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Quantum chaos in a harmonic waveguide with scatterers
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Abstract

A set of zero-range scatterers along its axis lifts the integrability of a harmonic waveg-
uide. Effective solution of the Schrödinger equation for this model is possible due to the
separable nature of the scatterers and millions of eigenstates can be calculated using
modest computational resources. Integrability-chaos transition can be explored as the
model chaoticity increases with the number of scatterers and their strengths. The regime
of complete quantum chaos and eigenstate thermalization can be approached with 32
scatterers. This is confirmed by properties of energy spectra, the inverse participation
ratio, and fluctuations of observable expectation values.

Copyright V. A. Yurovsky.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 18-01-2023
Accepted 13-11-2023
Published 01-12-2023

Check for
updates

doi:10.21468/SciPostPhys.15.6.221

Contents

1 Introduction 2

2 The model 3

3 Statistics of energy spectra 5

4 Properties of wavefunctions 11

5 Conclusion 15

A Derivation of the summands Tn(ζs ′ ,ζs ′′) and T reg
n in Eq. (15) 16

B Eigenvalues of the system (14) matrix 18

C Level spacing ratio 19

D Expectation values 20

References 21

1

https://scipost.org
https://scipost.org/SciPostPhys.15.6.221
mailto:volodia@post.tau.ac.il
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.6.221&amp;domain=pdf&amp;date_stamp=2023-12-01
https://doi.org/10.21468/SciPostPhys.15.6.221


SciPost Phys. 15, 221 (2023)

1 Introduction

Completely-chaotic systems have impredictable ergodic trajectories (see [1]) and their aver-
age properties can be described by the Gibbs statistical ensemble [2]. In quantum systems,
the statistical description is a consequence of the eigenstate thermalization hypothesis (ETH),
introduced in [3, 4] (see also [5, 6], the experimental work [7], the review [8] and the refer-
ences therein). Energy spectra of completely-chaotic systems follow Wigner-Dyson statistics
with a dip at small level spacings [9–11]. In contrast, trajectories of classical integrable sys-
tems are completely predictable and, according to the Kolmogorov-Arnold-Moser theorem,
this property remains even when a weak integrability-breaking perturbation is applied [1].
Quantum systems demonstrate similar properties (see, e.g., [12–14]). A statistical description
by the generalized Gibbs ensemble [15–20] is applicable to the final state of integrable sys-
tem relaxation. The Poisson statistics of integrable system energy spectra has no dip at small
spacings [9–11].

However, a generic system is not completely chaotic nor integrable (see examples in [21–
52]). Certain incompletely-chaotic systems — the systems with no selection rules — relax to a
state whose properties are governed by the inverse participation ratio (IPR) [28,31]. Inverse
of this parameter estimates the number of integrable system eigenstates comprising the non-
integrable one. IPR ranges from 0 for completely-chaotic systems to 1 for integrable ones.
Then it can serve as a measure of the system’s chaoticity [53]. IPR also governs fluctuations
of eigenstate expectation values [32]. The energy-spectrum statistics of incompletely-chaotic
systems lie between the Wigner-Dyson and Poisson ones. Certain systems demonstrate the
Šeba statistics [22].

The most obvious objects of chaotic property simulation are lattice systems. However, they
have a finite Hilbert space and its dimension is restricted due to computational difficulties
(complexity of lattice system simulations increases as a high power of the lattice site number
and exponentially with the number of particles). Then, on increase of the system chaoticity,
each eigenstate can fill the full Hilbert space. A system with infinite Hilbert space — the Sinai
type billiard — was analyzed in [54], where ∼ 3× 105 eigenstates were calculated. However,
chaoticity of such billiard cannot be tuned.

The present model — a particle in a harmonic waveguide with zero-range scatterers along
its axis — has an infinite Hilbert space. As the scatterers are a particular case of independent
perturbations [55], IPR should be inversely proportional to the number of scatterers. The
model chaoticity can also be tuned by the scatterer strengths. This model was already used
in [55] for numerical confirmation of the general relations between properties of wavefunc-
tions and the number of scatterers. The present paper is devoted exclusively to the harmonic
waveguide with scatterers and analyzes properties of wavefunctions for weak perturbations
and for additional models, as well as properties of energy spectra.

Since a zero-range scatterer is a particular case of separable interactions, the present model
belongs to systems with high-rank separable perturbations [56]. Energy spectra of several
physical systems of such type have already been considered. They are the flat rectangular
billiards — generalization of the Šeba billiard [21]— with 1-3 [23], 6 [24], and 2 [46] scat-
terers. Theoretical predictions for a single scatterer in a harmonic potential were compared
to experiments [57]. Series of separable interactions can also approximate the dipole-dipole
ones [58,59]. Energy spectra of two dipolar particles in a harmonic trap were calculated [60]
using such expansion. An advantage of systems with separable rank-s interactions is that
calculations require diagonalization of a s × s matrix, (cf. to α × α matrix in the direct di-
agonalization method for α eigenstates). In addition, the present model allows an analytical
summation over axial states. Then the system properties are calculated here for millions of
eigenstates.
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The paper has the following organization. The model is described in Sec. (2). Section
(3) analyzes the energy spectra statistics. Properties of wavefunctions, including expectation
value fluctuations and IPR, are presented in Sec. 4. Appendices provide derivation details and
additional technical information.

A system of units in which Planck’s constant is ħh= 1 is used below.

2 The model

The Hamiltonian of a particle with the mass m in an axially-symmetric harmonic waveguide
with the transverse frequency ω⊥ contains the kinetic and potential energies,

Ĥ0 =
1

2m

�

�

1
i
∂

∂ z
− A

�2

−△ρ

�

+
mω2
⊥ρ

2

2
. (1)

Here z is the axial coordinate, ρ =
p

x2 + y2 is the transverse radius, △ρ is the transverse
Laplacian, and A is the vector potential (its role will be discussed below).

