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Abstract

One of the fundamental challenges in string theory is to derive realistic four-dimensional
cosmological backgrounds from it despite strict consistency conditions that constrain its
possible low-energy backgrounds. In this work, we focus on energy conditions as covari-
ant and background-independent consistency requirements in order to classify possible
backgrounds coming from low-energy string theory in two steps. Firstly, we show how
supergravity actions obey many relevant energy conditions under some reasonable as-
sumptions. Remarkably, we find that the energy conditions are satisfied even in the pres-
ence of objects which individually violate them due to the tadpole cancellation condition.
Thereafter, we list a set of conditions for a higher-dimensional energy condition to imply
the corresponding lower-dimensional one, thereby categorizing the allowed low-energy
solutions. As for any no-go theorem, our aim is to highlight the assumptions that must
be circumvented for deriving four-dimensional spacetimes that necessarily violate these
energy conditions, with emphasis on cosmological backgrounds.
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1 Introduction

In Einstein’s general relativity (GR), spacetimes are manifolds endowed with dynamical geo-
metric properties such that certain energy sources produce singularities. This is best seen from
requirements of geodesic completeness, which includes conditions for the energy-momentum
tensor defined on the manifold [1]. The null and strong energy conditions (NEC and SEC,
respectively) are crucial for the Hawking-Penrose singularity theorems [2–4] which, roughly
speaking, state that singularities in GR sourced by physical matter are unavoidable.

It is expected that a quantum version of the theory would resolve spacetime singularities,
and a preeminent candidate for quantum gravity is string theory. Despite the elusive absence
of a non-perturbative and background-independent formulation, string theory provides new
theoretical insights about the nature of gravity (e.g. holography) and fields. Even at the
classical level, it modifies GR by adding higher curvature corrections to the Einstein-Hilbert
action, and its consistency constrains the matter-energy content that sources the corrected
Einstein’s equations.

The low-energy limit of weakly coupled string theory is described by higher-dimensional
supergravity theories and any consistent background for the theory should, in that limit, be
a solution to specific supergravity equations. It is then natural to ask which spacetimes can
be obtained from such a theory. This is restricted by the matter-energy content that can be
consistently evoked. In fact, in the context of compactifications to four-dimensions, there are
no-go theorems preventing the solutions to exhibit a four-dimensional manifold with positive
curvature. In [5], this was shown after some reasonable assumptions compatible with the
low-energy string actions (see also [6]), and in [7] this was extended to include D-branes and
orientifold planes.

Another approach to sort out which background solutions string theory might give is to
study energy conditions that can be satisfied, given the fields present in the theory. This is im-
portant because physically relevant backgrounds are tied to relevant energy conditions, such
as the SEC (which must be violated in a four-dimensional spatially flat and accelerating FLRW
spacetime) and NEC (which has to be saturated for a de Sitter (dS) spacetime). In partic-
ular, it was shown in [8] that a non-singular, time-dependent compactification might give a
dS4 space without violating the higher-dimensional SEC, but that the SEC and NEC together
prevents such a solution. Indeed, time-dependent compactifications were also shown to avoid
no-go theorems in [9] and [10–12], although curvature and quantum corrections were also
present in the latter, and the interplay of this work with the NEC was studied in [13], where
it was found out that the lower-dimensional NEC is necessary for a higher-dimensional ef-
fective field theory description of the full background solution in M-theory. There are more
recent results in understanding string compactifications and its relation to cosmological so-
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lutions (see [14–18] and references therein). For instance, in [19] detailed no-go theorems
are presented when reducing non-supersymmetric string actions on compact manifolds, pre-
venting the lower-dimensional theory from having a positive cosmological constant. Similar
conclusions are obtained in the study of higher-dimensional Raychaudhuri equation [20] and
worldsheet analysis [21]. It was discussed in [22] that the Virasoro constraints of the world-
sheet theory imply precisely the geometric form of the NEC.1 Yet further difficulties in obtain-
ing accelerating cosmological solutions are reported in [25] and some other related works on
time-dependent compactifications [26–28]. Although the internal compact spacetimes taken
in these works are Ricci flat or conformally Ricci flat, yet this is a motivation to study gen-
eral time-dependent internal manifolds when considering the violation of energy conditions
in string compactifications.

The gist of the Gibbons-Maldacena-Nunez (GMN) no-go theorem can be reformulated as
follows: The assumptions of the theorem are sufficient to guarantee the validity of the strong
energy condition in four dimensions [29]. Motivated by this fact, in this paper, we investigate
the requirements for certain energy conditions to still hold after the dimensional reduction
procedure, that is, we study under which conditions certain D-dimensional energy conditions
imply the lower-dimensional ones. Specifically, we study the null, strong, weak, and domi-
nant energy conditions. As we will discuss, given that string supergravity actions satisfy all
the above energy conditions for any physical field configuration, and if the compactification
satisfies some modest requirements, then it follows that the lower-dimensional energy con-
ditions will necessarily be satisfied and, more explicitly, no solution which violates them is
realizable. This new form of no-go theorems, offered by considering energy conditions, is
very powerful and, as with any such result, only limited by the assumptions which go into
deriving them. Identifying these restrictions will indicate how to come up with string effects
that systematically circumvent them, and yield realistic low-energy backgrounds, which will
be particularly useful for cosmological applications.

In the next section, we revisit the energy conditions for the field content of supergrav-
ity, with a main emphasis on p-form fields, showing that such fields satisfy the null, strong,
weak, and dominant energy conditions for any field configuration. We also comment on how
extended sources like D-branes and orientifold planes satisfy them, showing that the tadpole
cancellation condition is crucial for the validity of the energy conditions for systems containing
the latter. In section 3, we find sufficient requirements for D-dimensional energy conditions to
imply the lower d-dimensional ones. This is the main result of this paper and provides another
explanation of why it is so difficult to obtain certain four-dimensional spacetimes in low-energy
string theory. In section 4 we summarize and discuss the implications of our results.

Notation and conventions: Mostly plus signature is used throughout this work and Planck-
ian units are employed when not stated otherwise. In many instances, we use an over-
bar to stress that certain components are computed for a D-dimensional metric and we as-
sume D > 2. The adopted convention for the Riemann curvature tensor components is
R

Q
MN P = −2∂[MΓ

Q
N]P + 2Γ

L
P[MΓ

Q
N]L .

