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A symmetry algebra in double-scaled SYK

Henry W. Lin and Douglas Stanford

Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA

Abstract

The double-scaled limit of the Sachdev-Ye-Kitaev (SYK) model takes the number of
fermions and their interaction number to infinity in a coordinated way. In this limit,
two entangled copies of the SYK model have a bulk description of sorts known as the
“chord Hilbert space.” We analyze a symmetry algebra acting on this Hilbert space, gen-
erated by the two Hamiltonians together with a two-sided operator known as the chord
number. This algebra is a deformation of the JT gravitational algebra, and it contains a
subalgebra that is a deformation of the sl2 near-horizon symmetries. The subalgebra has
finite-dimensional unitary representations corresponding to matter moving around in a
discrete Einstein-Rosen bridge. In a semiclassical limit the discreteness disappears and
the subalgebra simplifies to sl2, but with a non-standard action on the boundary time co-
ordinate. One can make the action of sl2 algebra more standard at the cost of extending
the boundary circle to include some “fake” portions. Such fake portions also accom-
modate certain subtle states that survive the semi-classical limit, despite oscillating on
the scale of discreteness. We discuss applications of this algebra, including sub-maximal
chaos, the traversable wormhole protocol, and a two-sided OPE.
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Glossary

N : the number of SYK fermions (6).

p: the number of fermions that participate in each SYK interaction (6) .

λ ≡ 2p2/N is a useful parameter in the double-scaled limit (6).

q ≡ e−λ gives the penalty factor for crossing Hamiltonian chords (8).

∆ : characterizes matter operator insertions consisting of products of p∆ fermions (9).

r ≡ q∆ (9).

nL , nR: the number of chords to the left and right of a matter chord, see below (10).

n̄: the total number of chords plus matter dimensions e.g. n̄= nL+nR+∆ for single-particle
states (16).

[A, B]q ≡ AB − qBA (21).

[n] ≡ 1−qn

1−q is the q-deformed integer, see (14).

(a; q)n ≡ (1− a)(1− aq) · · · (1− aqn−1) is the q-Pochhammer symbol.

[n]! ≡ (q; q)n/(1− q)n is the q factorial.

a†
L: creates a Hamiltonian chord at the left side, a†

L|nL , nR〉= |nL + 1, nR〉, see (11).

αL: left inverse of a†
L , it annihilates a Hamiltonian chord αL|nL , nR〉= |nL −1, nR〉, see (12).

aL: the Hermitian conjugate of a†
L with respect to the chord inner product (18).

D(·): the coproduct, mapping an element of algebra A to an element of A⊗A, see (32).

ℓ ≡ λn̄ see above (30).

c ≡ qn̄/2 = e−ℓ/2 (46).

JAB: elements of the chord algebra that commute with n̄, see (45) .

U(J): the algebra generated by the JAB.

Upq(sl2): a deformation of the universal enveloping algebra of sl2 (with deformation param-
eter
p

q) It is related to the U(J) algebra in various ways. See appendix I.

B, E, P: linear combinations of the JAB operators, defined in (48).

y: acting on single-particle states |nL , nR〉 the y operator is defined as (nL − nR)/2.

x ≡ λy see (121).

v: parametrizes the inverse temperature β by πv/β = cos πv
2 . When λ → 0 we have

c = cos πv
2 and therefore

p
1− c2 = sin πv

2 . The Lyapunov exponent of large p SYK is
2πv/β = 2c. See (116).

Ω̂: the Casimir of the chord algebra, see (50).

|Ω〉: the maximally entangled state with no open chords. .
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B,E,P: rescaled versions of B, E, P see (126) that satisfy an ordinary sl2 algebra in the λ→ 0
limit.

θ : an angular coordinate on the thermal circle (135).

φ: an angular coordinate on the fake circle where the B,E,P operators are realized simply
(137).

OTOC: an out-of-time-order or “crossed” correlator of the form tr
�

e−τ1HVe−τ2HWe−τ3HVe−τ4HW
�

.
We will have occasion to consider τi < 0. We will continue to refer to these kinds of
correlators as OTOCs, even if V,V are closer in Euclidean time to each other than V,W.

TOC: a time-ordered or “uncrossed” correlator of the form tr
�

e−τ1HVe−τ2HVe−τ3HWe−τ4HW
�

,
for any values of τi .

1 Introduction

Gravity has a lot to say about maximally chaotic systems [1,2]. However, sub-maximal chaos
is more generic in interacting quantum systems. It is believed that the holographic explanation
of sub-maximal chaos involves going beyond Einstein gravity. For a system like N = 4 SYM in
the ’t Hooft limit, string theory [3] predicts a leading correction to the chaos exponent of order
∼ (ℓstring/ℓAdS)2. Checking this prediction with a direct boundary computation of the chaos
exponent in N = 4 seems futuristic,1 but a simple model where the many-body Lyapunov
exponent has already been computed directly from the boundary is the large p SYK model. It
is given by [7]:2

many-body Lyapunov exponent=
2πv
β

,
πv
βJ

= cos
�πv

2

�

. (1)

At low temperatures βJ ≫ 1, v → 1 and the model is maximally chaotic. At high tempera-
tures, v is small, and the Lyapunov exponent goes to 2J . So it is natural to search for the bulk
mechanism that explains the sub-maximal exponent in this model.

Guiding our search will be certain emergent symmetries of the model. At low temperatures,
the SYK model possesses an emergent sl2 symmetry3 that explains the maximal Lyapunov ex-
ponent and is related to the near horizon symmetries of the black hole. To find the appropriate
finite temperature generalization of these symmetries, we will take a scenic route by consid-
ering a more general limit, where N →∞, p →∞ holding fixed λ ≡ 2p2/N [11–14]. The
advantage of this limit is that there is an emergent “chord Hilbert space” [14–17] that has a
bulk flavor with an explicit description. This Hilbert space describes excitations of the ther-
mofield double state of two copies of the double-scaled theory. We identify a symmetry algebra
acting on this Hilbert space, generated by the two Hamiltonians, together with a “chord num-
ber” operator that generalizes the length between the boundaries in JT gravity.

This “chord algebra” contains an interesting subalgebra that commutes with the length and
that generalizes the sl2 in JT gravity. When one takes λ→ 0 to relax from the double-scaled
theory to the ordinary large p SYK model, this subalgebra reduces to sl2. This was initially
surprising to us, as we believed that an sl2 algebra would imply a maximal chaos exponent.

1For the special case of N = 4 SYM in Rindler space, the chaos exponent is determined by the ordinary Regge
intercept, and the futuristic calculation has been done using integrability [4] and matched to string theory [5].
See Fig. 7 of [6] for a plot of the analog of (1) for this case, v(βJ ) + 1→ j(λ).

2See also [8,9] for the full 4-pt functions.
3We emphasize that we are not referring to the sl2 gauge symmetry of the Schwarzian theory. The sl2 symmetries

of [10] are gauge-invariant operators that act on the 2-sided Hilbert space of JT gravity + matter.
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The heuristic argument is that the sl2 algebra determines the rate of exponential growth of
perturbations with respect to the “rotation” generator, which should be related to the time
evolution generator by a factor of 2π/β , where β is the circumference of the thermal circle.
The loophole in this argument is that the geometry where the sl2 acts turns out to be partly
“fake,” in the sense that it includes a Euclidean timefold. The correct conversion factor is
2π/βfake, where βfake = β/v is the larger circumference of the fake thermal circle. So, even
though the chaos is submaximal, it is determined by a symmetry algebra. The “scramblon” or
“Pomeron” operator that grows exponentially is a particular sl2 generator P−. In this way, the
fake disk gives a geometrization of the Pomeron as in the case of maximal chaos.4

A somewhat separate motivation for understanding the symmetries in the double scaled
limit is the following. It was argued in [17] that the chord number operator should be inter-
preted as the two-sided length of the wormhole. Since the chord number operator has discrete
eigenvalues, this would imply that the bulk dual of double scaled SYK has a discretized ge-
ometry of sorts. Naively a model of quantum gravity with discrete geometry should fail to
preserve local Poincaré invariance. In 3 + 1 dimensions and higher, it has been argued that
such a breaking would be catastrophic in the infrared [19]. In this setting, we will show that
the breaking of Poincaré invariance is controlled by some deformation of the naive sl2 symme-
try. This deformation of sl2 will have the unusual property that there are finite dimensional
unitary representations of the algebra, which arise naturally in describing wormholes with a
finite (and integer-valued) chord number.

1.1 Different regimes of SYK

This paper will make use of a variety of scaling limits of SYK; to avoid dizziness we will explain
them all here. The SYK model has 3 dimensionless parameters. They are: p be the number
of fermions that participate in each SYK interaction, N the number of fermions, and βJ the
dimensionless coupling. We will always consider the limit N →∞, p→∞. This leaves two
dimensionless parameters, λ= 2p2/N and βJ , which we depict below:

N/p2

βJ

double scaled
SYK

large p SYK JT
gra

vit
y

long wormhole limit

RMT limit

(2)

In the double scaling limit, λ is held fixed, whereas in the conventional large p limit, one
takes N → ∞ followed by p → ∞, which is equivalent to first performing the double
scaling limit and then taking λ → 0. The quantum JT limit can be obtained by scaling
βJ →∞, N/p2 →∞, holding fixed C ∝ (λβJ )−1. This is sometimes referred to as the
“triple scaling limit,” and is perhaps the best understood regime of SYK. Note that the semi-
classical JT gravity regime C = N

2p2βJ ≫ 1 smoothly matches on to the low temperature, large
p SYK limit. We can also study the limit βJ → ∞ with λ fixed. This is the Upq(sl2) limit
discussed in Appendix A.2. One can approach the JT gravity limit from below by taking this
limit and sending λ→ 0. Finally, if we take p2≫ N , there are so many terms in the Hamilto-
nian that H can be treated as a random matrix drawn from a Gaussian ensemble; the density
of states in this limit is a semi-circle.

4Note that although we refer to (1) as submaximal chaos according to [2], a stronger bound has been proposed
[18] which resembles the original chaos bound applied to the fake thermal circle. Large p SYK saturates this one.
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To use the language of von Neumann algebras (see [20] for a review), we expect that the
algebra of 1-sided observables to be Type III1 in the large p limit [21, 22], Type II∞ in the
triple scaling/JT gravity limit [23,24], and Type II1 in the finite λ, finite βJ limit [15,17]. Of
course, the SYK model at finite N and p has a type I algebra. So SYK is a neat example of a
single system which realizes many different algebras in different limits.

1.2 Review of the JT gravitational algebra

The Hilbert space of JT gravity (+matter) on a disk is naturally 2-sided. Acting on this space
are the operators HL , HR. Furthermore, a well-defined observable in semi-classical gravity is
the 2-sided length ℓ or its renormalized version ℓ̃. In a theory with matter, one can imagine
extracting this from two-sided correlators OLOR ∼ e−∆ℓ̃. We write the algebra in Appendix
A.1, see (A.4). Although the algebra looks complicated, it can be presented as

JT algebra= U(Heisenberg× sl2) . (3)

Here U(·) means the universal enveloping algebra, e.g., the algebra formed by not just taking
commutators but also products. The Heisenberg part of the algebra describes the “length
mode” of the wormhole and its conjugate momentum, whereas the sl2 describes the matter
Hilbert space. The left and right Hamiltonians HL and HR can be expressed in terms of these
variables [23], see (A.17) and (A.18). In other words, when we consider quantum fields
on rigid AdS2 the space of states organizes into sl2 representations. Because the off-shell
geometries in JT gravity (ignoring higher topologies) are always a cutout of the hyperbolic
disk, and because the matter fields are not coupled to the Schwarzian mode (except via the
gauge constraints), this sl2 symmetry persists even when the Schwarzian mode is strongly
coupled.

The sl2 symmetry acts as the isometries of the Euclidean hyperbolic disk. Following the
conventions of [10], we label them by how they act in the near horizon region, e.g., as boost,
momentum, and global energy. The arrows show the direction that an insertion O moves after
conjugation O→ eτGOe−τG:

B = −iP = →→→ E = ↑
↑

↑
(4)

[B,P] = iE , [E,P] = iB , [B,E] = iP . (5)

These generators move matter relative to the boundary, e.g., they do not change the length of
the wormhole ℓ̃ or its conjugate momentum k̃. The E generator can be viewed as variant of the
coupled Hamiltonian in [25] that is singled out by the property that it commutes with both ℓ̃
and k̃. In this way, the symmetries are related to the Gao-Jafferis-Wall/traversable wormhole
protocol [26].

1.3 Summary

• In Section 2, we briefly review double-scaled SYK and introduce the chord algebra. We
identify a subalgebra U(J) that commutes with the total chord number. U(J) plays the
role of sl2 in the JT limit. We also find a Casimir operator that commutes with the entire
chord algebra.