Integrability of the perturbed Hamiltonian

Ĥs = Ĥ0 +
s
∑

s′=1

V̂s′ , (2)

is lifted by the zero-range scatterers

V̂s′ = Vs′δreg(r−Rs′) , (3)

where δreg is the Fermi-Huang pseudopotential and the scatterers are located along the waveg-
uide axis, i.e., their positions Rs′ = (0,0, zs′) have zero transverse coordinates. The scatterers
are numbered from left to right (zs′ > zs′′ if s′ > s′′). The model is restricted in the sector of
the axially-symmetric states, as other states vanish at the waveguide axis, and, therefore, are
not affected by the scatterers. Then the eigenstates of Ĥ0, labeled by the axial l and radial
n≥ 0 quantum numbers, are 〈ρ, z|nl〉= 〈ρ|n〉 〈z|l〉 with the radial wavefunctions

〈ρ|n〉=
1
p
πa⊥

L(0)n ((ρ/a⊥)
2)exp(−(ρ/a⊥)2/2) . (4)

Here a⊥ = (mω⊥)−1/2 is the transverse oscillator range and L(0)n are the Laguerrre polynomials
(see [61]). The discrete energy spectrum is provided either by the periodic boundary condi-
tions (PBC) 〈z + L|l〉 = 〈z|l〉, or by the hard-wall box (HWB) 〈z = L|l〉 = 〈z = 0|l〉 = 0. Then
the axial wavefunctions are either

〈z|l〉= L−1/2e2iπlζ , (5)

with −∞< l <∞ and ζ= z/L for PBC or

〈z|l〉= (2/L)1/2 sinπlζ , (6)

with 1≤ l <∞ for HWB.
The particular case of PBC with a single scatterer was considered in [26–29].
For PBC, the eigenstate |nl〉 of Ĥ0 has the eigenenergy

Enl =
2

mL2
ϵnl +ω⊥ , ϵnl = λn+π2(l − l0)

2 , (7)
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where λ= (L/a⊥)2 characterizes the aspect ratio and l0 = LA/(2π) is the scaled vector poten-
tial. If A = 0, the inversion (P) invariance of the Hamiltonian Ĥ0 leads to the degeneracy of
the energies Enl and En−l . This degeneracy can be lifted by any P-noninvariant perturbation.
The vector potential lifts it as well, with no effect on the simple wavefunctions (5), though the
Hamiltonian losses the time-reversal (T) invariance.

Four kinds of the model are considered here. The first three kinds correspond to PBC. The
first, non-symmetric, model has A ̸= 0 and is T-noninvariant. The scatterer positions

z1 = 0 , zs′ = (s
′ − 1+δs′)L/s (s′ > 1) , (8)

form irregular sequence due to random shifts −0.25 ≤ δs′ < 0.25. The shifts are calculated
once for each number of scatterers and there is no average over the shifts. In the second,
symmetric, model with zs−s′+1 = zs − zs′ + z1 for s′ > s/2, the scatterer positions are invariant
over inversion under (z1+zs)/2. This inversion changes the sign of the term (i/m)A∂ /∂ z in the
Hamiltonian Ĥ0. This sign is also changed by the time-reversal (complex conjugation). Then
the symmetric model with equal Vs′ is PT-invariant. The third, T-invariant, model has A = 0
and the same scatterer positions as the non-symmetric one. Only this model has a degenerate
energy spectrum of the integrable Hamiltonian. The fourth, box, model corresponds to HWB.
The scatterer positions are zs′ = (s′ +δs′)L/(s+ 1). Although A= 0, the energy spectrum

ϵnl = λn+
π2

4
l2 , (9)

is non-degenerate as l is positive.
Together, the four kinds of the model cover different symmetries of the Hamiltonian (T-

invariant, PT-invariant, and non-symmetric), as well as different boundary conditions (PBC
and HWB).

The eigenstates of the non-integrable system |α〉, solutions to the Schrödinger equation
Ĥ |α〉= Eα |α〉, are labeled in the increasing order of the eigenenergies Eα. Expansion over the
integrable system eigenstates |nl〉 transforms the Schrödinger equation to the form

|α〉=
∑

n,l

|nl〉 〈nl|
Eα − Enl

s
∑

s′=1

V̂s′ |α〉 . (10)

According to (3)



nl
�

�V̂s′
�

�α
�

= Vs′ 〈nl|Rs′〉 〈Rs′ |α〉reg , (11)

where the value of the regular part of |α〉 at Rs′ is

〈Rs′ |α〉reg =
∂

∂ r
[r 〈r|α〉]r=Rs′

=
∂

∂ z
[z 〈0,0, z|α〉]z=zs′

. (12)

The last equality above follows from the spherical symmetry of 〈r|α〉 in the vicinity of Rs′ [62].
As a result, we get the following system of linear equations for 〈Rs′ |α〉reg

〈Rs′ |α〉reg =
s
∑

s′′=1

Vs′′
∂

∂ z



z
∑

n,l

〈0,0, z|nl〉 〈nl|0,0, zs′′〉
Eα − Enl





z=zs′

〈Rs′′ |α〉reg . (13)

For the wavefunctions (4) and (5) or (6) and energies (7) or (9) the sum over l above can be
calculated analytically (see Appendix A). Then the system (13) attains the form

s
∑

s′′=1

Ss′s′′(ϵ) 〈Rs′′ |α〉reg = 0 , (14)
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with

Ss′s′′(ϵ) =
Vs′′

V0

p

λ

∞
∑

n=0

Tn(ζs′ ,ζs′′) (s
′ > s′′) , Ss′′s′(ϵ) = S∗s′s′′(ϵ) , (15)

Ss′s′(ϵ) =
Vs′

V0





p

λ

 

[ϵ/λ]
∑

n=0

Tn(ζs′ ,ζs′) +
∞
∑

n=[ϵ/λ]+1

T reg
n (ζs′)

!

− ζ
�

1
2

,
h ϵ

λ

i

+ 1−
ϵ

λ

�



− 1 .

(16)

Here [] denote the integer part, ζs′ = zs′/L, ζ(., .) is the Hurwitz zeta function (see [61]),
V0 = 2πa⊥/m is the scale of the interaction strength, and the summands Tn(ζs′ ,ζs′′) and T reg

n
are given in Appendix A for each kind of the model. Due to arrangement of scatterers, only
Tn(ζs′ ,ζs′′)with ζs′ ≥ ζs′′ have to be calculated. Tn(ζs′ ,ζs′) and T reg

n are always real functions.
If A= 0, Tn(ζs′ ,ζs′′), as well as the matrix Ss′s′′(ϵ), is real, and Ss′s′′(ϵ) is symmetric.

The system (14) has a non-trivial solution at ϵ = ϵα ≡ mL2(Eα −ω⊥)/2 where an eigen-
value of its matrix has a root as a function of ϵ. The matrix Ss′s′′(ϵ) has poles at ϵ = ϵnl , as
it is seen from (13). Then the eigenvalues can have poles at ϵ = ϵnl as well. Between these
poles each eigenvalue is a monotonic function of ϵ, as demonstrated by direct calculations (see
Appendix B). Than all eigenenergies ϵα in each interval between neighboring ϵnl can be calcu-
lated as roots of s eigenvalues. Although the eigenvalue monotonicity was not proved exactly,
this algorithm provides the number of eigenenergies ϵα which differs from the number of ϵnl
in the same energy interval by not more than s. It is an evidence that no eigenenergies ϵα are
lost.

