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Abstract

We determine the Casimir energies and forces in a variety of potentially experimentally
viable setups, consisting of parallel plates made of perfect electromagnetic conductors
(PEMCs), which generalize perfect electric conductors (PECs) and perfect magnetic con-
ductors (PMCs), and Weyl semimetals (WSMs). Where comparison is possible, our re-
sults agree with the Casimir forces calculated elsewhere in the literature, albeit with
different methods. We find a multitude of known but also new cases where repulsive
Casimir forces are in principle possible, but restricting the setup to PECs combined with
the aforementioned WSM geometry, results in purely attractive Casimir forces.
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1 Motivation

It is well known by now that according to the no-go theorem [1], the Casimir force is always
attractive between dielectrics which are related by reflection. However, when this reflection
symmetry is absent there are no clear rules regarding if the Casimir force is attractive or re-
pulsive, and it has to be considered on a case by case basis. Therefore it is interesting to look
at the well known, and geometrically symmetric, parallel plate setup, and study in what cases
repulsive Casimir forces are possible.

The case of parallel dielectric plates is well known, see e.g [2]. Perhaps surprisingly, no
repulsive Casimir force is possible in vacuum, even when the plates have differing dielectric
functions ε1 ̸= ε2. To permit a repulsive Casimir force one has to fill the empty space between
the plates with a third dielectric medium and have ε1 > ε3 > ε2 where ε3 is the dielectric
function of the internal region. This has been experimentally verified with gold, silica, and
liquid bromobenzene [3].

Another way to circumvent the no-go theorem in a geometrically symmetric setup, is to
move away from dielectric materials. Having one plate magnetically permeable, approximated
by a perfect magnetic conductor (PMC) instead of a perfect electric conductor (PEC), already
results in a repulsive Casimir force [4,5], as well as interesting behavior under the zero plate
separation limit [6]. PMCs can possibly be realized using metamaterials [7]. This can be
generalized towards perfect electromagnetic conductors (PEMCs) [8–13]. Other materials of
interest are chiral materials, both for the plates and for filling the gap between them [10,14–
20]. Weyl semimetals specifically are of interest to us, as they have a convenient description
in terms of a quantum field theory effective action [21,22].

We focus on a case similar to [10, 18, 23], where a WSM-like medium is placed between
perfect electric conductors (PECs) or PEMCs. The resulting Casimir force is attractive at short
and long ranges with a repulsive region at intermediate separation. The catch is that in those
setups the WSM is assumed to change in size to always completely fill the gap, i.e. it has to be
fluid or gas-like, something which does not appear very realistic. Therefore in this paper we
build up towards the case of a slab of WSM with fixed width placed between PEMCs and see
if the features of [10,18] survive.

2 Overview of calculation method

We first give an overview of the calculation method developed in [10, 24]. All setups in this
paper will be derived from the Euclidean QED action, augmented with a classical but space-
time dependent θ -term

S =

∫

d4 x
�

1
4

FµνFµν + iθ (x)
1
4

FµνeFµν

�

, (1)

where eFµν =
1
2ϵµνρσFρσ is the dual field strength tensor and θ (x) is a background axion-like

field [25]. This action has the property that it can model a variety of different physical situa-
tions by choosing the background field θ (x), see e.g. [21,22,26]. In practice our background
field will only depend on x3 ≡ z such that translation invariance is preserved in the t, x and
y directions. The equations of motion only depend on the gradient of θ (z), therefore we will
denote it by β(z) ≡ ∂zθ such that β(z) = 0 corresponds to conventional QED in which case
θ becomes an irrelevant constant. In principle we could allow discontinuities in θ (z), which
would correspond to surfaces on which Hall currents are possible, but we leave this for a future
work.

2

https://scipost.org
https://scipost.org/SciPostPhys.15.5.213


SciPost Phys. 15, 213 (2023)

We add a Feynman gauge fixing term

Sgf =

∫

d4 x
1
2
(∂ A)2 , (2)

to the action. Feynman gauge is chosen because it allows us to diagonalize the Lorentz struc-
ture of the propagators notwithstanding that the translation invariance in the z-direction is
broken due to the β(z) background. Overall, this gauge choice does not influence physics, but
it does simplify the computations.

