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Abstract

We consider a recently proposed model to understand the rigidity transition in confluent
tissues and we derive the dynamical mean field theory (DMFT) equations that describes
several types of dynamics of the model in the thermodynamic limit: gradient descent,
thermal Langevin noise and active drive. In particular we focus on gradient descent dy-
namics and we integrate numerically the corresponding DMFT equations. In this case we
show that gradient descent is blind to the zero temperature replica symmetry breaking
(RSB) transition point. This means that, even if the Gibbs measure in the zero temper-
ature limit displays RSB, this algorithm is able to find its way to a zero energy configu-
ration. We include a discussion on possible extensions of the DMFT derivation to study
problems rooted in high-dimensional regression and optimization via the square loss
function.
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1 Introduction

Confluent tissues are a subclass of biological tissues for which, to a first approximation, cells
tesselate the space, the simplest example being the epithelial tissue. In recent years there has
been a huge effort to try to understand their physical properties starting from simple statistical
mechanics models to be compared with real data in the field. The interest in this research line
is due to many reasons including: (i) understanding morphogenesis and the interplay between
the mechanics of stress propagation in aggregates of cells and the expression of chemical sig-
nals such as growth factors, and (ii) the dynamics of tumor growth and metastasis generation
in healthy tissues. The two settings seem quite different but in fact they are rather similar.
At the biochemical level, cells express growth factors through some metabolic pathway that is
influenced by the current biochemical status. The expression of growth factors triggers growth
in the assemblies of cells and this feedbacks into the expression of the growth factors them-
selves. If the process is properly balanced, one has a growing healthy tissue. Conversely, when
cells are damaged, such mechanism is broken along the metabolic pathway. One crucial point
is that in healthy tissues, biochemical signals may depend on the mechanics of the tissue itself.
In other words stress relaxation and propagation in the aggregate of cells is fed back somehow
into the metabolic pathway and the mechanical properties of single cells are crucial to deter-
mine the collective behavior. In tumor tissues such feedback loop is not controlled anymore
and one has uncontrolled disordered growth.

It is therefore interesting to control the mechanical, elastic and plastic properties of as-
semblies of cells. From a statistical mechanics perspective, the simplest way to investigate
this problem is by developing a simple set of models of confluent tissues. In recent years,
Vertex and Voronoi models have been extensively studied [1–11]. In both types of models, a
procedure to tessellate the space is introduced to properly define the cells which are there-
fore identified as the tiles of a geometric structure. Metabolic reasons are then invoked to
constrain cells’ shape and this is enforced with a proper cost function. A way to control cells’
shape is by penalizing their volume and surface if they are away from the target values and
this is done by using a square loss function in which deviations from the target shape have a
cost that scales with the square of the actual deviation. A key problem is then to understand
what are the dynamical properties of assemblies of cells moving under a set of both thermal
and non-equilibrium forces and subject to the interactions inherited from the cost function. A
typical setting consists in giving self-propulsion to the cells and then looking at whether cells
can diffuse or not depending on the allowed target shape. In recent years it has indeed been
shown that the target shape acts as a control parameter that can tune the rigidity of conflu-
ent tissues [1–11]. Enforcing a compact shape produces a glassy, solid tissue, while when the
shape is loose, one gets a liquid tissue. However the phase boundary between these regions
as well as the out-of-equilibrium phase transition between them is not well understood and
therefore one needs to develop simple mean field models which can bring with their exact
solubility, some analytical understanding.

A totally different line of research in statistical mechanics is focusing on the properties of
artificial neural networks [12–14]. A simple way to think about them is as devices performing
a non-linear regression task. In a huge number of cases, networks are trained such that their
output to a given input pattern of a dataset, is the desired one (the label of an image for
example). Therefore they can be thought to be doing regression tasks, which can be achieved
with many cost functions, the simplest one being the square loss. In this case for each point in
the dataset, the cost associated to a configuration of the network which does not provide the
right label for that point, is defined as the square between the current output and the expected
one. Therefore training the network corresponds to finding the set of parameters such that for
each data point the network provides the right label.
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Both models of confluent tissues as well as non-linear regression in high dimension can
be thought as high-dimensional systems of non-linear equations (equality constraints) for the
degrees of freedom (positions of cells in confluent tissues and the weights of the network in
machine learning).

In [15] a simple model for a continuous constraint satisfaction problem with equality con-
straints has been studied and it has been shown to provide a similar phase diagram to the one
of models of confluent tissues. The model has a rigidity transition at zero temperature which
separates a satisfiable phase where all constraints can be satisfied and an unsatisfiable phase
where all are violated. For confluent tissues, the satisfiable phase represents the liquid phase:
one can move the degrees of freedom and stay at zero energy at the bottom of a canyon land-
scape [16]. Instead the unsatisfiable phase is glassy and the landscape is a high-dimensional
rough arrangement of minima and saddles. The liquid phase in the regression setting denotes
the overparametrized phase and the rigidity transition is nothing but the interpolation point
in which the network is becoming too small to fit all dataset. The same picture holds for clas-
sification tasks and a parallel with the jamming transition of particles has been done in recent
years [17–20].