The terms in the sums over n in Eqs. (15) and (16) decay exponentially when n > ϵα/λ
(see Appendix A). Thus, the calculation of the system (14) matrix requires∝ s2α2/3 operations
since ϵα ∝ α2/3 [see Eq. (19) below], while its solution requires∝ s3 operations. Then, if
s ≪ α2/3, calculation of α eigenenergies requires∝ s2α5/3 operations — much less than α3

operations in the direct diagonalization method.
There seems to be no fundamental obstacle for experimental realization of the present

model. In the case of cold trapped atoms, atoms of other kind in optical tweezers might play
the role of scatterers, and the interaction strength might be tuned by a Feshbach resonance.
T-noninvariant models might be realized with trapped ions in a magnetic field. In optics,
optical defects might work as scatterers [63] for photons in an optical cavity or waveguide
(see also [64,65] and the references therein). The PBC models might be realized with circular
atomic or optical waveguides.

3 Statistics of energy spectra

The differences in energy spectra between integrable and chaotic systems were the first dis-
tinctive properties of quantum chaos (see [9–11]). These properties are defined in terms of the
unfolded energy ᾱ(ϵα) — the smooth part of the dependence α(ϵα). For the present model,
the unfolding function is the same as for the underlying integrable system. The number of
states below the scaled energy ϵ is the staircase function

α(ϵ) =
∑

n,l

θ (ϵ − ϵnl) . (17)

For PBC, using Eq. (7) for ϵnl , we have

α(ϵ) =
∞
∑

l=−∞

�

[(ϵ −π2(l − l0)
2)/λ] + 1

	

θ ((ϵ −π2(l − l0)
2)/λ+ 1) . (18)
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The smooth part is extracted by replacing the integer part [x] with x − 1/2. The limits of the
sum over l, [l0 ±

p
ϵ/π], are replaced in the same way. As a result, we get

ᾱ(ϵ) =
4

3πλ
ϵ3/2 +

�

1
π
+
π

6λ

�

ϵ1/2 . (19)

The ϵ-independent terms are dropped here, since only differences between ᾱ(ϵα) appear in
the following expressions. Similar expression is obtained for the HWB model

ᾱ(ϵ) =
4

3πλ
ϵ3/2 −

ϵ

2λ
+
�

1
π
+
π

24λ

�

ϵ1/2 . (20)

The first property of the energy spectrum considered here is the nearest-neighbor distri-
bution (NND) — the density of probability to have the given value of the unfolded energy
difference ᾱ = ᾱ(ϵα) − ᾱ(ϵα−1) between the neighboring energy levels [9–11]. Integrable
systems have the Poisson NND,

wPois(ᾱ) = e−ᾱ , (21)

while completely-chaotic ones have the Wigner-Dyson distributions for Gaussian ensembles of
random orthogonal matrices (GOE)

wGOE(ᾱ) =
π

2
ᾱexp

�

−
π

4
ᾱ2
�

, (22)

and unitary matrices (GUE)

wGU E(ᾱ) =
32
π2
ᾱ2 exp

�

−
4
π
ᾱ2
�

, (23)

in the cases of T-invariant and T-noninvariant systems, respectively.
The Šeba NND

wSeba(ᾱ) = ASebaᾱexp

�

−BSebaᾱ−
ASeba

B2
Seba

�

1− e−BSebaᾱ(BSebaᾱ+ 1)
�

�

, (24)

with ASeba ≈ 2.1266 and BSeba ≈ 0.3481 was obtained [22] for certain incompletely-chaotic
systems.

All states of a non-integrable system correspond to the same symmetry and then their ener-
gies demonstrate repulsion. Then NND (22),(23), and (24) of non-integrable systems vanish
at the zero level spacing and decrease approaching this point. The integrable system states
of different symmetry can be energy degenerate, and then NND (21) decreases exponentially
with the level spacing. For non-integrable systems NND decreases at large spacing too, al-
though completely-chaotic systems are characterized by Gaussian decrease [see Eqs. (22) and
(23)], while the Šeba NND (24) decreases exponentially.

Another property of energy spectra is the spectral rigidity∆3(∆ᾱ)— the least-square devi-
ation of the staircase function α(ϵ) from the best fit to a straight line on a given interval of the
unfolded energy ∆ᾱ. The spectral rigidity for integrable and completely-chaotic (T-invariant
and T-noninvariant) systems are given, respectively, by [9–11]

∆Pois
3 (∆ᾱ) =∆ᾱ/15 ,

∆GOE
3 (∆ᾱ) =

1
π2

�

ln∆ᾱ+ ln2π+ γEul −
5
4
−
π2

8

�

, (25)

∆GU E
3 (∆ᾱ) =

1
2π2

�

ln∆ᾱ+ ln2π+ γEul −
5
4

�

,
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Figure 1: Near-neighbor distribution (a) and the spectral rigidity (b) for the non-
symmetric model with different numbers of scatterers in the unitary regime .

where γEul ≈ 0.5772 is the Euler’s constant [61].
The energy spectrum properties are calculated below for the four kinds of the models. The

parameters l0 = 0.25−e−4 ≈ 0.232 (for the T-noninvariant models) and λ= π3(1+
p

5)≈ 100
are expressed in terms of transcendent numbers [(1+

p
5)/2 is the golden ratio]. Most of the

results are obtained for 106 eigenstates in the unitary regime, Vs′ = 106V0 for all scatterers.
Figure 1(a) shows NND calculated for the non-symmetric model with different numbers of

scatterers in the unitary regime. For s = 2, NND follows the Šeba plot, as well as for the case
of s = 1 considered in [27]. When the number of scatterers increases, NND tends to the GUE
prediction and approaches it at s = 32. GUE is approached as the model is T-noninvariant.
The calculated spectral rigidity [see Fig. 1(b)] demonstrates the same tendency.

For the symmetric model (see Fig. 2), NND for s = 2 again follows the Šeba predictions
(indeed, the case of two scatterers of the same strength is always P-invariant). However, at
s = 32, NND and spectral rigidity approach the GOE predictions, although the system is T-
noninvariant. It is a consequence of the real matrix of the interaction with scatterers

®

n′l ′
�

�

�

�

�

s
∑

s′=1

V̂s′

�

�

�

�

�

nl

¸

=
V1

πLa2
⊥

s
∑

s′=1

cos 2π(l − l ′)ζ̃s′ , (26)

obtained when the z coordinate origin is shifted to (z1+zs)/2, such that ζ̃s′ = ζs′−(ζ1+ζs)/2.
The real matrix should be described by GOE, like in T-invariant systems.

NND and spectral rigidity for the T-invariant model are shown in Fig. 3. Now Šeba and
GOE NND are approached only at s = 32 and s = 64, respectively. For s = 3 both NND and
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Figure 2: Near-neighbor distribution (a) and the spectral rigidity (b) for the symmet-
ric model with different numbers of scatterers in the unitary regime .
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Figure 3: Near-neighbor distribution (a) and the spectral rigidity (b) for the T-
invariant PBC model with different numbers of scatterers in the unitary regime .

spectral rigidity are close to the Poisson predictions. Then, this model is less chaotic than
the T-noninvariant ones where the Šeba and Wigner-Dyson statistics are approached at s = 2
and s = 32, respectively. This may be related to degeneracy of the integrable system energy
spectrum for the T-invariant model.