• In Section 3, we discuss some representations of the chord algebra, including empty
thermofield double states and also states with matter insertions.
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• In Section 4, we take the λ→ 0 limit of the chord algebra. We find that U(J) contracts
to a finite temperature sl2 algebra, which is different than the sl2 algebra that is known
to exist in the JT limit. We discuss some applications of this algebra.

• In the appendices, more details and qomputations are provided, including two other
limits of the chord algebra (A) and a sketch of an independent derivation of the algebra
in the semi-classical limit using the Liouville action (H). A hypothetical reader that is
only interested in the strict large p SYK model (no double scaling) could read Appendix
H and then jump directly to Section 4.

2 The chord algebra

2.1 Review of the chord Hilbert space

We adopt the following conventions for the SYK model:
�

ψi ,ψ j

	

= 2δi j ,

H = ip/2
∑

1≤i1<···<ip≤N

Ji1...iqψi1 · · ·ψip ,
¬

J2
i1...ip

¶

=
J 2

λ
�N

p

� ,

λ≡ 2p2/N , q ≡ exp(−λ) .

(6)

From now on, we will work in units where J = 1.
The limit N →∞, p→∞, λ = fixed is called the double-scaled limit. This is a solvable

limit, in which the thermal partition function [11, 12] and correlation functions [14] of the
SYK model can be computed by summing chord diagrams. The chord diagrams represent
the Gaussian Wick contractions from the disorder average of the Ji1···ip and similar random
couplings used to define operator insertions. As an example, consider the thermal 2-pt function
of a “matter” operator

Os = is/2
∑

1≤i1<···<is≤N

Ki1...isψi1 . . .ψis , 〈K2
i1...is
〉=

1
�N

s

� . (7)

A sample chord diagram that contributes is:

tr H3OsH
3Os ⊃ =

q2r3

λ3
. (8)

Here we are using the normalized trace (appropriate for Type II1 algebras5), e.g., tr1=2−N Tr1.
The rule for computing correlators in the double-scaled limit is to sum over chord diagrams
with simple weighting factors: there is a factor of λ−1 for each pair of Hamiltonian factors, a
factor of q for each intersection between the black Hamiltonian chords, and a factor of

r = q∆ , ∆= ps , (9)

for each intersection between the matter chord and the Hamiltonian chords. By slicing open
the chord diagram, one gets a two sided state [17]. In the above example, the (ket) state

5The trace can be written as tr(·) = 〈Ω| · |Ω〉 where |Ω〉 is the maximally entangled state. By acting with HL , HR

and matter operators on |Ω〉 one generates a basis for the chord Hilbert space.
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obtained by slicing at the gray points is

⇒ | ≀ 〉= |1,1〉 . (10)

We have indicated two different ways of labeling the chord state, first pictorially and second
by writing the number of H chords to the left and right of the matter chord, |nL , nR〉. There
are multiple curves that connect the two gray boundary points. We chose the slice appropriate
for defining ket vectors [17] – chords that cross the slice do not intersect in their past, see
Appendix B.6

Acting on these chord states, we can define creation operators

a†
L|nL , nR〉= |nL + 1, nR〉 , a†

R|nL , nR〉= |nL , nR + 1〉 , (11)

and annihilation operators

αL|nL , nR〉= |nL − 1, nR〉 , αR|nL , nR〉= |nL , nR − 1〉 . (12)

We use different notation a† and α because with respect to the chord inner product, these
operators are not Hermitian conjugates. Acting on these chord states |nL , nR〉, the left and
right Hamiltonians of the SYK model are represented by [17]:

λ1/2HL = a†
L +αL[nL] +αRrqnL [nR] ,

λ1/2HR = a†
R +αR[nR] +αL rqnR[nL] .

(13)

In this expression, we defined the q-deformed integer

[n]≡ 1+ q+ q2 + · · ·+ qn = (1− qn)/(1− q) . (14)

One can also consider a state with m matter particles. We label such a state by |n0, n1, . . . , nm〉,
where n0 is the number of H chords to the left of all matter chords, n1 is the number between
the first two, and so on. An intersection of the i-th matter chord with a Hamiltonian chord
comes with a factor of ri = q∆i . The left and right Hamiltonians act on such states by the
representation [17]

λ1/2HL = a†
0 +

m
∑

i=0

αi[ni]q
n<i , λ1/2HR =a

†
m +

m
∑

i=0

αi[ni]q
n>i ,

n<i =
∑

0≤ j<i

n j +∆ j+1 , n>i =
∑

m≥ j>i

(∆ j + n j) .
(15)

In section (2.3) we will write this formula in a more illuminating way.
In addition to the Hamiltonians, it is important to consider a 2-sided operator n̄ which

measures the total chord number weighted by the size of each chord:

n̄= n0 +∆1 + n1 + · · ·+∆m + nm . (16)

In terms of the microscopic variables, we may realize n̄ as the operator size [27]:

n̄=
size

p
=

1
2p

N
∑

α=1

�

1+ iψL
αψ

R
α

�

. (17)

6This is a bit different from cutting the trace open and labeling states by H,Os insertions in the ket or bra parts
of the boundary. The chord Hilbert space allows some insertions to contract so that they do not appear in the state.
This leads to a different basis for the same Hilbert space, with the advantage that the “chord number” is simple.
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2.2 The chord algebra

The chord algbera is simply the algebra generated by HL , HR and n̄. As we see from (15), the
left and right Hamiltonians are sums of terms that create and annihilate chords. It is useful to
separate these terms, and write

λ1/2HL/R = a†
L/R + aL/R , (18)

where aL/R is the sum of all of the α terms appearing in (15), e.g.

aL = α0
1− qn0

1− q
+α1qn0+∆1

1− qn1

1− q
+ · · ·+αmqn̄−nm

1− qnm

1− q
. (19)

This formula represents the fact that aL can annihilate any of the Hamiltonian chords, with
a weighting factor given by the penalty of moving this chord all the way to the left. This
characterization will help us show that aL is the adjoint of a†

L with respect to the chord inner
product [16]. This inner product is defined by summing over all of the ways of pairing up the
chords in the ket with those in the bra, weighted by the penalty factor associated to whatever
crossings take place, see Appendix B. To show that

〈aLψ,χ〉= 〈ψ,a†
Lχ〉 , (20)

with respect to this inner product, consider first the RHS. The a†
L operator introduces a new

Hamiltonian ket chord to the left of all ket chords. In the inner product computation, this new
chord can pair up with any Hamiltonian chord from the bra, with a penalty factor given by the
penalty associated to moving that bra chord all the way to the left (on its way to pair up with
our new ket chord). So we can regard the a†

L operator as summing over ways of removing a
chord from the bra, with the penalty factor described above. On the LHS we don’t have this
extra ket chord, but instead the aL operator directly sums over ways of removing one of the
bra chords, with the same penalty factor, leading to the same result as the RHS.

With the help of the q-deformed commutator,

[A, B]q ≡ AB − qBA , (21)

one can show that these operators together with n̄ satisfy what we will call the chord algebra:

[aL ,aR] = [a
†
L ,a†

R] = 0 , (22)

[n̄,a†
L/R] = a†

L/R , [n̄,aL/R] = −aL/R , (23)

[aL ,a†
R] = [aR,a†

L] = qn̄ , (24)

[aL/R,a†
L/R]q = 1 . (25)

One can prove (22), (23), (24), (25) diagramatically. The first two relations (22), (23) are
easy to verify. For (24), note that when we add a chord on the right a†

R and then delete a chord
aL , we get a new possible Wick contraction that intersects all the n̄ chords:

[aL ,a†
R] |HH · · ·H〉= aL|

n̄ chords
︷ ︸︸ ︷

�

�

H

�

�

H · · ·

�

�

H〉a†
R = qn̄ |HH · · ·H〉 .

(26)

We also consider aLa
†
L acting on an arbitrary chord state:

aL

|

a†
L

�

�

�

�

H

�

�

H · · ·H· · ·

�

�

H
�

= q
|

a†
L aL

�

�

�

�

H

�

�

H · · ·H· · ·

�

�

H
�

+ aLa
†
L |HH · · ·H〉 . (27)
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Focusing on the first term on the RHS of (27), we note that the indicated Wick contraction
has one less crossing than the corresponding Wick contraction on the LHS. This explains the
factor of q. The second term on the RHS of (27) is just the identity, which explains the RHS
of (25). In (27) we have suppressed a sum on both the LHS and the RHS over which middle
H chord is annihilated. For notational simplicity we only wrote H ’s in (26) and (27), but the
proof goes through if we swap some of the middle H ’s with matter chords.

Note that HL and HR look similar to the position operators of a pair of q-deformed Har-
monic oscillators. However, due to (24), the two oscillators are not independent from each
other.

It will prove useful to rewrite the chord algebra defined in (18)-(25) in terms of just a†

and hL/R ≡ λ1/2HL/R:

[hL ,hR] = 0 ,

[hL/R, n̄] = hL/R − 2a†
L/R ,

[a†
L ,a†

R] = 0 ,

[n̄,a†
L/R] = a†

L/R ,

[hL/R,a†
L/R]q = 1+ (1− q)

�

a†
L/R

�2
,

[hL/R,a†
R/L] = qn̄ .

(28)

One benefit of writing the algebra this way is that we can immediately see how a,a† can be
written in terms of the microscopic fermionic operators. Using the second line of (28) together
with (16),

a†
L/R =

1
2

�

hL/R + [n̄,hL/R]
�

,

aL/R =
1
2

�

hL/R − [n̄,hL/R]
�

.
(29)

In particular, with respect to the microscopic inner product, a† is indeed the Hermitian con-
jugate of a. Another immediate consequence of the chord algebra is the Liouville equation of
motion. Setting ℓ= λn̄, the second and last line of (28) gives

∂L∂Rℓ= [HL , [HR,ℓ]] = −2e−ℓ . (30)

This holds as an operator equation for any value λ. In Appendix H, we will discuss the Liouville
approach to the large p SYK model, where the same operator equation can be derived. As a
sanity check let us note that in the 0-particle case L = R and the last two relations of (28)
imply λ1/2H = a† +α1−qn

1−q .

2.3 The chord coproduct

The algebra defined by (22)-(25) is compatible with an additional structure known as a co-
product, which will be useful for generating representations. Let’s review these concepts. First
of all, an algebra A is a vector space, together with an associative bilinear map m : A⊗A→A.
In addition, there is a unit operator 1, which we can think of as a map from C→A. An exam-
ple of an algebra in quantum mechanics is the vector space of angular momentum operators
together with the identity operator 1, e.g., su(2)⊕1 . In this context, m is just the Lie bracket.

A coalgebra also consists of a vector space but instead has a linear map D : A→A⊗A that
is co-associative:

(D⊗ 1) · D = (1⊗ D) · D . (31)
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An example of a coalgebra in quantum mechanics is again provided by su(2)⊕1. D is defined
by the usual addition of angular momentum rules, e.g., D(Ji) = Ji⊗1+1⊗Ji and D(1) = 1⊗1.7

Co-associativity (31) is the property that one can decompose a 3-particle state into irreducible
representations by fusing j1, j2 into irreducible representations and then fusing the remaining
particle j3, or by fusing j2, j3, and then fusing with j1.