The main purpose of this work is (i) to describe the solution of the infinite dimensional
dynamics of the class of models described in [15] and (ii) to discuss how to solve numerically
the corresponding equations. We will detail the derivation and the structure of the dynamical
mean field theory (DMFT) equations [21] describing the dynamics in the infinite size limit.
Interestingly we will show that the structure of the DMFT equations can be considered as an
intermediate case between models where one gets a self-consistent stochastic process whose
memory and noise kernels must be obtained numerically by sampling the process itself, see
for example [22–25], and models for which the stochastic process can be integrated exactly to
get the equations for the self-energy in the dynamical Dyson equations (for example the p-spin
glass model [26,27]).

This work is organized as follows: in Sec. 2 we recall the definition of the model and
define the dynamical equations we are interested in. In Sec. 3 we construct the dynamical
mean field theory (DMFT) that tracks the dynamics of the model in the thermodynamic limit.
We highlight the similarities and differences with other DMFT analyses in other similar models
and in Sec. 4 we describe the numerical procedure to solve the DMFT equations. In Sec. 5
we report the validation of the DMFT equations and some results we can get by integrating
them numerically. Finally we conclude with some perspective and possible extensions of our
analysis.

2 The model and dynamical equations

2.1 The model

The model considered in [15] is constructed out of an N -dimensional real vector
x = {x1, . . . , xN} constrained on the hypersphere |x |2 = N which represents the phase space
of the problem. This vector denotes the degrees of freedom that we are allowed to change
in order to satisfy the constraints. They model the position of the centers of the cells in the
Voronoi/Vertex models, and the weights to be adjusted to perform the non-linear regression
task in the machine learning setting. In order to define a set of non-linear equality constraints,
we consider a set of M = αN random matrices:

Jµi j = Jµji µ= 1, . . . M , (1)
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whose entries are Gaussian random variables with zero mean and unit variance. We then
construct a set of gap variables hµ, one for each constraint:

hµ(x) =
1
N

∑

i< j

Jµi j x i x j . (2)

From the gap variables one defines a set of M equality constraints as

hµ(x) = p0 ∀µ= 1, . . . , M , (3)

and p0 ≥ 0 plays the role of target shape in the case of confluent tissue models while it is a
simple control parameter in the non-linear regression task. The square loss is then defined as
the following Hamiltonian

H[x] =
1
2

M
∑

µ=1

�

hµ(x)− p0

�2
. (4)

The parameter α is a control parameter and tunes how much the degrees of
freedom are constrained. If α is large, the model is expected to be in the UN-
SAT/solid/underparametrized phase, while if α is small enough the model is expected to be in
the SAT/liquid/overparametrized phase. The same scenario holds as a function of p0 at fixed
α: at small p0 the model is in the SAT phase while at large p0 it is UNSAT. In [15] this model
was studied at fixed α < 1 as a function of p0 mostly focusing on the properties of the Gibbs
measure, as constructed from Eq. (4). In particular it has been shown that there exist a critical
value pJ which separates a region where, with probability one, a typical configuration of the
zero temperature Gibbs measure has zero energy (and therefore all constraints are satisfied)
from a phase where the ground state of H has a positive energy. Therefore the value of pJ
represent the thermodynamic rigidity transition point in the context of confluent tissue mod-
elling. Furthermore, in [15] it has been shown that the SAT phase is actually composed by two
phases: for p < pG < pJ the Gibbs measure is replica symmetric and therefore one expects
that simple local exploration algorithms will be able to equilibrate the zero energy manifold in
phase space. Conversely, for p ∈ [pG , pJ] replica symmetry is broken and therefore the Gibbs
measure undergoes an ergodicity breaking transition at pG .

In this work we are interested in studying the properties of out-of-equilibrium algorithms
and how they compare with the thermodynamic picture detailed in [15]. Before ending this
section it is useful to mention [15] that the model can be generalized by considering a positive
definite function G(z) and defining the gaps as Gaussian random functions with statistics

hµ(x) = 0 hµ(x)hν(y) = δµνG
� x · y

N

�

. (5)

Here the overline stands for the average over the realization of the functions hµ: in the practical
case in Eq. (2) this average is nothing but the average over the realization of the random
matrices Jµ. A practical way to realize Eq. (5) is by generalizing the hµs to be a sum of terms
each of which is a random tensor contraction with the vector x , see [15] for more details. In
the particular case of Eq. (2) we have that G(z) = z2/2 and, in the following, we will always
consider this case when a specification of G(z) is required. Finally we note that if G(z) is linear,
the model itself becomes linear (apart from the spherical constraint imposed on x) and there
is no replica-symmetry-breaking, see [15] and [28] for a related model.

2.2 The dynamics

We consider the following gradient-based dynamical equations

ẋ i(t) = −µ(t) x i(t) +
∂ H
∂ x i

+ηi(t) , (6)
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where the Lagrange multiplier µ(t) is self-consistently determined in order to enforce that
|x(t)|2 = N at all times. The initial condition of Eq. (6) is chosen at random uniformly over
the entire phase space. The noise η(t) can be thought as being Gaussian with zero mean and
two-point function given by

〈ηi(t)η j(t
′)〉= δi jΓ (t, t ′) , (7)

If Γ (t, t ′) = 2Tδ(t− t ′) one has a Langevin dynamics at temperature T . Unless there is replica
symmetry breaking, such dynamics ends up on a stationary state provided by the Gibbs mea-
sure at the corresponding temperature. If the kernel Γ (t, t ′) is time translational invariant
and characterized by a persistent time τ1 one ends up with a model which can be thought as
describing the effect of active noise characterized by a microscopic timescale τ. An exponen-
tially decaying kernel Γ would then correspond to active Ornstein-Uhlenbeck dynamics [23].
Here we will leave free the form of Γ and write the dynamical equations for a generic kernel.
Finally, if we send Γ → 0 we recover gradient descent dynamics which we will be our main
focus.