This assumption is confirmed by the NND and spectral rigidity for the HWB model (see Fig.
4). This model with non-degenerate energy spectrum is more chaotic than the PBC T-invariant
one, as now Šeba and GOE predictions are approaching at s = 16 and s = 32, respectively.
Then, this model is less chaotic than the T-noninvariant PBC ones. There is also a noticeable
difference between these models in the statistics of integrable system energy spectra — for the
HWB model NND at small spacings and spectral rigidity are below the Poisson predictions.

Thus, for all kinds of the model the statistics tend to the Wigner-Dyson predictions on in-
crease of the number of scatterers. This agrees with the behavior of spectral rigidity of flat 2D
billiards [23]. However, the present model does not demonstrate another property of the 2D
flat billiards — the shifting toward Poisson statistics at higher energy [23]. It is clearly shown in
Fig. 5, where the plots for different energy regions are close together and do not demonstrate
a systematic dependence on the energy. This difference is related to the nature of the loga-
rithmic asymptotic freedom revealed in [23]. This effect is caused by the decreased effective
interaction strength veff ∼ 1/ lnϵ (see Eq. (19) in [23]), while the characteristic energy level
separation ∂ ϵα/∂ α is independent of the energy for 2D billiards with ϵα∝ α. In contrast, if
ϵα ∝ αγ (γ ̸= 1), the derivation [23] would lead to veff ∝ ϵ1−1/γ, while ∂ ϵα/∂ α∝ ϵ1−1/γ

has the same energy dependence and ratio of the effective interaction strength to energy level
separation is independent of energy. Therefore, the logarithmic asymptotic freedom does not
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appear in the present model with ϵα ∝ α2/3 as well as in generic systems with ϵα ∝ αγ

(γ ̸= 1), being a specific property of 2D billiards.
The transition between the T-invariant and non-symmetric models due to the change of the

vector potential is demonstrated in Fig. 6. The GUE and Šeba statistics take place at l0 < 10−4

and l0 > 10−2, respectively.
The system chaoticity depends also on the scatterer strength Vs′ . NND approaches this
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unitary regime already at Vs′ = 10−1V0, as Fig. 7(a) shows. For Vs′ = 10−4V0 NND almost
coincides with the integrable system one. Spectral rigidity demonstrates the same behavior
(see Fig. 7(b)).

Thus, the system’s chaotic properties depend on two parameters: the number of scatterers
and their strengths. Interaction of these parameters is illustrated by Fig. 8, which demonstrates
that the NND and spectral rigidity dependencies in the unitary regime for 4 scatterers are
approached at Vs′ = 10−2V0 and Vs′ = 5× 10−3V0 for 8 and 32 scatterers, respectively.

Figure 9 shows dependence of the system statistics on the scatterer locations. All non-
symmetric cases (1 and 2, corresponding to different sets of the random shifts δs′ in (8), and
3, where ζ1 = 0 and ζs′ with s′ > 1 are chosen randomly from the interval [0,1] and sorted)
provide close results approaching the GUE predictions. The plots for the symmetric distribution
are clearly different and approach GOE predictions (see the discussion above).

If the scatterer positions form a periodic sequence, ζs′ = (s′ − 1)/s and Vs′ is constant, the
picture is completely different. In this case, according to the Bloch’s theorem, the eigenstate
can be expressed as 〈ρ, z|α〉=




ρ, z|αp

�

exp(ipz). The L-periodicity plays the role of the Born-
von Karman boundary conditions, leading to the discrete spectrum of the quasimomentum
p = 2πkp/L with integer kp. The function




ρ, z|αp

�

has the period L/s and satisfies the
Schrödinger equation with single scatterer

�

Ĥ0(A− p) + V̂1

� �

�αp

�

= Eαp

�

�αp

�

. (27)

Here the integrable Hamiltonian Ĥ0(A− p) of the form (1) contains the vector potential A− p.
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Figure 9: Near-neighbor distribution (a) and the spectral rigidity (b) for the non-
symmetric model with 8 scatterers for various scatterer locations.
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Figure 10: Near-neighbor distributions (a) which are close to the Šeba one for various
models and the corresponding spectral rigidity (b).

Therefore, the total energy spectrum is a superposition of s spectra of the one-scatterer systems
with scaled vector potentials l0 − kp (kp + s gives the same result as kp). This is the reason
(see [9]) why NND for the periodic case does not have a dip at small spacings and both NND
and spectral rigidity are close to the Poisson predictions.

The random matrix theory [9–11] predicts universal spectral rigidity plots corresponding to
the Poisson, GOE, and GUE NNDs. However, the Šeba NND can correspond to various spectral
rigidity plots, as it is shown in Fig. 10. It is worth noting that the plots for the T-invariant PBC
and HWB models are close together, while the one for the T-noninvariant model is completely
different.

Statistics of energy spectra can be also characterized by average level spacing ratio [66,
67]which increases with the system chaoticity. In the present case (see Appendix C) , this
monotonic increase takes place only in the vicinity of the Poisson statistics. However, the
average level spacing ratio becomes almost the same for the Šeba and GOE statistics and has
strong fluctuations on the transition between them. This may be related to the small number
of the degrees of freedom in the present models compared to many-body models, where the
level spacing ratio is generally used. An additional advantage of the level spacing ratio is that
unfolding the spectrum is not required. However, this advantage is not essential for the present
models as the unfolding functions are well defined. For these reasons, the level spacing ratio
is not used here.

