)T
ν
ν (y)
�

. (29)

In this two-dimensional setting, equation (28) holds as a relationship between operators inside
of correlation functions which plays an important role in conformal perturbation theory in this
context. Because this ingredient in our analysis can be promoted to a statement about the
quantum theory, it would be interesting to investigate whether the arguments which we will
present in the remainder of this section also have analogues at the quantum level. However,
we will leave this question to future work and for the remainder of this paper we will focus on
a purely classical analysis.

4The subsequent results hold only for the Hilbert stress tensor, and not for improvements thereof, since we no
longer integrate over spacetime and thus total derivatives may contribute. Note also that there are scale-invariant
theories for which the trace of the Hilbert stress tensor is an on-shell total derivative. These subtleties are important
for the 3d stress tensor flows for scalar theories considered in [32].

5Although we have made no additional assumptions about the field content of the theory Lλ, or any additional
symmetries such as electric-magnetic duality invariance, we note that a relation of the form (25) can be derived
via different means in the context of 4d duality-invariant electrodynamics [59,60].
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2.2 Relevant T T -like flows

Now suppose that, as in Section 2.1, the Lagrangian Lλ solves the T2 flow equation with
an initial condition L0 that has no characteristic length scale. In particular, the stress tensor
associated with Lλ satisfies the trace flow equation (25) with f (T ) = OT2 . We then define the
“subtracted” theory

eL= L− 1
λ

. (30)

The stress tensor eTµν of eL is related to that of L as

eTµν = Tµν −
1
λ

gµν . (31)

One finds
eTµνeTµν = TµνTµν −

2
λ

Tµµ +
d
λ2

, eTµµ = Tµµ −
d
λ

, (32)

and therefore the new T2 operator for eL is

eOT2 =
1

2d

�

eTµνeTµν −
2
d

�

eTµµ
�2
�

= OT2 +
1
λd

Tµµ −
1

2λ2
. (33)

However, by the trace flow equation (25) with f (T ) = OT2 , we have

OT2 +
1
λd

Tµµ = 0 , (34)

so we conclude that
eOT2 = −

1
2λ2

. (35)

That is, the T2 operator for the subtracted theory eLλ is actually a constant. We can use this to
rewrite the flow equation for any such subtracted theory in a different way. Beginning from
the form (25) with f (T ) = OT2 of the flow equation for Lλ, and making the replacements

L= eL+ 1
λ

, Tµµ = eT
µ
µ +

d
λ

, λ=
1
Æ

2|eOT2 |
, (36)

where we assume λ > 0, one finds

λ2 ∂
eL
∂ λ
= −

1
d

eTµµ
Æ

2|eOT2 |
. (37)

Finally, shifting variables to T = 1
λ and substituting the definition of eOT2 , we conclude

∂ eL
∂ T
=
eTµµ

s

�

�

�d eTρσ eTρσ − 2
�

eTρρ
�2
�

�

�

. (38)

Note that the combination on the right side of (38) is dimensionless, so that this is a flow equa-
tion driven by a relevant operator, unlike the conventional T2 deformation which is defined
in terms of an irrelevant operator.
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A similar construction would have allowed us to write relevant flow equations for defor-
mations by other quadratic combinations of stress tensors, such as c1TµνTµν + c2

�

Tµµ
�2

, by
defining a subtracted Lagrangian eL= L− a

λ where these constants satisfy

ac1d + ac2d2 = −
1
2

. (39)

However, for simplicity, in this paper we will consider only the choice c1 =
1

2d , c2 = −
1
d2 , a = 1

which is presented above.

2.3 T 2 fixed points

The examples constructed in Section 2.2, whose T2 operators are constants which are inde-
pendent of fields, are special insofar as the equations of motion for such theories are invariant
to leading order under an infinitesmal T2 flow. This is obvious at first order in the deformation
parameter λ, since by assumption the effect of the T2 deformation is simply to add a constant
term to the Lagrangian, which does not affect the dynamics.

However, beyond leading order, it is possible that additional structures will be generated
and that the invariance of the equations of motion will fail. In this Subsection, we will demon-
strate a sufficient condition for the invariance of the equations of motion to continue to hold
at all orders in the deformation parameter.6

Let L be any Lagrangian in d spacetime dimensions with the following two properties:

(i) The T2 operator of such a theory is

OT2 = c1κ
2 , (40)

where c1 is dimensionless and κ is a constant with mass dimension d.

(ii) The trace of the stress tensor is proportional to the undeformed Lagrangian itself,

Tµµ = c2L , (41)

for some other dimensionless constant c2.

In Section 3, we will see that the Plebanski theory of electrodynamics [61] in four spacetime
dimensions is an example which satisfies these two properties. We will also construct a new
theory of scalars in d = 2 which falls into the same class of examples.

We now consider a T2 deformation of a theory L which satisfies properties (i) - (ii). To
leading order in the flow parameter λ, the deformed theory is

Lλ = L0 + c1λκ
2 +O(λ2) . (42)

We therefore make an ansatz for the all-orders Lagrangian which takes the form

Lλ = f (λκ)L0 + c1κg(λκ) , (43)

where f and g are functions of the dimensionless combination χ ≡ λκ which satisfy the initial
conditions

f (0) = 1 , g(0) = 0 . (44)

6We state these conditions for the operator OT2 defined in (27) but an analogous argument can be given for
deformations by other quadratic combinations of stress tensors.
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The stress tensor Tµν(λ) for the ansatz (43) is simply

Tµν(λ) = f (χ)Tµν(0) + c1κg(χ)gµν , (45)

where Tµν(0) is the stress tensor of the undeformed theory L0. Therefore, one finds that the
T2 operator associated with our ansatz at finite λ is

OT2(λ) = c1κ
2 f (χ)2 −

c1

d
κ f (χ)g(χ)Tµµ (0)−

c2
1κ

2

2
g(χ)2 , (46)

where we have used the assumption that

OT2(0) =
1

2d

�

Tµν(0)Tµν(0)−
2
d

�

Tµµ (0)
�2
�

= c1κ
2 . (47)

The differential equation ∂λLλ = OT2(λ), which our ansatz (43) should satisfy, is

f ′(χ)L0 + c1κg ′(χ) = c1κ
�

f (χ)2 −
c1

2
g(χ)2
�

−
c1

d
f (χ)g(χ)Tµµ (0) . (48)

We now see that, in order for our ansatz to be consistent, we must have that Tµµ (0) be propor-
tional to L0 in order to match the non-constant terms on either side of equation (48). When
property (ii) is satisfied, our differential equation becomes

g ′(χ) = f (χ)2 −
c1

2
g(χ)2 , f ′(χ) = −

c1c2

d
f (χ)g(χ) . (49)

The general solution to this system of ordinary differential equations can be written in terms
of an implicit expression involving an unevaluated integral. We will focus on a special case
where the resulting integral simplifies, namely

c1 = 2 , c2 = d , (50)

which are the values that will appear in our examples of Section 3. In this case, the solution
is simply

f (χ) =
1

1+χ2
, g(χ) =

χ

1+χ2
. (51)

In particular, this implies that the full solution to the T2 flow equation,

Lλ =
L0

1+κ2λ2
+

2λκ2

1+λ2κ2
, (52)

is merely a constant rescaling of the undeformed Lagrangian L0, along with a constant shift.
Neither the additive constant nor the multiplicative prefactor affects the equations of motion
for the model, so in this case, we see that the dynamics of the theory are invariant under a T2

flow. We refer to such an invariant seed theory as a T2 fixed point.

3 Theories related to zero-birefringence conditions

As an application of the formalism developed in Section 2, we will now study several examples
of theories which are motivated by studies of zero-birefringence conditions. We focus on four-
dimensional Abelian gauge theories, although we will discuss two-dimensional analogues of
these theories which involve scalar fields in Section 4. We will find that each of the theories
in this family is related to one of the analyses of the preceding Section, such as the subtracted
T T -like flows or T2 fixed points.

As in the preceding sections, we stress that all of these results hold only for classical stress
tensor deformations of the Lagrangian. We will not address the well-known issues that arise
in attempting to define a quantum T T operator in spacetime dimensions d > 2, but see [62]
for a discussion of these subtleties.
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3.1 Compatibility of T 2 flow and zero-birefringence conditions

One of the motivations for studying the two-dimensional T T operator, and its higher-
dimensional analogues, is that such deformations appear to preserve many symmetries and
desirable properties of the seed theory. For instance, it is often possible to present such defor-
mations as superspace flow equations, which makes it manifest that the deformation preserves
the supersymmetry of the initial theory [10–13,15–17]. In the 2d setting, it is also known that
the T T deformation preserves the integrability of the seed theory [2].

It is natural to wonder whether similar stress tensor flow equations preserve other interest-
ing properties of their seed theories. For 4d gauge theories, one physically motivated condition
that one might impose is the absence of birefringence, or a polarization-dependent dispersion
relation. The constraints on a theory to guarantee zero-birefringence is an old topic that has
been studied by many authors; see [61,63–68] for some of the original analysis or [69] for a
recent discussion. For our purposes, the most convenient way of expressing this condition is
as a pair of partial differential equations for theories of non-linear electrodynamics described
by the Lagrangian L(S, P):

LS (LSS −LPP) = 2S
�

LSSLPP −L2
SP

�

, (53a)

LSLSP = P
�

LSSLPP −L2
SP

�

. (53b)

Here subscripts indicate partial derivatives with respect to the argument.
In this section, we will prove that the T2 flow is the only irrelevant stress tensor defor-

mation compatible with the zero-birefringence conditions (53). That is, if one begins with
an initial theory L0 which exhibits no birefringence, and then constructs the one-parameter
family of theories Lλ satisfying

∂Lλ
∂ λ

= f
�

Tµν
�

, (54)

then the only choice of an irrelevant operator f
�

Tµν
�

for which all of the theories Lλ will also
satisfy the zero-birefringence conditions is

f
�

Tµν
�

= a
�

TµνTµν −
1
2

�

Tµµ
�2
�

. (55)

This singles out the operator OT2 up to an overall proportionality constant a.
To show this, it is convenient to first compute Tµν for a general Lagrangian of the form

L= L(S, P) , (56)

in four spacetime dimensions. The Hilbert stress tensor is given by

Tµν = −2
∂L
∂ gµν

+ gµνL

= −2
�

∂L
∂ S

∂ S
∂ gµν

+
∂L
∂ P

∂ P
∂ gµν

�

+ gµνL , (57)

where
∂ S
∂ gµν

= −
1
2

F ρ
µ Fνρ ,

∂ P
∂ gµν

= −
1
2

F ρ

(µ
eFν)ρ . (58)

We can then compute the two Lorentz scalars

Tµµ = −4
�

S
∂L
∂ S
+ P
∂L
∂ P
−L
�

, (59a)

TµνTµν = 4

�

�

L− P
∂L
∂ P

�2

− 2S
∂L
∂ S

�

L− P
∂L
∂ P

�

+ (P2 + 2S2)
�

∂L
∂ S

�2
�

. (59b)
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To obtain the expressions (59), one must use various identities relating the traces of powers
of 4× 4 matrices. We refer the reader to [16] or [49] for details on this procedure.

