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Abstract

We present a systematic method to design arbitrary energy-phase relations using parallel
arms of two series Josephson tunnel junctions each. Our approach employs Fourier
engineering in the energy-phase relation of each arm and the position of the arms in
real space. We demonstrate our method by engineering the energy-phase relation of a
near-ideal superconducting diode, which we find to be robust against the imperfections
in the design parameters. Finally, we show the versatility of our approach by designing
various other energy-phase relations.
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1 Introduction

The Josephson tunnel junction is the fundamental building block of superconducting cir-
cuits [1]. These junctions have enabled the development of a wide range of functional de-
vices such as superconducting quantum interference devices (SQUIDs), superconducting low-
inductance undulatory galvanometers (SLUGs) [2], superconducting nonlinear asymmetric
inductive elements (SNAILs) [3, 4], quantum-limited amplifiers [5–7], and a bevy of super-
conducting qubits [8,9].

An example device that can be realized using Josephson junctions is a superconducting
diode: a junction with unequal critical currents in different directions. Superconducting
diode effect manifests generically in inhomogeneous Josephson junctions subject to a mag-
netic field [10, 11]. Recently, however, there has been renewed interest in studying differ-
ent physical mechanisms for the creation of superconducting diodes. While superconducting
diodes require breaking both time-reversal and inversion symmetries—otherwise the current-
phase relationship (CPR) is anti-symmetric in phase—the way in which these symmetries are
broken reveals information about the underlying physical systems. To name several exam-
ples, recent studies reported superconducting diode effect in spin-orbit coupled in 2d-electron
gases under external magnetic field [12,13], superconducting thin films [14–19], topological
insulators [20,21], finite-momentum superconductors [22]. An alternative to controlling the
junction CPR for creating a supercurrent diode is to combine multiple junctions in a supercur-
rent interferometer either consisting of multiple high transparency junctions [23–25] or arrays
of Josephson tunnel junctions [26].

We propose a systematic approach to engineer arbitrary energy-phase relationships (EPRs)
of a two-terminal device using parallel arrays of Josephson tunnel junctions. We draw inspi-
ration in the observation that circuits of conventional tunnel Josephson junctions implement
a variety of Hamiltonians [27–29], originally proposed for difficult-to-engineer microscopic
structures. We improve on the results of Ref. [26], which used an exponentially large number
of perfectly identical Josephson junctions to create a single Fourier component of the EPR,
followed by combining individual Fourier components. We show that the EPR of a Joseph-
son junction array can be engineered by combining Fourier engineering of the EPRs of each
arm of the array, variation of the arm strengths in real space, and phase offsets created by
an external magnetic field. Our design relies on using standard fabrication techniques and is
resilient against fabrication imperfections. We promote that the schemes presented here may
be useful in designing sophisticated energy-phase landscapes for decoherence-protected qubit
designs [30].

2 The arbitrary EPR algorithm

Our conceptual algorithm relies on the following realizations:

• The current-phase relation of two Josephson junctions in series matches the functional
form of that of a short Josephson junction with a finite transparency. This allows single-
parameter control over the Fourier components in the energy-phase relation of the arm.

• The energy-phase relation of multiple parallel junctions is a convolution of the individual
energy-phase relations with the vector of junction strengths when each arm has equal
phase offsets and transparency.

• Shifting the total Josephson energy of all arms by the same amount does not change the
lowest Fourier components, and therefore the overall shape of the current-phase relation
stays the same.
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Figure 1: (a) The elementary unit of the design. Two Josephson tunnel junc-
tions in series is equivalent to a short, single channel superconductor-normal metal-
superconductor junction. The energy-phase relation describing the arm is given in
the equation below. (b) The layout of the Josephson junction array with N arms con-
nected in parallel. Magnetic field B points out of the plane of the Josephson junction
array, giving rise to phase difference δϕn = BL (xn − xn−1) between arms n− 1 and
n, where xn denotes the position of the n-th arm and L is the length of the loop in
y−direction. We denote the resulting EPR of the Josephson junction array as a two-
terminal circuit element.