4 Properties of wavefunctions

Possibility of statistical description of quantum-chaotic systems is based, through ETH, on
properties of their wavefunctions. The number of integrable system eigenstates comprising
the non-integrable one is characterized by the number of principal components (NPC) η−1,
where η =

∑

nl |〈n, l|α〉|4 is IPR. Equations (10) and (11) allow us to express the expansion
coefficients here in the form

〈n, l|α〉=
p

Nα
1

ϵα − ϵnl

s
∑

s′=1

Vs′

V0
e−2iπlζs′ 〈Rs′ |α〉reg , (28)

where 〈Rs′ |α〉reg are solutions to the system (14) and the normalization factor Nα is deter-
mined by the normalization condition

∑

nl |〈n, l|α〉|2 = 1. For the energies (7) the sums over
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n here and in IPR can be expressed in terms of the Hurwitz zeta functions (see [61])

∞
∑

n=0

1
(ϵα − ϵnl)k

=
(−1)k

λk
ζ(k, ql) , (29)

where

ql =
π2(l − l0)2 − ϵα

λ
. (30)

Then the normalization condition takes the form
∑∞

l=−∞ Pl = 1, where

Pl ≡
∞
∑

n=0

|〈n, l|α〉|2 =
Nα
λ2
Λlζ(2, ql) , (31)

is the occupation of the states with the given axial quantum number l and

Λl =

�

�

�

�

�

s
∑

s′=1

Vs′

V0
e−2iπlζs′ 〈Rs′ |α〉reg

�

�

�

�

�

2

. (32)

Similarly, for IPR we have

η≡
∞
∑

l=−∞

∞
∑

n=0

|〈n, l|α〉|4 =
N 2
α

λ4

∞
∑

l=−∞
Λ2

l ζ(4, ql) . (33)

The expressions above are used for T-noninvariant models (non-symmetric and symmetric),
where A ̸= 0 and 〈Rs′ |α〉reg are complex. In the T-invariant models (A= 0) 〈Rs′ |α〉reg are real.
For PBC the normalization condition can be expressed as

∑∞
l=0 PT

l = 1, where

PT
l =

Nα
λ2
(2−δl0)(Λ

c
l +Λ

s
l)ζ(2, ql) , (34)

and

Λ
c,s
l =

� s
∑

s′=1

Vs′

V0
〈Rs′ |α〉reg

�

cos2πlζs′

sin 2πlζs′

�

�2

. (35)

Respectively, IPR can be expressed as

η=
N 2
α

λ4

∞
∑

l=0

(2−δl0)(Λ
c
l +Λ

s
l)

2ζ(4, ql) . (36)

For HWB we have the normalization condition
∑∞

l=1 PB
l = 1 with

PB
l =

Nα
λ2
ΛB

l ζ(2, qB
l ) , (37)

and

η=
N 2
α

λ4

∞
∑

l=1

�

ΛB
l

�2
ζ(4, qB

l ) , (38)

where

ΛB
l =

� s
∑

s′=1

Vs′

V0
〈Rs′ |α〉reg sinπlζs′

�2

, (39)

and qB
l = (π

2l2/4− ϵα)/λ.
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Figure 11: Inverse participation ratio as a function of the number of scatterers cal-
culated for the non-symmetric model with Vs′/V0 = 10−3 (a) and Vs′/V0 = 10−2 (b)
at various regions of the non-integrable system eigenstate labels α. The lines show
the dependencies ηs = 1/(1+ ν′s0.48) with the ν′ values presented in the legend in
the part (a) and ηs = 1/(1+ ν′sγ) with the ν′ and γ values presented in the legend
in the part (b) .

A recurrence relation η−1
s = η−1

s−1 + ν was derived [55] for NPC η−1
s of the system with s

scatterers. This means that NPC increases and, respectively, IPR decreases with the number of
scatterers. In the case of weak interaction the dependence of NPC on the number of scatterers
is nonlinear (see Fig. 11). This is a consequence of the strong dependence of the system’s
chaotic properties on the number of scatterers. NPC also increases with the eigenstate energy
due to increase of the energy level density. In the case of the statistics of energy spectra, this
increase was compensated by decrease of the effective interaction strength (see Fig. 5 and the
related discussion above). Here we see that the wavefunction properties are determined by
the interaction strength Vs′ rather than the effective one. The NPC dependence on the number
of scatterers can be approximated by η−1

s = 1+ ν′sγ. For a weak interaction Vs′ = 10−3V0 the
power γ ≈ 0.48 becomes independent of the eigenstate energy (see Fig. 11(a)). For stronger
interaction Vs′/V0 = 10−2 (see Fig. 11(b)) the power γ increases with the eigenstate energy
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Figure 12: (a) Inverse participation ratio as a function of the number of scatterers
calculated in the unitary regime for four kinds of the model. The lines show the best
fit by inversely linear functions. This part uses the same data as Fig. 3(a) in [55].
(b) Ratio of fluctuation variances between the non-integrable and integrable systems
eigenstates as a function of the scatterer strength for the non-symmetric model with
4, 8, and 32 scatterers. The points correspond to the four observables, the lines
connect the calculated IPR values. The data for 32 scatterers are the same as in Fig.
3(b) of [55].
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and the dependence of NPC on s tends to the linear one. This means that ν is independent of
s since the system’s chaotic properties are independent of the number of scatterers. In the uni-
tary regime, this dependence is confirmed by IPR calculated for all kinds of the model (see Fig.
12(a)) which is approximated by inverse-linear functions with a good accuracy. We can see that
for each number of scatterers the non-symmetric model has the minimal IPR and, therefore,
demonstrates the highest chaoticity, the T-invariant PBC model has the highest IPR, and the
HWB one lies between them. This order agrees with the NND and spectral rigidity of energy
spectra for these models discussed in Sec. 3 above. However, the symmetric T-noninvariant
model has substantially higher IPR than the non-symmetric one, although properties of en-
ergy spectra of these models demonstrate similar chaoticity. This difference can be related to
properties of real and complex random Gaussian variables [55]. As well as any characteris-
tic of chaos, IPR depends also on the interaction strength (see Fig. 12(b)). This figure also
demonstrates that the systems with 4, 8, and 32 scatterers have approximately the same IPR
(η ≈ 0.2) at Vs′/V0 = 10−1(and in the unitary regime), 10−2, and 5 × 10−3,respectively, in
agreement with the energy spectra statistics (see Fig. 8).

Chaotic properties of physical systems are also characterized by fluctuations of observable
expectation values. Expectation value of the observable Ô in eigenstates of the non-integrable
system is related to ones in integrable system eigenstates




α
�

�Ô
�

�α
�

=
∑

n,l,n′,l ′




α|n′, l ′
� 


n′, l ′
�

�Ô
�

�n, l
�

〈n, l|α〉 , (40)

where the expansion coefficients 〈n, l|α〉 are given by (28).
Four observables are considered here. The transverse potential energy mω2

⊥ρ
2/2 is non-

diagonal in the integrable system eigenstates
�

n′, l ′
�

�

�

�

1
2

mω2
⊥ρ

2

�

�

�

�

n, l

�

=
ω⊥
2
δl l ′

�

(2n+ 1)δnn′ − nδn′n−1 − n′δnn′−1

�

. (41)

As the potential energy increases with the total energy, the part U⊥ of the transverse potential
energy in the total energy is considered here. Its expectation value in the non-integrable system
eigenstates can be expressed as (see Appendix D)

〈α |U⊥|α〉=
ω⊥
2Eα

�

1+ 2
Nα
λ2

∞
∑

l=−∞
Λl (1− qlζ(2, ql))