We will consider three types of medium with which to build our setups. The first one is the
trivial case of the QED vacuum, with β(z) = 0. The second type of media are Weyl semimetals
(WSMs), which can be modelled by setting β(z) equal to a nonzero constant [21,22]. In this
case the constant value of β(z) can be interpreted as the separation of the two Weyl nodes
of the WSM in momentum space [27]. The last type of media are perfect electromagnetic
conductors (PEMC), which are modelled by applying the boundary conditions

nµFµν + i cotαnµeFµν

�

�

�

�

Σ

= 0 , (3)

on the surface Σ, with normal vector nµ [8–10]. These boundary conditions have the feature
that they are the most general linear boundary conditions that are still compatible with gauge
invariance [28]. PEMC materials are a generalization of perfect electric conductors (PEC)
and perfect magnetic conductors (PMC), where the parameter α ∈

�

−π2 , π2
�

can be used to
interpolate between the PEC (α= 0) and PMC (α= ±π2 ) boundary conditions.

The relevant boundary conditions can be included into the action by introducing a lagrange
multiplier field ba

µ in a term

Sbc =

∫

Σ

d3x ba
µGa
µ(A) , (4)

where the index a includes all surfaces on which boundary conditions need to be applied, and
Ga
µ(A)≡ nρFρµ+ i cotαanρ eFρµ encodes the boundary conditions. The boundary conditions in

our case will only be applied to static plates perpendicular to the z-axis, so nµ = δµ3.
Given the total action Stot = S + Sgf + Sbc we can now perform a redefinition of the fields

to ‘complete the square’ and bring it into the form

Stot =
1
2

∫

d3k

(2π)3

∫

dz A†
µKµνAν +

1
2

∫

d3k

(2π)3
b†a

i K
ab
i j bb

j , (5)

where we Fourier transformed all coordinates except the z-coordinate and suppressed the k
dependence. The kinetic operator is given by

Kµν = δµν(∂
2
z − |k|

2) + β(z)ϵµνi3ki , (6)

or, in the polarization basis (see Appendix B) where the Lorentz structure is diagonal

Krs = diag(∂ 2
z − |k|

2 , ∂ 2
z − k2

c (z) , ∂ 2
z − (k

⋆
c )

2(z) , ∂ 2
z − |k|

2) , (7)

and we have defined k2
c (z) = |k|

2 + i|k|β(z). The Aµ field can be integrated out, after which
the boundary conditions encoding ba fields form a non-local 3D effective theory with kinetic
operator

Kab
i j = V a

iµ(∂z)V
b
ν j(∂z′)K

−1
µν

�

z, z′
�

�

�

�

�

z=za ,z′=zb

, (8)
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where za stands for the z-coordinate of the a-th plate, and K−1
µν (z, z′) is the Green’s function of

the Kµν operator. The matrices V
a
iµ, V a

ν j follow from the boundary conditions, and are given in
the polarization basis as

V a
rs(∂z) =





∂z 0 0
0 ∂z + i cotαa|k| 0
0 0 ∂z − i cotαa|k|

i|k|
0
0



 ,

V
a
rs(∂z′) =









∂z′ 0 0
0 ∂z′ + i cotαa|k| 0
0 0 ∂z′ − i cotαa|k|
−i|k| 0 0









.

(9)

The (unregularized) Casimir energy per unit surface area of the system follows as
E = EA+ Eb, with

TV2EA =
1
2

logdet(K) ,

TV2Eb =
1
2

logdet(K) ,
(10)

where TV2 is the 3D spacetime volume of the transversal space.1 EA is not present in the
conventional Casimir effect between two parallel PEC plates as being trivial. The Casimir
energy density Eb resulting from the boundary conditions can be calculated directly as

Eb =
1
2

∫

d3k

(2π)2
log(|K|) , (11)

where |K| is the matrix determinant of the µ,ν, a, b indices of Kab
µν. In the case of two paral-

lel plates this expression can be regularized (renormalized) by subtracting Eb in the limit of
infinite plate separation. The Casimir energy density EA is more difficult to calculate however
due to the broken translation symmetry in the z-direction. Instead it is easier to calculate the
Casimir force FA = −

dEA
dL directly, where L is the relevant separation parameter between media

and/or plates. Using Jacobi’s formula the Casimir force follows as

FA = −
1
2

∫

d3k

(2π)3

∫

dz tr

�

dK
dL

K−1

�

�

�

�

z=z′

�

, (12)

where the “tr” stands for the trace over the Lorentz indices. In the case we consider β(z) is a
piecewise constant function, where the parameter L then varies the size of the intervals where
β(z) is constant. It follows that the derivative w.r.t. L results in Dirac delta-distributions which
make the z integration trivial. Unlike for the conventional Casimir effect, now the Casimir force
FA also needs a proper regularization, which is consistent with the fact that one can construct
new vacuum counterterms with β(z), or better said, with its dimensional parameters.