If A is both an algebra and a coalgebra and the two are compatible, we say that it is a bial-
gebra. As the reader might have anticipated, su(2)⊕1 is in fact a bialgebra. The compatibility
condition is D([Ji , J j]) = [D(Ji), D(J j)]. The chord algebra (18) is in fact a (non-counital)
bialgebra, where the multiplication m is just the operator product, and the coproduct is

D(a†
L) = a†

L ⊗ 1 , D(a†
R) = 1⊗ a†

R , (32)

D(aL) = aL ⊗ 1+ q∆qn̄ ⊗ aL , (33)

D(aR) = 1⊗ aR + q∆aR ⊗ qn̄ , (34)

D(n̄) = n̄⊗ 1+ 1⊗ n̄+∆(1⊗ 1) . (35)

One can check compatibility D(ab) = D(a)D(b) by checking that the relations (22)-(25) are
preserved by D. To interpret the coproduct, we introduce the operation δ of concatenating two
2-sided states, or joining two wormholes together, while adding a matter chord ≀ of dimension
∆ between them, e.g.,

δ : | ≀ 〉 ⊗ | ≀ 〉 → | ≀ ≀ ≀ 〉 . (36)

Formally, let us define a map that acts on the tensor product of chord Hilbert spaces and con-
catenates states as in (36) δ : H⊗H→H. We can also define the inverse map δ−1 :H|≀→H⊗H.
Here δ−1 is only defined on the subspace of H which contains exactly 1 matter chord of type
≀ . Then acting on this subspace H|≀

a = δ · D(a) ·δ−1, ∀ a ∈ chord algebra. (37)

The point of this equation is that the representations that appear on the RHS are simpler than
the ones that appear on the LHS. For example, acting on a state with only one matter chord
δ−1 | ≀ 〉 = | 〉 ⊗ | 〉. So with the help of the coproduct, we can figure out how a acts on
a 1-matter-chord state using just knowledge about how a acts on 0-matter-chord states. For
situations with more matter chords, we can define δ−1

≀m which is defined to act on the subspace
of states with ≥ m matter chords of type ≀ and factorize them at position m. For example,
δ−1
≀2 |≀ ≀ ≀ 〉= |≀ 〉 ⊗ | ≀ 〉. With these definitions, co-associativity follows8 from

(δ−1
≀1 ⊗ 1) ·δ−1

≀2 = (1⊗δ
−1
≀2 ) ·δ

−1
≀1 , (39)

δ · (δ⊗ 1) = δ · (1⊗δ) . (40)

In Section 3 we will see that this simple property allows us to derive a crossing equation.
As an application of the coproduct, let’s discuss a recursive way to build up multi-particle

states. First we start with the 0 matter particle sector. These states are labeled by |n〉, where
n ∈ Z≥0 is just the number of Hamiltonian chords. When we consider the 1-matter particle

7A standard coalgebra also has a special element ε called the counit which satisfies (ε⊗1)·D = 1= (1⊗ε)·D. For
su(2)⊕1 this is ε(Ji) = 0. However the chord algebra does not have a counit. So it is a “non-counital” bi-algebra.

8To see this, write D(a) = δ−1aδ. Then (31) becomes

δ−1
≀1 δ

−1
≀2 aδ · (δ⊗ 1) = δ−1

≀2 δ
−1
≀1 aδ · (1⊗δ) . (38)

This is an expression that acts on 3 copies of the chord Hilbert space. Applying (39) and (40) immediately gives
the desired result.
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sector, we label states by |n0, n1〉 where n0 is the number of chords to the left of the matter
particle and n1 is the number of particles to the right. We can think of this as a tensor product
|n0〉 ⊗ |n1〉 of two 0-particle states. The oscillator algebra is realized as

a†
L = a† ⊗ 1 , a†

R = 1⊗ a† ,

aL = a⊗ 1+ rqn ⊗ a , aR = 1⊗ a+ ra⊗ qn .
(41)

This procedure can be applied inductively to generate multi-particle states. In general, we
imagine starting with m matter particles, e.g., |n0〉 ⊗ · · · ⊗ |nm〉. Then we add another matter
particle, say “to the right” of all the existing particles by taking a tensor product with another
factor |nm+1〉. This gives

a†
L,m+1 = a†

L,m ⊗ 1 , a†
R = 1⊗ a† ,

aL = aL,m ⊗ 1+ rm+1qn̄m ⊗ a , aR = 1⊗ a+ rm+1aR,m ⊗ qn ,

n̄m+1 = n̄m ⊗ 1+ 1⊗ n+∆m+1(1⊗ 1) .

(42)

Using (42), one can show that (22)-(25) are satisfied for any m.
Microscopically, a 2-sided state |O〉 can be viewed as an operator O acting on a 1-sided

Hilbert space. Then given two states O1, O2 we can form a new state O3 = O1WO2. This
defines a map from two wormhole states to a new wormhole state. However, this is not quite
the map defined in the coproduct. In particular, (35) makes it clear that the map is defined
in such a way that bulk lengths add, whereas the map O1, O2→ O1WO2 has the property that
boundary lengths add. To fix this, we should subtract all Wick contractions going between O1
and O2. For example, if we take the state O1 = VH2, O2 = H,

δ(
�

�VH2
�

⊗ |H〉) =
�

�VH2WH
�

−V
�

HHWH +HHWH
�

|0〉

=
�

�VH2WH
�

− 2q∆ |VHWH〉 .
(43)

If we have sufficiently many chords to define a macroscopic geometry, δ preserves bulk lengths
but not boundary lengths (e.g., the effective inverse temperature β of the resulting state is not
just β1 + β2.)

⊗ → (44)

Formally speaking the double scaled Hilbert space does not have a 1-sided Hilbert space, but
we can nevertheless view the state |O3〉 as obtained by a limit of this procedure. Thus even
though the chord Hilbert space does not factorize into a tensor product of 1-sided states, there
is still a factorization of sorts (obtained by reading (32)-(35) from right to left), but it is a
factorization into two-sided states.

2.4 A subalgebra that commutes with n̄

In JT gravity, the symmetry algebra of the bulk [10] may be identified by finding a subalgebra
of the JT gravitational algebra that commutes with ℓ̃ [28]. In the context of the chord algebra
(28), one should look for elements that commute with n̄, e.g. a†

i a j where i, j ∈ {L, R}. It is
convenient to shift these generators so that they annihilate the thermofield double:

Ji j = a†
i a j − [n̄] , i, j ∈ {L, R} . (45)

12

https://scipost.org
https://scipost.org/SciPostPhys.15.6.234


SciPost Phys. 15, 234 (2023)

It is convenient to define
c

.
= qn̄/2 . (46)

Then the chord algebra implies that the Ji j operators satisfy the algebra

[JLL , JRR] =
c2

q
(JLR − JRL) ,

[JLR, JRL] = JLL − JRR ,

[JLL , JLR]q = c2JLR − JLL ,

[JRR, JRL]q = c2JRL − JRR ,

[JRL , JLL]q = c2JRL − JLL ,

[JLR, JRR]q = c2JLR − JRR .

(47)

For section 4, it will be convenient to define three Hermitian combinations

E
.
= − 1

2c (JLL + JRR) , B
.
= 1

2c (JLL − JRR) , P
.
=

i
2
(JLR − JRL) . (48)

These can also be written in terms of the Hamiltonians and the length operator as

B =
1

4(1− q)c
[hL − hR, [hL + hR, n̄]] ,

E = −
1

4(1− q)c
[hL − hR, [hL − hR, n̄]] ,

P = iq[B, E] =
i
4
(hL[hR, n̄]− hR[hL , n̄]) .

(49)

2.5 Casimir

The algebra generated by (47) is denoted U(J). In appendix C we show that one can form
linear combinations of these generators so that the algebra is independent of c and can be
recognized as a subalgebra of Upq(sl2). By starting with the Casimir operator Ω for Upq(sl2)
and guessing an improvement, we found that the following operator commutes with the entire
chord algebra:

2Ω̂= q1−n̄
�

1− (1− q)a†
LaL , 1− (1− q)a†

RaR

	

+ (1− q2)
�

a†
LaR + a†

RaL

�

+ 2qn̄ . (50)

This operator obviously commutes with n̄. It also commutes with aL ,aR,a†
L ,a†

R and therefore
with the Hamiltonians HL , HR.

The Casimir may be viewed as a global symmetry of the boundary theory that emerges in
the double scaling/large p limit. It is unusual in that this Casimir operator is a nontrivial two-
sided operator. In the case of a finite-dimensional Hilbert space, such a two-sided operator
would imply the existence of ordinary one-sided symmetries. To see this, we can use the
operator Schmidt decomposition to write a two-sided operator as O =

∑

i ci Li ⊗ Ri where
tr(L†

i L j) = tr(R†
i R j) = δi j . If O is a symmetry then so are all of the Li operators, because

[HL , Li] =
1
ci

trR(R
†
i [HL , O]) = 0.

In Appendix C.2, we study the SYK model at finite p and finite N via numerical diago-
nalization. We study a particular microscopic realization of the operator Ω̂. For the finite
and fairly small values of N , p that we use, the would-be Casimir does not commute with the
Hamiltonians but its expectation value in simple states is close to double-scaled predictions.
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3 Representations of the chord algebra

We will discuss two types of irreducible representation of the chord algebra (22)-(25). The
first is a “short” representation, obtained by starting with a state |0〉 that satisfies

aL|0〉= aR|0〉= n̄|0〉= 0 , (51)

and then acting with raising operators

|n〉= (a†
L)

n|0〉= (a†
R)

n|n〉 , n≥ 0 . (52)

The explicit formula for the representation is

a†
L|n〉= a†

R|n〉= |n+ 1〉 , (53)

aL|n〉= aR|n〉=
1− qn

1− q
|n− 1〉 , (54)

n̄|n〉= n|n〉 . (55)

The inner product that makes a the adjoint of a† is [17]

〈n′|n〉= δn,n′[n]! . (56)

Let’s now discuss a generic lowest-weight irrep. This can be formed by starting with a state
|∆; 0, 0〉 defined by the conditions

aL|∆; 0, 0〉= aR|∆; 0, 0〉= 0 , n̄|∆; 0, 0〉=∆ , (57)

and then using creation operators to make other (non-orthogonal!) states:

|∆; nL , nR〉= (a
†
L)

nL (a†
R)

nR |∆; 0, 0〉 . (58)

The generators of the chord algebra act within this representation by

a†
L|∆; nL , nR〉= |∆; nL + 1, nR〉 , (59)

a†
R|∆; nL , nR〉= |∆; nL , nR + 1〉 , (60)

aL|∆; nL , nR〉=
1− qnL

1− q
|∆; nL − 1, nR〉+ q∆+nL

1− qnR

1− q
|∆; nL , nR − 1〉 , (61)

aR|∆; nL , nR〉=
1− qnR

1− q
|∆; nL , nR − 1〉+ q∆+nR

1− qnL

1− q
|∆; nL − 1, nR〉 , (62)

n̄|∆; nL , nR〉= (∆+ nL + nR)|∆; nL , nR〉 . (63)

To derive the formulas for aL and aR, we used (24) and (25) to show that

aL(a
†
L)

nL =
1− qnL

1− q
(a†

L)
nL−1 + qnL (a†

L)
nLaL ,

aL(a
†
R)

nR = (a†
R)

nR−1qn̄ 1− qnR

1− q
+ (a†

R)
nRaL .

(64)

The inner products of states within this representation are uniquely determined by an initial
choice of normalization

〈∆; 0, 0|∆; 0, 0〉= 1 , (65)

and by the requirement that a† should be the adjoint of a. This is because we can write

〈∆; n′L , n′R|∆; nL , nR〉= 〈∆|(aR)
n′R(aL)

n′L (a†
L)

nL (a†
R)

nR |∆〉 , (66)
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and use (64) to move the a operators to the right until they annihilate the state |∆〉. The
resulting inner product is diagonal in nL + nR, but it connects states with different values of
nL − nR. See appendix B for more on this.

For the generic representation, the value of the Casimir is

Ω̂= q∆ + q1−∆ . (67)

In the limit∆→ 0 it reduces to the correct answer 1+q for the short representation. In fact, the
entire short representation can be understood as a limit of the generic representation, because
in the limit ∆→ 0 the inner product has null states that impose the conditions aL = aR.

So far, we have discussed irreducible representations of the full chord algebra, consisting of
a primary |∆; 0, 0〉 and chord descendants (58). One can also form irreps of the subalgebra U(J)
that commutes with n̄, by restricting to a given value of nL+nR. Within this U(J) irrep, we can
define a U(J) primary to be the eigenstate of E with the smallest eigenvalue. Then the U(J)
descendants are all possible states that can be obtained by acting on such a primary with the
U(J) algebra. These U(J) representations are finite dimensional, and the full representation
(58) is a direct sum of infinitely many U(J) representations, one for each possible value of
nL + nR.

We will now discuss applications of these representations.

3.1 0-particle irrep

States with Hamiltonian chords but no matter chords correspond to the short representation.
The shortening condition is aL = aR, which implies the Gauss law HL = HR for an empty
wormhole with no matter particles. Acting on this representation, the Ji j generators vanish.

3.2 1-particle irreps

States with a single matter chord and any number of Hamiltonian chords form an irreducible
representation with∆ determined by the penalty factor r = q∆ for a crossing between a matter
chord and a Hamiltonian chord. The state in the representation |∆; nL , nR〉 corresponds to the
state |nL , nR〉 in the chord Hilbert space with nL Hamiltonian chords to the left of the matter
particle and nR Hamiltonian chords to the right. Either from the coproduct formulas (41) or
the representation (61), one finds

aL = αL
1− qnL

1− q
+αRrqnL

1− qnR

1− q
, (68)

and a similar equation with L↔ R. Here αL|nL , nR〉= |nL−1, nR〉 and αR|nL , nR〉= |nL , nR−1〉.
The subspace with fixed n = nL + nR gives a finite-dimensional irrep of U(J), and substi-

tuting (68) into (45) gives explicit formulas for the Ji j operators. The simplest case is n = 0,
corresponding to a one-dimensional representation of U(J). For this case, all of the Ji j gener-
ators are equal to

Ji j = −
1− r
1− q

, (69)

and one can check that this is consistent with (47) with c2 = r. The simplest nontrivial repre-
sentation is n= 1, corresponding to a two-dimensional representation:

R∆1p,1 = span{| ≀ 〉 , |≀ 〉} . (70)
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Here | ≀ 〉= |∆; 1, 0〉 and |≀ 〉= |∆; 0, 1〉. Acting on these non-orthogonal states, the generators
are

(1− q)JLL =

�

q(−1+ r) r(1− q)
0 −1+ qr

�

,

(1− q)JRR =

�

−1+ qr 0
r(1− q) q(−1+ r)

�

,

(1− q)JLR =

�

−1+ r −1
0 −1+ qr

�

,

(1− q)JRL =

�

−1+ qr 0
−1 −1+ r

�

.