�

, (42)

for T-noninvariant models. In the T-invariant PBC case we have

〈α |U⊥|α〉=
ω⊥
2Eα

�

1+ 2
Nα
λ2

∞
∑

l=0

(2−δl0)(Λ
c
l +Λ

s
l) (1− qlζ(2, ql))

�

. (43)

In the last case, HWB, the expectation value takes the form

〈α |U⊥|α〉=
ω⊥
2Eα

�

1+ 2
Nα
λ2

∞
∑

l=1

ΛB
l

�

1− qB
l ζ(2, qB

l )
�

�

. (44)

Other observables, diagonal in integrable system eigenstates, are the axial momentum



nl |p̂ax |n′l ′
�

= lδn′nδl ′ l , the occupation of positive momenta



nl
�

�P̂pos

�

�n′l ′
�

= δn′nδl ′ lθ (l),
where θ (l) = 0 for l < 0, 1/2 for l = 0, and 1 for l > 0, and the occupation of the odd axial
modes




nl
�

�P̂odd

�

�n′l ′
�

= δn′nδl ′ lδlmod2,1, where lmod2 is the reminder of the division of l by 2.
For T-noninvariant models their expectation values are expressed in terms of the occupations
Pl (31),

〈α |p̂ax |α〉=
∞
∑

l=−∞
l Pl ,




α
�

�P̂pos

�

�α
�

=
1
2

P0 +
∞
∑

l=1

Pl ,



α
�

�P̂odd

�

�α
�

=
∞
∑

l=−∞
P2l+1 . (45)
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Figure 13: Ratio of fluctuation variances between the non-integrable and integrable
systems eigenstates as a function of the number of scatterers for T-noninvariant (a)
and T-invariant (b) models in the unitary regime. The points correspond to the
four observables, the lines connect the calculated IPR values. The data for the non-
symmetric model in the part (a) are the same as in Fig. 3(c) of [55].

For T-invariant models, 〈α |p̂ax |α〉 = 0 and



α
�

�P̂pos

�

�α
�

= 1/2 do not fluctuate, while



α
�

�P̂odd

�

�α
�

=
∑∞

l=1 PT,B
2l−1 are expressed in terms of probabilities (34) and (37), respectively.

For an observable Ô, the variance of its expectation value fluctuations between non-
integrable system eigenstates is defined as

Varα(Ô) =



α
�

�Ô
�

�α
�2 −




α
�

�Ô
�

�α
�2

. (46)

According to [32], this variance is proportional to IPR and the variance between the integrable
system eigenstates

Varα(Ô) = ηVarnl(Ô) . (47)

The latter variances are calculated in Appendix for the four observables presented above. The
variance of the axial momentum

Varnl(pax) = (ϵ
5/2
max − ϵ

5/2
min)/[5π

2(ϵ3/2
max − ϵ

3/2
min)] , (48)

depends on the averaging interval [ϵmin,ϵmax] boundaries. The variances of other observables
are independent of the interval, Varnl(P̂pos) = 1/4, Varnl(P̂odd) = 1/4, and Varnl(Û⊥) = 1/45.
Figure 12(b) confirms the rule (47) for the integrability-chaos transition on variation of the
scatterer strength in the non-symmetric model, both for 4, 8, and 32 scatterers. This rule is
also confirmed when the number of scatterers is changed for all four models considered here
(see Fig. (13)).

5 Conclusion

An effective method of numerical solution, based on properties of high-rank separable per-
turbations, is developed for a harmonic waveguide with a vector potential and either PBC or
HWB in the axial direction, perturbed by zero-range scatterers along the waveguide axis. The
energy-degeneracy of the unperturbed system can be lifted by the vector potential which also
lifts T-invariance. The energy spectra properties — near-neighbor distribution and spectral
rigidity, as well as IPR and fluctuation variance of observable expectation values, are calcu-
lated for 106 eigenstates. The chaoticity measures of the model increase with the number of
scatterers and their strengths. This allows exploring the integrability-chaos transition.
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In T-noninvariant models, the energy spectra properties follow the Šeba plots already for
2 scatterers and approach the Wigner-Dyson predictions for 32 scatterers. The model with
non-symmetric scatterer distribution approaches the GUE statistics, while the P-invariant dis-
tribution leads to the GOE statistics inherent in T-invariant systems. It is a consequence of
PT-invariance of the latter model, leading to a real interaction matrix. Similarly, the IPR dif-
ference between the two kinds of models can be related to properties of real and complex
wavefunctions.

The T-invariant HWB and PBC models approach the Šeba statistics only for 16 and 32
scatterers, respectively, and the GOE one for 32 and 64 scatterers, respectively, i.e., much
slower than the T-noninvariant models. This can be related to the vector potential, which
randomizes the sequence of quantum numbers of energy-ordered eigenstates in the integrable
system.

Calculation for different numbers of scatterers and their strengths confirm the predic-
tion [55] that IPR decreases with the number of scatterers. The dependence is inversely pro-
portional for strong scatterers. The prediction [32] that the ratio of the observable fluctuation
variances for the nonintegrable and integrable systems is approximately equal to IPR is con-
firmed as well. Thus, all criteria of chaoticity confirm that the model approaches the complete
quantum chaos and the eigenstate thermalization when the number of scatterers is increased.

A Derivation of the summands Tn(ζs ′,ζs ′′) and T reg
n in Eq. (15)

Let us define

Tn(
z
L

,
z′

L
) =

2πa2
⊥

mL

∑

l

〈0, 0, z|nl〉



nl|0,0, z′
�

E − Enl
. (A.1)

For the PBC models using Eqs. (4), (5), and (7) we get

Tn(ζ,ζ
′) =

∞
∑

l=−∞

exp(2iπl(ζ− ζ′))
ϵ −λn−π2(l − l0)2

, (A.2)

where ϵ = mL2(E −ω⊥)/2. Due to translational invariance of PBC, Tn is a function of z − z′

only. Then Tn(ζs′ ,ζs′′) = Tn(ζs′ − ζs′′ , 0), and, therefore, only Tn(ζ, 0) should be evaluated.
Farther, the partial fraction decomposition

1
ϵ −λn−π2(l − l0)2

=
1

2πpn

�

1
l − l0 + pn/π

−
1

l − l0 − pn/π

�

, (A.3)

where pn =
p
ϵ −λn, allows us to use the summation formula

∞
∑

l=−∞

exp(2iπlζ)
l + a

=
π

sinπa
exp(−2iπa(ζ− [ζ]− 1/2)) , (A.4)

following from Eq. (5.4.3.4) in [68]. As 0≤ ζ < 1, this leads to

Tn(ζ, 0) =
1

2pn
e2iπl0ζ

�

e2ipnζ (cot(πl0 + pn)− i)− e−2ipnζ (cot(πl0 − pn)− i)
�

. (A.5)