2 Energy conditions for fields and sources

Before discussing energy conditions for each individual class of fields, let us briefly summarize
the physical meaning and quantitative formulation of the conditions we consider in this paper.

1Conditions on the internal components of the energy-momentum tensor of supergravity theories have been
studied in [23,24], where constraints on the internal geometry were discussed.
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Denoting RMN and R the Ricci tensor and scalar, respectively, of a spacetime with metric gMN ,
we have

• Null energy condition (NEC): Any congruence of null geodesics is everywhere non-
divergent. In particular, curvature cannot make parallel lightrays diverge from each
other. Quantitatively,

RMN (x)l
M lN ≥ 0 , ∀ lM (x) : gMN (x)l

M lN = 0 . (1)

•• Strong energy condition (SEC): Any congruence of timelike geodesics is everywhere non-
divergent. Physically, this is essentially the fact that gravity is non-repulsive,

RMN (x)u
M uN ≥ 0 , ∀ uM (x) : gMN (x)u

M uN < 0 . (2)

• Weak energy condition (WEC): Locally, any observer perceives non-negative energy den-
sity and non-repulsive gravity. Mathematically,
�

RMN (x)−
1
2

R(x)gMN (x)
�

uM uN ≥ 0 , ∀ uM (x) : gMN (x)u
M uN < 0 . (3)

• Dominant energy condition (DEC): Locally, any observer measures a causal flow of non-
negative energy and non-repulsive gravity. On top of the WEC, the flux condition for the
Einstein tensor GMN ,

gMN (x)G
M

P(x)G
N

Q(x)u
PuQ ≤ 0 , (4)

should be satisfied everywhere for any timelike vector field uM (x).

One important aspect of these conditions is that they are background-independent, i.e.
valid for any metric. It is then of no surprise that we might find background-independent
conditions for the possible four-dimensional spacetimes coming from string compactifications
by reformulating the no-go theorems in terms of their validity. For instance, instead of asking
whether or not we can obtain a dS4 at low energies, one might look for conditions of SEC
violation, which is a metric-independent question that, if answered, might also shed light on
the fate of other cosmological backgrounds in string theory.

An important result that we will make use of in this section is the following: any inequality
f (u1, u2) ≥ 0 involving timelike vectors fields uM

1 and uM
2 and a continuous function f (x , y)

implies also the related inequality f (l1, l2) ≥ 0 for null vectors fields lM
1 and lM

2 . This is shown
in [30] and also discussed in [31, 32] which we refer to more detailed discussions on the
significance of energy conditions (see also [33, 34]). Roughly speaking, it follows from a
limiting procedure on choosing timelike vectors which have very small modulus. This result is
the reason why the SEC implies the NEC and the WEC implies the NEC. Moreover, by definition,
the DEC implies the WEC. For completeness, we shall study each energy condition individually.

Note that we have stated geometric conditions without mentioning any restrictions on
energy-momentum tensors. When Einstein’s equations are satisfied, there is no difference be-
tween these two approaches, but this is not the case once we depart from a second-derivative
action for the metric. When applying the results of this paper to string theory, we assume low-
energy second-derivative supergravity actions, so the geometric energy conditions are enough.
Notwithstanding this caveat, the idea of constraining lower-dimensional backgrounds using
higher-dimensional geometric conditions might still be worth studying even after adding cur-
vature corrections, with the proviso that we should put all corrections in the “matter” sector
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and consider an effective energy-momentum tensor. However, the specifics will change, and
we prefer to focus on the supergravity limit for the rest of this work.

Let us proceed with the energy conditions for the matter content which appear in the
(bosonic sector of) supergravity actions, including low-energy M-theory. Schematically, they
have the form,

S =
1

2κ2
D

∫

dD x
p

−g

�

R−
1
2
∂µφ∂

µφ −
κ2

D

2g2
D

∑

p

eβpφ |Fp|2
�

+
∑

p

∫

Ap ∧πD−p + Slocal sources ,

(5)
where Fp is not necessarily the field strength of Ap but might also include couplings with
other fields and πD−p contain sources and terms that resemble Chern-Simons (CS) couplings
to different p-form fields. We have also written a possible dilaton kinetic couplings βp to the
p-form fields.

In the rest of this section, we show that actions of the form above satisfy all the previous
energy conditions for any field configuration. The cases of a 1-form field and scalar fields
with arbitrary potentials are well-known in the literature (e.g. see [31,35]), the DEC and SEC
are satisfied for the former while, for the latter, the validity of the conditions depends on the
potential: for V ≥ 0, DEC is satisfied but SEC might be violated when V ̸= 0 while for V ≤ 0
SEC is respected but DEC might not hold when V ̸= 0. That is one of the reasons why there
is a link between the GMN no-go theorem (which assumes a non-positive potential for the
dilaton – except for the massive type IIA case) and the strong energy condition validity. In the
following, we focus on the other fields and sources that appear in supergravity actions.

2.1 p-form fields

Consider p-form fields Ap with action

S[Ap] = −
1
2

∫

eλφ ∗ Fp+1 ∧ Fp+1

= −
1
2

1
(p+ 1)!

∫

dD x
p

−geλφ gM1N1 · · · gMp+1Np+1 FM1···Mp+1
FN1···Np+1

. (6)

We have included the possibility of a kinetic coupling to a scalar field φ. As discussed before,
scalar fields might violate some energy condition depending on their potential, which is highly
constrained in ten-dimensional supergravities coming from string theory. Recall that since the
Bianchi identity for Fp+1 allows us to define a dual theory for a (D− p− 2)-form, it suffices us
to consider p < D− 2. Note also that the case p = 0 might be treated as a scalar field without
potential, for which all energy conditions are respected.

The energy-momentum tensor for S[Ap] is given by

T (p)MN = eλφ
�

1
p!

F
M1···Mp

M FM1···MpN −
1

2(p+ 1)!
gMN F M1···Mp+1 FM1···Mp+1

�

. (7)

Evidently, the value of λ plays no role in whether S[Ap] satisfies a given energy condition or
not. So, to avoid clutter, we set λ= 0 for the rest of this section.