3 Dynamical mean field theory

We are interested in analyzing the set of differential equations in Eq. (6) in the N → ∞
limit. Since the model is mean field in nature, it is possible to derive a set of closed integro-
differential equations describing the dynamical correlation function in the thermodynamic
limit. This can be done by using the dynamical mean field theory (DMFT). To derive the DMFT
equations there are several routes. One can either use a path integral formalism following
the Martin-Siggia-Rose-Jenssen-De Dominicis approach [29–32] or one can do a dynamical
cavity method derivation [22, 23]. In this work we use a path integral formalism combined
with the use of a Fermionic (Grassmann) algebra to simplify the formalism. This technical
shortcut bears also some physical advantage. When the dynamics starts at equilibrium and
stays at equilibrium, Fermionic fields can be transformed into Bosonic ones leaving unaltered
the form of the action of the path integral. The corresponding supersymmetry (SUSY) encodes
the fluctuation-dissipation theorem [26]. Therefore this approach is typically called a SUSY
derivation of the DMFT equations.

The starting point is to write down the dynamical partition function which, by causality of
the dynamics, is always equal to one:

Zdyn = 1=

�∫

Dx(t)D x̂(t)exp

�

i

∫

dt x̂(t) ·
�

− ẋ(t)−µ(t)x(t)−
∂ H
∂ x(t)

+η(t)

���

, (8)

and the brackets denote the average over the realization of the noise and the initial condition
of the dynamics. Since this equality holds for all realizations of the disorder we can average
Eq. (8) to get

Zdyn =

�∫

Dx(t)D x̂(t)exp

�

i

∫

dt x̂(t) ·
�

− ẋ(t)−µ(t)x(t)−
∂ H
∂ x(t)

+η(t)

���

. (9)

The SUSY derivation starts by introducing a simple way to rewrite the action of the dynamical
partition function. One denotes by θa a Grassmann variable [33] and defines

x(a) = x(ta) + iθa x̂(ta) , a = (ta,θa) . (10)

1A typical example would be to take Γ (t, t ′) = exp [−(t − t ′)/τ] but scale free correlations can be also consid-
ered.
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Using the algebra of Grassmann integration and averaging over the noise η one gets

Zdyn =

∫

Dx(a)exp

 

−
1
2

∫

da db x(a)K(a, b) x(b)−
M
∑

µ=1

∫

dav(hµ(a))

!

, (11)

where the kinetic kernel K(a, b) is implicitly defined as

−
1
2

∫

da db x(a)K(a, b) x(b) = −
∫

dt i x̂(t) ·
�

ẋ +µ(t)x(t)
�

−
1
2

∫

dt

∫

dt ′x(t) · x(t ′)Γ (t, t ′) , (12)

furthermore we have denoted by v(h) = (h − p0)2/2 and by hµ(a) a shorthand notation for
hµ(x(a)). The integration measure da is defined as da = dtdθa. Integrating over the disorder,
one can rewrite the dynamical partition function as

Zdyn =

∫

Dx(a)exp

�

−
1
2

∫

da db x(a)K(a, b) x(b) +αN lnZ
�

, (13)

where the local partition function Z can be written as

Z
�

x(a) · x(b)
N

�

=

∫

Dh(c)Dĥ(c) eS ,

S = i

∫

da h(a) ĥ(a)−
∫

da v[h(a)]−
1
2

∫

da db ĥ(a)G

�

x(a) · x(b)
N

�

ĥ(b) .
(14)

It is clear that the local partition function Z is a function of x(a) · x(b)/N . Therefore it is
useful now to change integration variables, from x(a) to the dynamical overlap matrix

Q(a, b) =
1
N

x(a) · x(b) . (15)

Including the Jacobian of the change of variables one gets that the dynamical partition function
can be rewritten as

Zdyn∝
∫

DQ(a, b) exp [NA[Q]] ,

A= −1
2

∫

da dbK(a, b)Q(a, b) +
1
2

ln det(Q) +α lnZ(Q) ,
(16)

and we have neglected irrelevant constant terms. For large N there is a large deviation princi-
ple controlling Zdyn. In a typical setting, see [23,25], one extracts from the local partition func-
tion an effective self-consistent non-Markovian stochastic process which can be numerically
solved. In the present case, the self-consistent stochastic process would be linear and therefore
integrable. Indeed the local partition function in Eq. (14) is Gaussian and therefore the integral
can be done analytically. This is the main point of departure of the present work from previous
works. For example, the DMFT for the, closely related, perceptron model [23] is almost identi-
cal to the present model the only difference being that in that case v(h) = (h−p0)2θ (p0−h)/2
and therefore the corresponding local partition function cannot be integrated explicitly since
one does not get a Gaussian integral. We obtain