Using (59), one can construct the four-dimensional T2 operator,

OT2 =
1
8

�

TµνTµν −
1
2

�

Tµµ
�2
�

= −
1
2

�

L− P
∂L
∂ P

�2

+ S
�

L− P
∂L
∂ P

�

∂L
∂ S
+

1
2

P2
�

∂L
∂ S

�2

. (60)

Beginning from a seed Lagrangian L(S, P), a continuous deformation by the operator OT2

defines a flow in the space of field theories described by the differential equation

∂L(λ, S, P)
∂ λ

= −
1
2

�

�

L− P
∂L
∂ P

�2

− 2S
�

L− P
∂L
∂ P

�

∂L
∂ S
− P2
�

∂L
∂ S

�2
�

. (61)

We will now find the criteria under which a stress tensor deformation preserves the zero-
birefringence conditions, and check that the flow equation (61) satisfies these criteria. First
consider a one-parameter family of Lagrangians L(λ, S, P) which obeys a flow equation driven
by a general Lorentz scalar constructed from the stress tensor,

∂L
∂ λ
= f
�

Tµµ , TµνTµν
�

, (62)

where f is an arbitrary7 function. To ease notation, we will define

y1 = Tµµ , y2 = TµνTµν . (63)

We would like to impose the condition that the entire family of LagrangiansL(λ, S, P) all satisfy
the zero-birefringence constraints (53) at any value of λ. In particular, we may differentiate
the two conditions (53) with respect to λ to obtain

fS (LSS −LPP) +LS ( fSS − fPP) = 2S ( fSSLPP +LSS fPP − 2 fSPLSP) ,

fSLSP +LS fSP = P ( fSSLPP +LSS fPP − 2 fSPLSP) .
(64)

Here fS =
∂ f
∂ S and fP =

∂ f
∂ P . We can re-express these conditions in terms of f y1

= ∂ f
∂ y1

and

f y2
= ∂ f
∂ y2

using the expressions (59), which gives

fS = −4 f y1
(PLSP + SLSS) + 8 f y2

�

SL2
S + (PLP −L) (PLSP + SLSS)

+LS

�

SPLSP + (P
2 + 2S2)LSS

�

�

,

fP = −4 f y1
(PLPP + SLSP) + 8 f y2

�

PLP (PLPP + SLSP)−L (PLPP + SLSP)

+LS

�

PSLPP + PLS + (P
2 + 2S2)LSP

�

�

, (65)

and similar (but more cumbersome) expressions for fSS , fSP , and fPP . We substitute each of
these expressions for the partial derivatives of f into (64), simplify by assuming that the La-
grangian L satisfies the original pair of conditions (53), and then collect all terms proportional
to each independent derivative of L. For instance, the coefficient multiplying LS must vanish

7The attentive reader may wonder why we have only allowed the function f to depend on the two traces
y1 = Tr(T ) and y2 = Tr(T 2) but not on Tr(T 3) or Tr(T 4). Although a general 4× 4 matrix T has four independent
traces, the stress tensor associated with an Abelian gauge theory in four dimensions has only two independent
eigenvalues, as shown in Appendix A of [49]; as a result, it also has only two independent traces. Thus it suffices
to consider dependence on only two invariants.

13

https://scipost.org
https://scipost.org/SciPostPhys.15.5.198


SciPost Phys. 15, 198 (2023)

independently, as must the coefficient multiplying LSP , and so on. After doing this, one finds
that the two conditions (64) are both satisfied if and only if

f y2 y2
= f y1 y2

= 0 , f y1 y1
= − f y2

. (66)

Thus the deforming operator f (y1, y2) must be at most linear in y2 = TµνTµν and at most
quadratic in y1 = Tµµ . Furthermore, it must have a relative coefficient of −1

2 between the y2
term and the y2

1 term. The most general function which satisfies these properties is

f (Tµν) = a
�

TµνTµν −
1
2

�

Tµµ
�2
�

+ bTµµ + c , (67)

where a, b, c and constants independent of Tµν. The third term is merely a constant shift which
has no effect on the equations of motion. The second term is a deformation proportional to the
trace of the stress tensor, which generates scale transformations; this is permissible because
the property of exhibiting zero-birefringence is scale-invariant.8 We also point out that generic
deformations of a conformal seed theory can be recast in the form of the second term in (67)
due to the trace flow equation, but following the remarks around equation (26), this form of
the deformation is not valid as λ→ 0.

Ignoring constant shifts and scale transformations, the only non-trivial deformation which
satisfies our conditions is then

f (Tµν) = a
�

TµνTµν −
1
2

�

Tµµ
�2
�

∼ OT2 . (68)

This argument can be seen as a different way of motivating the particular deforming operator
OT2 , with the specific relative coefficient of−1

2 , as this choice is the only irrelevant stress tensor
deformation which is compatible with the zero-birefringence condition.

3.2 Examples of zero-birefringence theories in 4d electrodynamics

We have just shown by a general argument that the four-dimensional T2 flow equation pre-
serves the zero-birefringence conditions, at least to first order. However, it is also illuminating
to study the flow in explicit examples of theories which satisfy this condition. In fact, such a
study can be carried out in an exhaustive case-by-case manner, since it was recently shown
in [69] that there are only three theories of non-linear electrodynamics in four spacetime di-
mensions which can be written in terms of a Lagrangian density L(S, P) and which satisfy
the zero-birefringence condition. We recall from (11) that S and P are the two independent
Lorentz invariants which can be constructed from Fµν, namely

S = −
1
4

FµνFµν , P = −
1
4

FµνeF
µν . (69)

The theories of electrodynamics with no birefringence fall into three classes:

(I) The conventional Born-Infeld theory, whose Lagrangian can be written as

LBI = T −
p

T2 − 2TS − P2 , (70)

where T is a dimensionful parameter with the interpretation of a D3-brane tension.

8Note that birefringence is the property that an unpolarized beam of light passing through a background field
will split into two separate beams with a relative angle between them. Conformal transformations distort lengths
but not angles, so the presence of birefringence is conformally invariant.
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(II) The theory of Plebanski electrodynamics, with action

LPl =
κS
P

, (71)

and where κ is another dimensionful constant.

(III) The so-called “reverse Born-Infeld” theory with Lagrangian

LrBI = α
p

P2 + 2TS − T2 + βP . (72)

There is also a fourth theory satisfying the zero-birefringence condition which is referred to
in [69] as “extreme Born-Infeld” or eBI. However, the eBI theory does not admit a description
in terms of a conventional Lagrangian density L(S, P), but rather as a Lagrangian constraint
relating the variables S and P. As a result, we will not consider this theory in the present work.

We have reviewed that the standard Born-Infeld Lagrangian (70) is the solution to a stress
tensor flow equation given in equation (12). One might ask whether the other two solutions
(71), (72) to the zero-birefringence condition also satisfy some flow equation. We will see that
the answer is yes in both cases, up to a rescaling of the Lagrangian and addition of a constant
term in the case of the Plebanski theory.

This is perhaps expected in the case of the reverse-Born-Infeld theory, since the Lagrangian
(72) is related to the usual Born-Infeld Lagrangian (70) by dropping the constant T term,
adding a term proportional to P, and reversing a sign under the square root. Interpreting the
tension T as 1

λ , we see that the step of dropping the constant term is identical to the sub-
traction procedure which was studied in Section 2.2. Indeed, we will find that the reverse
Born-Infeld Lagrangian satisfies the flow equation which we derived for such subtracted theo-
ries. By adding back this term, and formally continuing certain real parameters in the solution
to complex values, one can also show that a version of the reverse Born-Infeld theory satisfies
a conventional T T -like flow equation but with an imaginary value of the flow parameter λ.

Although it is less obvious whether the Plebanski Lagrangian might satisfy any version of
a T T -like flow, it will turn out that this theory is exactly one of the T2 fixed points which we
considered in Section 2.3. In this sense, the Plebanski theory is something of an edge case,
since the equations of motion of this model are left invariant under the T2 deformation: to all
orders in λ, the effect of the flow is merely to re-scale the Lagrangian by an overall prefactor
and add a constant shift which does not affect the dynamics.

Born-Infeld

The most well-known of the three Lagrangian solutions to the zero-birefringence condition is
the Born-Infeld theory. We saw above that the Born-Infeld Lagrangian (70), written in terms
of λ= 1

T as

LBI =
1
λ

�

1−
p

1− 2λS −λ2P2
�

, (73)

is the solution to the classical T T -like flow equation (12), as shown in [34]. The supersym-
metric version of this theory also satisfies a manifestly supersymmetric flow equation in super-
space [15] – we will elaborate on other supersymmetric flows in Section 5.

The initial condition for this flow equation is

lim
λ→0

LBI = S = −
1
4

FµνFµν , (74)

which is the usual Maxwell Lagrangian. In particular, this is a conformally invariant seed the-
ory, which means that the only scale in the deformed theory is the one set by λ, and the analysis
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of Section 2.1 implies that the stress tensor of the deformed theory LBI satisfies the trace flow
equation. Following the general arguments of Section 2.2, we may therefore considered the
subtracted version of the Born-Infeld Lagrangian,

eLBI = LBI −
1
λ
= −

1
λ

p

1− 2λS −λ2P2 . (75)

The Lagrangian (75) then satisfies a flow equation driven by a relevant operator,

∂ eLBI

∂ T
=
eTµµ

s

�

�

�4eTρσ eTρσ − 2
�

eTρρ
�2
�

�

�

. (76)

Here eTµν is the stress tensor associated with eLBI and we assume that T = 1
λ > 0. Thus the

Born-Infeld Lagrangian, without constant term, is an example of the theories considered in
Section 2. Our general arguments imply that eLBI has the unusual feature that the quadratic
combination of stress tensors which usually drives the T2 flow is constant:

eTµνeTµν −
1
2

�

eTµµ
�2
= −4T2 , (77)

which means that the absolute value under the square root in the flow equation (76) picks out

the positive combination
�

�

�

eTµνeTµν −
1
2

�

eTµµ
�2
�

�

�= 4T2.

This relevant flow equation may initially seem to be a contradiction to the general argu-
ment of Section 3.1, since the subtracted theories eLBI still exhibit zero birefringence at any
value of T , and yet the flow equation (76) appears to be driven by an operator which is not of
the form (67). However, it is important to note that the combination eOT2 = eTρσ eTρσ−

1
2

�

eTρρ
�2

is actually a constant for this class of theories. Therefore, the flow equation (76) is really of

the form ∂ eLBI
∂ T = beTµµ for constant b, which is indeed compatible with the general solution

(67) with a = c = 0.
We also note that the flow equation continues to hold if we recale the Born-Infeld La-

grangian or add any term which does not contribute to the stress tensor. For instance, if we
instead define

eLBI −→ eL′BI = α eLBI + βP , (78)

then the new theory satisfies

∂ eL′BI

∂ T
=

αeTµµ
s

�

�

�4eTρσ eTρσ − 2
�

eTρρ
�2
�

�

�

, (79)

because P is a total derivative which does not couple to the metric. This will be useful when
we consider the reverse Born-Infeld theory shortly, which can be interpreted as a member of
the rescaled class of theories (78) for imaginary α.

Plebanski

We now consider the second solution to the zero-birefringence condition, which we refer to
as the Plebanski theory. In equation (71) we have written the Lagrangian for this theory as
LPl =

κS
P . However, in order to match conventions with the general discussion of Section 2.3,

it is convenient to rescale9 the value of κ in the Plebanski Lagrangian to

LPl =
2κS

P
. (80)

9Alternatively, one could repeat the general analysis of Section 2.3 and solve the coupled differential equations
with c1 =

1
2 rather than c1 = 2, which leads to the same rescaling.
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This Plebanski Lagrangian shares the property of the subtracted Born-Infeld Lagrangian eLBI
that a particular combination of stress tensor bilinears yields a constant. By evaluating the
stress tensor contractions for LPl using the general formula (59), one finds

Tµµ =
8κS

P
, TµνTµν = 16κ2

�

1+
2S2

P2

�

=
1
2

�

Tµµ
�2
+ 16κ2 . (81)

The T2 operator for this theory is therefore

OT2 =
1
8

�

TµνTµν −
1
2

�

Tµµ
�2
�

= 2κ2 . (82)

In the notation of equations (40) - (41), we see that the Plebanski theory satisfies

OT2 = c1κ
2 , Tµµ = c2LPl , (83)

with c1 = 2 and c2 = 4. We can then quote the full solution to the T2 flow equation with initial
condition L0 = LPl which is

Lλ =
LPl

1+κ2λ2
+

2λκ2

1+ κ2λ2
. (84)

The second term is a field-independent constant which does not affect the equations of motion,
whereas the first term is simply an overall rescaling of the undeformed Lagrangian.

We therefore see that the one-parameter family of Plebanski theories, labeled by the pa-
rameter κ, is closed under T2 flows: up to an additive constant, the effect of a T2 deformation
is simply to rescale

κ −→
κ

1+λ2κ2
, (85)

while remaining within the same class of theories. Because the parameter κ drops out of the
equations of motion for this model, one can view this family of Lagrangians as defining a single
physical theory regardless of the value of κ. From this perspective, the theory is genuinely
invariant under the T2 flow.