The elementary unit of the design used to generate higher harmonics of a CPR, of an arm of
the Josephson junction array, consists of two Josephson tunnel junctions connected in series,
with Josephson energies EJ1 and EJ2 [see Fig. 1(a)]. The EPR of each Josephson junction
is Ui(ϕi) = −EJ i cos(ϕi), where ϕi is the phase drop across the junction.1 We consider the
classical limit EJ ≫ EC and neglect the charging energy of the island. A residual charging
energy only incrementally changes the CPR [32], which does not qualitatively influence our
approach. Current conservation and the additivity of phase differences yields:

EJ1 sin(ϕ1) = EJ2 sin(ϕ −ϕ1) , (1)

where ϕ = ϕ1 +ϕ2, with ϕ the total phase difference across the arm (see Figure 1). Solving
for ϕ, we obtain the CPR of an arm:

I▶◀(ϕ) =
EJτ

4Φ0

sin(ϕ)
Æ

1−τ sin2(ϕ/2)
, (2)

with Φ0 = ħh/2e the superconducting flux quantum. The corresponding EPR is

E▶◀(ϕ) = −EJ

q

1−τ sin2(ϕ/2) , (3)

where EJ ≡ EJ1+ EJ2 is an overall Josephson energy of an arm and τ≡ 4EJ1EJ2/(EJ1+ EJ2)2

controls the relative strength of the higher harmonics of the EPR. This EPR has the same
functional form as that of a short, single-channel finite transparency junction with transparency
τ and gap EJ—a remarkable coincidence, for which we have no explanation.2 A Cooper pair
transistor also exhibits an identical EPR albeit being in the deep charging regime EC ≫ EJ [35].

1We ignore the weak higher harmonic terms that have recently been reported in single Josephson tunnel junc-
tions [31]. Their influence can be easily incorporated and does not substantially alter the claims of our work.

2While the Eq. (2) is known, see e.g. [33,34], to the best of our knowledge, its correspondence with that high
of a high transparency short junction was not previously reported.
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Figure 2: (a) EPR in units of EJ and (b) CPR in units of I0 ≡ EJ/Φ0 for a single arm
with various values of τ. Higher τ values introduce higher Fourier components (c).

The EPR and CPR of an arm become highly nonsinusoidal at τ≈ 1 or EJ1 ≈ EJ2, see Fig 2.
We introduce the Fourier transform of the normalized EPR of an arm:

U(τ,ϕ) =
q

1−τ sin2(ϕ/2)≡
∞
∑

m=−∞

eUm(τ)e
imϕ , (4)

where eUm are the Fourier coefficients of U(τ,ϕ). In the high transparency limit, τ ≈ 1,
eUm ∼ 1/m2 for m≲ 1/(1−τ). We plot τ-dependence of several lowest Fourier coefficients of
a single arm EPR in Fig. 2(c).

With this way to create higher order harmonics of a single arm EPR, we utilize a Joseph-
son junction array shown in Fig. 1(b) to engineer arbitrary EPRs. In addition to varying the
strengths of each Josephson junction, and therefore EJ ,n and τn of n-th arm, we utilize phase
offsets by adding magnetic flux between the arms. Magnetic flux gives rise to phase differences
δϕn between arms n and n−1. In this way, we shift the phase offset of each arm by an amount
φn =
∑n

n′=1δϕn′ with respect to a reference arm n = 0. For the rest of the discussion, we de-
fine an arm strength distribution by assigning a position to each arm, namely EJ ,n ≡ EJ (xn),
and correspondingly distributions of the effective transparency τn ≡ τ(xn) and phase offsets
φn ≡ φ(xn).

The EPR of the Josephson junction array is

U(ϕ) = −
N−1
∑

n=0

EJ (xn)U(τ(xn),ϕ +φ(xn)) , (5)

where N is the total number of arms. This EPR is highly nonlinear in τn and xn, and linear
in EJ . Our goal is to find U(ϕ) that approximates a target EPR, Utarget(ϕ), by optimizing
the design parameters EJ , τ and φ. Because the role of τ is to introduce higher harmonics,
and the role of xn is to break time-reversal symmetry, we choose to make τn and xn uniform
to simplify the problem. Specifically, we use φ(xn) = 2πn/N and τ(xn) = τ ≈ 1, which
makes the right hand side of Eq. (5) a convolution of EJ (xn) and U(τ,ϕ). We then find an
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Figure 3: (a) EPR and (b) CPR of two sets of Josephson energies for N = 10 arms and
τ= 0.98, where yellow lines represent the case with negative junction strengths and
blue lines represent the case with non-negative junction strengths. Here, we shift all
the Josephson energies by adding the most negative junction strength. Inset shows
the Josephson energies distributions of the corresponding EPR and CPR. Here, we
shifted the blue EPR vertically for visualization purposes. The red box with dashed
lines in the inset shows junction with the most negative strength.

approximate solution of the optimization problem by requiring that two EPRs agree at a set
of discrete points U(2πm/N) = Utarget(2πm/N), with integer 0≤ m< N . In other words, the
Josephson junction strengths EJ (xn) are obtained by Fourier transforming Utarget, dividing the
coefficients by the Fourier components of U(ϕ) and applying an inverse Fourier transform:

EJ (xn) = −F−1

�F{Utarget(ϕm)}
eUm

�

n

. (6)

In general, the set of Josephson energies EJ (xn) found by inverse discrete Fourier transform
includes negative values, whereas the stable state of a single arm has a positive EJ . We resolve
this obstacle by adding the most negative EJ ,min to all the Josephson energies EJ (xn). Because
∑

n U(φ − 2πn/N) has a period of 2π/N , N of its lowest Fourier components are absent, and
therefore adding it to the EPR only changes it minimally, as shown in Fig. 3. This concludes
the design of a Josephson junction array with a target EPR.