Z∝ det (G)−
1
2

∫

Dh(a)exp

�

−
1
2

∫

da db h(a)
�

G−1(a, b) +δ(b− a)
�

h(b) + p0

∫

da h(a)

�

∝ det (G)−
1
2 det

�

G−1 + I
�− 1

2 exp

�

p2
0

2

∫

da db
�

G−1 + I
�−1
(a, b)

�

∝ det (I + G)−
1
2 exp

�

p2
0

2

∫

da db
�

G−1 + I
�−1
(a, b)

�

,

(17)
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and we have denoted by I the identity operator, namely I(a, b) = δ(a − b). Note that we
have used the shorthand notation G(a, b) ≡ G(Q(a, b)) and that G−1 is to be understood as
the inverse operator of the kernel G. In the large N limit, the dynamical partition function is
dominated by a saddle point which can be obtained by taking the variational equation of A
with respect to Q. We get

−
1
2
K(a, b) +

1
2

Q−1(a, b) +Σ(a, b) = 0 ,

Σ(a, b) = α
δ lnZ
δQ(a, b)

,
(18)

The term Σ(a, b) is nothing but the self-energy appearing in a Dyson equation fixing the dy-
namical propagator Q(a, b). Its strength is proportional to α which plays the role of a coupling
constant since it also tunes the strength of the interaction between different degrees of free-
dom. Performing explicitly the derivatives of Z with respect to Q we get

−
∫

dcK(a, c)Q(c, b) +δ(a− b)−α
∫

dc (I + G)−1(a, c)G′(Q(a, c))Q(c, b)+

+α p2
0

∫

dc dx dy G′(Q(a, c)) (I + G)−1(x , a) (I + G)−1(y, c)Q(c, b) = 0 .

(19)

In order to solve this equation we need to unfold its Grassmann structure and project it back
from the to the real time space. To do that we go back to the original definition of Q(a, b) in
Eq. (15) we have that

Q(a, b) = C(ta, tb) + θaR(tb, ta) + θbR(ta, tb) , (20)

where correlation function C(t, t ′) is defined as

C(t, t ′) =
1
N

x(t) · x(t ′) . (21)

The response function R(t, t ′) is instead given by

R(t, t ′) =
1
N

N
∑

i

δx i(t)
δηi(t ′)

, (22)

and therefore it encodes the change in the trajectory of the system induced by a small linear
kick on the rhs of the dynamical equation (6). Causality implies that R(t ≤ t ′, t ′) = 0 and that
Q does not contain any additional term proportional to θaθb. The structure of Q implies the
following structure for the terms appearing in the self-energy

A(a, b) = (I + G)−1(a, b) = CA(ta, tb) + θaRA(tb, ta) + θbRA(ta, tb) . (23)

Indeed G does not contain any term proportional to θaθb because R(ta, tb)R(tb, ta) = 0 for all
ta, tb and this implies that the same is true for the kernel A too. Note that Eq. (23) provides
the implicit definition of the correlators CA and RA and enter in the the self-energy structure of
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The structure of the DMFT: self-energy

Dynamical mean field theory

The simplest case The hardest caseThe case in between

Dyson Equation

The self-energy is expressed 
as a simple function of the 
two point function itself 
(Ex: p-spin spherical spin 

glass model).

The self-energy is expressed 
as the average of a two point 

function computed by 
averaging over an effective 

stochastic process  
(Ex: the spherical 

perceptron)

Fast: Hadamard and Matrix 
multiplication

Slow: requires Monte Carlo/
Langevin sampling

The self-energy is expressed 
as an implicit function of the 

actual two point function.

Slightly slower: needs matrix 
inversion

t t′ 
= +Q(a, b) [ ]−1𝒦(a, b) Σ(a, b)

Σ(a, b) = rQp−1(a, b)
Σ(a, b) is a function of 

Σ(a, b) depends on [(1 + G(Q))−1](a, b)
⟨v′ (a)v′ (b)⟩)

Figure 1: A comparative view of the structure of the DMFT equations. The Dyson
equation is represented by Eq. (18). Different models differ by the form of the
self-energy Σ(a, b). In the spherical p-spin model [26] this is a simple function of
the propagator itself Q(a, b). In the hardest situation such as the spherical percep-
tron model [23], Σ(a, b) is expressed in terms of averages over some self consistent
stochastic process whose statistics depends on Σ itself. The present case represents a
situation in between the previous two where Σ is given explicitly in terms of Q(a, b)
albeit it involves a complex matrix inversion.

the Dyson equation (18). Unfolding the supersymmetric algebra we get

∂t C(t, t ′) =−µ(t)C(t, t ′) +

∫ t ′

0

dsΓ (t, s)R(t ′, s)−α
∫ t ′

0

dsCA(t, s)G′(C(t, s))R(t ′, s)

−α
∫ t

0

ds[CA(t, s)G′′(C(t, s))R(t, s)C(s, t ′) + RA(t, s)G′(C(t, s))C(s, t ′)]+

+α p2
0

∫ t ′

0

ds

∫ t

0

dt x

∫ s

0

dt yRA(t, t x)R
A(s, t y)G

′(C(t, s))R(t ′, s)