Reverse Born-Infeld

We now turn our attention to the more unusual case of reverse Born-Infeld electrodynamics,
described by the Lagrangian

LrBI = α
p

P2 + 2TS − T2 + βP , (86)

where α and β are dimensionless constants.
Whereas the usual Born-Infeld theory exhibits a maximum allowed value for the electric

field, since the magnitude of the electric field vector E⃗ must be bounded above in order for the
argument of the square root to remain positive, the reverse Born-Infeld theory instead has a
minimum allowed electric field: the usual inequality on |E⃗| is reversed to give a lower bound.
It is straightforward to find these bounds using

S =
1
2

�
�

�E⃗
�

�

2 −
�

�B⃗
�

�

2�
, P = E⃗ · B⃗ , (87)

where E⃗, B⃗ are the three-vector electric and magnetic fields, respectively. In terms of these
three-vectors and the tension T = 1

λ , the usual Born-Infeld Lagrangian is then

LBI = T −
r

T2 − T
�
�

�E⃗
�

�

2 −
�

�B⃗
�

�

2�−
�

E⃗ · B⃗
�2

. (88)
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One can bound the argument of the square root by applying the Cauchy-Schwarz inequality
to
�

E⃗ · B⃗
�2

. In order for this argument to remain positive for any B⃗, we require

�

�E⃗
�

�

2
< T . (89)

On the other hand, the reverse Born-Infeld Lagrangian is

LrBI = α
r

�

E⃗ · B⃗
�2
+ T
�
�

�E⃗
�

�

2 −
�

�B⃗
�

�

2�− T2 + β
�

E⃗ · B⃗
�

, (90)

so it is instead necessary (but not sufficient) for reality that
�

�E⃗
�

�

2
> T . (91)

To see that this bound is not sufficient, note that one can choose a large magnetic field B⃗ which
is orthogonal to E⃗ so that

�

E⃗ · B⃗
�2 − T
�

�B⃗
�

�

2
is large and negative. The constraint (91) is the

claimed lower bound on the magnitude of the electric field in the reverse Born-Infeld theory,
which is the opposite of the usual inequality (89).

The Lagrangian LrBI satisfies flow equations similar to those of the usual Born-Infeld La-
grangian, although the signs of several quantities will be reversed. First we note that this
theory satisfies the same flow equation (79) as for the rescaled Born-Infeld theory,

∂LrBI

∂ T
=

αTµµ
s

�

�

�4TρσTρσ − 2
�

Tρρ
�2
�

�

�

, (92)

for any value of α and β . Therefore the reverse Born-Infeld theory obeys the same flow, driven
by the same relevant operator constructed from stress tensors, as the Born-Infeld theory with
the constant term subtracted. From the perspective of the flow equation, the only difference
in the reverse Born-Infeld case is that the combination of stress tensors in the denominator
now takes a positive constant value:

TµνTµν −
1
2

�

Tµµ
�2
= 4α2T2 . (93)

This reflects the fact that, if one neglects the βP term appearing in the reverse Born-Infeld
Lagrangian (whose contribution drops out of Tµµ and TµνTµν), the Lagrangian LrBI reduces
to the usual Born-Infeld Lagrangian LBI if we set α= i.

This suggests that the Born-Infeld and reverse Born-Infeld theories belong to a single family
of Lagrangians which are related by formal analytic continuation of certain coupling constants.
In fact, we can show that this entire family of theories satisfies a version of the λ-flow equation
driven by OT2 discussed above, if we formally allow the flow parameter λ to become complex.

To show this, it is convenient to first rewrite the reverse Born-Infeld Lagrangian in a form
which has a finite weak-field (T →∞) limit by adding an imaginary constant:

LrBI = α
p

P2 + 2TS − T2 + βP − iαT

= βP − iαS −
iα
2T

�

S2 + P2
�

+O
�

1
T2

�

. (94)

At large tension, this Lagrangian reduces to the Maxwell Lagrangian S multiplied by an imag-
inary constant, along with a total derivative term βP.

One can express this Lagrangian in terms of λ= 1
T to find

LrBI =
α

λ

�p

−1+ 2λS +λ2P2 − i
�

+ βP . (95)
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This Lagrangian is now of the same schematic form as the usual Born-Infeld Lagrangian, before
performing the subtraction procedure. Accordingly, it satisfies the flow equation

∂LrBI

∂ λ
=

i
8α

�

TµνTµν −
1
2

�

Tµµ
�2
�

=
i
α

OT2 , (96)

for any value of α and β . We can interpret the differential equation (96) as a formal ana-
lytic continuation of the usual T2 flow for the Born-Infeld action to complex values of the
parameters. At small λ, the Lagrangian (95) approaches

LrBI = −iαS + βP +O(λ) , (97)

whereas at large λ it approaches

LrBI = (α+ β) P +O
�

1
λ

�

. (98)

Therefore, we can view the reverse Born-Infeld Lagrangian (with the addition of the imaginary
constant term) as solving a T2 flow equation with either of the initial conditions (97), (98) at
λ→ 0 or λ→∞, respectively.

In fact, there is an entire U(1)’s worth of such theories: for any angle θ , the theory

LθBI =
αeiθ

λ

�

1−
p

1− 2λS −λ2P2
�

+ βP , (99)

can be shown to satisfy the flow equation

∂LθBI

∂ λ
=

e−iθ

8α

�

TµνTµν −
1
2

�

Tµµ
�2
�

=
e−iθ

α
OT2 . (100)

The case when α = 1 and θ = 0 corresponds to the ordinary Born-Infeld theory, whereas
θ = −π2 recovers the reverse Born-Infeld theory which we considered above. Formally speak-
ing, one can recast the general flow equation for any θ by defining a complex number

z = αeiθ , (101)

and a new complex flow parameter

bλ=
λ

z
, (102)

so that the flow equation can be written as

∂LθBI

∂ bλ
= OT2 . (103)

We may therefore interpret this entire family of theories as solving a T2 flow equation where
the flow parameter bλ is now complex. Alternatively, one can generate any theory in this family
by beginning with the Born-Infeld-like solution for real λ,

LBI =
α

λ

�

1−
p

1− 2λS −λ2P2
�

+ βP , (104)

and simultaneously making the replacements

λ→ λe−iθ , S→ Seiθ , P → Peiθ , β → βe−iθ . (105)
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This collection of replacements yields the version of Born-Infeld in equation (99) at arbitrary
θ . Of course, this Lagrangian LθBI can formally be viewed as a holomorphic function of com-
plex variables λ, S, P,β ∈ C. From this perspective, the observation that the family of theories
satisfies the flow equation (103) is a consequence of holomorphicity in λ, since one can dif-
ferentiate along any direction in the complex λ plane.

Finally, we point out one example which cannot be realized as a stress tensor flow of this
form. So far in this discussion, we have treated α and β as arbitrary dimensionless constants.
However, in [69] the authors considered a case in which these constants are chosen in a way
which is correlated with the tension parameter T . If we take

α= β =
κ

T
, (106)

where κ is a new constant with the same dimensions as the tension T , then the reverse Born-
Infeld Lagrangian can be written as

LrBI =
κ

T

�p

P2 + 2TS − T2 − P
�

, (107)

in terms of the tension T = 1
λ . The theory described by (107) cannot be realized as a T T -like

flow in the way that we have been discussing. One way to see this is to note that, in the limit
as T → 0, this theory reduces to the Plebanski theory,

LrBI =
κS
P
+O(T ) . (108)

We have seen above that the Plebanski Lagrangian is a fixed point of the four-dimensional
T T -like flow. Because the choice of parameters for the reverse Born-Infeld theory appearing
in (107) reduces to a fixed point of the OT2 deformation in a particular limit, we conclude that
it cannot be realized as an irrelevant flow beginning from an initial condition near T = 0.

3.3 Properties of root-T 2 flows

In the previous Subsection, we have considered irrelevant flows for theories of electrodynam-
ics – or in some cases, relevant flows with an inverted coupling constant – which are driven
by combinations built from the energy-momentum tensor. However, one can also study defor-
mations by marginal operators constructed from Tµν. One example in this class is the root-T T
operator in two spacetime dimensions [35] and its higher-dimensional generalizations. In
general dimension d, we define the root-T2 operator R as

R=

√

√1
d

TµνTµν −
1
d2

�

Tµµ
�2

. (109)

Note that the operator above can be expressed as

R=
1
p

d

Ç

T̂µν T̂µν , T̂µν := Tµν −
1
d

gµνTρρ , (110)

which makes explicit the fact that the traceless part of the stress energy tensor is associated to
this flow. In the context of 4d theories, the operator R is

R=
1
2

√

√

TµνTµν −
1
4

�

Tµµ
�2

, (111)
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and for a general Lagrangian L(S, P) for a 4d Abelian gauge theory, the combination appearing
under the square root in equation (111) takes a special form:

TµνTµν −
1
4

�

Tµµ
�2
= 4(S2 + P2)
�

∂L
∂ S

�2

. (112)

Therefore, assuming10 that ∂L∂ S > 0, the root-T2 operator can be written simply as

R=
p

S2 + P2 ∂L
∂ S

. (113)

Unlike the operator OT2 considered above, it is straightforward to check that a flow equation
driven by the operator R is not compatible with the zero-birefringence condition. That is,
beginning with a theory L which satisfies (53) and deforming it according to ∂L∂ γ = R produces
a theory which no longer satisfies (53) – indeed, this must have been the case, since we have
shown in Section 3.1 that OT2 is the unique stress tensor deformation which preserves this
condition. Therefore, deforming a theory of 4d electrodynamics by root-T2 does not preserve
the property of exhibiting zero-birefringence.

However, there are other properties of a theory which are preserved by the root-T2 flow.
One example is conformal invariance: as one would expect for a classically marginal defor-
mation, if the trace of the stress tensor vanishes for the seed theory L0, then the trace of the
stress tensor for the deformed theory Lγ also vanishes.

This claim is simple to verify. Using equation (59), the trace of the stress tensor associated
with a general Lagrangian L(S, P) is

Tµµ = −4
�

S
∂L
∂ S
+ P
∂L
∂ P
−L
�

, (114)

so if the family of Lagrangians L(S, P,γ) satisfies a flow equation of the form

∂L
∂ γ
= f
�

Tµν
�

, (115)

where f is some Lorentz scalar constructed from the stress tensor, then one finds

∂

∂ γ
Tµµ = −4
�

S
∂ f
∂ S
+ P
∂ f
∂ P
− f
�

. (116)

Therefore, the trace of the stress tensor will not flow (to leading order) so long as

f = S
∂ f
∂ S
+ P
∂ f
∂ P

. (117)

The most general Lorentz scalar which depends on the stress tensor is a function of the two
invariants y1 = Tµµ , y2 = TµνTµν, as we have used in Section 3.1. We now wish to find the
constraints on the function f (y1, y2) such that, if the trace Tµµ of the stress tensor vanishes,
then the derivative ∂γT

µ
µ also vanishes. Since Tµµ = 0, we have

L= S
∂L
∂ S
+ P
∂L
∂ P

. (118)

Using the partial derivatives fS , fP computed in (65) above, substituting into (117), and using
the assumption (118) and its derivatives, one finds that ∂γT

µ
µ = 0 if

�

f − 2y2∂y2
f
� �

�

y1=0 = 0 , (119)

10If instead ∂L
∂ S < 0, this can be absorbed into a redefinition of the flow parameter as γ→−γ.
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which is satisfied by

f (y1, y2) = R=
1
2

√

√

y2 −
1
2

y2
1 , (120)

or more generally this condition holds for any function f (y1, y2) which is proportional to
p

y2
after setting y1 = 0.

A more direct way to see that a deformation by the marginal combination R preserves
conformal invariance is to note that the general solution to the differential equation

∂L
∂ γ
=
p

S2 + P2 ∂L
∂ S

, (121)

with initial condition L|γ=0 = L0(S, P) is given by

Lγ = L0

�

cosh(γ)S + sinh(γ)
p

S2 + P2 , P
�

. (122)

That is, to solve the root-T2 flow equation, one simply replaces S with
eS = cosh(γ)S + sinh(γ)

p
S2 + P2 everywhere in the undeformed Lagrangian L0. However,

this change of variables has the property that

S
∂L(S, P)
∂ S

+ P
∂L(S, P)
∂ P

= eS
∂L(eS, P)

∂ eS
+ P
∂L(eS, P)
∂ P

. (123)

Therefore, if the stress tensor Tµµ (0) of the undeformed Lagrangian L0(S, P) vanishes, so

S
∂L0

∂ S
+ P
∂L0

∂ P
−L0 = 0 , (124)

then the stress tensor Tµµ (γ) for the deformed Lagrangian Lγ also satisfies

Tµµ (γ) = S
∂Lγ
∂ S
+ P
∂Lγ
∂ P
−Lγ

= eS
∂Lγ
∂ eS
+ P
∂Lγ
∂ P
−Lγ

=
�

S
∂L0

∂ S
+ P
∂L0

∂ P
−L0

�
�

�

�

S→eS

= 0 , (125)

which confirms that the deformed stress tensor remains traceless. We reiterate that these
arguments only establish that the classical root-T2 deformation of the Lagrangian preserves
conformal invariance of the corresponding classical field theory. It is not at all obvious that
this statement can be lifted to an observation about the quantum theory, and we will not
investigate this question here.