(71)

Later in this paper we will consider a kind of opposite limit where n →∞ (with qn is held
fixed). In that limit, one linear combinations of the Ji j operators will vanish, and the other
three (B, E, P) will act as a rescaled sl2 algebra.

3.3 2-particle representations

3.3.1 Decomposition into irreps

Let’s now consider the case of two particles, with dimensions ∆V ,∆W . The generators do not
change the ordering of the operators, and we will assume the V operator is to the left. The
Hilbert space is spanned by states |nL , n1, nR〉 with nL chords to the left of both operators, n1
chords between them, and nR chords to the right of both. Acting on these states, the coproduct
formula gives

aL = αL
1− qnL

1− q
+α1r1qnL

1− qn1

1− q
+αRr1rW qnL+n1

1− qnR

1− q
. (72)

This is a reducible representation of the chord algebra, and it decomposes into a direct
sum of irreducible representations, constructed from “double-trace” primaries with dimen-
sion ∆V +∆W + k that we will denote [VW]k. To identify these primaries, we can search for
states that satisfy the conditions aL = aR = 0 and then construct representations by acting with
a†

L and a†
R. The simplest case is

|[VW]0〉= |0,0, 0〉 (73)

= | ≀ ≀ 〉 . (74)

The next simplest is a linear combination of states with one Hamiltonian chord:

|[VW]1〉= γ1,0,0 | ≀ ≀ 〉+ γ0,1,0 | ≀ ≀ 〉+ γ0,0,1 | ≀ ≀ 〉 . (75)

The coefficients are determined by requiring aL = aR = 0 and requiring 〈[VW]1|[VW]1〉= 1:




γ1,0,0
γ0,1,0
γ0,0,1



=
1
p
γ1





−rV (1− r2
W )

1− r2
V r2

W
−rW (1− r2

V )



 , (76)

γ1 = (1− r2
V )(1− r2

W )(1− r2
V r2

W ) . (77)

We will also write one more explicit formula

|[VW]2〉= γ2,0,0 | ≀ ≀ 〉+ γ1,1,0 | ≀ ≀ 〉+ γ0,2,0 |≀ ≀ 〉+ γ0,1,1 |≀ ≀ 〉+ γ0,0,2 |≀ ≀ 〉+ γ1,0,1 | ≀ ≀ 〉 , (78)
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where














γ2,0,0
γ1,1,0
γ1,0,1
γ0,2,0
γ0,1,1
γ0,0,2















=
1
p
γ2















−qr2
V (1− r2

W )(1− qr2
W )

(1+ q)rV (1− qr2
W )(1− qr2

V r2
W )

−(1+ q)rV rW (1− qr2
V )(1− qr2

W )
−(1− qr2

V r2
W )(1− q2r2

V r2
W )

(1+ q)rW (1− qr2
V )(1− qr2

V r2
W )

−qr2
W (1− r2

V )(1− qr2
V )















, (79)

γ2 = (1+ q)(1− r2
V )(1− qr2

V )(1− r2
W )(1− qr2

W )(1− qr2
V r2

W )(1− q2r2
V r2

W ) . (80)

Let us mention that we may also view [VW]1 and [VW]2 as defining a “double trace” primary
operator. In the q → 1 limit, we checked that these γ give rise to the usual sl2 double trace
primaries that one would expect in a generalized free field theory.9 In Appendix F we derive
the general decomposition of a 2-particle state into irreps, see (F.7):

|nL , n1, nR〉=
∑

mL+mR+k=n1

ψk,mL ,mR
|[VW]k; nL +mL , nR +mR〉 . (82)

Note that the Clebsch-Gordan-like coefficients ψ do not depend on nL , nR, since one can act
on both sides with a†

L and a†
R to increase nL , nR. This gives a decomposition

R∆V ,∆W
2p = R∆V+∆W

1p ⊕R∆V+∆W+1
1p ⊕R∆V+∆W+2

1p ⊕ . . . (83)

By restricting to the subspace with a fixed total number of Hamiltonian chords n, this decom-
position gives a decomposition of U(J) representations:

R∆V ,∆W
2p,n = R∆V+∆W

1p,n ⊕R∆V+∆W+1
1p,n−1 ⊕ · · · ⊕R∆V+∆W+n

1p,0 . (84)

These are finite-dimensional representations and we can check that the dimensions match.
The two-particle representation on the LHS has dimension equal to the number of ways one
can decompose n into the sum of 3 non-negative integers, corresponding to sprinkling the H
chords to the left, to the right or in between the two matter particles (this is known as a weak
composition):

dim
�

R∆V ,∆W
2p,n

�

=
�

n+ 2
n

�

=
n
∑

k=0

(n+ 1− k) . (85)

The sum on the RHS corresponds precisely to the dimensions of the terms on the RHS of (84).
For a concrete example, we can consider the case with n= 1 one Hamiltonian chord

R∆V ,∆W
2p,1 = span{| ≀ ≀ 〉 , |≀ ≀ 〉 , |≀ ≀ 〉} . (86)

9To perform this check it was important to subtract off possible H contractions in translating between a state
and an operator, e.g.:

| ≀ ≀ 〉= λH2VW−VW , | ≀ ≀ 〉= λHVHW− rVVW . (81)
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The Ji j generators are

(1− q)JLL =





q (−1+ rV rW ) rV (1− q) rV rW (1− q)
0 −1+ qrV rW 0
0 0 −1+ qrV rW



 ,

(1− q)JRR =





−1+ qrV rW 0 0
0 −1+ qrV rW 0

rV rW (1− q) rW (1− q) q (−1+ rV rW )



 ,

(1− q)JLR =





−1+ rV rW rW (1− q) 1− q
0 −1+ qrV rW 0
0 0 −1+ qrV rW



 ,

(1− q)JRL =





−1+ qrV rW 0 0
0 −1+ qrV rW 0

1− q rV (1− q) −1+ rV rW



 .

(87)

After a change of basis so that the operators act on the states

{|[VW]0; 1, 0〉, |[VW]0; 0, 1〉, |[VW]1; 0, 0〉} ,

this representation reduces to a block diagonal form:

(1− q)JLL =





q (−1+ rV rW ) rV rW (1− q) 0
0 −1+ qrV rW 0
0 0 −1+ qrV rW



 ,

(1− q)JRR =





−1+ qrV rW 0 0
rV rW (1− q) q (−1+ rV rW ) 0

0 0 −1+ qrV rW



 ,

(1− q)JLR =





−1+ rV rW −1 0
0 −1+ qrV rW 0
0 0 −1+ qrV rW



 ,

(1− q)JRL =





−1+ qrV rW 0 0
−1 −1+ rV rW 0
0 0 −1+ qrV rW



 .

(88)

In the one-dimensional block we have the representation (69) with reff = rV rW q, and in the
two-dimensional block we have the two-dimensional representation (71) with reff = rV rW .

3.3.2 Ordering particles

We have just shown that by using the coproduct D we can generate new “double trace” irreps
[VW ]k. However, the coproduct is not commutative, so we actually get another double trace
irrep [W Vk. These irreps are degenerate in the sense that they have the same reff = q∆V+∆W+k,
independent of the ordering of particles. A natural question is whether this degeneracy is a
consequence of some sort of symmetry. This is indeed the case. Let us define a reflection
operator R that acts on the chord Hilbert space by a reversing the order of all of the chords:

R |n0 O1 n1 · · · Ok nk〉= |nk Ok nk−1, · · · O1 n0〉 , (89)

R2 = 1 . (90)
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Such an operator defines an automorphism of the chord algebra (22)-(25) that preserves the
inner product:

RHL/R R= HR/L , R n̄R= n̄ , (91)

RaL/R R= aR/L , Ra†
L/R R= a†

R/L , (92)

R Ω̂R= Ω̂ , 〈v,Rw〉= 〈Rv, w〉 . (93)

Now since R commutes with Ω̂, we can simultaneously diagonalize both R and Ω̂. For the
double traces, we can consider

|[V,W]k〉=
|[VW]k〉 − |[WV]k〉

N−k
, |{V,W}k〉=

|{VW}k〉+ |{WV}k〉
N+

k

. (94)

Such states have eigenvalues R = −1 for [·, ·] and R = +1 for {·, ·}. In Appendix F, we work
out the normalization factors N±k so that these primaries are unit normalized.

3.4 Diagonalizing the chord irreps

In the above subsections, we focused on diagonalizing the algebra with respect to Ω̂ as well
as n̄. This had the advantage that there is a large U(J) subalgebra that commutes with n̄.
However, another possibility is to diagonalize

{HL , HR , Ω̂} . (95)

This is physically interesting because such a representation would be spanned by energy eigen-
states; further, these operators form a generating set for a maximally commuting subalgebra
of the chord algebra, analogous to the Cartan subalgebra of a Lie algebra.

This problem can be solved using results in [14]. First we will discuss the short representa-
tion. In this case, diagonalizing the HL = HR corresponds to diagonalizing the transfer matrix
of [14]. The eigenvectors, which we will denote |s〉, are linear combinations of |n〉 states

|s〉=
∞
∑

n=0

fn(s)|n〉 , (96)

where fn must satisfy a recurrence relation that can be solved using the q-Hermite polynomial,
as discussed in [14]. We choose to define s as in [29] so that the eigenvalue of HL = HR is

HL|s〉= HR|s〉= E(s)|s〉 , E(s)≡ −
2cos(λs)
p

(1− q)λ
, 0≤ s ≤

π

λ
. (97)

We also normalize the states as in [29] so that

〈s′|s〉=
δ(s′ − s)
ρ(s)

, ρ(s)≡
1

2πΓq(±2is)
. (98)

Then the matrix elements of q∆
′ n̄ are determined by [14] as

〈s′|q∆
′ n̄|s〉=

s′

s

∆′ =
λ

(1− q)1−2∆′

Γq(∆′ ± is± is′)

Γq(2∆′)
. (99)
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Next we discuss the the generic lowest-weight representation. In this case one would like
to find a linear combination of states

|∆; sL , sR〉=
∑

nL ,nR

fnL ,nR
(sL , sR)|∆; nL , nR〉 , (100)

such that

HL|∆; sL , sR〉= E(sL)|∆; sL , sR〉 ,
HR|∆; sL , sR〉= E(sR)|∆; sL , sR〉 . (101)

Without solving for f explicitly, we can use results from [14] for the OTOC to determine the
matrix elements of the operator q∆

′ n̄. If we normalize the states so that

〈∆; s′L , s′R|∆; sL , sR〉=

s′L s′R

sRsL

∆ =
λ

(1− q)1−2∆

Γq(∆± isL ± isR)

Γq(2∆)

δ(s′L − sL)

ρ(sL)

δ(s′R − sR)

ρ(sR)
.

(102)

then

〈∆; s′L , s′R|q
∆′ n̄|∆; sL , sR〉=

s′L s′R

sRsL

∆
∆′ ∝

√

√

√

Γq(∆± is′L ± is′R)

Γq(2∆)

√

√

√

Γq(∆± isL ± isR)

Γq(2∆)

×

√

√

√

Γq(∆′ ± is′L ± isL)

Γq(2∆′)

√

√

√

Γq(∆′ ± is′R ± isR)

Γq(2∆′)

�

∆′ sL s′L
∆ sR s′R

�

q
q∆∆

′
.

(103)

Here the {· · · }q is the 6 j symbol of Upq(sl2) [14,29,30].
Note that the chord algebra implies a variety of non-trivial identities involving the 6j sym-

bol. Perhaps the simplest identity is just (30), which yields

(E(s′L)−E(sL))(E(s
′
R)−E(sR))∂

′
∆〈∆; s′L , s′R|q

∆′ n̄|∆; sL , sR〉
�

�

∆′=0 = 2〈∆; s′L , s′R|q
∆′ n̄|∆; sL , sR〉
�

�

�

∆′=1
.

(104)
We verified this identity numerically for ∆ > 0 in the triple scaling limit (using the q = 1 6 j
symbol) and also at q < 1 in the short irrep.