In the diagonal elements of the matrix Ss′s′′(ϵ) [see Eq. (15)] we need

Tn(0,0) =
sin 2pn

pn(cos2πl0 − cos2pn)
. (A.6)
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When λn> ϵα, pn becomes imaginary, |pn|=
p

λn− ϵα, and we have

Tn(ζ, 0) = −
1
|pn|

e2iπl0ζ

�

e−2|pn|ζ

1− e2iπl0−2|pn|
+

e−2|pn|(1−ζ)

e2iπl0 − e−2|pn|

�

. (A.7)

In the limit of the large n and for any 0 < ζ < 1 the two terms in the parentheses decay as
exp(−2

p
λnζ) and exp(−2

p
λn(1− ζ)), respectively. However, if ζ = 0, Tn(0,0) ∼ n−1/2 and

the sum of Tn(0,0) diverges. In order to regularize this sum, let us represent Tn(ζ, 0) in the
limit of ζ→ 0 as

Tn(ζ, 0)∼ −
e−2|pn|ζ

|pn|
+ T reg

n , T reg
n = −

2
|pn|

(cos 2πl0 − e−2|pn|)e−2|pn|

(e−2|pn| − 2 cos2πl0)e−2|pn| + 1
. (A.8)

T reg
n decreases exponentially with n and, due to the translational invariance, it is independent

of ζ. In the limit of ζ→ 0, the sum of the first terms in Tn(ζ, 0) was calculated in [62]

∞
∑

n=n0

e−2|pn|ζ

|pn|
∼

1
λζ
+

1
p
λ
ζ

�

1
2

, n0 −
ϵ

λ

�

, (A.9)

in terms of the Hurwitz zeta function (see [61]). The first, proportional to ζ−1, term here is
removed by the derivative in (13). Then we get Eqs. (14) and (15).

For T-invariant models, when A= 0, we have real Tn(ζ, 0). In the case of PBC, we can just
set l0 = 0 in Eqs. (A.5), (A.7), and (A.8) and get

Tn(ζ, 0) =
cos pn(1− 2ζ)

pn sin pn
(λn< ϵ) ,

Tn(ζ, 0) = −
1
|pn|

e−2|pn|ζ + e−2|pn|(1−ζ)

1− e−2|pn|
(λn> ϵ,ζ > 0) , (A.10)

T reg
n = −

2
|pn|

e−2|pn|

1− e−2|pn|
.

In the case of HWB, substitution of Eqs. (6) and (9) to (A.1) leads to

Tn(ζ,ζ
′) =

∞
∑

l=1

cos(πl(ζ− ζ′))− cos(πl(ζ+ ζ′))
ϵ −λn−π2l2/4

. (A.11)

Unlike (A.2), it is not a function of z− z′ only, since HWB is not translational invariant. Using
partial fraction decomposition and the real part of the summation formula (A.4), we get for
ζ > ζ′

Tn(ζ,ζ
′) = −2

sin2pn(1− ζ) sin2pnζ
′

pn sin2pn
. (A.12)

For λn> ϵα and ζ > ζ′ we have

Tn(ζ,ζ
′) = −

1
|pn|

e−2|pn|(2−ζ+ζ′) + e−2|pn|(ζ−ζ′) − e−2|pn|(2−ζ−ζ′) − e−2|pn|(ζ+ζ′)

1− e−4|pn|
. (A.13)

The term causing the divergence is separated in the same way as in Eq. (A.8), providing

T reg
n (ζ) = −

1
|pn|

2e−4|pn| − e−4|pn|ζ − e−4|pn|(1−ζ)

1− e−4|pn|
. (A.14)
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B Eigenvalues of the system (14) matrix

Let us arrange the eigenenergies of the integrable system in increasing order and label them
by an index k such that ϵk ≡ ϵnk lk and ϵk < ϵk+1. The term Tnk

(ζ,ζ′) has a singularity
as a function of ϵ when ϵ → ϵk and can be separated to singular and continuous parts,
Tnk
(ζ,ζ′) = T sing

k (ζ,ζ′) + T cont
k (ζ,ζ′). For PBC, pnk

∼ π|lk − l0| + (ϵ − ϵk)/(2π|lk − l0|) in
the limit ϵ→ ϵk and these parts are expressed as

T sing
k (ζ,ζ′) =

1
2pnk

sin(pnk
−π|lk − l0|)

exp
�

2i(πl0 + p̃k)(ζ− ζ′)
�

,

T cont
k (ζ, 0) = −

1
2p̃k

e2iπl0ζ
�

e2i p̃kζ

�

tan
π(lk − l0) + p̃k

2
+ i
�

+ e−2i p̃kζ (cot(πl0 − p̃k)− i)
�

,

(B.1)

where p̃k = pnk
sign(lk − l0). In the T-invariant case, when lk ̸= 0, they can be expressed as

T sing
k (ζ,ζ′) =

cot pnk

pnk

�

cos 2pnk
ζ cos 2pnk

ζ′ + sin2pnk
ζ sin 2pnk

ζ′
�

,

T cont
k (ζ,ζ′) =

sin2pnk
(ζ− ζ′)

pnk

.
(B.2)

If lk = 0, pnk
=
p

ϵ − ϵk, and the second term in the parenthesis in T sing
k becomes non-singular

and is moved to T cont
k .

For HWB, when lk ̸= 0, we have pnk
∼ πlk/2+ (ϵ − ϵk)/(πlk) and

T sing
k (ζ,ζ′) = 2

cot 2pnk

pnk

sin2pnk
ζ sin2pnk

ζ′ ,

T cont
k (ζ,ζ′) = −2

cos2pnk
ζ sin 2pnk

ζ′

pnk

.

(B.3)

If lk = 0, Tnk
(ζ,ζ′) is non-singular.

In any case, for (ϵk−1+ϵk)/2< ϵ < (ϵk+ϵk+1)/2 the matrix Ss′s′′(ϵ) (15) can be represented
as Ss′s′′(ϵ) = T sing

k (ζs′ ,ζs′′) + Scont
s′s′′ (ϵ), where Scont

s′s′′ (ϵ) is continuous. The singular part can be
expressed in terms of orthonormal vectors bi(ζs′)

T sing
k (ζs′ ,ζs′′) =

imax
∑

i=1

Bi b
∗
i (ζs′)bi(ζs′′) ,

s
∑

s′=1

b∗i′(ζs′)bi(ζs′) = δii′ , (B.4)

and has a form of the matrix with imax eigenvalues Bi . When ϵ approaches ϵk, the singular
part dominates and the eigenvalues tend to ±∞. Then in the T-invariant PBC case with lk ̸= 0
we have imax = 2 and two eigenvalues of the matrix Ss′s′′(ϵ) have singularities at ϵ→ ϵk, there
are no singular eigenvalues (imax = 0) in the case of HWB with lk = 0, and single eigenvalue
has a singularity in other cases when imax = 1. Results of numerical calculations in Fig. 14
demonstrate these properties. They also show that the eigenvalues decrease monotonically
with ϵ. Then each eigenvalue can have single root in the interval [ϵk,ϵk+1]. In Fig. 14, the
number of eigenvalues with roots increases from 0 to 4 in parts (a)-(e).