To check whether WEC is respected or not, let us contract with an arbitrary timelike
vector uM to get T (p)MN uM uN . Going to a local vielbein basis, eA

M (x), we can write T (p)AB uAuB

where capital letters from the earlier part of the Latin alphabet denote local (flat) indices, i.e.
gMN eA

M eB
N = η

AB where ηAB is the D-dimensional Minkowski metric. Using a Lorentz trans-
formation, we can always go to a frame on which uA = (u0̄, 0, . . . , 0), where the overbar is a
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reminder that the index is a flat one. In this case

T (p)MN uM uN = T (p)AB uAuB

=
�

u0̄
�2
�

1
p!

F
I1···Ip

0̄
FI1···Ip 0̄ +

1
2(p+ 1)!

FA1···Ap+1 FA1···Ap+1

�

, (8)

where all indices appearing in the last line are local indices. Writing the last term in the second
line as

FA1···Ap+1 FA1···Ap+1
= −(p+ 1)F

I1···Ip

0̄
FI1···Ip 0̄ + F Ii ···Ip+1 FIi ···Ip+1

, (9)

we get

T (p)AB uAuB =
�

u0̄
�2
�

1
2p!
δI1J1 · · ·δIpJp FI1···Ip 0̄FJ1···Jp 0̄ +

1
2(p+ 1)!

δI1J1 · · ·δIp+1Jp+1 FI1···Ip+1
FJ1···Jp+1

�

,

(10)

which is explicitly greater than or equal to zero. Hence, the WEC energy condition is satisfied.
By continuity, this also shows that NEC is satisfied since the contraction above is a smooth
function of the timelike vector uM .

To check for the validity of the SEC, we need the trace of T (p)MN :

T (p) := T (p)MN gMN = T (p)AB η
AB =

D
2(p+ 1)!

�

2
D
(p+ 1)− 1
�

FA1···Ap+1 FA1···Ap+1
. (11)

Using (9) in the SEC inequality and assuming uA has vanishing space components, we have

�

T (p)MN −
1

D− 2
T (p)gMN

�

uM uN =

�

u0̄
�2

2(p+ 1)!
1

D− 2

�

2(p+ 1)(D− p− 2)F
I1···Ip

0̄
FI1···Ip 0̄

+ 2pF I1···Ip+1 FI1···Ip+1

�

. (12)

For p < D− 2, the contraction above is greater than or equal to zero and so SEC is satisfied.
Finally, for the DEC, we need to check whether V M := −T (p)

M
N uN is a causal vector or not.

To accomplish that, we shall work with the electric and magnetic form fields, with components
defined as

EM1···Mp
=

1
p!

FM1···MpN uN , (13)

BM1···MD−(p+2)
=

1
(p+ 1)!

εM1···MD−(p+2)N1···Np+1QuQF N1···Np+1 , (14)

where εM1···MD
is the Levi-Civita tensor. These generalize the p = 1 electric and magnetic fields

as measured by the congruence of observers defined by uN . Note that the electric and magnetic
form fields are both transverse to uN , a property that we shall use in this section. In terms of
E and B, we can write the field strength as

FM1···Mp+1
= (p+ 1)!(−1)p+1u[M1

EM2···Mp+1] +
(−1)(p+1)(D−(p+2))

(D− (p+ 2))!
εM1···Mp+1N1···ND−(p+2)QuQ

× BN1···ND−(p+2) . (15)
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Plugging this expression in the energy-momentum tensor and after some algebraic manipula-
tions, we get

TMN = p!
�

pu2E
M2···Mp

M EN M2···Mp
+ uM uN E2
�

−
gMN

2

�

p!u2E2 −
1

(D− (p+ 2))!
u2B2
�

+ 2
(−1)(p+1)(D−(p+1))

(D− (p+ 2))!
u(MεN)M1···Mp L1···LD−(p+2)QuQBL1···LD−(p+2)EM1···Mp

−
1

(D− (p+ 2))!

�

gMN u2B2 − uM uN B2 − (D− (p+ 2))u2BMN2···ND−(p+2)
B

N1···ND−(p+2)
N

�

,

(16)

where we defined

E2 = EM1···Mp
EM1···Mp , B2 = BN1···ND−(p+2)

BN1···ND−(p+2) . (17)

Hence, the energy-flux vector can be written as

VM =− TMN uN

=− u2 uM

2

�

p!E2 +
1

(D− (p+ 2))!
B2
�

−
(−1)(p+1)(D−(p+1))

(D− (p+ 2))!
u2εM M1···MpN1···ND−(p+2)QuQ

× BN1···ND−(p+2)EM1···Mp . (18)

The first term is proportional to the energy-density flux, while the second term comes from
a generalization of the Umov-Poynting vector usually discussed in the p = 1 case. To check
whether V M is causal or not, we need to compute V 2 = V M VM :

V 2 = (u2)2
�

u2

4

�

p!E2 +
B2

(D− (p+ 2))!

�2

+
uQuS

((D− (p+ 2))!)2
εM M1···MpN1···ND−(p+2)Q

× εMJ1···Jp L1···LD−(p+2)SBN1···ND−(p+2)EM1···Mp BL1···LD−(p+2)
EJ1···Jp

�

. (19)

To simplify the second term in the square bracket, we use,

εM M1···MpN1···ND−(p+2)Qε
MJ1···Jp L1···LD−(p+2)S = −(D− 1)!δ[J1

M1
· · ·δJp

Mp
δ

L1
N1
· · ·δLD−(p+2)

ND−(p+2)
δ

S]
Q . (20)

Since any contraction of uM with the components of the electric and magnetic field forms
vanishes, the only terms in the antisymmetrization above that will contribute to V 2 are the
ones proportional to δS

Q, that is,

εM M1···MpN1···ND−(p+2)Qε
MJ1···Jp L1···LD−(p+2)SuQuSBN1···ND−(p+2)EM1···Mp BL1···LD−(p+2)

EJ1···Jp

= −(D− 2)!u2E[J1···Jp BL1···LD−(p+2)]EJ1···Jp
BL1···LD−(p+2)

. (21)

We will separate the antisymmetric factor above into terms that include only the antisym-
metrization of the J and L indices separately and terms that include a mixed exchange of J
and L indices. There are C p

r C D−(p+2)
r p!(D − (p + 2))! terms containing r exchanges of the J

and L indices (number of ways of combining r L indices into p possible slots times number of
ways of combining r J indices into D − (p + 2) slots times the individual antisymmetrization
of J and L indices), so