Why does this 6 j symbol appear in these formulas for representations of the chord algebra?
In the JT gravity limit, one way to explain this is to back off the gauge-invariant formalism
and use the boundary-particle formalism, where the Hilbert space of JT gravity consists of

(HL ⊗HM ⊗HR)/sl2 , (105)

where HL and HR represent the left and right boundary particles, and HM represents the
bulk matter, see [10]. This system is acted on by a sl2 gauge symmetry that corresponds to
simultaneous translations or rotations of all three systems within the background hyperbolic
space. In this formalism, the cubic vertex represents a state in (105) of the schematic form

sRsL ∆
∝
∑

mL ,m,mR

�

sL ∆ sR
mL m mR

�

|sL , mL〉 ⊗ |∆, m〉 ⊗ |sR, mR〉 , (106)
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where to make an sl2-invariant state, we have contracted with the “3 jm symbol” (essentially
a Clebsch-Gordan coefficient) for the appropriate representations of sl2. The proportionality
constant can depend on sL ,∆, sR but not the m variables. The four cubic vertices in (103) are
contracted together in a pattern so that these 3 jm symbols give a 6 j symbol. So we see that
the 6 j symbol can be explained in a nice way using the sl2 bulk gauge symmetry.10 In the case
of double-scaled SYK, perhaps the q-deformed 6 j symbol could be nicely explained in some
formulation of the system with Upq(sl2) gauge symmetry, see [32,33].

3.5 Chord blocks

We have shown that a general 2-particle state in the Hilbert space may be decomposed into
chord irreps. More generally, we expect that any state with an arbitrary number of particles
can be decomposed into irreps. The general algorithm for performing such a decomposition
is illustrated in the case with m = 5 matter chords (say all distinct for simplicity). We can
view such a state as being obtained from applying δ on two m = 2 particle states as in (36).
We then perform the decomposition of both m = 2 states to irreps. So we are left with a 3
particle state. Then we view the 3 particle state as resulting from applying δ on the short
representation and a 2 particle state. We decompose the 2-particle state into irreps and we
finally decompose the resulting 2 particle state into irreps. Of course, there may be choices
in what ordering one performs the decomposition. The final answer will be the same, as
guaranteed by co-associativity (31).

The structure of the chord Hilbert space is thus a direct sum over irreps of the chord al-
gebra. Furthermore, a general correlation function may be computed by knowing the fusion
coefficients between different chord primaries. In general, we can reduce an m-pt function to
an (m−1)-pt function by inserting a resolution of the identity 1=

∑

∆Π∆. We refer to matrix
elements of Π∆ as chord blocks. An explicit formula for the 4-pt blocks has been obtained
in [30,34], see Appendix A of [30] for an explicit definition of the Askey-Wislon polynomials
Pn:



∆V ,∆W , sL , s′M , sR

�

�Π[VW]n |∆V ,∆W , sL , sM , sR〉= P∆V ,∆W
n (sL , s′M , sR|q)P∆V ,∆W

n (sL , sM , sR|q) ,
(107)




∆W ,∆V , sL , s′M , sR

�

�Π[VW]n |∆V ,∆W , sL , sM , sR〉= γ̃nP∆W ,∆V
n (sL , s′M , sR|q)P∆V ,∆W

n (sL , sM , sR|q) ,
(108)

where
γ̃n = (−1)nqn(∆V+∆W )+n(n−1)/2q∆V∆W . (109)

Here we are simply explaining the Hilbert space interpretation of this formula. The factor γ̃n
in (108) is explained in Appendix F (F.9) and comes from 〈[VW]n|[WV]n〉. By cutting the

10A somewhat different derivation using the the formulation of JT gravity as an sl2 BF theory [31] shows that
the Γ function factors also have an sl2 representation theory origin.
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OTOC in two different ways11 , one may decompose the 6j symbol into chord blocks [30]:

sL

s′M

sR

sM

V1 W2

V2W1

=
∞
∑

n=0

γ̃n sL

s′M

sR

sM

V1 W2

V2W1

n =
∞
∑

n=0

γ̃n

s′M

sR

sM

sL

W2

V2W1

V1

n

(111)
This crossing symmetry of the chord blocks arises from the coassociativity of the coprod-
uct (31). In particular, we can consider a slicing of the above diagrams in such a way
that we view the correlator as an overlap between a 3-particle state and a 1-particle state
〈VWVW〉= 〈V1|W1V2W2〉. Then we can either decompose V2W2 first or W1V2 first.

Stated more formally, we can apply the map δ−1
W,1 |W1V2W2〉 = |ψ〉 ⊗ |V2W2〉 where |ψ〉

is a state with no matter particles (in the short irrep). Then we may decompose the state
|V2W2〉=
∑

n γn |[VW]n〉 into 1-particle irreps.

|W1V2W2〉= δW ·δ−1
W,1 |W1V2W2〉=

∑

n

γnδ(|ψ〉 ⊗ |[VW]n〉) =
∑

n

γn |W[VW]n〉

= δW ·δ−1
W,2 |W1V2W2〉=

∑

n

γ′nδ(|[WV]n〉 ⊗
�

�ψ′
�

) =
∑

n

γ′n |[WV]nV〉 . (112)

For the TOC, we also have an analogous decomposition:

∞
∑

n=0

sL

s′M

sR

sM

∆V ∆W

∆W∆V

n =
∞
∑

n=0

s′M

sR

sM

sL

∆W

∆W∆V

∆V

1 (113)

Here the “chord identity block” 1 is the sum over states that appear in the short irrep, e.g.,
states with no matter chords. These chord blocks are similar to the Virasoro block in 2D CFT
in that they sum insertions of the “stress tensor” HL and HR (these are included in the “chord
descendants”). Note also that by taking the triple scaling limit, we can have also explained the
Hilbert space meaning of the “JT blocks” that appeared in [30]. This applies in any situation
where JT gravity is relevant, beyond just the SYK model.

4 The semiclassical limit and the fake disk

In this section we will consider the limit λ→ 0 (or q→ 1) holding fixed the inverse tempera-
ture:

λ→ 0 , holding fixed β . (114)

11As a check, [30] Appendix C.1 considered the semiclassical limit of these JT blocks in the special case∆V =∆W .
They obtained OPE coefficients (see their equations C.1, C.2, and C.25)

cn =
Γ (2∆+ n)2Γ (4∆+ n− 1)
Γ (n+ 1)Γ (4∆+ 2n− 1)

. (110)

This agrees precisely with our equation (F.14) setting ∆W =∆V =∆.
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This is a semiclassical limit of the model, in which fluctuations are small. For example, if we
expand the thermofield double state in chord states with n chords, then the mean value of n
diverges, but ℓ ≡ λn remains finite and becomes sharply peaked, with fluctuations of order
λ1/2. So we can also think about the limit directly in terms of the chord Hilbert space as

{λ→ 0, n→∞} , holding fixed ℓ= λn̄ . (115)

For some purposes (like computing 〈H〉) one would need to keep track of the small fluctuations
in ℓ when comparing the limits (114) and (115). However, for studying the U(J) algebra and
some of its consequences, we will be able to ignore this.

We would like to determine the location of the peak in the distribution for ℓ, as a function of
β (or equivalently, the operator size of the square root of the density matrix [27] see also [35]).
One can use the fact that the limit λ→ 0 of double-scaled SYK is equivalent to the ordinary
large N limit of the SYK model, with p taken large after N .12 It is convenient to parametrize
β using a parameter v between zero and one

πv
β
= cos

πv
2

. (116)

Here v = 0 corresponds to high temperature (small β) and v = 1 corresponds to low tempera-
ture (β =∞). This looks like a strange way to parametrize β , but it simplifies some formulas.
In particular the two point function of SYK fermions is [7]

〈ψ(τ)ψ(0)〉= eg(τ)/p , g(τ) = 2 log
cos πv

2

cos[πv
2 (1−

2τ
β )]

. (117)

The fundamental fermionψ fields are matter operators with dimension∆= 1/p, and the two
point function (117) determines the typical number of chords intersected by a matter chord
passing between two boundary points 〈ψψ〉 = rn = e−∆ℓ = e−ℓ/p. This implies that ℓ = −g.
The parameter n̄ in (115) should be compared to the number of chords intersected on the
t = 0 slice, −λn̄= g(β/2) = 2 log cos πv

2 , so

ℓ≡ λn̄= −2 log cos
πv
2

, or equivalently c ≡ e−ℓ/2 = cos
πv
2

. (118)

This is the desired relationship between the length ℓ and the temperature (parametrized by
v). As an application of this, one can use thermodynamic formulas for the large N large p SYK
model to find

〈H〉= −
2
λ

sin
πv
2
= −

2
λ

p

1− c2 . (119)

So, in particular, the low-energy low-temperature limit of SYK corresponds to c → 0, and the
infinite temperature limit where the energy vanishes corresponds to c→ 1.

Let’s now consider a thermofield double state with an operator of dimension∆ inserted at
some location in the Euclidean preparation. This state can be expanded in the chord Hilbert
space in terms of the states |∆; nL , nR〉:

βR/2

βL/2
= e−

βL
2 HL−

βR
2 HR |∆; 0, 0〉=

∑

nL ,nR

Ψ(βL ,βR→ nL , nR)|∆; nL , nR〉 . (120)

12A more general statement is that the expansion in powers of λ coincides with the ordinary 1/N expansion
of the SYK model, with p taken large in each term. Concretely, the leading power of p in each term of the 1/N
expansion is such that it becomes an expansion in p2/N ∝ λ. One way to see this is to use the collective field
description of the SYK model in the large p limit (Appendix H).
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The wave function Ψ on the RHS can be obtained by writing HL and HR in terms of oscillators
and then using the explicit representation (61) to act on the state. Each time we act with HL
or HR we have some amplitude to change nL , nR by one unit. So preparing Ψ can be regarded
as a biased random walk problem, and in the semiclassical limit the number of steps will be
large, of order 1/λ. This means that the variables λnL and λnR will be sharply peaked around
mean values that depend on βL ,βR, with fluctuations of order λ1/2.

It is convenient to parametrize nL and nR by

ℓ= λ(nL + nR +∆) , x = λ
nL − nR

2
. (121)

We will leave ℓ implicit and write a single-particle state as

|∆; nL , nR〉 → |x〉 . (122)

The distribution for the length ℓ will be sharply peaked around the value (118), and based on
the above argument the distribution for x will also be sharply peaked, around a value that we
will determine later.

4.1 Semiclassical limit of the U(J) algebra

The chord algebra simplifies in this limit, in particular the U(J) algebra becomes a rescaled
version of the ordinary sl2 algebra. To derive this, it is important to keep in mind how different
operators scale in the semiclassical limit. The number of chords, the Hamiltonian, and the
oscillators are all large:

n̄∼ λ−1 , H ∼ λ−1, a∼ λ−1/2 . (123)

Here the notation O ∼ λp means that acting on a normalized state, ∥O|ψ〉∥ scales as λp.
We will be interested in states with only an O(1) number of matter chords, each with O(1)
dimension ∆. Acting on such states, combinations of operators that would vanish without
matter remain small:

HL −HR ∼ 1 , Ji j ∼ 1 , (aL − aR)∼ λ1/2 . (124)

The fact that the Ji j operators are of order one allows us to simplify their algebra (47) by
replacing q-commutators [J , J]q with ordinary commutators. The error in this approximation
is schematically (1− q)J2 ∼ λ. One can also remove the one explicit factor of 1/q in the first
line of (47). With these simplifications, the Ji j algebra becomes an ordinary Lie algebra. It
simplifies even further once we realize that there is a central element that can be approximated
as zero:

JLR + JRL − JLL − JRR = (aL − aR)
†(aL − aR)

∼ λ .
(125)

There are three remaining linear combinations of Ji j operators, and they can be parametrized
by the combinations E, B, P in (48). In terms of these generators, the simplified Ji j algebra
becomes a rescaled sl2 algebra. In particular, after defining the generators B,E,P by

B =
p

1− c2B , E = E , P =
p

1− c2P , (126)

the algebra is the standard sl2 algebra

[B,P] = iE , [E,P] = iB , [B,E] = iP . (127)

We emphasize that this is true even for c > 0, i.e. nonzero temperature.
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4.2 Semiclassical limit of single particle representations of the U(J) algebra

We would like to work out how these generators act on single-particle states. To do so, we can
start with the exact formulas

(1− q)JLL = c2 − qnL + a†
LαR

�

rqnL − c2
�

,

(1− q)JLR = rqnR − 1+ a†
LαR (1− qnR) ,

(128)

together with their images under L ↔ R. Let’s consider these operators acting on a single
particle state |nL , nR〉 → |x〉 in the semiclassical limit. The a†

LαR operator shifts the value of x
by a small amount λ, and if this operator acts on superposition of states that is smooth in x ,
we expect to be able to approximate this using a formal derivative operator ∂̂x :

a†
LαR|x〉= |x +λ〉 → |x〉+λ∂̂x |x〉 , (129)

a†
RαL|x〉= |x −λ〉 → |x〉 −λ∂̂x |x〉 . (130)

We also write
qnL = ce(λ∆−x)/2 , qnR = ce(λ∆+x)/2 . (131)

Substituting these into (128) and expanding to leading order in λ, we find

P = −ic∆ sinh x + i(1− c cosh x)∂̂x ,

B =∆ sinh x − (c − cosh x) ∂̂x ,

E =∆ cosh x + sinh x ∂̂x .