Another property of interest in theories of non-linear electrodynamics is electric-magnetic
duality symmetry. For instance, the ModMax theory is special because it is the only conformally
invariant extension of Maxwell theory which remains invariant under electric-magnetic duality
rotations, and it is known that the ModMax theory is obtained from the Maxwell theory by a
root-T2 flow. One might therefore wonder whether the property of electric-magnetic duality
invariance is preserved more generally by the root-T2 deformation or by the T2 deformation.
In fact, this property is preserved by any deformation constructed from the stress tensor. We
will now pause to demonstrate this fact to leading order in the deformation parameter; the
extension of this argument to all orders can be found in [70].
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Like the study of zero-birefringence conditions, invariance under electric-magnetic duality
rotations is an old subject; see [71–80] and references therein for previous studies of conditions
for duality invariance. The Euler-Lagrange equations associated with a Lagrangian L(S, P)
respect electric-magnetic duality rotations if

L2
S −

2S
P
LSLP −L2

P = 1 . (126)

We note that this condition is weaker than imposing that the Lagrangian itself be invariant
under electric-magnetic duality; for instance, the free Maxwell Lagrangian L = S is not itself
invariant under duality rotations, but its equations of motion are.

We claim that, if L is any Lagrangian satisfying the electric-magnetic duality condition
(126), and if the deformed Lagrangian Lγ satisfies

∂L
∂ γ
= f
�

Tµν
�

, (127)

then the deformed Lagrangian Lγ also satisfies this condition. We will check this by taking the
derivative of (126) with respect to γ, which gives

LS fS −
S
P
( fSLP +LS fP)−LP fP = 0 . (128)

We again assume that the function f depends on S, P only through the combinations y1 = Tµµ ,
y2 = TµνTµν, and substitute the partial derivatives (65). After doing this, simplifying the result
using the relation (126) and its derivatives with respect to S and P, and doing some algebra,
we find that the constraint (128) holds identically, without any additional assumptions on the
function f (y1, y2). We conclude from this simple check that a theory with electric-magnetic
duality invariance retains this property under any stress tensor deformation, such as root-T2.

The argument we have just presented gives one proof that electric-magnetic duality is
preserved to first order by explicitly using properties of the flow equation. However, note that
an alternative and intuitive way of seeing this invariance is to note that, if the Euler-Lagrange
equations associated with a theory are invariant under electric-magnetic duality, then the stress
tensor Tµν of such theory is also invariant; see [71] or section 2.1 of the lectures [81] for
a proof. It then follows that any deformation constructed from the stress tensor preserves
electric-magnetic duality symmetry.

3.4 Examples of root-T 2-deformed theories in 4d electrodynamics

In this Subsection, we will investigate the flows driven by the root-T2 operator R and whose
seed theories correspond to each of the zero-birefringence theories in Section 3.2. Each of
the resulting theories that we find can be interpreted as a two-parameter family of doubly-
deformed theories, with one parameter λ associated with the T2 flow and a second parameter
γ associated with the root-T2 flow. In fact, in all of these cases the flows actually commute,
which is indicated schematically by the following diagram.

S0 Sγ

Sλ S(λ,γ)

R

OT2

R

OT2
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That is, in all three cases, one may either

(A) first deform the seed action S0 by OT2 to obtain Sλ, and then deform the result by R to
find S(λ,γ), or

(B) first deform S0 by R to get Sγ, and then deform this theory by OT2 to obtain S(λ,γ),

and the results of procedures (A) and (B) agree.

ModMax-Born-Infeld

The result of performing a root-T2 deformation whose initial condition is the Born-Infeld the-
ory is the ModMax-Born-Infeld theory, which was first written down in [45]. This is a two-
parameter collection of theories, labeled by λ and γ, which reduces to the Born-Infeld theory
in the limit γ→ 0. The other limit λ→ 0 of these models yields the Modified Maxwell or Mod-
Max theory of [44]. The interpretation of this family of theories in terms of stress tensor flows
has already been investigated in [38,48,49], so here we will only briefly review these results
and point out that this theory also satisfies a relevant flow equation of the form discussed in
Section 2.

In our normalization, the ModMax-Born-Infeld Lagrangian is

LγBI =
1
λ

�

1−
È

1− 2λ
�

cosh(γ)S + sinh(γ)
p

S2 + P2
�

−λ2P2

�

. (129)

The model (129) is electric-magnetic duality invariant, and thus satisfies the differential equa-
tion (126), but does not satisfy the zero-birefringence condition (53) when γ ̸= 0. This is
expected from the observation that deformations by OT2 , but not by the root-T2 operator R,
preserves the zero-birefringence constraint.

The ModMax-Born-Infeld Lagrangian satisfies the two commuting flow equations

∂LγBI

∂ λ
= OT2 ,

∂LγBI

∂ γ
= R , (130)

where R takes the form of equation (113) appropriate for 4d gauge theories.
Because these flow equations commute, we can interpret LγBI either as a root-T2 defor-

mation of the Born-Infeld theory or as a T2 deformation of the ModMax theory. Since the
ModMax theory is conformally invariant, the latter interpretation as a T2 deformation of a
conformally invariant seed theory suggests – by the general analysis of Section 2 – that the
subtracted version of this Lagrangian should also satisfy a flow equation driven by a relevant
operator. Indeed this is the case. If we define

eLγBI = LγBI −
1
λ

= −
1
λ

È

1− 2λ
�

cosh(γ)S + sinh(γ)
p

S2 + P2
�

−λ2P2 , (131)

and set T = 1
λ , then one can verify that this Lagrangian obeys the flow

∂ eLγBI

∂ T
=
eTµµ

s

�

�

�4eTρσ eTρσ − 2
�

eTρρ
�2
�

�

�

, (132)

where eTµν is the stress tensor associated with eLγBI. This is the same relevant flow equation
obeyed by the ordinary Born-Infeld theory.
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Modified Plebanski

Although we have seen in Section 3.2 that the Plebanski theory is a fixed point of the T2

flow, which is related to the fact that the quadratic combination OT2 of stress tensors reduces
to a constant for this theory, the combination appearing in the operator R is not a constant.
Therefore the root-T2 flow

∂L
∂ γ
=

1
2

√

√

TµνTµν −
1
4

�

Tµµ
�2

, (133)

with initial condition
L
�

�

γ=0 =
κS
P
= LPl , (134)

will lead to a non-trivial modification of the theory. Note that, if the seed theory in the flow
(133) were the Maxwell Lagrangian, the solution to this flow equation would be the ModMax
theory. In this case, with the Plebanski Lagrangian as the initial condition, the solution to the
flow equation is instead

LmPl = cosh(γ)
κS
P
+κ sinh(γ)

√

√

1+
S2

P2
. (135)

We refer to this as the “modified Plebanski” theory. Note that

LmPl =
κ

P
LModMax , (136)

where
LModMax = cosh(γ)S + sinh(γ)

p

S2 + P2 , (137)

which means that the γ-flow “commutes with division by P” in the sense that the solution
to the flow equation (133) with initial condition LMaxwell = S is the ModMax Lagrangian
LModMax, while the solution to the same flow equation with initial condition LPl =

κ
PLMaxwell

is LmPl =
κ
PLModMax. This is expected from the general solution (122) to the root-T2 flow

equation, which instructs us to replace S with eS = LModMax in the undeformed Lagrangian L0,
but leave the dependence on P unchanged.

Because T T -type flows and root-T T -type flows commute, and since the Plebanski La-
grangian is a fixed point of the usual T T -like flow (up to re-scaling and addition of a con-
stant), one might think that the modified Plebanski theory (136) is also a fixed point of the
T T deformation in the same sense. This is indeed the case. To see this, it is again convenient
to first re-scale κ by a factor of 2 to write

LmPL = cosh(γ)
2κS

P
+ 2κ sinh(γ)

√

√

1+
S2

P2
. (138)

One finds that the stress tensor Tµν associated with (138) satisfies

1
8

�

TµνTµν −
1
2

�

Tµµ
�2
�

= 2κ2 , Tµµ = 4LmPL . (139)

The (rescaled) modified Plebanski theory therefore falls into the same class of theories which
we considered in Section 2.3, so that the full solution to the T2 flow equation is

Lλ =
LmPL

1+κ2λ2
+

2λκ2

1+ κ2λ2
. (140)

Thus the modified Plebanski Lagrangian is also unaffected by the T T flow, up to the addition
of a constant and an overall rescaling which do not affect the equations of motion, exactly as
in the case of the usual Plebanski theory.
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ModMax-Reverse-Born-Infeld

It is also possible to extend the reverse Born-Infeld theory to include a ModMax-like depen-
dence, precisely as we have discussed for the ordinary Born-Infeld theory. Consider

LγrBI =
α

λ

�È

−1+ 2λ
�

cosh(γ)S + sinh(γ)
p

S2 + P2
�

+λ2P2 − i
�

+ βP , (141)

which reduces to the reverse Born-Infeld Lagrangian (95) as γ→ 0. This two-parameter family
of Lagrangians satisfies a similar pair of commuting flow equations,

∂LγrBI

∂ λ
=

i
α

OT2 ,
∂LγrBI

∂ γ
= R , (142)

at any value of λ and γ.
All of the same comments about interpreting these theories in terms of complex values of

the parameters, which we described around equation (99) for the γ= 0 limit of these theories,
also apply to LγrBI at finite γ. Explicitly, for any angle θ we can consider

L(θ ,γ)BI =
αeiθ

λ

�

1−
È

1− 2λ
�

cosh(γ)S + sinh(γ)
p

S2 + P2
�

−λ2P2

�

+ βP , (143)

which satisfies
∂L(θ ,γ)BI

∂ λ
=

e−iθ

8α

�

TµνTµν −
1
2

�

Tµµ
�2
�

=
e−iθ

α
OT2 , (144)

and this flow equation can be viewed as an holomorphic T2 flow with a complex value of the
deformation parameter λ.

Likewise, the subtracted form11 of any member of this family of theories, defined as

eL(θ ,γ)BI = L(θ ,γ)BI −
αeiθ

λ
, (145)

satisfies the expected relevant flow equation in terms of T = 1
λ ,

∂ eL(θ ,γ)BI

∂ T
=

αeTµµ
s

�

�

�4eTρσ eTρσ − 2
�

eTρρ
�2
�

�

�

. (146)

To conclude this section, we also mention that, purely from the formal point of view of
the flow equations, one could not only analytically continue λ but also the Root-T T -like flow
parameter γ. For instance, a purely imaginary γ would turn the hyperbolic functions in (137)
into sin(γ) and cos(γ) while keeping the structure of LModMax preserved.

4 Scalar analogues in 2d

We now consider theories of a collection of scalar fields φ i , i = 1, . . . , N , in two spacetime
dimensions. These theories satisfy analogues of the flow equations for gauge theories discussed
in the preceding section, and indeed the 2d scalar analogues can be obtained from the 4d
theories by dimensional reduction. For instance, the dimensional reduction of the 4d ModMax
theory to obtain a 2d Modified Scalar theory was performed in [38].

11Here we abuse notation somewhat, since we previously defined the “subtracted” form of a theory as eL= L− 1
λ .