3 Optimizing the superconducting diode efficiency

We now apply our approach to design a superconducting diode. This device has an asymmetric
CPR with unequal critical currents in opposite directions. The diode efficiency η is the degree
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of asymmetry of its two critical currents:

η=
|Ic+ − Ic−|
Ic+ + Ic−

, (7)

where Ic± are the maximum critical currents for current flow in opposite directions. An ideal
superconducting diode with η= 1 has a sawtooth-shaped EPR:

Usawtooth(ϕ) =
ϕ

2π
−
�

ϕ

2π

�

, (8)

where ⌊ϕ⌋ is the floor function.
To optimize a superconducting diode, we apply the algorithm of the previous section with

Utarget = Usawtooth, with the results shown in Fig. 4. Because Usawtooth is discontinuous, its
Fourier approximation exhibits oscillatory behavior near the discontinuity, known as the Gibbs
phenomenon. This reduces the superconducting diode efficiency by allowing small side peaks
of the opposite sign next to the main peak in the CPR. To attenuate the Gibbs phenomenon,
we modify the Fourier coefficients of EJ using the σ-approximation [36]. In Fig. 4(a), we
demonstrate the effect of the σ-approximation on CPR of a superconducting diode. With
increasing degree of regularization the efficiency of the superconducting diode increases and
eventually peaks at η = 0.92 (for N = 78 arms). We then choose a degree of regularization
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Figure 4: Superconducting diode CPR. Panel (a) shows CPR for a superconducting
diode with N = 78 arms for different degrees of σ-regularization. We mark the
degree of regularization and the resulting efficiency in the legend. (b) CPR for a su-
perconducting diode constructed with several different number of arms for τ= 0.95.
With increasing N , main peak in the CPR gets narrower and higher. Inset shows the
overall phase range of the CPR.

that maximizes the efficiency for a given number of arms and τ. In Fig. 4(b), we show N
dependency of the EPR and CPR of a Josephson junction array for a fixed τ = 0.95. As N
increases, the main peak in the CPR gets higher and narrower, resulting in a larger efficiency.
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Figure 5: Stochastic optimization for N = 5 arms and the effect of presence of disor-
der on diode efficiency. In (a), we show the optimized arm positions, EJ (blue), and
τ (yellow) for each arm. For convenience, left y-axis represents EJ whereas right y-
axis represents τ. The dashed gray line represents the equally spaced arm positions.
(b) shows the resulting CPR of the Josephson junction array shown in (a). In (c),
we display the probability distribution of efficiency for 50000 disorder realizations
in junction strength. Here, we renormalized the histogram such that area under the
histogram integrates to 1.

4 Generalization of the algorithm

The discrete Fourier transform approach yields a closed form solution, it applies to any target
EPR using the setup of Fig. 1. On the other hand, it relies on several simplifications:

• It makes U(ϕ) agree with Utarget(ϕ) at N points, instead of minimizing an error norm.

• It requires that all τn are equal and xn are equidistant.

• It does not take into account the random variation of junction strengths.

To relax the first limitation we observe that as long as the error norm is quadratic in
U(ϕ)−Utarget(ϕ), the optimization problem stays a least squares problem (LS), implemented in
the SciPy library [37]. Relaxing the second and third limitations makes the problem nonlinear,
but keeps it solvable using stochastic global optimization techniques.

To apply LS to the superconducting diode design, we use the error norm

min
EJ (xn)

∑

i

�

U ′′ (ϕi)
�2

, (9)

which makes the negative current as constant as possible in the range ϕi ∈ [ϕmin,ϕmax],
with ϕmin and ϕmax being the upper and lower boundary values for the phase range used
for applying LS method. To make the solution nonzero we fix EJ (x0) = 1 and solve for the
Josephson junction strengths of the remaining N − 1 arms. After finding a solution to the LS
problem, we add the most negative junction strength, similar to the Fourier method. We then
apply a brute force optimization to determine the phase region [ϕmin,ϕmax] that yields highest
η.