(132)

Using [∂̂x , x] = 1, one can check that these satisfy the algebra (127) after the rescaling (126).
The fact that a and a† are Hermitian conjugates with respect to the chord inner product

implies that E, B, P should be Hermitian. This gives three differential equations that the inner
product must satisfy, for example for the B generator the condition is

�

∆ cosh x ′ + sinh x ′∂ ′x
�

〈x ′|x〉= (∆ cosh x + sinh x∂x) 〈x ′|x〉 . (133)

One can check that the following is a solution to all three equations (and in appendix B we
verify that it is the correct solution)

〈x |x ′〉= [n]!

�

(1− c2)/2

cosh x−x ′
2 − c cosh x+x ′

2

�2∆

. (134)

The overall normalization was obtained from considering the limit x = x ′ = log c2 which
corresponds to the particle “all the way to the right”. Then we may delete the matter chord
and match to the 0-particle inner product to find [n]!. As a sanity check, we may also consider
the case x = −x ′ = log c2. This gives 〈x |x ′〉= [n]!c2∆. The factor c2∆ = e−∆ℓ is expected since
the configuration is equivalent to inserting two operators on opposite sides of the wormhole.

To understand the B, E, P generators better, we would like to convert (132) to a formula
for matrix elements in states created by operator insertions at definite locations within the
thermal cirlce, e.g.

〈O(θ2)EO(θ1)〉= (135)
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Here the coordinate θ = 2πτ/β has been defined so that the thermal circle of size β has a
total angle 2π. In the configuration sketched above, θ1 is negative and θ2 is positive. The E
operator insertion can be viewed as acting on the ket, moving the location of the insertion at
θ1 slightly.

To write the answers for the matrix elements of B, E, P, it is useful to map the thermal
circle to an extended “fake circle” as shown here

(136)
The fake circle is parametrized by a coordinate φ, and there are two maps that connect the
fake circle to the physical circle – one for operators in the bra and one for operators in the ket:

ket: φ1 +
π
2 = v(θ1 +

π
2 ) , (137)

bra: φ2 −
π
2 = v(θ2 −

π
2 ) . (138)

The images of the top and bottom halves of the physical circle under this map are shown
as solid lines in the rightmost figure of (136). Note that because of the factor of v
these two solid portions do not cover the full fake circle. The “physical” regions are
φ2 ∈

π
2 [1− v, 1+ v],φ1 ∈ −

π
2 [1+ v, 1− v].

In terms of this coordinate, it turns out that the rescaled B,E,P generators simply act as
the standard sl2 generators on the fake circle:

〈O(θ2)BO(θ1)〉= ∂φ1
〈O(θ2)O(θ1)〉 ,

〈O(θ2)EO(θ1)〉= (cos(φ1)∂φ1
−∆ sinφ1)〈O(θ2)O(θ1)〉 ,

〈O(θ2)PO(θ1)〉= i(sin(φ1)∂φ1
+∆ cosφ1)〈O(θ2)O(θ1)〉 .

(139)

To derive this, one uses (127) together with a relationship between the |x〉 states and states
with a particle inserted on the boundary at location φ. We will refer to such states as

|φ〉=O(θ (φ))|TFD〉 . (140)

As discussed above, the wave function for |φ〉 is sharply peaked as a function of ℓ and x , and
one can figure out the the location of the peak by matching the two point function (134) to
the two point function of the large p SYK model (117). These two inner products are

〈x ′|x〉= [n!]

�

(1− c2)/2

cosh x−x ′
2 − c cosh x+x ′

2

�2∆

, 〈φ′|φ〉=





c

sin
�

φ′−φ
2

�





2∆

, (141)

and their compatibility determines

|φ〉 ∼
1
p

[n!]

�

2c
c + sin(−φ)

�∆

|xφ〉 , (142)

where

cosh
�

xφ
�

=
1+ c sin(−φ)
c + sin(−φ)

. (143)

One can then directly show (139) from (127).
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4.3 Conformally covariant correlators

In this section we discuss a simple application of (139). The Hermiticity of the E, B, P gener-
ators

〈Gχ,ψ〉= 〈χ, Gψ〉 , G ∈ {B, E, P} , (144)

implies sl2 covariance of correlation functions at leading order for small λ. For example, in
the context of the two point function 〈χ,ψ〉 = 〈O(θ2)O(θ1)〉, the RHS of (144) was written
in (139), and the LHS is

〈O(θ2)BO(θ1)〉= −∂φ2
〈O(θ2)O(θ1)〉 ,

〈O(θ2)EO(θ1)〉= −(cos(φ2)∂φ2
−∆ sinφ2)〈O(θ2)O(θ1)〉 ,

〈O(θ2)PO(θ1)〉= −i(sin(φ2)∂φ2
+∆ cosφ2)〈O(θ2)O(θ1)〉 .

(145)

Equating (139) and (145) gives the usual constraints of sl2-covariance of the two point func-
tion, with the unique solution

〈O(θ2)O(θ1)〉=
const.

sin2∆(φ2−φ1
2 )

. (146)

This matches the two point function in the large p SYK model [7] written in the φ coordinate.
This may not be very impressive, since we used this form of the two point function in deriving
the relationship between |φ〉 and |x〉 that led to (139), but we can now go further and try to
apply similar logic to the four point function.

Choosing 〈χ,ψ〉 = 〈W4V3V2W1〉 or 〈χ,ψ〉 = 〈V3W4V2W1〉 does not lead to much, because
for small λ these four point functions factorize into a product of two point functions. However,
there are related quantities 〈[W4, V3][W2, V1]〉 and 〈{W4, V3}[W2, V1]〉 for which the factorized
contribution vanishes.13 The leading order answer then appears at order λ and is a nontrivial
function of the positions that can be computed using the Streicher formula [8, 9]. Since we
are studying correlators at order λ, we need to be a bit careful with the constraint (144). We
can write it as

〈Gcχ,ψ〉+ 〈(G − Gc)χ,ψ〉= 〈χ, Gcψ〉+ 〈χ, (G − Gc)ψ〉 , (147)

where Gc is the leading small λ expression, which is a sum of the operators in (139) or (145)
acting on each of the operator insertions independently. G −Gc is the difference between this
expression and the exact generator, and it will involve an explicit factor of λ in the small λ
limit. In the case where both χ and ψ states are commutators, with norms of order λ1/2, then
the terms involving Gc will be of order λ, but the terms involving (G − Gc) will be smaller
becuase

|〈(G − Gc)χ,ψ〉| ≤ ∥(G − Gc)χ∥∥ψ∥ , (148)

and if both χ and ψ are commutator states then ∥ψ∥ is of order λ1/2 and ∥(G−Gc)χ∥ will be
at most of order λ because of the explicit factor of λ in G − Gc . So (147) implies conformal
covariance of the O(λ) term in 〈[W4, V3][W2, V1]〉. However, if χ is a commutator state and ψ
is an anticommutator (with norm of order one) we cannot obviously use (148) to show the
LHS is smaller than order λ, and we cannot easily show conformal covariance of the leading
order 〈{W4, V3}[W2, V1]〉.

13Here by the commutator or anticommutator, we mean to change the operator ordering of the operators but
leave them at the same positions; most of the orderings will involve timefolds and for purely Euclidean positions
these will be Euclidean timefolds.
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These expectations are borne out by the Streicher formula for the leading connected con-
tribution to the four point function in large p SYK [8,9]. This formula leads to the conformally
covariant double commutator

〈[W2, V4][V3, W1]〉
〈W2W1〉〈V4V3〉

= 2λ∆W∆V
1+χ
1−χ

, χ =
sin φ13

2 sin φ42
2

sin φ14
2 sin φ32

2

, (149)

and the non-conformally covariant commutator-anticommutator:

〈{W2, V4}[V3, W1]〉
〈W2W1〉〈V4V3〉

= 2λ∆W∆V tan
�

πv
2

�2sin φ13
2 cos φ24

2 −φ13 cos φ12
2 cos φ34

2

sin φ12
2 sin φ34

2

. (150)

It is interesting that in addition to being sl2 invariant, the RHS of the double commutator ex-
pression (149) is completely independent of temperature once we write it in terms of the φ
coordinate. Presumably this is because the full chord algebra dictates the temperature depen-
dence.

4.4 Exploring the fake region

In this section we discuss the interpretation of the “fake circle.” On the one hand, this is
just a mapping of coordinates that simplifies the action of the B, E, P generators. But it has
an interesting property that the image of the thermal circle covers only a subset of the φ
coordinate (the solid lines in (136)). What is the interpretation of the extra “fake” regions
(dotted lines)?

One can clarify this by using the B, E, P generators to mover an operator insertion into the
fake region. For example, in the λ→ 0 limit, the boost operator B = sin

�

πv
2

�

B acts as

e−aB|φ1〉= |φ1 − a〉 . (151)

If φ1 starts out in the physical region, meaning the image of −π < θ1 < 0 under the map
(137), then by acting with a sufficiently large negative a, we can leave the physical region:

fake: (152)

In terms of the original thermal boundary, this corresponds to a state with a timefold of Eu-
clidean time:

physical: (153)

Euclidean timefolds include factors of e+τH , and for systems with unbounded Hamiltonians
(like double-scaled SYK in the limit λ → 0) the resulting state may not be normalizable. In
the present case, the norm of the state is a two point function of O operators and in terms
of the φ coordinate of the fake circle, the two operators will be located at ±φ1. The formula
(146) implies that this norm will remain finite as long as φ1 remains negative – even if θ1 is
positive. In other words, the state remains normalizable as long as we don’t have to introduce
a Euclidean timefold to represent the correlator in the fake circle.

So the fake region represents the fact that the two point function on the physical circle
does not diverge when operators approach each other. Operators can be smoothly continued
past this point into a region described by timefolds of the physical circle or the dotted portion
of the fake circle.
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It is interesting to ask what happens to the wave function of the state, expressed in the
chord basis, when we translate the matter particle into the fake region. To analyze this, it is
convenient to act with the generator B + E, because it can be diagonalized explicitly. Then
we consider a state where the operator insertion starts out at the extreme end of the physical
region, to the right of all of the Hamiltonian chords. In this chord Hilbert space |nL , nR〉, this
corresponds to the state |n, 0〉. We can act on this and produce a new state

e−a(B+E)|n, 0〉=
n
∑

nL=0

ψnL
(a)|nL , n− nL〉 . (154)

The explicit formula for ψ is (see Appendix E)

ψnL
(a) =

n
∑

m=nL

(−1)mq
m(m−1)

2 +n∆(q1+m; q)∞
(q1+n; q)∞(q; q)n−m

× e−a qn−m−c2

(1−q)c × (−1)nL q
nL (nL−1)

2 −nL(m−1)−nL∆

�

m
nL

�

q
.

(155)
For a = 0, this wave function is supported entirely on nL = n. For a > 0 the operator translates
the particle back into the physical region, and for this case we get a smooth wave function
peaked at a location that depends on the value of a. For a < 0, the operator ought to move the
particle into the fake region. In this case, what happens concretely is that the wave function
becomes large and rapidly oscillating, with a sign that depends on the parity of nL . Below we
plot the answer for the case n= 100, c = 3/10, ∆= 1, a = ±2/10:

20 40 60 80 100
nL

-0.05

0.05

ψ

a > 0

20 40 60 80 100
nL

-5×1016

5×1016

ψ

a < 0

(156)
The wave function in the a < 0 region is a bit impractical to work with, but it does reproduce
the predictions of the fake circle. For example, one can use this oscillating wave function and
the inner product 〈n, 0|nL , n−nL〉 to compute 〈n, 0|e−a(E+B)|n, 0〉, and in Appendix E we show
explicitly that

lim
n→∞
c fixed

〈n, 0|e−a(E+B)|n, 0〉
〈n, 0|n, 0〉

=

�

c2e−ca/2

1− (1− c2)e−ca

�2∆

. (157)

The formula on the RHS is precisely the answer predicted by acting with the sl2 generators on
the fake circle (see Appendix D).