Here the appropriate constant to subtract is instead αeiθ

λ , or bλ−1 in the notation of (102).
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First it will be convenient to collect some general results before specializing to particular
cases. Following the notation of [35], we first introduce the 2× 2 matrix

Xµν = Gi j(φ)∂µφ
i∂νφ

j , (147)

where i = 1, . . . , N enumerates the scalars and Gi j(φ) is a target-space metric. A general O(N)
invariant Lagrangian for these N scalar fields can depend only on the two independent traces

x1 = tr(X ) = Xµµ , x2 = tr(X 2) = XµνX νµ . (148)

All higher invariants, such as x3 = tr(X 3), x4 = tr(X 4), and so on, will be related to the
quantities x1 and x2 by trace identities. Any O(N) invariant LagrangianL(x1, x2), based on the
O(N) invariant building block Xµν, is therefore a function of the two independent traces x1, x2,
much as a general Lagrangian for a U(1) gauge theory in four dimensions constructed only
from terms of powers of the field strength Fµν is a function of the two invariants S = −1

4 FµνFµν

and P = −1
4 FµνeF

µν.
The stress tensor Tµν associated with such a general Lagrangian L(x1, x2) is given by

Tµν = −2Xµν
∂L
∂ x1

− 4X 2
µν

∂L
∂ x2

+ gµνL , (149)

with Xµν as in (147) and X 2
µν = X ρ

µ Xρµ . The two Lorentz scalars which we will need for
constructing flows are

TµνTµν = 2
�

L+ 2x2
1
∂L
∂ x2

��

L− 2x1

�

∂L
∂ x1

+ x1
∂L
∂ x2

��

+ 8x2
2

�

∂L
∂ x2

�2

+ 4x2

�

�

∂L
∂ x1

�2

+ 6x1
∂L
∂ x1

∂L
∂ x2

− 2
∂L
∂ x2

�

L− 2x2
1
∂L
∂ x2

�

�

, (150a)

Tµµ = −2x1
∂L
∂ x1

− 4x2
∂L
∂ x2

+ 2L . (150b)

There is a close analogy between the structure of theories L(S, P) of electrodynamics in four
spacetime dimensions and scalar theories L(x1, x2) in two spacetime dimensions. Often one
can map between the two classes of theories using the dictionary

S←→ x1 , P ←→
q

2x2 − 2x2
1 . (151)

For instance, one can write analogues of the zero-birefringence and electric-magnetic duality
conditions for Lagrangians in 4d gauge theory, but for scalar theories in two dimensions, in
terms of derivatives of L(x1, x2). The scalar versions of the two zero-birefringence condition
(53) are

0= 2x1L2
x2
+ 2Lx1

Lx2 x2

�

x2 − 3x2
1

�

−Lx2

�

Lx1
+ 12Lx2 x2

x1

�

x2
1 − x2

��

(152a)

+ 4x1Lx1 x2

�

(x2
1 − x2)Lx1 x2

−Lx1

�

−Lx1 x1

�

Lx1
+ 4Lx2 x2

x1

�

x2
1 − x2

��

,

0= 2L2
x2
+Lx1 x2

�

2(x2
1 − x2)Lx1 x2

−Lx1

�

− 2Lx2 x2

�

x1Lx1
+
�

x2
1 − x2

�

Lx1 x1

�

+Lx2

�

4Lx2 x2
(x2 − x2

1) +Lx1 x1
+ 2x1Lx1 x2

�

. (152b)

As before, subscripts indicate partial derivatives with respect to the argument, so Lx i
= ∂L
∂ x i

.
Although the conditions (152) appear more complicated than the analogous constraints in
the 4d gauge theory case, and the connection to a physical condition such as the absence of
birefringence is less clear, one can still show that the only stress tensor deformation (up to
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an overall proportionality factor) which is compatible with these two differential equations is
OT2 = 1

4

�

TµνTµν −
�

Tµµ
�2�

. The derivation of this result is completely analogous to the 4d
case of Section 3.1 and we do not repeat such a derivation for the 2d case. Similarly, the scalar
version of the electric-magnetic duality invariance condition (126) is

L2
x1
+ 2x1Lx1

Lx2
+ 2(x2

1 − x2)L2
x2
= 1 . (153)

The differential equation (153) is also compatible with any deformation by a Lorentz scalar
constructed from the stress tensor, which follows from a calculation totally analogous to that
of Section 3.3.12 For instance, this condition is preserved under the root-T T deformation by
the appropriate 2d version of the operator R, which we normalize as

R(2d) =

√

√1
2

TµνTµν −
1
4

�

Tµµ
�2

. (154)

As R(2d) is classically marginal, deforming a conformal field theory with this operator yields a
deformed theory for which the trace of the stress tensor vanishes, as shown explicitly in [35].
This again mirrors the gauge theory result in Section 3.3.

In the following, we will consider several examples where performing the replacements
(151) yields theories of scalars in 2d which satisfy similar T2 and root-T2 flow equations as
the corresponding gauge theories in 4d.

Modified-Nambu-Goto

The scalar analogue of the ModMax-Born-Infeld theory, which was already considered in [35,
39], can be written as

LsγBI =
1
λ

�

1−

√

√

1−λx (γ)1 +
1
2
λ2
�
�

x (γ)1

�2
− x (γ)2

�

�

, (155)

where we have defined

x (γ)1 = cosh(γ)x1 + sinh(γ)
q

2x2 − x2
1 , (156a)

x (γ)2 = cosh(2γ)x2 + sinh(2γ)x1

q

2x2 − x2
1 . (156b)

This Lagrangian simultaneously satisfies the two flow equations

∂LsγBI

∂ λ
= OT2 =

1
4

�

TµνTµν −
�

Tµµ
�2�

, (157a)

∂LsγBI

∂ γ
= R=

√

√1
2

TµνTµν −
1
4

�

Tµµ
�2

, (157b)

as one can verify by evaluating the general expressions (150) for LsγBI. The Modified-Nambu-
Goto theory also satisfies the scalar zero-birefringence conditions (152) and the scalar electric-
magnetic duality condition (153).

The subtracted version of this theory is

eLsγBI = LsγBI −
1
λ
= −

1
λ

√

√

1−λx (γ)1 +
1
2
λ2
�
�

x (γ)1

�2
− x (γ)2

�

, (158)

12We also note that the same differential equation (153) appears in [43] as an integrability condition for theories
related to the principal chiral model (PCM). For any Lagrangian which satisfies this condition, the equations of
motion are equivalent to the flatness of a Lax connection which takes a particularly simple form. As this condition
is preserved by any stress tensor deformation, any Lorentz scalar function f

�

Tµν
�

can be used to build a classically
integrable deformation of the PCM.
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and based on the general arguments of Section 2.2, this Lagrangian obeys a differential equa-
tion driven by a relevant operator,

∂ eLsγBI

∂ T
=
eTµµ

s

�

�

�2eTµνeTµν − 2
�

eTµµ
�2
�

�

�

, (159)

where T = 1
λ and eTµν is the stress tensor associated with eLsγBI.

(Modified) scalar Plebanski

The 4d Plebanski theory described by the Lagrangian

LPl =
κS
P

, (160)

which is one of the three theories of electrodynamics satisfying the zero-birefringence con-
dition which we studied in Section 3.2, also has a scalar analogue in two-dimensional field
theory. Consider the theory defined by the Lagrangian

LsPl =
p

2κx1
q

x2 − x2
1

. (161)

Here κ is a constant with mass dimension 2 and the subscript “sPl” indicates “scalar Plebanski.”
We will assume that x2 > x2

1 so that the Lagrangian is real. The choice of normalization, with
a factor of

p
2 in the numerator, is for later convenience. The scalar Plebanski Lagrangian LsPl

satisfies the scalar zero-birefringence conditions (152) but not the scalar electric-magnetic
duality condition (153).

Both the four-dimensional Plebanski theory and its two-dimensional analogue share the
property that they are, in a certain sense, fixed points of the appropriate T T flow. That is, for
both theories, the effect of deforming the classical Lagrangian by the T T operator is simply an
overall re-scaling of the kinetic term along with the addition of an unimportant constant. One
can see this by computing the stress tensor associated with the scalar Plebanski Lagrangian
(161) and appealing to the arguments of Section 2.3. The appropriate contractions of the
stress tensor associated with (161) are

OT2 =
1
4

�

TµνTµν −
�

Tµµ
�2�

= 2κ2 , Tµµ =
2
p

2x1κ
q

x2 − x2
1

= 2LsPl . (162)

We see that the scalar Plebanski theory shares the property (81) of the four-dimensional Ple-
banski theory, namely that the two Lorentz scalars TµνTµν and

�

Tµµ
�2

that can be constructed
from its stress tensor are dependent. In particular, using the notation of Section 2.3, this theory
satisfies

OT2 = c1κ
2 , Tµµ = c2LsPl , (163)

with c1 = 2 and c2 = 2. We can therefore invoke our previous general arguments about such
theories to write down the full solution to the T2 flow,

L(λ) =
LsPl

1+κ2λ2
+

2λκ2

1+λ2κ2
. (164)

This deformed Lagrangian has exactly the same structure as the solution (84) to the flow equa-
tion for the 4d Plebanski Lagrangian deformed by the appropriate 4d T2 operator. Ignoring
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the additive constant in (164), we see that the effect of the deformation is simply to re-scale
the constant κ as

κ −→
κ

1+λ2κ2
. (165)

Therefore the scalar Plebanski Lagrangian LsPl is a fixed point of the 2d classical T T flow, in
the sense that the T T deformation sends one theory in this class to another theory within the
same class which has a different value of κ and an additive constant in the Lagrangian, neither
of which affects the equations of motion.

Exactly as in the gauge theory case, we can also obtain a modified form of the scalar
Plebanski theory which satisfies a γ-flow equation driven by root-T2. This theory is described
by the Lagrangian

LγsPl =
p

2κ
q

x2 − x2
1

�

cosh(γ)x1 + sinh(γ)
q

2x2 − x2
1

�

. (166)

The modified scalar Plebanski theory satisfies the flow equation

∂LγsPl

∂ γ
= R=

√

√1
2

TµνTµν −
1
4

�

Tµµ
�2

, (167)

where R is the usual root-T2 combination. Furthermore, the stress tensor Tµν associated with
LγsPl has the properties

OT2 = 2κ2 , Tµµ = 2LγsPl , (168)

which means that it falls into the class of T2 fixed point theories considered in Section 2.3. We
can thus immediately write down the solution for the T2 flow equation with the seed theory
LγsPl at λ= 0, which is

L(λ,γ)sPl =
LγsPl

1+κ2λ2
+

2λκ2

1+λ2κ2
. (169)

The equations of motion for the modified scalar Plebanski theory LγsPl, at any value of γ, are
unchanged under the two-dimensional T T flow since the effect of the deformation is merely
an overall rescaling of the Lagrangian and a shift by a constant. However, exactly as in the 4d
case, the γ-deformation non-trivially modifies the model.

Reverse modified-Nambu-Goto

There also exist scalar analogues of the reverse Born-Infeld theory and its ModMax-like ex-
tension. In fact, as in the gauge theory case, there is an entire U(1)’s worth of these theories
parameterized by an angle θ . First consider the family of Lagrangians

LθNG =
αeiθ

λ

�

1−

√

√

1−λx1 −
λ2

2

�

x2 − x2
1

�

�

+ β
q

x2 − x2
1 . (170)

Like its gauge theory analogue, the Lagrangian LθNG satisfies the scalar zero-birefringence
conditions (152) but not the scalar electric-magnetic duality condition (153). Furthermore,
this family of Lagrangians satisfies the flow equation

∂LθNG

∂ λ
=

e−iθ

4α

�

TµνTµν −
�

Tµµ
�2�

, (171)
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for any values of θ ,α,β . When θ = 0 and α = 1, this reduces to the usual two-dimensional
flow equation which yields the Nambu-Goto Lagrangian for a static gauge string in three target
spacetime dimensions. However, for θ = −π2 , the Lagrangian becomes

LrNG =
α

λ

�√

√

−1+λx1 +
λ2

2

�

x2 − x2
1

�

− i

�

+ β
q

x2 − x2
1 . (172)

This is the scalar analogue of the reverse Born-Infeld Lagrangian (95), including the subtrac-
tion of an imaginary constant so that the theory has a finite limit as λ→ 0.

It is straightforward to write down a γ-flowed version of this family of Lagrangians,

L(γ,θ )NG =
αeiθ

λ

�

1−

√

√

1−λ
�

cosh(γ)x1 + sinh(γ)
q

2x2 − x2
1

�

−
λ2

2

�

x2 − x2
1

�

�

+ β
q

x2 − x2
1 . (173)

The Lagrangian (173) satisfies the same flow equation (171) at any value of γ, and in the limit
as γ → 0 this Lagrangian reduces to the expression LθNG that we considered before. It also
satisfies a second γ-flow driven by a marginal combination of stress tensors,

∂L(γ,θ )NG

∂ γ
=

√

√1
2

TµνTµν −
1
4

�

Tµµ
�2

, (174)

which is the appropriate root-T2 operator for this class of theories. The whole family of gen-
eralized Nambu-Goto-type Lagrangians L(γ,θ )NG therefore satisfies two commuting flow equa-
tions, the irrelevant flow driven by the T T operator and the marginal flow driven by the
root-T T operator, at any value of θ .