Now only the calculation of the Green’s function K−1
µν

�

z, z′
�

is left. This is a difficult problem
for general β(z), but can be done systematically for piecewise constant β(z) by solving the
translation invariant equations2

Ka
µρDa

ρν(z − z′) =
�

δµρ
�

∂ 2
z − |k|

2�+ βaϵµρiki

�

Da
ρν(z − z′) = δµνδ(z − z′) , (13)

where βa are the constant values taken by β(z). In the polarization basis this reduces to solving
for a single type of Green’s function

�

∂ 2
z − k2

ca

�

ϕα(z − z′) = δ(z − z′) , (14)

1We implicitly take the limits of infinite timespan T →∞ and infinite surface area V2→∞.
2No sum over a.
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where k2
ca = |k|

2 + iβa|k|, which has as solution

ϕa(z − z′) = −
1

2kca
e−|z−z′|kca . (15)

The full Green’s function K−1(z, z′) can then be constructed by gluing the individual Da(z−z′)
together and demanding smoothness and continuity (for z ̸= z′) by adding solutions to the
homogeneous differential equations. The gluing of the Da(z−z′)would be different in the case
that θ (z) has discontinuities, i.e. Hall currents are present. More details about the calculations
in this section can be found in [10].

3 The Casimir force in specific setups

We now have the tool set to calculate Casimir forces in setups consisting of WSMs and PEMC
materials. We will discuss a few setups which are more experimentally viable than the one dis-
cussed in [10] or [18]. Indeed, as concrete experimental verifications of the standard Casimir
force for parallel plates all rely at some point on a variable separation between the plates, see
e.g. [29, 30], it does not appear possible to ever measure the Casimir force between the two
sides of a WSM or alike when the size of that WSM has to be changeable.

To be as general as possible, PEMC materials are used as plates/boundary conditions to
explore more exotic behaviors of the Casimir force, such as repulsive forces, but the PEC limit
(or even PMC) can always be taken to arrive at more conventional setups.

Two simple, but interesting, cases are the Casimir force between two slabs of WSMs [14,
15,31] and the Casimir force between a WSM and a PEMC material. The case of the Casimir
force between two PEMC materials has already been discussed in [10]. We also discuss how
the presence of a slab of WSM of finite width modifies the Casimir force between two PEMC
materials, this can be seen as an experimentally viable modification of the more mathemati-
cally idealized setups discussed in [10,18].

We will often compare with the QED Casimir force and energy between parallel PEMC
plates [9,10]

Eqed(L,α) = −
1

8π2 L3
ReLi4
�

e2iα
�

,

Fqed(L,α) = −
3

8π2 L4
ReLi4
�

e2iα
�

,
(16)

where α is the difference between the duality angles of the PEMC plates α = α2 − α1,
and Lin(x) is the polylogarithm. The conventional QED Casimir effect then follows as
Eqed(L)≡ Eqed(L, 0) = − π2

720L3 and Fqed(L)≡ Fqed(L, 0) = − π2

240L4 .
Our β parameter is a rescaled version of the one typically found in the literature

β = e2

2π2β
′. In WSMs we typically have β ′−1 ∼ 1 nm, see e.g. [32–34], which corresponds

to β−1 ∼ 200nm. Values of β L of the order of β L ∼ 1 to 20 correspond to distances of the
order of L ∼ 0.2µm to 4µm, which are reachable in experiments [29,35,36].