+α p2
0

∫ t

0

ds

∫ t

0

dt x

∫ s

0

dt yRA(t, t x)R
A(s, t y)G

′′(C(t, s))R(t, s)C(s, t ′) ,

∂t R(t, t ′) =−µ(t)R(t, t ′) +δ(t − t ′)+

−α
∫ t

t ′
ds[CA(t, s)G′′(C(t, s))R(t, s)R(s, t ′) + RA(t, s)G′(C(t, s))R(s, t ′)]+

+α p2
0

∫ t

t ′
ds

∫ t

0

dt x

∫ s

0

dt yRA(t, t x)R
A(s, t y)G

′′(C(t, s))R(t, s)R(s, t ′) ,

(24)

Note that in deriving these equations we have used that RA(t, s > t) = 0 which it can be shown
it is a consistent solution of the equations for RA.
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The equation for the Lagrange multiplier µ can be obtained by imposing that dC(t, t)/dt = 0
which gives

µ(t) = −α
∫ t

0

ds[CA(t, s)G′′(C(t, s))R(t, s)C(s, t) + RA(t, s)G′(C(t, s))C(s, t)]

+α p2
0

∫ t

0

ds

∫ t

0

dt x

∫ s

0

dt yRA(t, t x)R
A(s, t y)G

′′(C(t, s))R(t, s)C(s, t)

+α p2
0

∫ t

0

ds

∫ t

0

dt x

∫ s

0

dt yRA(t, t x)R
A(s, t y)G

′(C(t, s))R(t, s)

−α
∫ t

0

dsCA(t, s)G′(C(t, s))R(t, s) +

∫ t

0

dsΓ (t, s)R(t, s) .

(25)

The last step to close the dynamics is to provide an equation for CA and RA. Unfolding the
definition of A in terms of Q we get the following equation

∫

d tcM(tb, tc)

�

CA(ta, tc)
RA(ta, tc)

�

=

�

0
δ(ta − tb)

�

, (26)

where the matrix M(tc , tb) is given by

M(tb, tc) =

�

δ(tc − tb) + G′(C(tc , tb))R(tb, tc) G(C(tc , tb))
G′′(C(tb, tc))R(tb, tc)R(tc , tb) δ(tc − tb) + G′(C(tc , tb))R(tc , tb)

�

. (27)

This tells us that the way to get CA and RA is by computing the inverse of M and applying it
to the rhs of Eq. (26). Note that causality implies that R(tb, tc)R(tc , tb) = 0 and therefore the
matrix to be inverted has an upper triangular shape which is useful for computational purposes.
Since the computation of CA and RA is the bottleneck for the computation of the self-energy of
the Dyson equation, we clearly see here that the present model has some technical advantages.
A comparison between different structures of the self-energy of the Dyson equation in DMFT
is summarized in Fig. 1.

4 Numerical integration scheme of the DMFT equations

In this section we provide a numerical scheme to solve the DMFT equations. We will discretize
the time in small time intervals. The discretized dynamics cannot be tracked exactly because of
the spherical constraint. Indeed the Lagrange multiplier µ accounts for the spherical constraint
on the vector x only to leading order in the time interval and therefore it is exact only in the
continuous time limit. However we can always solve the equations in an approximate way
by performing a small timestep discretization. The purpose of this section is to detail the
numerical procedure to do this and to compare and validate the results with the numerical
simulations of finite size systems. We will assume that the DMFT equations are discretized
with a timestep dt and that time is an integer multiple of dt. Therefore we will use the
shorthand notation Ci, j ≡ C(t = idt, t ′ = jdt) and two point functions become matrices while
one point functions become vectors.
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4.1 Correlation and Response function

We consider first Eqs. (24). A straightforward discretization of the equations based on the
Euler scheme gives

Ci+1, j − Ci, j = dt



dt
j
∑

k=0

ΓikR j,k −α

�

dt
i
∑

k=0

�

CA
i,kG′(Ci,k)R j,k + CA

i,kG′′(Ci,k)Ri,kCk, j

+RA
i,kG′(Ci,k)Ck, j − p2

0dt2

� i
∑

l=0

RA
i,l

�� k
∑

l=0

RA
k,l

�

(G′(Ci,k)R j,k + G′′(Ci,k)Ri,kCk, j)

��

−µiCi, j

�

Ri+1, j − Ri, j = δi j + dt



−µiRi, j −α

 

dt
i
∑

k= j

�

CA
i,kG′′(Ci,k)Ri,kRk, j + RA

i,kG′(Ci,k)Rk, j

−p2
0 dt2

� i
∑

l=0

RA
i,l

�� k
∑

l=0

RA
k,l

�

Ri,kRk, jG
′′(Ci,k)

���

.

(28)

Note that we have used the fact that Ri, j = 0 if i ≤ j and furthermore that Ci, j = C j,i . The
spherical constraint is imposed by fixing Ci,i = 1 and by propagating the Lagrange multiplier
µ as

µi = dt
i
∑

k=0

Γi,kRi,k −α

�

dt
i
∑

k=0

�

CA
i,kG′(Ci,k)Ri,k + CA

i,kG′′(Ci,k)Ri,kCk,i + RA
i,kG′(Ci,k)Ck,i

−p2
0dt2

� i
∑

l=0

RA
i,l

�� k
∑

l=0

RA
k,l

�

(G′(Ci,k)Ri,k + G′′(Ci,k)Ri,kCk,i)

��

.