− (D− 2)!u2E[J1···Jp BL1···LD−(p+2)]EJ1···Jp
BL1···LD−(p+2)

= −u2p!(D− (p+ 2))!
�

E2B2

+
rmax
∑

r=1

(−1)r C p
r C D−(p+2)

r (E · B)L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp

�

, (22)
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where rmax =min(p, D− (p+ 2)) and we denoted

(E · B)J2···Jp

L2···LD−(p+2)
= EJ1···Jp BL1···LD−(p+2)

δ
L1
J1

. (23)

Due to the antisymmetrization, terms with an even number r = 2n of exchanges positively
contribute to V 2 (since we assume u2 < 0). However, such terms will be combined with some
components of the r = 2n − 1 terms. To see that, consider the sum of two such successive
terms,

(−1)2n−1c2n−1(E · B)
L2···L2n−1J2n···Jp

L2···LD−(p+2)
(E · B) J2···J2n−1 L2n···LD−(p+2)

J2···Jp

+ (−1)2nc2n(E · B)
L2···L2nJ2n+1···Jp

L2···LD−(p+2)
(E · B) J2···J2n L2n+1···LD−(p+2)

J2···Jp
, (24)

where we denoted cr = C p
r C D−(p+2)

r . The second line combines with the J2n = L2n components
of the first. In other words,

rmax
∑

r=1

(−1)r cr(E · B)
L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp

=
rmax
∑

r∈2Z
c̃r(E · B)

L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp

−
rmax
∑

r∈2Z−1

cr

∑

Lr+1 ̸=Jr+1

(E · B)L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp
, (25)

where

c̃r = cr+1 − cr =
�

p(D− (p+ 2))− rD− 1)
(r + 1)2

�

cr . (26)

Since r ≤min(p, D− (p+ 2)), p < D− 2< D, and D− (p+ 2)< D, we have c̃r < 0. Thus, the
only positive contribution from the modulus of the Umov-Poynting vector to V 2 is the term
proportional to E2B2:

V 2 = (u2)2
�

u2

4

�

p!E2 +
B2

(D− (p+ 2))!

�2

−
u2p!

(D− (p+ 2))!
E2B2

−
u2p!

(D− (p+ 2))!

� rmax
∑

r∈2Z
c̃r(E · B)

L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp

−
rmax
∑

r∈2Z−1

cr

∑

Lr+1 ̸=Jr+1

(E · B)L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp

!



 . (27)

But the last term in the first line combines with the first term to form a perfect square, such
that

V 2 = (u2)3
�

1
4

�

p!E2 −
B2

(D− (p+ 2))!

�2

+
p!

(D− (p+ 2))!

� rmax
∑

r∈2Z
|c̃r | (E · B)

L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp

+
rmax
∑

r∈2Z−1

cr

∑

Lr+1 ̸=Jr+1

(E · B)L2···Lr Jr+1···Jp

L2···LD−(p+2)
(E · B) J2···Jr Lr+1···LD−(p+2)

J2···Jp

!



 . (28)

The terms inside the square bracket above are manifestly positive definite. Since uM is causal,
we conclude that V 2 ≤ 0, and the DEC for p-form fields is satisfied for any background metric.
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2.2 p-branes

In this section, we show that any membrane-like source, e.g. F-strings or (anti) Dp-branes
with action

S = −Tp

∫

dp+1ξ eαφ
p

−h , hab = gMN∂aX M∂bX N , (29)

where X M (ξa) are the embedding coordinates, satisfy the strong, null, weak, and dominant
energy conditions if the tension Tp is positive. The Wess-Zumino (WZ) coupling term is not
necessary for our purposes, because it is topological and it does not contribute to the energy-
momentum tensor.

To calculate the energy-momentum tensor of such sources, we need first a spacetime ac-
tion:

S[X ] = −Tp

∫

dD x

∫

dp+1ξδD(x − X (ξ)) eαφ
p

−h . (30)

Then,

T MN =
2
p
−g

δS
δgMN

= −
Tp
p
−g

∫

dp+1ξδD(x − X (ξ)) eαφ
p

−h hab ∂aX M ∂bX N . (31)

To check for the validity of the energy conditions we need to study the sign of

hab∂aX M∂bX N uM uN ,

where uM is timelike or null depending on the condition considered. We will again evoke
the continuity of such contraction to cover the null case, and so from now on we assume
u2 = gMN uM uN < 0. Since the energy-momentum tensor is localized, it suffices for our pur-
poses to restrict uM to the worldvolume Σp+1 of the brane,

uM (x(τ))
�

�

Σp+1
= uM (X (ξ)) , (32)

where x M (τ) is the τ-parametrized worldline whose tangent is uM . In fact, when evaluating
TMN on such a worldline, the delta-function will fix x M (τ) = X M (ξa), which can be solved to
give ξ = ξ(τ). Another way of seeing this is to restrict the embedding map (suppressing the
chart maps)

X : Σp+1→ MD

ξa 7→ X M (ξa) ,

to the worldline x M (τ). In this case, the pullback of forms in MD will give

dξa = ∂aX M d xM =⇒ ξ̇a = ∂aX M uM , (33)

where we used a dot to denote derivative with respect to τ. So, we have

hab∂aX M∂bX N uM uN

�

�

Σp+1
= hab ξ̇

aξ̇b . (34)

On the other hand, restricting to the brane worldvolume and using the inverse Jacobian, which
always exists for the relevant restricted codomain of X , we find that

u2
�

�

Σp+1
= gMN∂aX M∂bX N ξ̇aξ̇b = hab ξ̇

aξ̇b . (35)

Hence we conclude that

hab∂aX M∂bX N uM uN

�

�

Σp+1
= u2
�

�

Σp+1
, (36)
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as it should be since u2 restricted to the brane can also be computed by using the induced
tangent vector and metric.