3.1 PEMC plate and semi-infinite WSM

Consider a setup where a semi-infinite slab of WSM is separated from a PEMC material by a
vacuum gap of width L as seen in FIG. 5 in the appendix. The WSM can be modelled by setting
β(z) to

β(z) =











β , if z < −
L
2

,

0 , if z > −
L
2

,
(17)
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while the PEMC material follows from the boundary condition part of the action

Sbc =

∫

d3x binµ
�

Fµi + i cotα eFµi

�

�

�

�

�

z= L
2

. (18)

In this case the Casimir force will arise solely from the Eb contribution, as FA results in an L-
independent infinite constant, to be removed with a vacuum counterterm. The Casimir energy
can be regularized by subtracting the L→∞ limit, and results in

E1 = Re

∫

d3k

(2π)3
log
�

1−
kc − |k|
kc + |k|

e−2|k|L+2iα
�

, (19)

where k2
c = |k|

2 + iβ |k|. The Casimir force follows as F1 = −
dE1
dL , and is completely attractive

in the PEC limit α→ 0, while completely repulsive in the PMC limit α→±π2 . We can study the

Casimir force relative to the QED Casimir force eF1(β L,α) = F(β ,L,α)
Fqed(L)

which is dimensionless.
This expression can be expanded to find that the long range β L ≫ 1 force tends to the QED
Casimir force

eF1(β L,α) = eFqed(α)−
1575

16π
7
2
p

β L
Re
�

(1− i)Li 7
2

�

e2iα
��

+
360
π4β L

Im Li3
�

e2iα
�

+O(β L)−2 , (20)

where eFqed(α)≡
Fqed(L,α)
Fqed(L)

= 90
π4 Re Li4
�

e2iα
�

. For short ranges β L≪ 1 the Casimir force follows

an L−2 power law in the case of a PEC or PMC plate (α= 0,±π2 ), instead of the L−4 power law
for perfectly conducting plates. These are special cases however, and it follows an L−3 power
law for general α. eF1(β L,α) is shown in FIG. 1 up to β L = 20.

3.2 PEMC plate and WSM with finite width

We can also consider the slab of WSM to have a finite width d. This can be incorporated by
setting β(z) = 0 for z < − L

2 − d. The resulting regularized Casimir energy follows as

E2 = Re

∫

d3k

(2π)3
log
�

1− Re−2|k|L+2iα
�

, (21)

with

R=
2(kc + |k|)(kc − |k|) sinh(kcd)

(kc + |k|)
2ekc d − (kc − |k|)

2e−kc d
, (22)

which returns to (19) in the limit d →∞. We can once again study the Casimir force relative
to the QED Casimir force eF2(β L,βd,α) = F2(L,β ,d,α)

Fqed(L)
. The long range β L ≫ 1 behavior is

modified compared to the infinite width case:

eF2(β L,βd,α) =
90
π4

Re

�

Li4

�

e2iαβd
βd − 2i

�

�

1−
4
3
(βd − 3i)βd
(βd − 2i)β L

�

+O(β L)−2

�

, (23)

where we see that the α dependency approaches its β L → ∞ behavior faster than in the
infinite width case. Importantly this also modifies the zero-points of the Casimir force, which
can be observed in FIG. 2, where eF2(β L,βd,α) is shown for βd = 2.

As a final remark note that the Casimir energy in this case obeys a similar sum rule as

in [9],
∫
π
2

−π2
E2(L,β , d,α)dα= 0 as it follows from [37, 4.225(4)]. A fortiori, the Casimir force

obeys the same sum rule.
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Figure 1: The Casimir force between a PEMC and a semi-infinite slab of WSM, relative
to the QED Casimir force eF1(β L,α) = F1(L,β ,α)

Fqed(L)
. Attractive and repulsive forces have

been shaded red and blue respectively.

3.3 Semi-infinite slabs of WSMs

We now take a look at the Casimir force between two semi-infinite slabs of WSMs separated
by a distance L, see FIG. 6. We model this by

β(z) =























β1 , if z < −
L
2

,

0 , if z ∈
�

−
L
2

,
L
2

�

,

β2 , if z >
L
2

,

(24)

where β1 is the material parameter of the leftmost WSM, and β2 that of the rightmost WSM.
As there are no PEMC materials present in this setup, there is no need for auxiliary fields or
extra boundary conditions. Consequently only the propagator needs to be calculated and (12)
can be used directly. The regularized Casimir force follows as

F3 = −β1β2 Re

∫

d3k

(2π)3
|k|e−|k|L(|k|+ kc1)

−1(|k|+ kc2)
−1

×
�

|k|(kc1 + kc2) cosh(|k|L)
�

|k|2 + kc1kc2

�

sinh(|k|L)
�−1

,

(25)

which is invariant under β1↔ β2 and βα→−βα. The Casimir force relative to the QED one,
eF3(β1 L,β2 L) = F3(L,β1,β2)