Again, as in the gauge theory context, we can re-interpret the irrelevant flow by defining
a complex flow parameter

bλ=
λ

αeiθ
, (175)

so that the T T flow satisfied by this family of theories can be written as

∂L(γ,θ )NG

∂ bλ
=

1
4

�

TµνTµν −
�

Tµµ
�2�

= OT2 . (176)

We see that these theories can be formally viewed as arising from a T T deformation with a
complex value of the flow parameter and the appropriate initial condition. All of the discussion
following equation (103), which is the corresponding complex flow equation for the 4d version
of this theory, also applies to the scalar setting. For instance, the existence of the complex flows
can be interpreted as a consequence of the observation that the Lagrangian may be promoted
to a holomorphic function of a complex variable λ.

Finally, we note that one can define a subtracted version of this family of Lagrangians,

eL(γ,θ )NG = L(γ,θ )NG −
αeiθ

λ
, (177)

for which the combination OT2 is a constant. Written in terms of the tension variable T = 1
λ ,

this Lagrangian is

eL(γ,θ )NG = −αeiθ

√

√

T2 − T
�

cosh(γ)x1 + sinh(γ)
q

2x2 − x2
1

�

−
1
2

�

x2 − x2
1

�

+ β
q

x2 − x2
1 . (178)

Given the stress tensor eTµν associated with (178), the resulting T T operator is constant:

eOT2 =
1
4

�

eTµνeTµν −
�

eTµµ
�2�

= −
1
2

e2iθα2T2 . (179)
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As a consequence of the general analysis of Section 2.2, this theory satisfies

∂ eL(γ,θ )NG

∂ T
=

αeTµµ
s

2
�

�

�

eTρσ eTρσ −
�

eTρρ
�2
�

�

�

, (180)

which is another example of a T T -like flow driven by a relevant operator.

5 Supersymmetric flows in 4d

In the previous sections we have described several T T -like flows. In this section we aim at
reporting on two results. Firstly, we will extend the results of [49] and prove that the su-
persymmetric 4d N = 1 ModMax-Born-Infeld theory proposed in [46, 47] (see also [82] for
N = 1,2 supersymmetric ModMax) not only satisfies a λ-flow, as shown in [15, 49], but also
an appropriate supersymmetric γ-flow which extends the bosonic result of [48]. Since all the
results in this section can be formally extended to complex values of λ, our results will ap-
ply to both Modified Born-Infeld and Reverse Born-Infeld theories up to adding appropriate
imaginary terms in the full superspace Lagrangian. Secondly, we will demonstrate that a su-
persymmetric extension of the Modified Plebanski theory satisfies the same flow equations. We
will finish the section by commenting on supersymmetric extensions of the

q

T̂µν T̂µν operator
which drives γ deformations.

5.1 Review of the supersymmetric λ-flow for 4d N = 1 ModMax-BI

The superspace Lagrangian for the 4d N = 1 Modified Born-Infeld theory, also denoted γBI,
can be written in the following form [49]

L=
cosh (γ)

4

�

∫

d2θW 2 +

∫

d2θ̄ W̄ 2 +

∫

d2θd2θ̄W 2W̄ 2 K(S,P)
�

, (181a)

where the function K(S,P) for γBI is given by

KγBI(S,P) =
T −
q

T2 − 2T
�

cosh(γ)S+ sinh(γ)
p
S2 + P2
�

− P2 − cosh(γ)S
cosh(γ)(S2 + P2)

, (181b)

and the superfields S and P are defined as follows13

S= −
1
2
(u+ ū) , P=

i
2
(u− ū) , u=

1
8

D2W 2 , ū=
1
8

D̄2W̄ 2 , (182)

such that S2 + P2 = uū. The expressions W 2 = WαWα and W̄ 2 = W̄α̇W̄ α̇ are defined in
terms of the superfield strength of a 4d, N = 1 Abelian vector multiplet Wα, and its conjugate
W̄α̇ = (Wα)∗, satisfying

D̄β̇Wα = 0 , DαWα = D̄α̇W̄ α̇ , (183)

which is equivalent to the following expansion in terms of the component fields describing the
vector multiplet:

Wα = −iλα + θαD− i(σµνθ )αFµν + θ2(σµ∂µλ̄)α . (184)

13We refer the reader to [15,49] for more details about our 4d N = 1 superspace conventions. For example, we
use the compact expression D2 = DαDα, together with its complex conjugate D̄2 = D̄α̇ D̄α̇, defined in terms of the
superspace covariant spinor derivatives Dα and D̄α̇.

32

https://scipost.org
https://scipost.org/SciPostPhys.15.5.198


SciPost Phys. 15, 198 (2023)

Here the complex spinor λα is the gaugino, D is the real auxiliary field, and Fµν = 2∂[µvν] is
the field strength of an Abelian connection vµ. The superfields S and P are related to the scalar
combinations of Fµν used in the previous sections, S and P of eq. (11), through the following
θ = 0 reduction

S|θ=0 = S +
1
2
D2 , P|θ=0 = P . (185)

It is useful to rewrite KγBI(S,P) in terms of u, ū, and λ= 1/T :

KγBI(u, ū) =
1−
q

1+λ
�

cosh(γ)(u+ ū)− 2sinh(γ)
p

uū
�

+ 1
4λ

2(u− ū)2

λ cosh(γ)uū
+

1
2λ

�

1
u
+

1
ū

�

, (186)

The supersymmetric ModMax theory is then obtained by taking the limit λ→ 0, while setting
γ = 0 leads to the supersymmetric Maxwell-Born-Infeld Lagrangian proposed by Bagger and
Galperin in [83].

In [15, 49] it was shown that (181) with the choice of KγBI given above satisfies the fol-
lowing supercurrent-squared flow14

∂Lsusy−γBI

∂ λ
=

1
8

∫

d2θd2θ̄ OT2 , OT2 =
1

16
J αα̇Jαα̇ −

5
8
XX̄ , (187)

where the superfields Jαα̇ and X define the Ferrara-Zumino (FZ) supercurrent multiplet [84]
satisfying

DαJαα̇ = D̄α̇X̄ , D̄α̇X = 0 . (188)

The flow holds once some implications of the equations of motion are used – see discussions
in [15,49] and in the next subsection. Note that the relative coefficient between J αα̇Jαα̇ and
XX̄ is uniquely fixed by requiring the operator 1

8OT2 to describe a supersymmetric extension
of the bosonic operator OT2 in eq. (27) for d = 4, see [15] for details. For the model (181) it
can be shown to hold

1
8

∫

d2θd2θ̄ OT2 =
1
8

�

TµνTµν −
1
2
(Tµµ)

2
�

+ fermions= OT2 + fermions . (189)

5.2 Supersymmetric γ-flow for 4d N = 1 ModMax-BI

A very similar calculation to the one of [15,49] shows that the Lagrangian (181) satisfies the
following γ-flow equation:

∂Lsusy−γBI

∂ γ
=

1
2

∫

d2θd2θ̄Rγ , (190a)

where the root superspace operator R is given by

R :=
aJ αα̇Jαα̇ + bX̄X

Ç

([D(γ, D̄(γ̇]J δ)δ̇))[D(γ, D̄(γ̇]Jδ)δ̇)
, a = −b = 1 . (190b)

We have left coefficients a and b in the numerator, which should then be set to a = −b = 1,
for convenience of the following discussions. Note that the subscript γ in (190a) indicates that

14Note that in [15,49] we used α2 = λ to parametrise the inverse of the brane tension T .
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the superspace operator R defined above is evaluated for the theory with value γ along the
flow. For the supersymmetric γBI model the operator R can be proven to satisfy

1
2

∫

d2θd2θ̄R= R+ fermions=
1
2

Ç

T̂µν T̂µν + fermions , (191)

following the normalization of R given in (110), as expected for a supersymmetric extension
of the γBI flow. Let us now turn to proving the previous statements.

A key technical step in the computation of supersymmetric T T -like flows is the construction
of the supercurrent multiplet. For the Lagrangian (181), the Ferrara-Zumino multiplet was
derived in [15,49] by using the results of [85]. The superfields Jαα̇ and X can be written as:

X =
4cosh(γ)

3
W 2ū
�

Γ + Γ̄ − K
�

+W 2W̄ (· · · ) , (192a)

Jαα̇ = cosh(γ)
¦

− 4WαW̄α̇
�

1− ūΓ − uΓ̄
�

+
1
6
(DαW 2)(D̄α̇W̄ 2)

�

Γ + Γ̄ − K
�

©

+W 2W̄ (· · · ) + W̄ 2W (· · · ) , (192b)

where the ellipsis are contributions that vanish identically when evaluating Rγ due to the

nilpotency conditions WαWβWγ = 0 and W̄ α̇W̄ β̇W̄ γ̇ = 0. The superfields Γ = Γ (u, ū), and
Γ̄ = Γ̄ (u, ū) are defined as follows

Γ (u, ū) =
∂ (uK(u, ū))

∂ u
, Γ̄ (u, ū) =

∂ (ūK(u, ū))
∂ ū

. (193)

By using the previous expressions, it is straightforward to calculate J αα̇Jαα̇ and X̄X :

J αα̇Jαα̇ = 16cosh2(γ)W 2W̄ 2
¦

�

1− ūΓ − uΓ̄
�2
+

1
9

uū
�

Γ + Γ̄ − K
�2©

−
4cosh2(γ)

3
W 2W̄ 2(DαWα)

2
�

1− ūΓ − uΓ̄
��

Γ + Γ̄ − K
�

, (194a)

XX̄ =
16cosh2(γ)

9
W 2W̄ 2 uū
�

Γ + Γ̄ − K
�2

. (194b)

The second line of (194a) is further simplified if we use the following equation

W 2W̄ 2(DαWα) = 0 . (195)

This was proven in Appendix A of [15], see also the discussion in [49]. It turns out that
this condition is an implication of the equations of motions of Wα and hold for any model
of the form (181) with any function K , and related Γ and Γ̄ .15 Importantly, the condition
(195) can be understood as the fact that the auxiliary field of the vector multiplet satisfies
D∝ DαWα|θ=0 = 0+fermions, which is equivalent to having N = 1 supersymmetry preserved
on-shell.

The need to use this condition when analysing the flows of our interest can be highlighted
by looking at the bosonic truncation of the super ModMax component Lagrangian

L(bos)
M M = cosh(γ)
�

S +
1
2
D2
�

+ sinh(γ)

√

√

√

�

S +
1
2
D2

�2

+ P2 . (196)

15These models include the class of supersymmetric theories satisfying electric-magnetic duality conditions iden-
tified in [76,86].
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One can ask whether this obeys a regular (non-supersymmetrised)
p

T T̄ flow driven by R.
The
p

T T̄ operator of the above model is given by

R= sinh(γ)
�

S +
1
2
D2
�

+ cosh(γ)
(S2 + P2)
Ç

�

S + 1
2D

2
�2
+ P2

. (197)

Comparing this to the derivative with respect to γ

∂L(bos)
M M

∂ γ
= sinh(γ)
�

S +
1
2
D2
�

+ cosh(γ)

√

√

√

�

S +
1
2
D2

�2

+ P2 , (198)

it is easy to see that the flow equation will only be satisfied when the auxiliary field D = 0,
however, without imposing any other equation of motion. It can in fact be proven that this
is true for the entire multiplet of fields described by Wα and that the constraint (195) is only
imposing an equation of motion for the auxiliary field D, but not for the gaugino λα nor the
Maxwell field strength Fµν. The same argument extends to the γBI case.