(29)

These equations have a causal structure and can be easily integrated. They depend on CA and
RA and therefore we need to provide an equation for them.

4.2 The self-energy

Both RA and CA enter in the structure of the self-energy of the Dyson equation (18). They
are given as the solution of Eq. (26). We now need to solve this equation properly discretized
in time. It is important to note that we need two quantities CA and RA that have a matrix
structure because they are functions of two time indices. Accordingly, the matrix defined on
the lhs of the Eq. (26) has a tensorial structure and therefore we need to parametrize it in a
way that one can use linear algebra to perform the inverse of the kernel operator M entering
in the equation. In order to do that, we transform the linear system in Eq. (26) into the form

2L−1
∑

j=0

Λi j v j = wi(ta) , (30)

and we have denoted by L the total time interval of the numerical integration. Assuming that
ta = adt and tb = bdt for a and b integers, we can write the the vectors v and w with the
following encoding:

wi(ta) =

¨

0 i < L
δa,i
dt i ≥ L

v j =

¨

CA
a j j < L

RA
a j j ≥ L .

(31)
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Finally the matrix Λ assumes the following form

Λi j =



















δi j + dtG′(Ci j)R ji i, j < L

δi j + dtG′(Ci j)Ri j i, j ≥ L

0 i ≥ L, j < L

dtG(Ci j) i < L, j ≥ L .

(32)

Therefore, for each value of a one can invert the linear system and solve for CA and RA. Col-
lecting different values of a one gets the full matrices CA and RA.2 Note that since the matrix
Λ is an upper triangular block matrix, one can invert it recursively and therefore the code to
implement the computation of CA and RA can be made more efficient.

5 Results on Gradient Descent dynamics

In this section we report the results of the numerical integration of the DMFT equations. We
will first validate the equations and their integration with a comparison with numerical simu-
lations. Then we will discuss the behavior of the DMFT solution across the phase diagram of
the model. In this section we will focus on gradient descent dynamics which means that we
consider Γ = 0.

5.1 Comparison with numerical simulations

In order to validate the DMFT equations and their numerical integration we first compare them
with the results of the numerical simulations of the model. The algorithm we use to perform
the numerical simulations goes as follows. We initialize the configuration of the system at
random with a flat measure on the sphere3 |x(0)|2 = N . Then we discretize time in small
timesteps of size dt and we update the configuration of the system according to

x(t + dt) =
p

N
x(t)− dt ∂ H

∂ x

|x(t)− dt ∂ H
∂ x |

, (33)

which is nothing but a discretized gradient descent step followed by a projection on the sphere
|x |2 = N . We run the simulations for N = 500 and M = 125 and we consider a time interval
dt = 0.025. For each value of p0 we run 1000 simulations. Each sample is identified by the
initial condition of the dynamics and the realization of the matrices Jµ as well. Changing
sample means that we change both initial conditions and the disorder. For each sample we
measure a series of dynamical quantities which are then averaged over the different samples.
The quantities we compute are the following:

• We measure the average value of hµ, namely

〈h(t)〉=
1
M

M
∑

µ=1

hµ(t) . (34)

It is also useful to consider |〈h(t)〉−p0| since this function goes to zero when the dynam-
ics reaches a zero energy configuration and it goes to a finite positive value when the

2The matrix CA is symmetric in its arguments as it can be checked directly from the equations.
3Practically we extract yi from N (0,1) and fix x i = yi

p
N/|y|.
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Figure 2: Comparison between numerical simulations and the numerical integration
of the DMFT equations.

dynamics lands on a local minimum of the Hamiltonian at positive energy. The DMFT
expression for 〈h(t)〉 is given by

〈h(t)〉= 〈h(a)〉Z |θa=0 , (35)

and we have indicated on the right hand side the average with respect to the measure
identified by the partition function Z defined in Eq. (14). It is easy to show that in order
to compute Z one can promote p0 to take a Grassmann variable dependence p0→ p0(a)
and that

〈h(a)〉=
δ

δp0(a)
lnZ

�

�

�

�

p0(a)→p0

, (36)

from which we get that

p0 − 〈h(t)〉= p0

∫ t

0

dsRA(t, s) , (37)

which provides a direct physical interpretation of RA(t, s).

• We measure the energy per degree of freedom as a function of time defined as

e(t) =
1
N

H(t) . (38)
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Using the same strategy that we employed to compute 〈h(t)〉, we can show that the
DMFT expression for the energy is simply given by

e(t) =
α

2

�

p2
0

�∫ t

0

dsRA(t, s)

�2

− CA(t, t)

�

. (39)

The correlation function CA(t, s) admits the simple interpretation given by

〈h(t)h(s)〉 − 〈h(t)〉〈h(s)〉=
1
M

M
∑

µ=1

hµ(t)hµ(s)−
1

M2

M
∑

µν=1

hµ(t)hν(s) = −CA(t, s) . (40)

• We measure the correlation function of the system between its initial configuration and
the configuration at time t:

C(t, 0) =
1
N

x(t) · x(0) . (41)

• Finally, we measure the Lagrange multiplier µ(t). It is possible to show that its micro-
scopic expression is given by

µ(t) = −
1
N

M
∑

µ=1

(hµ(t)− p0)
N
∑

i=1

∂ hµ(t)

∂ x i(t)
x i(t) , (42)

and its DMFT expression is given by Eq. (25).