Fqed(L)
, is shown in FIG. 3, in terms of the parameters b± =

1
2(β1 ± β2)≥ 0,
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Figure 2: The Casimir force between PEMC and a slab of WSM with width d, relative
to the QED Casimir force eF2(β L,βd,α) = F2(L,β ,d,α)

Fqed(L)
. Attractive and repulsive forces

have been shaded red and blue respectively (βd = 2).

as any set of βα can be mapped to positive b± using the aforementioned symmetries of (25).
Interestingly the Casimir force is exclusively attractive in the region b− > b+, i.e. when β1 and
β2 have opposite sign. When b− < b+ the Casimir force is repulsive at short while attractive at
long distances. Therefore in this situation there exists a stable separation L where the Casimir
force is zero. The results of this section agree with [14,15].

For the sake of completeness, this expression can be integrated over L to obtain the Casimir
energy. There is the freedom of subtracting an L-independent constant from said energy, which
can be used to set the energy at L→∞ to zero, effectively regularizing the Casimir energy in
the usual way. The regularized Casimir energy density is given by E3 in Appendix C.

3.4 A finite width slab of WSM between parallel PEMC plates

At last, let us have a look at what we consider to be a more experimentally viable option of
the setups in [10,18]: a WSM of finite width d confined between two PEMC plates located at
z = za, with a = 1,2, where z1 is the leftmost and z2 the rightmost plate, shown in FIG. 7.
Placing the center of the WSM at z = 0 such that z = ± d

2 are the boundaries of the WSM, we
can use the offsets of the plates to the WSM z− = z1+

d
2 and z+ = z2−

d
2 to simplify expressions.

There is vacuum between the plates and the WSM slab.
With some effort, the same techniques as for the previous cases can be used to calculate

the full Casimir energy E4, which is given in Appendix C.

8

https://scipost.org
https://scipost.org/SciPostPhys.15.5.213


SciPost Phys. 15, 213 (2023)

0 2.5 5 7.5 10 12.5 15 17.5 20
b+ L

0

2.5

5

7.5

10

12.5

15

17.5

20
b

L

0.35

0.3

0.25

0.1
5

0.2
0.1

0.0
5

0 0

0.
05 0.

1

0.
15 0.

2

0.
25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 3: The Casimir force between two semi-infinite WSMs, separated by a distance
L, relative to the QED Casimir force eF3(β1 L,β2 L) = F3(L,β1,β2)

Fqed(L)
, with b± =

1
2(β1 ± β2).

The repulsive region has been highlighted in blue.

As a consistency check we note that in the limit βd →∞, where we keep z± constant,
corresponding to an infinitely thick WSM, the Casimir energy reduces to

lim
βd→∞

E4(z+, z−,β , d,α1,α2) = E1(−z−,β ,−α1) + E1(z+,β ,α2) , (26)

i.e. the sum of the Casimir energy of two independent PEMC–WSM setups. Similarly the
Casimir energy becomes the PEMC–PEMC Casimir energy in the limit βd → 0

E4(z−, z+,β , d,α1,α2)
βd=0
= Eqed(z+ − z− + d,α2 −α1) . (27)

More interestingly, the Casimir force acting on the rightmost plate reads F4 = −
dE4
dz+

. The
case where the leftmost plate is a PEC and attached to the WSM (z− = 0) is shown in FIG. 4,
relative to the QED Casimir force eF4(βz+,βd,α2) =

F4(0,z+,β ,d,0,α2)
Fqed(L)

, for βd = 2. It can be seen
that the short range interaction is comparable to the case without the leftmost PEC as in FIG. 2,
but for longer range the PEC–PEMC interaction starts to dominate. In other words a thin film
of WSM applied to an electric conductor could be used to modify the short range behavior
of the Casimir force. A general observation is that the force F4 remains purely attractive for
all β , d, z± in the case of PEC plates. Similarly the Casimir force is purely repulsive for all
combinations of parameters when the plates are PMC. As the PEMC–PEMC and PEMC–WSM
(both infinite and finite width) Casimir forces are also attractive (repulsive) for PEC (PMC)
plates, this is perhaps no unexpected result. This implies however that if one replaces the
idealized (unrealistic) setup of [10, 18] by the more realistic case of a finite slab of WSM
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Figure 4: The Casimir force acting on the rightmost PEMC plate in a PEC–WSM–
PEMC setup, where the PEC is attached to the WSM (z− = 0), relative to the QED
Casimir force eF4(βz+,βd,α2) =

F4(0,z+,β ,d,0,α2)
Fqed(z+)

. Attractive and repulsive forces have
been shaded red and blue respectively (βd = 2).

between PEC plates, there is actually no repulsive Casimir force present anymore, which was
one of the reasons to consider chiral media such as WSMs in Casimir-like setups to begin with.