Therefore, if Tp > 0, we have

TMN uM uN = −
Tp
p
−g

∫

dp+1ξδD(x − X (ξ)) eαφ
p

−h u2
�

�

Σp+1
> 0 , (37)

and both WEC and NEC are satisfied.
To test the SEC validity, we need to compute the energy-momentum tensor’s trace

T = gMN T MN

= −
Tp
p
−g

∫

dp+1ξδD(x − X (ξ)) eαφ
p

−hhab∂aX M∂bX N gMN

= −(p+ 1)
Tp
p
−g

∫

dp+1ξδD(x − X (ξ)) eαφ
p

−h , (38)

and so
�

TMN −
T

D− 2
gMN

�

uM uN = −
�

1+
p+ 1
D− 2

� Tp
p
−g

∫

dp+1ξδD(x − X (ξ))eαφ
p

−h u2
�

�

Σp+1
,

(39)
which has the same sign as the brane’s tension. So, for Tp > 0, the SEC is satisfied.

Finally, to show that DEC holds, we need to prove that the energy-flux vector

BM = −T M
N uN , (40)

is causal. Using the expression for T MN we get

BM
�

�

Σp+1
=

Tp
p
−g

eαφ
p

−hhab ∂aX M ξ̇b , (41)

where we have restricted BM to Σ(p+1), since TMN is localized there. So,

BM BM
�

�

Σp+1
=

�

Tpeαφ
p
−h
p
−g

�2

habξ̇
aξ̇b < 0 , (42)

i.e., BM is timelike at events it does not vanish. We conclude that the DEC is also satisfied.
From the worldvolume perspective, the brane action defines a (p+ 1)-dimensional theory

whose action describes a constrained system of worldvolume scalar fields. So, the spacetime
results above are a manifestation of the fact that such a worldvolume theory cannot violate the
discussed energy conditions. This viewpoint is useful for generalizing our conclusions when
we turn on gauge fields and consider the pullback of spacetime fields on the worldvolume. As
long as the worldvolume field configurations do not violate the energy conditions, we expect
the spacetime conditions to be valid. Indeed, the action

S = −Tp

∫

dp+1ξeαφ
Æ

−det(h+F) , Fab := Fab + Bab , (43)

where Fab is the field strength for a worldvolume gauge field and Bab is the pullback of a
spacetime 2-form field, has a (p+ 1)-dimensional energy-momentum tensor

T ab = −Tp eαφ
p
−G
p
−h

�

G−1
�ab

, (44)
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where Gab := hab+Fab. Thus, the spacetime energy-momentum tensor coming from the brane
and worldvolume fields configurations can be written as

T MN = −
Tp
p
−g

∫

dp+1ξδD(x − X (ξ)) eαφ
p

−G
�

G−1
�ab
∂aX M∂bX N

=
1
p
−g

∫

dp+1ξδD(x − X (ξ))
p

−h T ab ∂aX M∂bX N . (45)

Hence, the validity of the spacetime energy conditions follows from the validity of the world-
volume energy conditions. In particular, Tab ξ̇

aξ̇b and Tab hab will determine the signs of
TMN umuN and TMN gMN , although T ab is not the pullback of T MN .

2.3 Op-planes

From the results of the previous section, it is clear that objects with negative tension, Tp < 0,
violate the energy conditions previously discussed. Dynamical-extended objects with nega-
tive tension would give rise to instabilities manifested as tachyons in the worldvolume theory.
However, string compactification on orientifolds produces extra source terms in the action for
each fixed locus of the orientifold group. Although non-dynamical, these Op-planes couple to
the p-forms, metric, and dilaton fields, and so they contribute to the energy-momentum tensor
of the theory. It turns out that orientifold planes have negative tension without introducing
instabilities because they do not carry extra dynamical degrees of freedom. For that reason,
Op-planes are not really extended physical objects, but rather a manifestation of the back-
ground structure of orientifolds. Fields defined over such backgrounds need to satisfy some
consistency conditions, and these are taken into account by their coupling to the Op-planes,

S = −
∑

i

T i
Op

∫

dD x

∫

dp+1ξδD(x − X i(ξ)) e
βφ
Æ

−hi +
∑

i

µi
Op

∫

Ap+1 ∧ ∗J i
p+1 , (46)

where we used the index i to denote individual fixed planes and included the WZ coupling to
a (p + 1)-form field Ap+1. The current ∗J i

p+1 is localized at the i-th fixed plane. For T i
Op < 0,

the energy conditions of the previous section are violated.
However, if we have both Dp-branes and Op-planes in the theory, we might hope that

the positive tension of the former counterbalances the negative tension of the latter, in such
a way that the energy conditions might still hold true, that is, the sign of the contractions
needed to prove the energy conditions depend on

∑

a T a
p and it could be that this total sum

over orientifold-planes and Dp-branes is positive. This mechanism will depend on the number
and orientation of the sources.

Indeed, in string theory, the number of Dp-branes and Op-planes are constrained by the
tadpole cancellation condition condition as can be seen from the WZ coupling. Consistency
with the (p + 1)-form equation of motion implies that the source term for Ap+1 should be
closed, and as a consequence

∑

a

µa
p

∫

CD−p−1

∗J a
p+1 = 0 , (47)

for any submanifold without boundary CD−p−1 transverse to the worldvolume of the sources.
Note that we have also included the Dp-branes contribution into the sum. Considering the
case of parallel sources, we get the charge cancellation conditions

∑

a

µa
p =
∑

i

�

µi
Dp +µ

i
Op

�

= 0 . (48)
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We denote Op± orientifold planes with the same (opposite) orientation compared to Dp-
branes, so effectively Op−-planes have positive tension, i.e. TOp± = ∓|µOp± |. Generically,
the charge of a Op+ or Op−-plane is related to the Dp-brane charge as µOp± = ∓2p−5µDp, and
anti-orientifold planes have the opposite charge. Since Dp-branes are extremal objects, we
have TOp± = ∓2p−5 TDp.