Coming back to the proof of the supersymmetric flows, we note that for the γBI theory,
it can be shown that (195) is satisfied – see [47, 49]. As a final step in our derivation, it
is necessary to evaluate the denominator in (190b). Thanks to nilpotency conditions and
eq. (195), it holds

W 2W̄ 2
�

[D(γ, D̄(γ̇]J δ)δ̇)
�

[D(γ, D̄(γ̇]Jδ)δ̇) = 322W 2W̄ 2uū
�

1− ūΓ − uΓ̄
�2

, (199a)

W 2W̄ 2
�

�

[D(γ, D̄(γ̇]J δ)δ̇)
�

[D(γ, D̄(γ̇]Jδ)δ̇)
�− 1

2 =
W 2W̄ 2

32
p

uū
�

1− ūΓ − uΓ̄
� , (199b)

where we have chosen a positive root close to the identity. By using this result, the superfield
R in (190b) simplifies to

R= cosh(γ)W 2W̄ 2
�

1− ūΓ − uΓ̄
�

(

a

2
p

uū
+
(a+ b)

p
uū

18

�

Γ + Γ̄ − K
�2

�

1− ūΓ − uΓ̄
�2

)

. (200)

For the flow (190a) to hold it is necessary to choose a = 1 and b = −1. Note that if K = Γ + Γ̄
the theory is superconformal, as for example the supersymmetric ModMax theory, and, due to
the fact that in this case X = X̄ = 0, the second term in (200) is identically zero independently
of the choice b = −1. When one chooses a = −b = 1 in the operator (190b), the expression
for Rγ computed for the Lagrangian (181) and associated function K(u, ū), eq. (186), takes
the simplified form:

Rγ =
2
p

uū cosh(γ)− sinh(γ)(u+ ū)

4uū
q

1+λ cosh(γ)(u+ ū)− 2λ sinh(γ)
p

uū+ 1
4λ

2(u− ū)2
. (201)

As wanted, this is precisely twice the left-hand side of eq. (190a).
To conclude, let us show that equation (191) is satisfied. The Ferrara-Zumino supercur-

rent multiplet comprises the following component fields within the superfields Jαα̇ and X : a
vector jµ(x), the complex conserved spinor current Sµ(x), a complex scalar field x(x), and the
conserved stress tensor Tµν. We refer the reader to [15,49] for details and the results concern-
ing the Ferrara-Zumino multiplet in our notation. For the purposes of our paper it suffices to
describe the dependence of Jαα̇ and X upon the stress tensor Tµν only. It holds

Jαα̇(x ,θ , θ̄ ) = −4θβ θ̄ β̇(σµ)αα̇(σ
ν)ββ̇Tµν −

8
3
θαθ̄α̇Θ+ · · · , (202a)

X (x ,θ ) =
2
3
θ2Θ(x) + · · · , Θ(x) := Tµµ(x) . (202b)
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Note that in the case of the vector multiplet models we are interested in, the bosonic com-
ponent operators in the Ferrara-Zumino multiplet, jµ and x, are purely fermionic and at least
quadratic in the gauginos λα := iWα|θ=0 and λ̄α̇ = −iW̄ α̇|θ=0. This can be easily seen by
noticing that jµ = Jµ|θ=0 and by looking at the explicit form of the supercurrents in (192).
Hence, the ellipsis in (202) are all functions of fermionic component fields. By using eq. (202)
one obtains

J αα̇Jαα̇ = 16θ2θ̄2
�

TµνTµν −
2
9
Θ2
�

+ · · · , (203a)

XX̄ = 4
9
θ2θ̄2Θ2 + · · · (203b)

Taking a linear combination of the previous expressions, it holds

aJ αα̇Jαα̇ + bXX̄ = θ2θ̄2
�

16aTµνTµν +
4b− 32a

9
Θ2
�

+ · · · (204)

Since the previous result is a θ2θ̄2 term, in evaluating the denominator in (190b) we can
consider the θ = 0 term only. Note that, up to fermions, the combination [D(α, D̄(α̇]Jβ)β̇)|θ=0

is proportional to (σµ)(α(α̇(σν)β)β̇) T̂µν with T̂µν = Tµν−
1
4 gµνΘ being the traceless part of the

stress tensor. This implies the following relation
Ç

([D(γ, D̄(γ̇]J δ)δ̇))[D(γ, D̄(γ̇]Jδ)δ̇)
�

�

�

θ=0
=
Ç

T̂µν T̂µν + · · · (205)

Written in terms of T̂µν and Θ, the operator (190b) satisfies
∫

d2θd2θ̄R=
�

aT̂µν T̂µν +
a+ b

36
Θ2
�

�

T̂µν T̂µν
�− 1

2 + fermions . (206)

It is then clear that, as stated before, the only choice of coefficients a and b to obtain (191)
from a superspace operator of the type (190b) is a = −b = 1.

To conclude this subsection we comment on the reversed γBI model described by the
bosonic Lagrangian (141). It is straightforward to show that a N = 1 supersymmetric ex-
tension of (141) is given by

L(λ,γ)
susy-rBI =

∫

d2θd2θ̄
16W 2W̄ 2

(D2W 2)(D̄2W̄ 2)
L(λ,γ)

rBI (S,P) , (207a)

L(λ,γ)
rBI (S,P) =

α

λ

È

−1+ 2λ
�

cosh(γ)S+ sinh(γ)
p

S2 + P2
�

+λ2P2 −
αi
λ
+ βP . (207b)

By analytic continuation of the analysis in this subsection, or by direct investigation, one can
see that the previous Lagrangian satisfies the flow equations as (187) and (190a):

∂L(λ,γ)
susy-rBI

∂ λ
=

i
8α

∫

d2θd2θ̄ OT2 , OT2 =
1
16

J αα̇Jαα̇ −
5
8
XX̄ , (208a)

∂L(λ,γ)
susy-rBI

∂ γ
=

1
2

∫

d2θd2θ̄R , R :=
J αα̇Jαα̇ − X̄X

Ç

([D(γ, D̄(γ̇]J δ)δ̇))[D(γ, D̄(γ̇]Jδ)δ̇)
. (208b)

5.3 4d N = 1 supersymmetric Plebanski theory and its flows

In this subsection we consider the supersymmetrisation of the λ and γ deformed Plebanski
model described by the Lagrangians in equations (140) and (138). A straightforward super-
symmetrisation of this model is achieved by considering the full superspace action

S(λ,γ)
susy-Pl =

κ

1+λ2κ2

∫

d4 xd4θ
16W 2W̄ 2

(D2W 2)(D̄2W̄ 2)

�

cosh(γ)S+ sinh(γ)
p
S2 + P2

P
+λκ

�

. (209)
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It is useful to rewrite the action in the form given by the Lagrangian (181a) with a specific
function K . Up to total derivatives, the action (209) leads to the following

K(λ,γ)
susy-Pl(u, ū) =

1
2u
+

1
2ū
+

κ

(1+λ2κ2)uū

�

i(u+ ū) + 2i tanh(γ)
p

uū
u− ū

+
λκ

cosh(γ)

�

. (210)

For a generic model described by the Lagrangian (181a) with an arbitrary function K(u, ū),
when W 2W̄ 2(DαWα) = 0 is imposed, the OT2 superfield of eq. (187) takes the form [49]

OT2 = cosh2(γ)W 2W̄ 2
�

�

1− ūΓ − uΓ̄
�2 − uū
�

Γ + Γ̄ − K
�2 �

, (211)

where remember that Γ and Γ̄ are defined in (193). The superfield R takes in general the form

R= cosh(γ)W 2W̄ 2 1− ūΓ − uΓ̄

2
p

uū
, (212)

which is simply eq. (200) with a = −b = 1. Explicitly calculating (211) and (212) for the
function K(λ,γ)

susy-Pl(u, ū) of eq. (210), one finds:

OT2 = −iκ2 2κλ cosh(γ)(u+ ū)− 4κλ sinh(γ)
p

uū+ i(1−κ2λ2)(u− ū)
(1+ κ2λ2)uū(u− ū)

, (213a)

R= iκ
sinh(γ)(u+ ū)− 2cosh(γ)

p
uū

2(u− ū)(1+λ2κ2)uū
. (213b)

Comparing these to the derivatives of (209) with respect to λ and γ, it can be shown that the
following two flow equations hold:

∂ S(λ,γ)
susy-Pl

∂ λ
=

1
4

∫

d4 xd4θ OT2 ,
∂ S(λ,γ)

susy-Pl

∂ γ
=

1
2

∫

d4 xd4θR . (214)

As in the bosonic case, it is evident that the supersymmetric λ-deformation rescales the action
and shifts the Lagrangian by a κ dependent term. It is however interesting to note that in the
supersymmetric case the shift described by the last term in (209) not only adds a constant
term in the action but it also introduces new purely fermionic terms in the bosonic action.

5.4 On supersymmetric extensions of
q

T̂µν T̂µν

The analysis given in subsection 5.2 makes it clear that the superfield R in eq. (190b) is a
supersymmetric extension of R. The reader might have wondered if such a supersymmetric
extension is unique. It turns out that allowing for non-analyticity in stress-tensor operators
makes it possible to construct several different supersymmetric extensions of R. We do not
attempt a complete classification of such extensions here, but we will give some examples and
simple arguments before concluding this section. For simplicity, we restrict our discussion to
describing (classical) composite operators based on superconformal theories where we impose
Θ ≡ 0 and X = X̄ ≡ 0.

The logic in constructing the operator (190a) as a supersymmetric extension of
q

T̂µν T̂µν
was simple. We first identified a combination of descendants of Jαα̇ that includes T̂µν. As men-

tioned in subsection 5.2 this is precisely [D(α, D̄(α̇]Jβ)β̇). Then we constructed a superspace

operator that includes
q

T̂µν T̂µν among its θ = 0 components, see eq. (205). Finally, we have
engineered a simple fraction of two superfields constructed out of the supercurrent multiplet
whose full superspace integral leads precisely to

q

T̂µν T̂µν, plus other possible terms that we
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have not analysed in detail and we know that, at least for the models of the form (181a) with
a generic function K(u, ū), are purely fermionic.

It is simple to show that other options would lead to alternative supersymmetric extensions
of
q

T̂µν T̂µν. In principle one could write down operators of the form

R̃=Ohigher-order ×
�

([D(γ, D̄(γ̇]Jδ)δ̇))[D(γ, D̄(γ̇]J δ)δ̇)
�−c

, (215)

for some constant exponent c. A necessary condition for consistency of the previous ansatz is
that it holds

�

R̃
�

=
�

Ohigher-order

�

− 8c = 2 ⇐⇒
�

Ohigher-order

�

= 2+ 8c , (216)

where
�

X
�

denotes the mass dimension of X . As an example, for the operator in equation
(190b), c = 1

2 and
�

J αα̇Jαα̇
�

=
�

X̄X
�

= 6. A sufficient condition for R̃ to give a supersym-

metric extension of
q

T̂µν T̂µν is that

Ohigher-order∝ θ2θ̄2
�

T̂µν T̂µν
�

1
2+c
+ · · · (217)

Let us search for operators satisfying these conditions.
If we neglect all component fields in Jαα̇ except the stress tensor, impose Θ = 0, and also

neglect vector derivatives of the stress tensor (∂µTνρ), the structure of the supercurrent and
its descendants is very simple:

Jαα̇(x ,θ , θ̄ ) = −4θβ θ̄ β̇(σµ)αα̇(σ
ν)ββ̇Tµν + · · · , (218a)

Jαββ̇(x ,θ , θ̄ ) := DαJββ̇(x ,θ , θ̄ ) = −4θ̄ γ̇(σµ)ββ̇(σ
ν)αγ̇Tµν + · · · , (218b)

Jαα̇β̇(x ,θ , θ̄ ) := D̄α̇Jββ̇(x ,θ , θ̄ ) = −4θγ(σµ)ββ̇(σ
ν)γα̇Tµν + · · · , (218c)

Jαβα̇β̇(x ,θ , θ̄ ) := [Dα, D̄α̇]Jββ̇(x ,θ , θ̄ ) = −8(σµ)αα̇(σ
ν)ββ̇Tµν + · · · (218d)

Note that in the superconformal case, the following symmetry properties hold:

Jαββ̇(x ,θ , θ̄ ) = J(αβ)β̇(x ,θ , θ̄ ) , Jαα̇β̇(x ,θ , θ̄ ) = Jα(α̇β̇)(x ,θ , θ̄ ) , (219)

Jαβα̇β̇(x ,θ , θ̄ ) = J(αβ)(α̇β̇)(x ,θ , θ̄ ) , (σµ)α
α̇(σν)β

β̇Tµν = (σ
µ)(α

(α̇(σν)β)
β̇)Tµν . (220)

At this stage, it is simple to observe that there exists a unique superfield Ohigher-order quadratic
in the supercurrents satisfying the conditions described above and in particular eq. (217) – see
the numerator of (190b). At cubic order in the supercurrent and its descendants, the following
two Lorentz invariant combinations

J αβα̇β̇Jαα̇Jββ̇ , J αβα̇Jαα̇β̇Jβ
β̇ , (221)

are the only possible candidates. However, by using (218), it is simple to show that both the
previous superfields are proportional to θ2θ̄2 (TµνTν