Our finding has yet another consequence, namely that if the distance between the plates is
kept constant and we look at the force acting on the WSM, it can be seen that the WSM placed
at the center between the plates is an unstable (stable) stationary point for PEC (PMC) plates.

Noteworthy, for general αa ∈
�

−π2 , π2
�

, the behavior of the system is much richer, allowing
for the presence of repulsive-attractive and attractive-repulsive transitions as seen in FIG. 4,
much like the WSM–PEMC configurations in FIG. 1 and FIG. 2. This makes clear the potential
huge relevance of using PEMC materials for the plates around a WSM to hopefully study in
the future their “Casimir phase diagram” in an experimental setting.

4 Conclusions

We have calculated the Casimir force in a multitude of configurations consisting of PEMCs and
WSMs by making use of the path integral formalism. We found a variety of situations in which
a repulsive Casimir force is possible, although one is required to either have a general PEMC,
i.e. not a PEC, present or two WSMs with βi of the same sign.

Using general PEMCs it should be possible to tune the Casimir force to the desired behavior,
being either completely attractive, repulsive, or a mixture of both depending on the plate
separation.
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As PEMCs can be seen as a special case of bi-isotropic materials with infinite material pa-
rameters [8,12,13], it could be interesting to consider the Casimir effect between bi-isotropic
materials as the most realistic scenario to generalize and test our predictions. A covariant
description of such materials, or even simpler dielectric materials, following [38] might per-
haps shed new light on efficient calculation methods of the Casimir effect in exotic yet realistic
materials.
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A The considered geometries
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Figure 5: Two semi-infinite slabs, a WSM parametrized by β and a perfect electric
conductor, with a vacuum gap of width L in between.
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Figure 6: Two semi-infinite slabs of WSMs, parametrized by β1 and β2, with a vac-
uum gap of width L in between.
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Figure 7: A static slab of WSM with width ℓ, and two semi-infinite PEC plates on
either side.
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B Polarization basis

We can define an orthonormal polarization basis E r
µ, i.e. with E r†

µ Es
µ = δrs, in which ϵµνk3kk is

diagonal. The r = 0,3 polarizations are analogous to longitudinal and timelike polarizations

E0
i =

ki

|k|
, E0

3 = 0 , E3
i = 0 , E3

3 = 1 , (B.1)

where |k|=
p

kiki , while r = 1, 2 vectors are transversal

E1
µ =

1
p

2

�

eE1
µ − ieE2

µ

�

, E2
µ =

1
p

2

�

eE1
µ + ieE2

µ

�

, (B.2)

and are built out of real vectors that obey

eE2
i = ϵi jk

kk

|k|
eE1

j , eE1
i ki = eE

2
i ki = 0 , (B.3)

which do not have to be defined explicitly for our purposes. A vector vµ then decomposes as
vµ = E r

µvr .

C Overview of regularized Casimir energy density expressions

Setup Energy density

PEMC – WSM E1 = Re

∫

d3k

(2π)3
log
�

1−
kc − |k|
kc + |k|

e−2|k|L+2iα
�

PEMC – finite width WSM E2 = Re

∫

d3k

(2π)3
log
�

1− C1e−2|k|L+2iα
�

WSM – WSM E3 = Re

∫

d3k

(2π)3
log

�

1−
kc1kc2 − |k|(kc1 + kc2) + |k|

2

kc1kc2 + |k|(kc1 + kc2) + |k|
2 e−2|k|L
�

PEMC – WSM – PEMC E4 = Re

∫

d3k

(2π)3
log
�

1− C1

�

e−2|k|z++2iα2 + e2|k|z−−2iα1
�

− C2e−2|k|(z+−z−)+2i(α2−α1)
�

where

C1 =
2
�

k2
c − |k|

2� sinh(kcd)

(|k|+ kc)
2ekc d − (|k| − kc)

2e−kc d
, C2 = 4

�

|k|2 + k2
c

�2 −
�

k2
c − |k|

2�2 cosh2(kcd)
�

(|k|+ kc)
2ekc d − (|k| − kc)

2e−kc d
�2 . (C.1)
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