Let us write the tadpole cancellation condition explicitly for a system having NDp Dp-
branes, NOp+ Op+-planes, NOp− Op−-planes, NDp Dp-(anti)branes, NOp+

Op+-(anti)planes and

NOp−
Op−-(anti)planes. Then we have

∑

a

µa
p = µDp

�

NDp − NDp − 2p−5
�

NOp+ + NOp−
− NOp+

− NOp−

��

= 0 , (49)

which should be valid for each value of p (given a supergravity action, for some p it will be
automatically satisfied). All physical configurations containing parallel Dp-branes and Op-
planes should satisfy the condition above. But due to the relation between tension and charge
of the various sources, the charge cancellation condition implies

∑

a

T a
p = TDp

�

NDp + NDp − 2p−5
�

NOp+ − NOp−
+ NOp+

− NOp−

��

= 2TDp

�

NDp − 2p−5(NOp+ − NOp−)
�

. (50)

So, the requirement for having a non-negative total tension might be written as
∑

a

T a
p ≥ 0 ⇐⇒ NDp ≥ 2p−5(NOp+ − NOp−) . (51)

For supersymmetry preserving solutions, all the Op-planes have the same orientation as the
Dp-branes (NOp− = 0) and NDp = 2p−5NOp+ . In those cases, the total tension vanishes and
the higher dimensional weak, strong, null, and dominant energy conditions are satisfied. In
summary, although orientifold planes might violate the energy conditions, the consistency of
the equations of motion stringently constrains the physical configurations to satisfy the energy
conditions.

3 Energy conditions inheritance

In this section, we point out sufficient conditions for a D-dimensional energy condition to
imply a lower d-dimensional one. We call this relation the inheritance of energy conditions.
In particular, we are interested in energy conditions with respect to the d-dimensional metric
g̃µν(x), which appears in the D-dimensional one as

ds2 = gMN d x M d xN

= Ω2(y) g̃αβ(x)d xαd xβ + hmn(x , y)d ymd yn , (52)

where the internal volume does not dependent on xµ. We use the results presented in appendix
A to write the D-dimensional quantities in terms of the d-dimensional ones.

3.1 Null energy condition

The D-dimensional geometric NEC is given by

RMN lM lN ≥ 0 , gMN lM lN = 0 . (53)
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In the following, we show that assuming an internal space with constant volume is sufficient
for the D-dimensional NEC to imply the d-dimensional NEC.

Specifying the null vector lM to have components only in the lower d-dimensional tangent
bundle, we have

Rµνl
µlν ≥ 0 . (54)

Using the expression (A.3a) for Rµν, this implies that

R̃αβ( g̃)l
αlβ +

1
4
∇̃αhpq∇̃βhpq lαlβ ≥ 0 . (55)

Employing the identity
∇̃αhpq = −hpmhqn∇̃αhmn , (56)

we can rewrite the second term on the left-hand side as

−hpmhqn∇̃αhmn∇̃βhpq lαlβ = −hmp(lα∇̃αhmn)h
nq(lβ∇̃βhpq) = −tr

�

h−1(l · ∇̃h)
�2

. (57)

As long as hmn is positive-definite and hmn and ∇̃hmn are well-defined, this term is negative
semi-definite. Hence, we get

R̃αβ( g̃)l
αlβ ≥ +

1
4

hmp(lα∇̃αhmn)h
nq(lβ∇̃βhpq)≥ 0 , (58)

which is the d-dimensional NEC for the metric g̃.

3.2 Strong energy condition

The D-dimensional geometric SEC is given by

RMN uM uN ≥ 0 , gMN uM uN < 0 . (59)

Restricting uM to the d-dimensional tangent bundle, we have

R̃αβ( g̃)u
αuβ +

1
4
∇̃αhpq∇̃βhpquαuβ − u2Ω

−(d−2)

d
∇2Ωd ≥ 0 , (60)

or

R̃αβ( g̃)u
αuβ ≥ −

1
4
∇̃αhpq∇̃βhpquαuβ + u2Ω

−(d−2)

d
∇2Ωd . (61)

The second term is positive-definite for the same reason as in the NEC case:

R̃αβ( g̃)u
αuβ ≥

1
4

hmp(uα∇̃αhmn)h
nq(uβ∇̃βhpq) + u2Ω

−(d−2)

d
∇2Ωd ≥ u2Ω

−(d−2)

d
∇2Ωd . (62)

Multiplying the resulting expression by Ω(d−2) and integrating over the internal manifold we
get

GD

Gd
R̃αβ( g̃)u

αuβ ≥ 0 , (63)

where we have used the fact that the internal manifold is compact and the relation between
the higher and lower-dimensional Newton’s constants

GD

Gd
=

∫

d(D−d) y
p

hΩ(d−2) > 0 . (64)

Hence, we have shown that

R̃αβ( g̃)u
αuβ ≥ 0 , g̃αβuαuβ < 0 , (65)

which is the d-dimensional SEC.
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3.3 Weak energy condition

The D-dimensional WEC states that

GMN uM uN ≥ 0 , gMN uM uN < 0 . (66)

Restricting uM to the d-dimensional tangent bundle and using (A.4a), we get

Gαβuαuβ = G̃αβuαuβ −
1
2

u2Ω2R(h) +
�

1
4
∇̃αhpq∇̃βhpq −

1
8

g̃αβ∇̃σhpq∇̃σhpq

�

uαuβ

+
2(d − 1)

d
u2Ω2−d/2∇2Ωd/2 ≥ 0 . (67)

Defining

T (h)
αβ

:= −
1
4
∇̃αhpq∇̃βhpq +

1
8

g̃αβ∇̃σhpq∇̃σhpq , (68a)

T (Ω)
αβ

:=
�

1
2
Ω2R(h)−

2(d − 1)
d

Ω2−d/2∇2Ωd/2
�

g̃αβ =: Λ(y) g̃αβ , (68b)

we can rewrite (67) as
G̃αβuαuβ ≥ T (h)

αβ
uαuβ + T (Ω)

αβ
uαuβ . (69)

It will become clear soon that it makes sense to interpret T (h)
αβ

and T (Ω)
αβ

as energy-momentum
tensors. Hence, the D-dimensional weak energy condition implies the lower dimensional one
provided both T (h)

αβ
+ T (Ω)

αβ
satisfy the d-dimensional WEC. But since

T (Ω)
αβ

uαuβ ≥ 0 =⇒ Λ(y) =
�

1
2
Ω2R(h)−

2(d − 1)
d

Ω2−d/2∇2Ωd/2
�

≤ 0 , (70)

after multiplying by Ωd/2−2 and integrating over the compact internal manifold, the WEC for
T (Ω)
αβ

implies
∫

dD−d y
p

hΩd/2 R(h)≤ 0 , (71)

which is trivially satisfied for Ricci-flat internal spaces. The same trick could be used in (69)
already, and so the WEC for T (h)

αβ
and an internal manifold with negative mean Ricci curvature

(weighted by Ωd/2) are sufficient conditions for WEC inheritance.
Note that T (h)

αβ
is the energy-momentum tensor for the moduli fields hmn, which can be

seen from the dimensional reduction for the D-dimensional Einstein-Hilbert action:
∫

dD x
Æ

−g R
(D) ⊃
∫

dd x Ṽ6

p

− g̃
�

R( g̃) +
1
4
∇αhpq∇αhpq +

1
4

hpqhns∇αhpq∇αhsn + · · ·
�

,

(72)
where we assumed an internal manifold with constant total volume. In particular, if all hmn

are constant, the WEC for T (h)
αβ

is automatically satisfied.