A mathematical interpretation of the fake region is that it represents a subtlety in the
λ→ 0 limit of the microscopic chord Hilbert space: acting on smooth states with exponentiated
approximate sl2 generators, we can produce rapidly oscillating states that one might have been
tempted to ignore in the λ→ 0 limit. The fake circle offers a smooth way to parametrize these
states and to represent their inner products and sl2 representation. As an analogy, we can
consider the famously tricky problem of putting chiral fermions on a lattice. Naive attempts
to make only right-moving fermions on the lattice will typically result in making left-moving
fermions, where the left movers involve wavefunctions that are oscillating on the lattice scale.
This is because the dispersion relation E ∼ sin(λp) looks linear near p ∼ 0 but also near
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p ∼ π/(2λ) The infrared limit of the system involves not just smooth wavefunctions, but also
involves states that are oscillating on the lattice scale. The left-movers are analogous to the
states in the fake region.

4.5 Lyapunov exponent and Pomeron/scramblon operator

In this section we use the sl2 algebra (127) to derive the finite-temperature Lyapunov exponent
of double-scaled SYK. Using λ1/2HL = aL + a†

L and λ−1/2[HL ,ℓ] = aL − a†
L , one can write the

following exact formula for the B generator (48):

e−ℓ/2B = λ
H2

L −H2
R

4(1+ q)
−

1
λ

[HL ,ℓ]2 − [HR,ℓ]2

4(1+ q)
. (158)

We would like to write an approximate version of this equation for small perturbations to the
thermofield double state. To do so, we write

HL/R = −
2
p

1− c2
p

(1− q)λ
+δHL/R ,

ℓ(τL ,τR) = 2 log
cos(c(τL +τR))

c
+δℓ(τL ,τR) .

(159)

Here, the first terms on the RHS are the expectation values in the thermofield double state,
evolved forwards by time τL on the left and τR on the right. In principle one can use this to
approximate the B operator acting at general times τL ,τR, but the answer is simplest if we
restrict to the t = 0 slice at τL = τR = 0, because the [HL/R,ℓ]2 terms then do not contribute
because ∂L/Rℓ vanishes at zeroth order in the configuration τL = τR = 0. In terms of the
rescaled generator

p
1− c2B= B, one finds that to first order in δH and δℓ

2cB= HR −HL . (160)

We derived this as a formula for B, but it is actually useful in reverse, as a formula for
HR−HL . This is because the sl2 algebra for the B,E,P operators implies that adjoint action of
the B operator has the following eigenvalues and eigenvectors

i[B,P±] = ∓P± , P± = E±P . (161)

So (160) implies that the operator P− grows exponentially under time evolution

ei(HR−HL)tP−e−i(HR−HL)t = e2c tP− . (162)

This suggests that the Lyapunov exponent is λL = 2c = 2πv/β , which is indeed correct [7].
The leading growing operator in the Regge limit is sometimes referred to as the “Pomeron”

(or in the thermal case the “scramblon”), and the above computation identifies it in large p
SYK as the P− operator. (If we reversed the sign of t, the growing operator would be P+.)
The proof of the chaos bound implies that these P± operaturs must be positive operators that
annihilate the thermofield double state. A special feature in the present context is that P± act
as sl2 symmetry generators on the fake circle. This is a familiar in the JT limit, but we have
seen here that it is also true at finite temperature in large p SYK.

4.6 Two-sided OPE and the Streicher formula

In this section we will use the B, E, P generators (plus energy fluctuations) to reproduce a
formula for the connected four-point function of fermions in the large N large p SYK model
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[8, 9]. To begin, we use λ1/2HL = aL + a†
L and λ−1/2[HL ,ℓ] = aL − a†

L , to write the following
exact formula for the E generator (48):

e−ℓ/2E = −λ
H2

L +H2
R

4(1+ q)
+

1
λ

[HL ,ℓ]2 + [HR,ℓ]2

4(1+ q)
+

1− e−ℓ

1− q
. (163)

One can approximate this equation by substituting in (159) and expanding to first order. When
acting on the t = 0 slice with τL = τR = 0, one gets the simple equation

E =

p
1− c2

2c
(δHL +δHR) +

c
λ
δℓ . (164)

This is closely related to the Maldacena-Qi Hamiltonian [25]. We would like to derive a similar
equation for general times τL ,τR. To start, it is helpful to write the formula (163) more
explicitly for general times:

e−
1
2 ℓ(τL ,τR)E(τL ,τR) = −λ

H2
L +H2

R

4(1+ q)
+

1
λ

(∂Lℓ(τL ,τR))2 + (∂Rℓ(τL ,τR))2

4(1+ q)
+

1− e−ℓ(τL ,τR)

1− q
.

(165)

Here τL and τR are measured from the horizontal t = 0 slice that crosses the thermal circle.
It will be convenient to change coordinates to

τ+ = τR +τL , τ− = τR −τL . (166)

In particular, τ+ is conjugate to (HR+HL)/2 and τ− is conjugate to (HR−HL)/2. Let’s start by
working out the time dependence of the E(τL ,τR) operator. Eq. (164) implies that E = E(0, 0)
commutes with HL +HR, so E(τL ,τR) is independent of τ+. Its remaining dependence on τ−
can be worked out using (160):

E(τL ,τR)≈ e
τ−
2 (HR−HL)Ee−

τ−
2 (HR−HL) (167)

≈ ecτ−BP
+ +P−

2
ecτ−B (168)

≈
P+eicτ− +P−e−icτ−

2
. (169)

Here and elsewhere, operators E,P±,B without time arguments are assumed to be at
τL = τR = 0.
Substituting this together with the first-order expansions (159) into the equation for E(τL ,τR)
(165) gives a differential equation for δℓ:

1
λ

�

c
cos2(cτ+)

− tan(cτ+)∂τ+

�

δℓ(τL ,τR) =
P+eicτ− +P−e−icτ−

2cos(cτ+)
−
p

1− c2

2c
(δHL +δHR) .

(170)
The solution to this equation is

δℓ(τL ,τR) = λ

�

P+eicτ− +P−e−icτ−

2c cos(cτ+)
−
p

1− c2

2c2
(1+ cτ+ tan(cτ+))(δHL +δHR)

�

+
tan(cτ+)

c
∂+δℓ(−

τ−
2 , τ−2 ) . (171)

The final term can be evaluated as follows:

∂+δℓ(−
τ−
2 , τ−2 ) =

1
2[HL +HR, e

τ−
2 (HR−HL)δℓ(0, 0)e−

τ−
2 (HR−HL)] (172)

= ∂τ+δℓ(0,0) + cλτ−B . (173)
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In the final step we used (49). Higher powers of τ− will multiply terms proportional to
[HL +HR, E] which vanishes due to (164).

So we have the following formula for the fluctuation in the ℓ operator as a function of
time:

δℓ(τL ,τR) = λ

�

P+eicτ− +P−e−icτ−

2c cos(cτ+)
+
p

1− c2 tan(cτ+)τ−B

−
p

1− c2

2c2
(1+ cτ+ tan(cτ+))(δHL +δHR)

�

+ ∂+δℓ(0, 0)
tan(cτ+)

c
.

(174)

This can be regarded as a type of OPE that expresses two-sided correlators (which are functions
of ℓ) in terms of operators with simple time dependence under boost evolution by HR − HL .
Note that this is different from a more conventional one-sided OPE. In some respects this is
similar to the light-ray OPE in conformal field theory [36,37].

In particular, this OPE allows us to compute out of time order correlators. (In Appendix
G, we will use similar ideas to compute the O(λ) corrections to the time-ordered correlators.)
We will illustrate this by computing the OTOC in the following configuration:

VT

VB

WRWL
= 〈W(β2 −τL)V(

β
4 −

τ′+
2 )W(τR)V(−

β
4 +

τ′+
2 )〉

= 〈WLVTWRVB〉

= 〈VT |e−∆W ℓ(τL ,τR)|VB〉 .

(175)

The O(λ) part of the connected correlator is

〈VT |e−∆W ℓ(τL ,τR)|VB〉c
〈VTVB〉〈WLWR〉

= −∆W
〈VT |δℓ(τL ,τR)|VB〉c

〈VTVB〉
. (176)

This can be evaluated using (174). The terms on the first line reduce to expectation values of
the E,B,P generators in a single particle state (139):

〈VT |P±|VB〉
〈VTVB〉

=
∆V

cos
�

cτ′+
� ,

〈VT |B|VB〉
〈VTVB〉

=∆V tan
�

cτ′+
�

. (177)

The final term involving 〈∂+δℓ(0,0)〉 vanishes because this operator is odd under a reflection
of the vertical direction on the page, while the configuration of V operators is even under this
reflection.

It remains to calculate a term involving 〈VT |(δHL+δHR)|VB〉. To do this, we can use (174)
a second time, this time applied to the VT , VB operators. The terms involving the P± and B
generators vanish because the the only other operator insertion is the Hamiltonian, and the
generators vanish on states with no matter insertions. The term involving ∂+δℓ(0,0) will
contribute in an equal an opposite way to the δHL and δHR terms, so it will also vanish. All
that remains are the terms involving δH, which combine to

〈VT |(δHL +δHR)|VB〉c
〈VTVB〉

= 2λ∆V

p
1− c2

c2
(1+ cτ′+ tan
�

cτ′+
�

)〈(δH)2〉 . (178)
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To evaluate this energy fluctuation, we can use the thermodynamics of the large p SYK model.
As a function of the energy H, the action for the thermal partition function is

I(H) = βH + S(H) (179)

= βH +
2
λ

arcsin2
�

λH
2

�

, (180)

where we used (H.19). We choose a value of β so that the saddle point value of H is equal to
− 2
λ

p
1− c2. Then one can check that the action to quadratic order is

I =
2arccos(c)

λc

�

− 2
p

1− c2 + c arccos(c)
�

+
λ

2c3

�

c +
p

1− c2arccos(c)
�

(δH)2 + . . . (181)

This implies that the variance of the energy fluctuations is

〈(δH)2〉=
c3

λ(c +
p

1− c2arccos(c))
. (182)

Putting the pieces together, we find

〈WLVTWRVB〉c
〈VTVB〉〈WLWR〉

= λ∆W∆V

�

−
cos(cτ−)

c cos(cτ+) cos
�

cτ′+
� −
p

1− c2 tan(cτ+) tan
�

cτ′+
�

τ−

+
1− c2

c2 + c
p

1− c2arccos(c)
(1+ cτ+ tan(cτ+))(1+ cτ′+ tan

�

cτ′+
�

)

�

.

(183)

This agrees with [8, 9] once we use c = cos πv
2 . In Appendix G we use a similar method to

evaluate the TOC, also finding agreement.

4.7 Traversable wormhole protocol

The appearance of the generatorsP± in the OPE expansion of (174) is related to the traversable
wormhole protocol of Gao, Jafferis, and Wall [26]. In brief, one considers inserting a matter
perturbation at early Lorentzian times −t on the right and then acting with a 2-sided interac-
tion at t = 0. In the SYK context [38], a popular choice of interaction is

g
N

N
∑

α=1

(1+ iψL
αψ

R
α) =

gp
N

n̄=
g∆
2
ℓ , (184)

where ∆= 1/p is the dimension of a single fermion operator.
To analyze this problem, it is convenient to make a two-sided time translation to a frame

where the particle is inserted at t = 0 on the right, and the 2-sided interaction occurs at time
τR = it and τL = −it. Then we have τ− = 2it and τ+ = 0 so (174) gives

δℓ(−it,+it) = λ

�

P+e−2c t +P−e2c t

2c
−

1− c2

2c2
(δHL +δHR)

�

≈
λ

2c
P−e2c t . (185)

Here we have dropped terms that are subleading at large t; more precisely, we are working in
a limit where λ→ 0 and t →∞ holding fixed λ∆V∆e2c t . Using the fact that the P− operator
is an sl2 generator, and that operator insertions V(θ1) transform as primaries under this sl2,
we can compute (see Appendix D)

〈V(θ2)|e−iaP− |V(θ1)〉=





c

sin
�

φ2−φ1
2

�

+ i a
2 e

i
2 (φ1+φ2)





2∆V

, a =
λ

4c
g∆e2c t . (186)
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This is a limit of the twisted correlator computed in [27], see also [39]. (The states |V(0)〉 and
|V(π)〉 have unit norm, so the LHS can be interpreted as an overlap.)