In Fig.2 we plot these quantities measured from simulations and as found via the numerical
integration of the DMFT equations and we observe a rather good agreement. We also see
that when looking at quantities that go to zero at large time in logarithmic scale, such as the
energy or |〈h(t)〉 − p0|, the agreement becomes less good below 10−3. This should be also
expected since while simulations are on finite size and finite number of samples, we also know
that the agreement with the DMFT cannot be perfect due to the fact that we are integrating
the dynamics, both in numerical simulations and DMFT, at finite timestep dt while we should
expect perfect agreement only for dt → 0. In order to establish the dependence of the precision
of the numerical integration of the DMFT equations from the timestep dt we follow [34] and
consider

∆C(t) =
|Cdt(t, 0)− Cdt=0.025(t, 0)|

Cdt(t, 0)
, (43)

where Cdt(t, 0) is the correlation function C(t, 0) obtained from the DMFT equations inte-
grated with timestep dt. We plot ∆C(t) in Fig.3 for four different values of t. We observe
that the numerical integration error is quite small and appears to be approximately linear in
dt. We remark also that the slope of the curves is a decreasing function of t. This means that
the numerical integration error is smaller at large times and this is probably due to the fact
that the DMFT equations involve sums which average out as they extend to larger and larger
times.

5.2 Gradient descent dynamics beyond the zero temperature replica symmetry
breaking transition

In this section we report the results of the numerical integration of the DMFT equations to
explore the performances of gradient descent dynamics for different values of p0 which is the
relevant control parameter of the model. In Fig.4 we plot the energy and 〈h(t)〉 as a function
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Figure 3: The dependence of the correlation function C(t, 0) on the integration
timestep dt. We plot ∆C(t) as defined in Eq. (43) for four different values of t.
The right panel corresponds to the integration for p0 = 2.3 while the left panel we
plot the same quantities for p0 = 1.5.
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Figure 4: Numerical integration of the DMFT equation on long timescales. The en-
ergy and 〈h(t)〉 as a function of time. It is clear that for p0 ≤ 1.7 both quantities
suggest an exponential decay to zero.

of time for different values of p0 at α = 1/4. The energy decays exponentially to zero for p0
small enough while 〈h(t)〉 converges to p0. We first note that gradient descent finds zero energy
configurations well beyond the replica symmetry breaking transition of the zero temperature
Gibbs measure which is at p0 = 1 for α= 1/4, see [15]. This implies that RSB transition in the
Gibbs measure at zero temperature may be totally irrelevant for the effectiveness of gradient
descent dynamics in finding zero energy configurations.4 This is not in contradiction with RSB
theory: the zero temperature RSB transition signals that the space of solutions of the CCSP
cannot be explored ergodically by a Langevin dynamics in the zero temperature limit on short
timescales. However since gradient descent finds configurations at zero energy on a short
timescale (meaning exponentially fast) it essentially stops. This means that the stationary
measure of gradient descent may be different from the zero temperature limit of the Gibbs
measure and therefore even if the latter develops a complex structure of pure states, this does
not automatically mean that gradient descent fails in finding zero energy configurations.

4A case where RSB at zero temperature is relevant to understand the success of Greedy Algorithms to solve
random CSPs is the one of locked (discrete) constraint satisfaction problems (CSP) [35].
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Moreover in the context of the spherical perceptron problem, numerical simulations [36]
seem to indicate that that Gradient Descent finds solutions also after the RSB transition of
the flat measure on the solution space (the zero temperature limit of the Gibbs measure). Our
results clearly confirm these findings in the context of the model considered in this manuscript.

Looking at Fig.4, one would conjecture also that the gradient descent satisfiability tran-
sition pGD

J is located in the range 1.8 < pGD
J < 2 which must be compared with the ther-

modynamic satisfiability transition point located at pJ ≃ 1.87 estimated numerically in [15].
In order to estimate better pGD

J we have considered the following procedure. Given that the
energy in the SAT phase decreases exponentially fast, we have measured the relaxation time
τ(p0) as the time it takes for the dynamics to bring the system to an energy below a threshold
value. We fix this value to be eth = 10−6. In the left panel of Fig.5 we plot τ(p0) at α = 1/4.
We plot data from two different datasets obtained by changing the integration timestep dt to
confirm that our estimate of τ is weakly dependent on this integration parameter. We observe
that the relaxation time seems to have a divergence when increasing p0. Therefore we can plot
τ as a function of pGD

J − p0 in a logarithmic scale, and assuming that τ has a power law diver-
gence, we make a rough estimate of pGD

J ≃ 1.86. In the right panel of Fig.5 we plot the result
of this analysis. The estimated value of pGD

J is very close to the thermodynamic SAT/UNSAT
transition point. Whether the two transitions are actually the same remains unclear and one
needs to refine the numerical estimation and construct a theory for the transition points too.
If the two transitions are the same, there should be a way to show that the DMFT equations
reduce to the RSB equations derived in [15, 37] exactly at the transition. A careful analysis
of this point is left for future work. However, it could happen that while the location of the
satisfiability point is algorithm dependent see the case of the packing problem [38], the critical
properties of the configurations at the critical point may be universal as it happens for isostatic
systems [19, 39–42]. In this case RSB is a way to understand criticality through stochastic
stability, an idea that has been suggested in [43]. How these properties extend to the present
model remains to be investigated.
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Figure 5: Left panel: The relaxation time as a function of p0. Right panel: the relax-
ation time plotted as a function of pGD

J −p0 being pGD
J = 1.86. In logarithmic scale we

observe a power law divergence and we plot a tentative fit with parameters τ0 = 12
and ν= 1.8.