3.4 Dominant energy condition

The D-dimensional DEC states that

GMN uM uN ≥ 0 , gMN uM uN < 0 , gMN G
M

P G
N
QuPuQ ≤ 0 , (73)

which are the WEC and the condition for −GM
N uN to be a causal vector (timelike or null). We

already know the conditions under which G̃αβ obeys the lower-dimensional WEC, so we will
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focus on the flux condition for G̃α
β

uβ , which has to be timelike or lightlike. Assuming uP to
be on the d-dimensional tangent bundle as before, we get

gMN G
M

P G
N
QuPuQ =
�

Ω2 g̃µνG
µ

αG
ν

β + hmnG
m
αG

n
β

�

uαuβ , (74)

and so

gMN G
M

P G
N
QuPuQ ≤ 0 =⇒ Ω2 g̃µνG

µ

αG
ν

βuαuβ ≤ −hmnG
m
αG

n
βuαuβ ≤ 0 , (75)

where we have used the fact that hmn is positive definite. Note that we can write the d-
dimensional components of GMN as

Gραuα = Vρ − Uρ −Wρ , (76)

where we have defined

Vρ := G̃ραuα , Uρ := T (h)
ρβ

uβ , Wρ := T (Ω)
ρβ

uβ . (77)

For the lower-dimensional WEC to be satisfied, we saw in the last section that T (h)
αβ
+ T (Ω)

αβ

must satisfy the d-dimensional WEC. But due to the form of T (Ω)
αβ

we have

T (Ω)ρα T (Ω)ρ
β

uαuβ = Λ2(y) g̃ραδ
ρ

β
uαuβ = Λ2(y)u2 ≤ 0 , (78)

because u2 < 0, which means that the vector Wρ = g̃ρσWσ is necessarily timelike or lightlike.
Assuming also that T (h)

αβ
satisfy the DEC, we have that Uρ = g̃ρσUσ is also timelike or lightlike.

Now, the higher-dimensional DEC can be rewritten as (see (75))

g̃µν(V
µ − Uµ −Wµ)(V ν − Uν −Wν)≤ 0 , (79)

where Vµ = g̃µσVσ. We now show that this last equality, together with the properties of U
and W , implies that V is timelike or lightlike.

Firstly, let us restructure Vµ as Vµ = Vµ + Tµ − Tµ, where Tµ = Uµ +Wµ. Then, we have

V 2 = g̃µνV
µV ν = (V − T )2 + T2 + 2Tµ(V

µ − Tµ)≤ T2 + 2Tµ(V
µ − Tµ) , (80)

where we have used the higher-dimensional DEC. Secondly, let’s use the fact that if two vectors
A and B are timelike (or lightlike) and both future or past directed, then AµBµ ≤ 0 and A+ B
is also timelike (or lightlike),2 i.e., if A and B are in the same local causal cone to p, then A+B
is also in the causal cone. Applying this to T = U +W we have T2 ≤ 0 and T is also in the
same causal cone as U and W and so is V −T as a consequence of the higher-dimensional DEC
(79). Then,

V 2 ≤ 2Tµ(V
µ − Tµ)≤ 0 ⇐⇒ g̃µνG̃

µ
αG̃νβuαuβ ≤ 0 , (81)

i.e., the lower-dimensional DEC. The equality holds when U , V , and W are all proportional
and lightlike (or when they all vanish).

2For our purposes, we consider that the vectors A, B ∈ Tp M are tangent to geodesics connecting p to its causal
future J+(p) or past J−(p), i.e. they are cooriented. Then, A and B are in the future (past) local causal cone on
p if and only if AµBµ ≤ 0, essentially because AµBµ and A0B0 have opposite signs, with the equality holding for
A∝ B and both lightlike (unless one of them is zero) [36]. Then, the fact that A+ B is also on the same causal
cone follows from (A+ B)2 = A2 + B2 + 2AµBµ ≤ 2AµBµ ≤ 0 and Aµ(Aµ + Bµ)≤ 0.
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4 Discussion and Conclusion

In trying to obtain cosmological backgrounds from string theory, it is important to identify
the allowed solutions from different compactifications. Although there has been a lot of work
done in this direction in the past, it has mainly been to find dS space in four dimensions. This
is certainly understandable, given the current stage of accelerated expansion of our universe.
Nevertheless, we believe it is worthwhile to take a more holistic view while trying to test the
viability of cosmological compactifications. One way to do so is to focus on the various energy
conditions since these have the potential to systematically classify different backgrounds. An-
other way of saying this is to focus on the full covariant energy-momentum tensor and not just
on its trace or specific components as might be relevant for particular solutions (such as dS).

Given this motivation, our findings have been two-fold. Firstly, we showed that the low-
energy limit of string theory, described by various supergravity actions, consists of an action
that does not violate the various energy conditions.3 And secondly, we showed how these
higher-dimensional energy conditions typically imply the corresponding lower-dimensional
ones. Quite naturally, both these findings come with their own set of assumptions.

For the validity of the energy conditions in supergravity theories, we assumed that:

1. No classical higher derivative (or α′) curvature corrections were taken into account.
In fact, it is known that some of the energy conditions might indeed be violated when
considering non-perturbative solutions in the presence of a tower of α′-corrections [42,
43] (see also [44]).

2. A dilaton potential is absent in the higher-dimensional supergravity action and we are
not considering the massive type IIA theory or actions from non-supersymmetric string
theories (no-go theorems for the latter were studied in [19]).

3. We are also ignoring all types of (perturbative and non-perturbative) quantum correc-
tions which might arise from string theory. Once again, it has been shown that quantum
corrections can indeed give rise to cosmological solutions which violate some of these
energy conditions, when considering an M-theory uplift of type IIB string theory [10].