In the close vicinity of ϵk direct numerical diagonalization of the matrix Ss′s′′(ϵ) becomes
inaccurate if imax > 0. However, in this vicinity imax eigenvalues are approximated by Bi with
good accuracy. In order to calculate other eigenvalues, the matrix Scont

s′s′′ (ϵ) is projected out of
the envelope of the vectors bi(ζs′),

∑

s′′,s′′′

 

δs′s′′ −
imax
∑

i=1

b∗i (ζs′)bi(ζs′′)

!

Scont
s′′s′′′(ϵ)

 

δs′′′siv −
imax
∑

i=1

b∗i (ζs′′′)bi(ζsiv )

!

. (B.5)
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Figure 14: Examples of eigenvalue dependence on the energy between two neigh-
boring eigenenergies of the integrable system for the non-symmetric model with 4
scatterers (a-e) and the T-invariant model with 8 scatterers (f).

Numerical diagonalization of this matrix provides imax eigenvalues which are close to zero
(they correspond to eigenvectors bi(ζs′)), other eigenvalues approximate the remained s−imax
eigenvalues of Ss′s′′(ϵ).

C Level spacing ratio

The ratio of two consecutive level spacings [66,67]

rα =
min(Eα+1 − Eα, Eα − Eα−1)
max(Eα+1 − Eα, Eα − Eα−1)

, (C.1)

can characterize the energy spectrum statistics and does not require unfolding. Its av-
erages 〈r〉 were calculated in [67] for the Poisson (〈r〉 = 2 ln2 − 1 ≈ 0.38629), GOE
(〈r〉= 4−2

p
3≈ 0.53590), and GUE (〈r〉= 2

p
3/π−1/2≈ 0.60266) statistics. Figure 15(a)

shows that for the present model 〈r〉 increases at weak interactions, but demonstrate non-
monotonic dependence when the value 〈r〉 ≈ 6, corresponding to GUE, is approached. In some
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Figure 15: The level spacing ratio averaged over different eigenstate label intervals
(a) for the non-symmetric model with 32 scatterers as a function of the interaction
strength and (b) for the symmetric model in the unitary regime as a function of the
number of scatteres.

eigenstate intervals, the level spacing ratio has maximum 〈r〉 ≈ 6 already at V = 5× 10−3V0,
in contradiction with NND and spectral rigidity (cf. Fig. 7). When the number of scatterers is
increased (see Fig. 15(b)), 〈r〉 non-monotonically decreases, although the monotonic increase
of chaoticity is demonstrated by the NND change from Šeba to GOE predictions, as well as by
the spectral rigidity (see Fig. 2).

D Expectation values

Substituting Eqs. (28) and (41) into Eq. (40) we can get the following expression for the
expectation value of the transverse potential energy in the non-integrable system eigenstates

�

α

�

�

�

�

1
2

mω2
⊥ρ

2

�

�

�

�

α

�

=
ω⊥
2

Nα
∞
∑

l=−∞
Λl

∑

n,n′

(2n+ 1)δnn′ − nδn′n−1 − n′δnn′−1

(ϵα − ϵnl)(ϵα − ϵn′ l)

=
ω⊥
2

¨

1+ 2
Nα
λ2

∞
∑

l=−∞
Λl

∞
∑

n=0

�

n
(ql + n)2

−
n

(ql + n)(ql + n− 1)

�

«

, (D.1)

where the last transformation uses the normalization condition, Eq. (7) for ϵnl , and Eq. (30)
for qi . The sum over n here can be transformed as

∞
∑

n=0

�

−
ql

(ql + n)2
+

ql − 1
(ql + n)(ql + n− 1)

�

= −qlζ(2, ql) + (ql − 1)
∞
∑

n=0

�

1
ql + n− 1

−
1

ql + n

�

,

(D.2)
where the summation over n with Eq. (29) for the first term in the square brackets and par-
tial fraction decomposition for the second term are used. The last sum over n is reduced to
1/(ql − 1) due to cancellation of the terms. This leads to Eq. (42). The derivation above is
related to the T-noninvariant models. The same transformation of the sum over n leads to the
expectation values for the T-invariant PBC (43) and HWB (44) models.

The variance between the integrable system eigenstates can be evaluated analytically. The
product ᾱ(ϵ)U⊥can be approximated by the sum

∑

n,l




nl
�

�Û⊥
�

�nl
�

θ (ϵ − ϵnl) =
λ

2

[ϵ/λ]
∑

n=0

(n+
1
2
)

lmax (n)
∑

l=lmin(n)

1
ϵnl +λ/2

, (D.3)
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where lmin,max(n) = l0∓
p
ϵ −λn/π and Eqs. (7) and (41) are used. Replacing summation by

integration and neglecting the values ∼ 1 compared to n, we approximate the sum as

λ

2

ϵ/λ
∫

0

ndn

lmax
∫

lmin

dl
1
ϵnl
=

4
9πλ

ϵ3/2 . (D.4)

It has the same ϵ dependence as ᾱ(ϵ) taken with the same accuracy [the first term in Eq.
(19)]. Then the average U⊥ = 1/3 is independent of the averaging interval (this value agrees

to the virial theorem). In the same way we find U2
⊥ = 2/15 and, therefore, Varnl(Û⊥) = 1/45.

Although in the HWB model l ≥ 0, we get the same results due to the distinction between Eqs.
(7) and (9).

For the average axial momentum, we approximately evaluate the sum

∑

n,l

lθ (ϵ − ϵnl)≈

lmax (0)
∫

lmin(0)

ldl

nmax
∫

0

dn=
4

3πλ
ϵ3/2l0 , (D.5)

where nmax = [ϵ − π2(l − l0)2]/λ. This leads to pax = l0. However, evaluating p2
ax , we see

that
∑

n,l

l2θ (ϵ − ϵnl)≈
4

3πλ

�

ϵ3/2l2
0 +

1
5π2
ϵ5/2

�

, (D.6)

has a different ϵ dependence. Therefore,

p2
ax = l2

0 +
1

5π2

ϵ5/2
max − ϵ

5/2
min

ϵ
3/2
max − ϵ

3/2
min

, (D.7)

depends on the averaging interval [ϵmin,ϵmax] boundaries. As a result, we get the variance
(48).

In the integrable system basis, Ppos = Podd = P2
pos = P2

odd = 1/2. This leads to

Varnl(P̂pos) = Varnl(P̂odd) = 1/4.
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