Finally, in the left panel of Fig.6 we plot the correlation function C(t, 0) as a function of
time for different values of p0. The correlation function goes to a positive plateau when the
dynamics ends up at zero energy, sufficiently far from the algorithmic satisfiability transition.
This means that starting from a random initial configuration on the sphere, the dynamics does
not decorrelate completely from it and there are zero energy reachable configurations close
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Figure 6: The correlation and response function as a function of time. For p0 suffi-
ciently small and corresponding to values where the behavior of the energy suggests
an exponential decay to zero, both quantities reach a plateau at long times.

to the initial condition. Decorrelation seems more plausible as soon as p0 approaches the
satisfiability transition point. However it is also true that for p0 = 2 which is larger than the
satisfiability point, C(t, 0) decays very slowly and it is unclear if it converges to zero or if it stays
positive. In the right panel of Fig.6 we also plot the response function R(t, 0). Interestingly
this function reaches a positive plateau when p0 is sufficiently small and this mirrors what is
found in the context of jamming of spheres, see [44].

6 Perspectives

We have described the dynamical mean field theory for simple models of confluent tissues
viewed as high-dimensional random continuous constraint satisfaction problems with equality
constraints solved via the optimation of the square loss function. We believe that our approach
opens several interesting directions and we outline them here.

• A systematic study of the DMFT equations in the regime where the noise is finite is
mandatory. While for thermal noise, one can use the fact that when the dynamics equi-
librates the system, this is described by a Boltzmann probability distribution, for out-
of-equilibrium noise this is not true anymore and therefore it is interesting to study the
rigidity transition point directly from the DMFT equations. This will be useful to address
the critical properties of the rigidity transition in models of confluent tissues at the mean
field level.

• A systematic study of the algorithmic SAT/UNSAT transition with the gradient descent
dynamics can be done. In this work we have showed that the algorithmic satisfiability
transition is close to the thermodynamic one and this was already found in finite size
numerical simulations in [15]. Furthermore we have shown that the relaxation time
follows a power law divergence close to the transition and we have measured the corre-
sponding critical exponent. It would be interesting to compute this exponent explicitly
and to compare it with Vertex or Voronoi models to understand the effect of the dimen-
sionality of the system on the critical properties of the transition point.
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• In deep learning applications, one typically solves the optimization problem via stochas-
tic gradient descent (SGD) which is an algorithm where the gradient of the loss is ap-
proximately estimated by a time-changing subset (or minibatch) of the full dataset. The
effectiveness of the algorithm to find zero energy configurations is a crucial point to un-
derstand deep learning. A statistical mechanics approach to address this question has
been recently put forward in [25,45,46] where a DMFT analysis for the SGD algorithm
and some interesting variations was developed. However the main problem of these
works is that the form of the DMFT equations is complicated and it is difficult to extract
long time results. One possibility to overcome this difficulty is to extend the DMFT anal-
ysis developed here to take into account the effect of SGD. This can be done in at least
two models:

– Random CCSP with equality constraints. – We can consider the model analyzed
here and look at the persistent-SGD dynamics discussed in [25] and defined as

ẋ i(t) = −µ(t)x i(t)−
M
∑

µ=1

sµ(t)(hµ(t)− p0)
∂ hµ(t)

∂ x i(t)
, (44)

where the selection variables sµ(t) are binary and evolve according to a Poisson
process whose characteristic time τ is called persistence time. The average value
of sµ(t) is fixed to b which is the (extensive) mini-batch size of the algorithm. It
would be interesting to understand whether such algorithm is effective as gradient
descent in finding ground states of the problem.

– High-dimensional inference. – An interesting model, considered in [47] describes
the following non-linear inference problem. A random vector w∗ is measured ac-
cording to the following set of non-linear measurements:

yµ =
1
N

∑

i< j

Jµi jw
∗
i w∗j (45)

and the matrices Jµ have the same statistics of the model considered in the present
work. The inference problem is to reconstruct w∗ starting from the knowledge of
yµ and the matrices Jµ. A way to solve the problem is by finding the vector w that
minimizes the square loss Hamiltonian:

H[w] =
1
2

M
∑

µ=1

 

yµ −
∑

i< j

Jµi jwiw j

!2

. (46)

While in [47] the solution of the inference problem was analyzed from the point
of view of the zero temperature limit of the posterior measure over the signal w,
it would be interesting to extend the DMFT analysis developed here to understand
where gradient descent dynamics and SGD are able to recover the signal.

We believe that the analysis and tools presented in this work will be useful to address the
questions outlined above and a detailed investigation is left for future work.
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