Given these assumptions, what we have been able to show is that the various terms present in
the supergravity action do satisfy the energy conditions. In fact, a surprising result was that
even when some of these individual ingredients do violate the energy conditions, consistency
conditions require that the overall physical configuration obeys them. In particular, we found
that Op-planes, due to their negative tension, end up violating the energy conditions on their
own, along expected lines. However, the tadpole cancellation condition requires the presence
of Dp-branes such that overall the energy conditions are still obeyed. A systematic study of
the condition for non-negative total tension for more general D-brane configurations on orien-
tifolds (along the lines of [45], for instance) is left for future work. Although unrelated, note
that the calculations in section 2.3 do not include flux contributions to the tadpole cancella-
tion. They would come from couplings to other fluxes in the WZ term4 and would change the
left-hand side (51) by an extra term proportional to Nflux/µDp.

3We have assumed the standard field content from the massless string spectrum and usual sources like D-branes.
Other states, such as S-branes [37] (see [38–41] for cosmological applications), might violate some of the energy
conditions.

4Due to their topological property, such an extra coupling will not affect the results of sections 2.1 and 2.2 on
the validity of energy conditions for p-forms and extended objects since we have not assumed an explicit form of
the p-form’s Bianchi identity. The conclusions in section 2.3 will be slightly modified because of extra terms in
equation (48) that will induce extra terms in (51): the tadpole cancellation has to be considered for the validity
of the energy conditions, but the requirement for positive total tension (51) that we found as a consequence of it
is modified if fluxes are included. Discussing these modifications further is beyond the scope of this work.
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The main result of the present work might be summarized by the following assertion:

Energy conditions inheritance: If a given energy condition is satisfied in a higher D-dimensional
manifold, then, given some reasonable assumptions, the corresponding lower d-dimensional en-
ergy condition is also respected.

This follows after assuming the D-dimensional metric to have a decomposition of the form
(52). We emphasize that this is a rather mild assumption, as this is the type of metric that is
assumed in all standard flux compactifications (such as [46,47]), but also more general since it
allows for a x-dependent internal metric. The other reasonable assumptions depend on which
energy condition is considered. We have seen that:

• A constant internal volume and positive well-defined internal metric are sufficient con-
ditions for the NEC and the SEC inheritance, i.e., assuming Newton’s constant to remain
constant and a non-singular internal space are sufficient conditions for these two energy
conditions to be respected in the d-dimensional theory.

• The tensor Tαβ = T (h)
αβ
+ T (Ω)

αβ
(defined in (68)) has to satisfy WEC for us to have WEC

inheritance. The simplest possibility is for T (h) and T (Ω) to satisfy WEC independently.
The T (h)

αβ
has an interpretation in terms of moduli fields hmn, and thus we find that the

WEC has to be valid for these fields. On the other hand, T (Ω)
αβ

has an interpretation
in terms of the geometry of the internal manifold, and it satisfying the WEC implies
condition (71) on the curvature of the internal manifold.

• Since T (Ω)
αβ

uβ is necessarily causal, sufficient requirements for DEC inheritance are the

WEC for T (h)
αβ
+ T (Ω)

αβ
and that T (h)

αβ
uβ causal, where uβ is an arbitrary but timelike vector

field.

Given our assumptions, our results can be interpreted as covariant consistency conditions
that must be satisfied in flux compactifications. Since it might be interesting to study cosmo-
logical backgrounds which violate some of these energy conditions, that would imply going
around some of the previous requirements. We hope that clearly stating our assumptions and
the conclusions following them will help in the construction of low-energy backgrounds that
violate a given energy condition.
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A Ricci and Einstein tensors

In this appendix, we recollect components of the Ricci and Einstein tensors relevant for the
calculations on previous sections. We consider the D-dimensional metric ḡMN to have the form

ds̄2 = ḡMN (x , y)d x M d xN = Ω2(y) g̃µν(x)d xµd xν + hmn(x , y)d ymd yn , (A.1)

and are after writing the components of the curvature tensors in terms of the ones correspond-
ing to g̃µν and hmn. Imposing the internal volume to be x-independent,

∇µ
p

deth= 0 =⇒ hmn∇µhmn = 0 , ∇M hmn∇µhmn = −hmn∇M∇µhmn , (A.2)

we have

Rαβ = R̃αβ( g̃) +
1
4
∇̃αhpq∇̃βhpq −

1
d

g̃αβΩ
2−d∇2Ωd , (A.3a)

Rpq = Rpq(h)−
1
2
Ω−2 g̃µρ∇̃µ∇̃ρhpq +

1
2
Ω−2hnr∇̃ρhqr∇̃ρhpn − dΩ−2∇p∇qΩ , (A.3b)

Rpβ = −
1
2
∇phms∇̃βhsm −

1
2

hmp∇s∇̃βhsm +
�

d
2
− 1
�

Ω−1∇sΩ∇̃βhps , (A.3c)

R= Ω−2R̃( g̃) + R(h) +
1
4
Ω−2∇̃αhpq∇̃αhpq −

4d
d + 1

Ω−
d+1

2 ∇2Ω
d+1

2 , (A.3d)

and

Gαβ = R̃αβ( g̃)−
1
2

g̃αβ R̃( g̃)−
1
2

g̃αβΩ
2R(h) +

1
4
∇̃αhpq∇̃βhpq −

1
8

g̃αβ∇̃σhpq∇̃σhpq

+
2(d − 1)

d
g̃αβΩ

2− d
2∇2Ω

d
2 , (A.4a)

Gpq = Rpq(h)−
1
2

hpqR(h)−
1
2

hpqΩ
−2R̃( g̃)−

1
2
Ω−2∇̃ρ∇̃ρhpq +

1
2

hnrΩ−2∇̃ρhqr∇̃ρhpn

−
1
8

hpqΩ
−2∇̃αhmn∇̃αhmn − dΩ−1∇p∇qΩ+

2d
d + 1

hpqΩ
− d+1

2 ∇2Ω
d+1

2 , (A.4b)

Ḡpβ = −
1
2
∇phms∇̃βhsm −

1
2

hmp∇s∇̃βhsm +
�

d
2
− 1
�

∇̃βhpsΩ
−1∇sΩ . (A.4c)
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