We solve the nonlinear problem by applying the SciPy’s [37] implementation of the dif-
ferential evolution method [38] to the problem of finding max{xn},{EJn}η for a given N . This
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Figure 6: Comparison of the diode efficiencies generated by the three optimiza-
tion methods: differential evolution method (blue), LS method (orange) and dis-
crete Fourier transform (red). Solid lines and circular markers represent the ideal
disorder-free limit. Dashed lines and square markers represent the disordered limit
with a margin of ±2% randomness in junction parameters. The error bars are used
to demonstrate the standard deviation of the efficiency distribution that arises from
the presence of disorder.

procedure yields the results shown in Fig. 5. Because differential evolution allows the presence
of noise, we allow the junction strengths to vary by ±2%, similar to the experimental state of
the art [39]. We find mean diode efficiency of η≈ 0.71 for N = 5 arms, much larger than the
result of the Fourier method.

In Fig. 6, we compare the diode efficiencies produced by the three optimization methods
in perfect conditions and in presence of noise. All three methods show improvement with
increasing N . We observe that both the Fourier and the LS approaches become more sensititve
to disorder with increasing N . This happens because the typical EJ of each arm is comparable
to the maximal one due to the shifting by the minimal value. This results in the root-mean-
square variation ∼

p
N not being suppressed with N . The differential evolution method yields

highest efficiencies for low N and converges the fastest, while showing only limited degrada-
tion in presence of disorder. The superior performance of this method is expected, however
the computational costs become prohibitively high for large N . The discrete Fourier transform
method is the most constrained, and therefore it performs worst, albeit the difference with LS
vanishes at high N . The LS approach is the least resilient to disorder once N becomes large
due to overfitting.

5 Other example EPRs

To demonstrate the generality of our approach, we apply it to other example EPRs: a square
wave, a triangular wave, and a double well potential. For square and triangular wave po-
tentials, we employ the discrete Fourier transform approach. Similar to the superconducting
diode EPR case, we choose a constant τ and solve for the Josephson energy distribution. The
convergence of this method with N , shown in Fig. 7 confirms that it allows to generate ar-
bitrary EPRs. The double well EPR example demonstrates how to apply the same device to
design an EPR that is only defined within a limited phase range. Specifically, we consider a
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Figure 7: (a) Square wave and (b) triangular wave EPRs for various N . The black
dashed lines depict the target EPR for each case. For visualization purposes, we
subtract the mean from each EPR. For simulating sharp features of the target EPR,
we choose τ= 0.97 to include higher Fourier components.
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Figure 8: Engineering a double well potential using a Josephson junction array with
N = 4 arms and τ = 0.1. Panel (a) displays the EPR within the phase region of
interest, whereas panel (b) shows the entire phase range. The yellow dashed line
depicts the target EPR, Udw(ϕ) given in Eq. (10), in the phase range of interest. The
blue line depicts the full EPR of the Josephson array.

9

https://scipost.org
https://scipost.org/SciPostPhys.15.5.204


SciPost Phys. 15, 204 (2023)

double well potential of the form:

Udw(ϕ) = ϕ
4 −

1
2
ϕ2 . (10)

By discretizing Eq. (5) and eliminating equations outside the region of interest, we obtain an
overdetermined set of equations, which we solve using LS and shift the Josephson energies
by the most negative one when necessary. Due to absence of sharp features in double well
potential, we choose a low value of τ = 0.1. The resulting EPR of the Josephson junction
array with N = 4 arms, shown in Fig. 8, agrees with target EPR given in Eq. (10) in the phase
region of interest, depicted by the yellow dashed line.

6 Conclusion and outlook

We proposed and investigated an approach to design arbitrary energy-phase relationships us-
ing Josephson tunnel junction arrays. In particular, our approach allows to design a supercon-
ducting diode with a desired efficiency and the resulting design is robust against variation in
device parameters.

The main building block of our approach is possibly the simplest source of a non-sinusoidal
CPR: two Josephson tunnel junctions in series. While our method does not rely on a specific
arm EPR, this choice offers practical advantages. For example, more than two junctions in
series generally have a multi-valued CPR [29] and does not allow for a simple parametrization.
An alternative way of generating higher harmonics is a Josephson junction in series with an
inductor [40, 41], however it has a non-periodic CPR, and is therefore more complicated to
use.

We have focused on the DC properties of the circuit, and we envision engineering the RF
characteristic as the next logical step. For example, we expect that diode effects are correlated
with odd-order RF nonlinearities, which we could explore [4]. Furthermore, so far, we have
ignored the role of junction capacitance EC , which sets the plasma frequency of the super-
conducting junctions, and consequently the islands. This plasma frequency limits the range
of operation frequencies, therefore incorporating the dynamics of the superconducting islands
into the picture would be relevant for designing quantum coherent devices. Finally, we can
extend our scheme to 2- or 3-dimensional energy-phase landscapes and include sensitivity to
parametric knobs as optimization inputs for design of protected qubits [30].
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