ρTρ
µ) + · · · , hence they do not satisfy

(217). The next option is to consider operators quartic in Jαα̇, or derivatives thereof. It is
not difficult to identify quartic operators that can satisfy (217) with c = 3/2. For instance,
consider the following Lorentz invariant candidates for Ohigher-order

J αβα̇β̇Jαβα̇γ̇J γγ̇Jγβ̇ , J αβα̇β̇Jαγα̇β̇J
γγ̇Jβγ̇ , J αβα̇β̇Jαγα̇γ̇J γγ̇Jββ̇ , (222a)

J αβα̇Jαβα̇J γβ̇γ̇Jγβ̇γ̇ , J αβα̇Jαγβ̇J
γβ̇γ̇Jβα̇γ̇ , (222b)
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where we neglected the combination J αβα̇β̇Jαβα̇β̇J
γγ̇Jγγ̇ since it would be equivalent

to considering the operator (190b). It is simple to show that the first two combina-
tions in (222a) and the first in (222b) are proportional to θ2θ̄2 (TµνTν

µ)2 + · · · while

the combinations J αβα̇β̇Jαγα̇γ̇J γγ̇Jββ̇ and J αβα̇Jαγβ̇J
γβ̇γ̇Jβα̇γ̇ are both proportional to

θ2θ̄2 (TµνTν
ρTρ

τTτ
µ) + · · · . This implies that we have found four superfields

J αα̇Jαα̇
�

([D(γ, D̄(γ̇]J δ)δ̇))[D(γ, D̄(γ̇]Jδ)δ̇)
�

1
2

,
J αβα̇β̇Jαβα̇γ̇J γγ̇Jγβ̇
�

([D(γ, D̄(γ̇]J δ)δ̇))[D(γ, D̄(γ̇]Jδ)δ̇)
�

3
2

, (223a)

J αβα̇β̇Jαγα̇β̇J
γγ̇Jβγ̇

�

([D(γ, D̄(γ̇]J δ)δ̇))[D(γ, D̄(γ̇]Jδ)δ̇)
�

3
2

,
J αβα̇Jαβα̇J γβ̇γ̇Jγβ̇γ̇
�

([D(γ, D̄(γ̇]J δ)δ̇))[D(γ, D̄(γ̇]Jδ)δ̇)
�

3
2

, (223b)

such that, considering Θ = 0, they lead to manifestly supersymmetric extensions of
q

T̂µν T̂µν.
The analysis could continue with operators Ohigher-order of order higher than four in the super-
currents and for the non-conformal case (X ̸= 0) but we will not discuss this here.

Before finishing this section, some comments are in order. In the superconformal case, we
have obtained alternative supersymmetric extensions of

q

T̂µν T̂µν. It is natural to ask whether
these could have been used instead of R of eq. (190b) to define the supersymmetric ModMax
γ-flow. Interestingly, for the superconformal models of the type (181a) with K = Γ + Γ̄ , which
includes supersymmetric ModMax, all the operators constructed with the superfields in (223),
up to setting W 2W̄ 2(DαWα) = 0, lead to the same combination

R̃∝ cosh(γ)W 2W̄ 2 1− ūΓ − uΓ̄

2
p

uū
, (224)

which is precisely the superfield R of equation (212). The same is true for superfields R̃ con-
structed out of the combinations J αβα̇β̇Jαγα̇γ̇J γγ̇Jββ̇ and J αβα̇Jαγβ̇J

ββ̇γ̇Jγα̇γ̇ in eq. (222).
Even the following superfields

J αβα̇β̇Jαα̇Jββ̇
�

([D(γ, D̄(γ̇]Jδ)δ̇))(D(γ, D̄(γ̇]J δ)δ̇)
�

7
4

,
J αβα̇Jαα̇β̇Jβ

β̇

�

([D(γ, D̄(γ̇]Jδ)δ̇))(D(γ, D̄(γ̇]J δ)δ̇)
�

7
4

, (225)

that we discarded being associated with (TµνTν
ρTρ

µ), for these models are proportional to the
combination in (212). This indicates that, at least for supersymmetric ModMax, the flow is
somehow unique. This is reassuring, since, up to ambiguities associated with different off-shell
formulations, N = 1 supersymmetric ModMax is expected to be the unique duality invariant
and superconformal extension of supersymmetric Maxwell theory [46,47]. It would be inter-
esting to check if this remains true for flows associated with non-conformal models, such as
γBI. We leave this for future investigations.

6 Conclusion

In this work, we have continued to explore the connections between classical stress tensor
flows – with and without supersymmetry – and theories of nonlinear electrodynamics in four
spacetime dimensions (along with their scalar analogues in d = 2).

Among our main results are the observations that the 4d root-T2 operator can be written
in a manifestly supersymmetric form using supercurrents in N = 1 superspace, and the fact
that T2 flows in d = 4 are compatible with zero-birefringence conditions. These facts give
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even more evidence that these stress tensor deformations are especially nice in the sense that
they appear to preserve special properties of their seed theories.

We have also pointed out examples of theories which appear to be fixed points under T2

deformations, such as the theory of Plebanski electrodynamics. A related but surprising result
is that any theory which results from a T2 flow of a conformal field theory also gives rise to a
subtracted theory for which the combination OT2 is a constant.

There remain many interesting open questions, some of which we outline below. We hope
to return to these questions in future work. A deeper understanding of these issues may well
provide new insights on deformations of field theories and on the space of QFTs more generally.

Operator analysis of constant-T T and T T fixed point theories

In Sections 2 and 3, we have studied certain theories for which the classical combination defin-
ing the T2 operator appears to be a constant, independent of fields – and in some cases, where
the equations of motion of the model are invariant under the T T -like flow. Although these are
classical statements, it would be interesting to study the quantum properties of the T T oper-
ator in such theories, at least in two spacetime dimensions where the operator is well-defined
quantum mechanically. For instance, one might ask whether the subtracted Nambu-Goto La-
grangian has the property that the point-splitting procedure which defines T T produces an
operator which is proportional to the identity.

Even more striking is the scalar Plebanski theory (161) which appears to be classically
invariant under the T T flow. The property of being a “T T fixed point” likely cannot persist
quantum mechanically, since general arguments imply that several oberservables are modified
in a universal way under a T T -deformation. For instance, the finite-volume spectrum on a
cylinder of radius R obeys an inviscid Burgers’ equation under T T flow:

∂

∂ λ
En(R,λ) = En(R,λ)

∂

∂ R
En(R,λ) +

Pn(R)2

R
. (226)

Thus it seems that the scalar Plebanski theory cannot genuinely remain invariant under a
quantum T T deformation. Nonetheless, it is intriguing to ask what – if anything – is special
about such classical T T fixed points at the quantum level. One might hope that a theory which
is a T T fixed point in any sense might play a role similar to that of CFTs, which are fixed points
under the conventional renormalization group flow.

Connections between subtracted T2 theories and gravity

As we mentioned above, the constant term appearing in the subtracted flows of Section 2 would
act as a cosmological constant in a theory with dynamical gravity. It would be interesting
to explore whether there is any gravitational interpretation of these subtracted theories for
which the classical T2 combination is a constant. We note that, for λ < 0, our subtracted flow
is very similar to the combined bad-sign T T plus positive cosmological constant deformation
which was proposed in [51] and further studied in [52, 53]. For λ > 0, the subtracted flow
corresponds to a good-sign T T deformation along with a negative cosmological constant. One
might also ask whether this is related to the behavior of the T T deformation on a space with
constant negative curvature, which has been studied in [87, 88] and may be well-behaved at
least in d = 2.

Deformations of p-form electrodynamics in higher dimensions

In this manuscript we have focused on stress tensor deformations of a two-form field strength
Fµν in four spacetime dimensions, and the analogue of a scalar field φ (with a one-form field
strength ∂µφ) in two spacetime dimensions. It is intriguing to ask whether there are similar
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connections between T T -like flows and theories of p-form electrodynamics in more general
dimension. For instance, one could ask whether a p-form analogue of the zero-birefringence
conditions (53) is preserved by some T2 deformation for theories of a 3-form Hµνρ in d = 6.
Some progress on T T -like flows for p-form field strengths in 2p spacetime dimensions, focus-
ing on Lagrangians which depend on only two Lorentz invariants and working to second order
in λ, has appeared in [89]. A related question is whether the six-dimensional ModMax-type
theory of a chiral tensor presented in [45] satisfies some kind of stress tensor flow. It may turn
out that there is a more natural formulation of such theories to address this type of question,
such as the formalism developed in [90] for ordinary electrodynamics and extended to the
p-form case in [91].

Supersymmetry, T T-like and root-T T-like deformations

There are still several directions that need more investigation concerning supersymmetry, su-
perconformal symmetry, and the various (classically) irrelevant, marginal, and relevant T T -
like deformations. Let us mention a few directly related to the results in our paper.

In Section 2 we have used a simple argument to derive a Trace Flow Equation for a large
class of classical flows defined in terms of operators that are functionals of the stress tensor
whose seed theory is conformal. By using this, it was possible to obtain operators that were
constant along flows and subtracted Lagrangians that satisfy relevant T T -like flows. It would
be interesting to obtain analog results with supersymmetry. For example, in [92] for the 2d
N = (0,2) case, a superspace trace flow equation was proposed to analyse (at first order in
λ) correlation functions of T T -deformed superconformal models. It would be interesting to
extend this result to other amounts of supersymmetry and space-time dimensions and to see
how to use it for other types of flows.

As we have already alluded to in Section 5, it would be interesting to understand the
degree to which supersymmetric extensions of the root-T T operator are unique. For the cases
of 4d superconformal gauge theories studied in this work, we have checked that the various
possible supersymmetric extensions appear to all be equivalent to the operator R which we
have used to define our deformation. However, this might simply be due to the simplicity
of Abelian vector multiplet models and the on-shell condition used. It is not obvious at all
that this remains true for more general models and theories which are supersymmetric but
not conformal. More generally, one should understand the possible ambiguities which are
introduced by considering non-analytic combinations of currents (and supercurrents) more
carefully.

One question that certainly deserves more investigation is whether and how root-T T defor-
mations preserve supersymmetry and superconformal symmetry in general. In d = 2, it is well-
established that a supersymmetric model remains supersymmetric under T T flows [10–14].
This can be made manifest by using superspace techniques. It remains an open question
whether the operator (110) for d = 2 preserves supersymmetry in general, or whether it
deforms supersymmetry in a controlled way.

In this paper, we have made several proposals for root-T T -like deformations in 4d, N = 1
superspace that manifestly preserve supersymmetry. Analog operators can be defined in d = 2.
For the supersymmetric models we have considered here, classical superconformal symmetry
was preserved by the flow. However, due to the non-analytic denominators and the use of de-
scendant superfields, the superspace operators defined as functionals of the Ferrara-Zumino
supercurrent in section 5 appear to be conformal but not necessarily superconformal primaries.
Hence they might not preserve superconformal symmetry in general. Understanding this prob-
lem in 2d, even with a low amount of supersymmetry, might shed light on general properties
of non-analytic marginal deformations of superconformal field theories.

41

https://scipost.org
https://scipost.org/SciPostPhys.15.5.198


SciPost Phys. 15, 198 (2023)

Further properties of root-T T

The study of marginal root-T T -like deformations is in its infancy. Perhaps the most pressing
issue is to understand whether these deforming operators can be defined at the quantum level.
This is closely related to understanding the quantization of ModMax-type theories. Rewriting
the ModMax theory, or its 2d scalar analogue, in an equivalent form similar to those introduced
in [93]might make the theory more amenable to quantization, in the same way that rewriting
the Nambu-Goto Lagrangian in Polyakov form facilitates quantization in string theory.

Given the vast literature on the T T deformation in d = 2, it will also be interesting to see
how many other results on this operator have analogues for root-T T . For instance, there are
several proposals for understanding double-trace T T holographically, including via a cutoff
AdS3 spacetime [55], modified boundary conditions [94], and other approaches [95]. Analo-
gous mixed boundary conditions for the root-T T deformation will appear in [96], but it would
be intriguing to understand marginal stress tensor deformations in holography more deeply,
including their effects on observables such as gravitational Wilson lines which have been stud-
ied in the context of T T [97]. As a final example, one can couple two CFTs in a universal
way using sequential T T deformations [98]; one might wonder whether there exists a similar
procedure to couple two CFTs using root-T T .
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