We are interested in the case where the V signal is launched from the right boundary at
time zero, so θ1 = 0. We put the other V operator at time zero on the left boundary, so θ2 = π.
These correspond to φ1 = −(1− v)π2 and φ2 = π− (1− v)π2 and one finds

〈V(π)|e−iaP− |V(0)〉=

�

cos πv
2

1+ i a
2 eiπ2 v

�2∆V

. (187)

We will make two comments about this formula.
First, we discusss the phase of the term multiplying a. If we expand to linear order in a, the

term that appears should be i times an OTOC with one V and one W operator on each side of
the thermofield double. The phase of this correlator is determined by the Lyapunov exponent
and is related to the magnitude of inelastic effects in the 2→ 2 scattering problem, see [40]. In
the present case we can interpret the phase as due to the fact that on the fake circle where the
P− operator acts simply, the V operators are not inserted on the time-symmetric slice (right),
even though they are on the t = 0 slice of the original thermal circle (left):

V(0)V(π)
V(0)

V(π)
(188)

Second, we discuss the magnitude of the correlator (187). As a function of a, the absolute
value of this inner product has a maximum value of one, achieved at a∗ = 2 sin πv

2 . At this
point the RHS is exactly equal to e−iπv∆V , so the traversable wormhole protocol maps

e−ia∗P
−
VR|TFD〉= e−iπv∆VVL|TFD〉 . (189)

There is some sense14 in which the protocol works as well as possible, moving the bulk exci-
tation from the right side to the left. However, thermal fluctuations in the L system mean that
the signal cannot be recovered perfectly – for example in the case of infinite temperature (189)
holds with a = 0 and clearly no transmission takes place in that case. For more discussion on
this point, see [39].

4.8 The Hilbert space of large p SYK

In the q < 1 chord Hilbert space, we have seen that the entire chord Hilbert space (spanned
by multiparticle states) can be decomposed into irreps of the chord algebra. Each irrep is
associated to a special chord primary state |∆, 0, 0〉, see (57).

This two-sided state can equivalently be viewed as an operator; furthermore, in the q→ 1
limit such an operator will become an sl2 primary. To check this we may compute:

E |∆, 0, 0〉=
1
c
[n̄] |∆, 0, 0〉=

q−∆/2 − q∆/2

1− q
|∆, 0, 0〉 ≈∆ |∆, 0, 0〉 . (190)

Thus the Hilbert space in the large p SYK limit is a tensor product of wavefunctions of ℓ ≥ 0
and irreps of sl2. Clearly all operators which create single matter chords are primaries, but in
addition there are multi-particle, or “multi-trace” primaries. We discuss double-trace primaries
in Appendix F; here let us just outline the key points. First, by considering V (ε)W (−ε), we

14The perfect size winding condition in [41] implies an equation similar to (189).
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produce the “obvious” double trace primaries that one would expect if we had free fields
propagating on rigid AdS2. Indeed, to leading order in λ, the two pt function of V (ε)W (−ε)
just factorizes into the product of V V and WW correlators.

What is more interesting is that these are not all the double trace primaries. Indeed, one
can also consider [V (ε), W (−ε)] = V (ε)W (−ε) −W (−ε)V (ε). This is some state which we
depict as

[V(ε),W(−ε)] |0〉= eεHVe−2εHWeεH |0〉 − e−εHWe+2εHVe−εH |0〉 (191)

=
�

�

�

−
�

�

�

. (192)

Since the commutator removes the disconnected contribution, the leading 2-pt function of the
operator [V (ε), W (−ε)] comes from the Streicher formula (183), which we already processed
in (149). This can be expanded in a sum of conformal blocks:

〈[W2,V4][V3,W1]〉
〈W2W1〉〈V4V3〉

=
∑

k

c2
kF∆V ,∆W ,k(χ) . (193)

See (F.25) in Appendix F for details. The main point for us here is that one gets a sum over new
primaries that are distinct from the naive double trace primaries. As we explain in Appendix
F, such primaries are of the form (94) with [V,W]k for even k and {V,W}k for odd k. We refer
to this as [V,W}k. In the λ→ 0 limit, these primaries decouple from the naive VW primaries.
However, at order λ they are important: in section 5 of [40], the commutator operator [V,W]
was associated to the inelastic part of the final state that is produced in the scattering of V and
W particles. So an interpretation of these new primaries is that they are the inelastic states
that can be produced in scattering at order λ.

5 Discussion

5.1 Chords vs. bulk geometry

To what extent can one associate a (discrete) spacetime geometry to large p SYK and the
chord diagrams? One naive try would be to make a graph out of the intersecting chords by,
for example, drawing the chords as straight lines connecting equally spaced boundary points.
A typical resulting configuration is shown here for 400 chords with q = 0.98:

(194)

However, the decision to draw the chords as straight lines in flat space was arbitrary – a chord
diagram does not actually define a graph. It specifies which chords intersect, but it does not
specify in what order (along a given chord) these intersections take place. For example, there is
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a unique chord diagram for tr(O1O2O3O1O2O3), but we may draw it as two different graphs:15

≡ (195)

More formally, we can say that

chord diagrams= chord graphs/rearrangements, (196)

where the rearrangements are the Yang-Baxter moves (195).16

If we view the chord rearrangements as a kind of gauge symmetry, then one can try to
study aspects of a bulk geometry that are manifestly gauge invariant. An example of this is the
definition of the length between two boundary points, ℓ = λn̄. This is well-defined because
it does not depend on the order in which chords intersect. As shown in [17], the resulting
concept of ℓ is closely analogous to the length between boundary points in JT gravity.

One can study further aspects of chord “geometry” by picking a gauge. For example, con-
sider the case of a single matter particle. Then as we just said, the total length ℓ=λ(nL+∆+nR)
on a slice between two boundary points is gauge-invariant. However, the distance of the mat-
ter particle from the midpoint of this slice, x = λ(nL−nR)/2 is not gauge invariant, because it
depends on the ordering of the chords relative to the matter particle. In this paper we defined
the x operator using a gauge-fixing procedure where the chords are ordered along this slice
according to their boundary ordering within the “ket” boundary (which means the part of the
boundary below the slice). The hermitian conjugate x† would be defined using a gauge-fixing
where the chords are ordered as in the “bra” or top portion of the boundary.

This is just one possible definition of the x operator, corresponding to one particular gauge-
fixing. It has the advantage that this gauge-fixing can be used to define a chord Hilbert space
where the operators a†

L and HL act in a simple way. Its main disadvantage is that the resulting x
is not Hermitian, and states with different values of x are not orthogonal. This is because states
with the “ket” ordering have a nontrivial inner product with states with the “bra” ordering,
defined by the sum over ways these chords can pair together to complete the chord diagram,
see [17] and B.

15Here we define the graph by declaring all boundary operators and all intersections between chords to be
vertices. The edges are self-explanatory. On the LHS of (195), the green-red intersection has a graph distance of
2 from the upper red dot, whereas it has graph distance 1 on the RHS.

16Before we specify which “slice” we want to associate a Hilbert space, either of (195) are valid and we should
only count one. However, once we “slice” the chord diagrams by picking two points on the boundary, we are forced
to choose one or the other:

(valid). (197)

The following diagrams are examples of invalid chord arrangements:

(invalid). (198)

We have shown in gray the problem with these chord arrangements. On the left, the ket slice must be to the past
of the intersection between the green and red chord. But this forces it to intersect the blue chord twice. Similarly,
on the right of (198), the bra slice must intersect to the future of the green-red intersection, which forces a double
intersection with the blue chord. We see that adding the black dots (e.g. picking out a slice of the Hilbert space)
forces a rearrangement of the chord geometry.
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5.2 Properties of the x operator and its eigenstates

One consequence of the gauge-fixing we just described is that in the semiclassical limit, the
value of x is determined by the position of the matter operator in the ket portion of the bound-
ary. So although the x coordinate resembles the location of the matter particle along a bulk
slice, our gauge-fixing procedure relates the ordering of chords on this “bulk” slice to their
order on the boundary, so x actually behaves more like a boundary coordinate.

Another consequence of this gauge fixing (and in particular the fact that it makes x a non-
Hermitian operator) is that the expectation value of x can be surprisingly large. From the def-
inition x = λ(nL−nR)/2, it is clear that in the subspace with nL+nR = n held fixed, the eigen-
values of x are bounded by λn/2= ℓ/2= log(1/c), but the expectation value of x can be larger
than this. We can see this from (143): values of φ with −π < φ < 0 correspond to normaliz-
able states, and at the extreme ends of this range we have |x |= arccosh(1/c)> log(1/c). This
is not a contradiction with linear algebra, because the expectation value of a non-Hermitian
operator O is not bounded by its eigenvalues but instead by the square root of the eigenvalues
of O†O, see (B.19).

An interesting feature of states where |x | > ℓ/2 is that the distance between the particle
and one of the boundaries should become negative:

|x |< ℓ/2 , (199)

|x |> ℓ/2 . (200)

One can compute the distance from the particle to the boundary by computing 〈nR〉 in the
chord Hilbert space. Because nR is not Hermitian, the fact that its eigenvalues are positive
does not necessarily mean its expectation value must be. As a simple example of a 1-particle
state where 〈nR〉 is negative, consider

〈nR〉=
〈Ω |V (HR + ᾱHL)nR (HR +αHL)V|Ω〉
〈Ω |V (HR + ᾱHL) (HR +αHL)V|Ω〉

=
1+ rᾱ

1+αᾱ+ r(α+ ᾱ)
. (201)

For rᾱ < −1 this expectation value is clearly negative. As a more direct check, we numerically
computed the expectation value of various chord number operators nL , nR in the chord Hilbert
space with fixed but large total chord number n and found good approximate agreement with
(143).

There is a simple physical scenario where negative lengths arise, even in the regime where
JT gravity is expected to hold. We consider the thermofield double at early times tL= tR=−|t|.
Then we insert some operators on the left and right sides WLVRe−iHL tL e−iHR tR |TFD〉. We then
evolve this state forwards in time. This produces two particles in the wormhole that are di-
rected towards each other:

→ ←
(202)

As time progresses forwards, the two particles approach each other, the middle distance ℓM
shrinks:

→ ←
(203)

and the two (naively) pass through each other:

← →
(204)

However the last picture is not quite right. In particular, we are evolving with HL + HR or
perhaps the E generator, but acting on the chord Hilbert space, neither of these operators can
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change the ordering of the particles. The more accurate picture is that the wormhole gets
“folded”:

← →
(205)

The meaning of this picture17 is that the state of the wormhole is always a superposition of
chord states where the red matter particle is to the left of the blue matter particle. Furthermore,
we expect that 〈ℓM 〉 < 0 in this late time state, so that the total length 〈ℓL〉 + 〈ℓM 〉 + 〈ℓR〉 is
dictated by hyperbolic geometry.18

5.3 Inelastic states

In the scattering experiment that we just described, we can think of (202) as an in state, and
(204) as an out state. The scattered component of the final state will be the difference between
the out state and the time-evolved in state

|out〉 − S |in〉=
�

�

�

�

← →
·

−
�

�

� ← →
E

(206)

=

�

�

�

�

← →
·

. (207)

This contains both the elastic and inelastic component of the scattering, but the inelastic com-
ponent dominates in norm for small λ [40].19 At small λ, we expect this state can be expanded
purely in terms of [V,W}k irreps. It would be nice to understand these states better and to
see if there is a direct relationship to the phase in the traversable wormhole protocol discussed
in section 4.7. In string theory, the commutator state analogous to (207) would be a long
string [3]; the notation (207) is perhaps evocative of this.

5.4 Open questions

• Is there a formulation of double-scaled SYK in which the appearance of 6 j and 3 j symbols
of Upq(sl2) in the representation (103) is obvious? Based on the example of JT gravity,
perhaps this could be a formulation with some version of Upq(sl2) gauge symmetry. This
might also shed new light on the chord algebra, and in particular the subalgebra U(J)
which is isomorphic to a subalgebra of Upq(sl2).

• What is the lesson for more general systems with sub-maximal chaos? One possible
scenario in quantum mechanical systems is that there are both “fake disk” and “stringy”
effects that contribute, see Appendix J.

• The quantum algebra Uq(sl2) makes an appearance in 2D Liouville theory. The double
scaled theory is also related to an unconventional Liouville theory, see appendix H. It
would be interesting to explore this connection further.

• It would be nice to understand the fake geometry better. A concrete question is whether
there is a version of the fake circle/disk that holds in the semiclassical limit, but where
two or more operator insertions are heavy, e.g. holding r fixed in the λ→ 0 limit [8].

17This picture is reminiscent of zig-zag strings in [42]. Thanks to Juan Maldacena for pointing out this reference.
18In Appendix (B.4), we discuss a somewhat similar class of two-particle states which manifestly have negative

middle lengths. These states have the unusual property that although their middle lengths are negative, they have
nearly maximal overlap in the λ→ 0 limit with states with positive middle lengths. We explain there why this is
not in contradiction with linear algebra.

19In the Schwarzian approximation, the LHS of (149) vanishes to order O(1/C), see Section 4.2 of [43], where
1/C = 2λ.
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A Two other limits of the chord algebra

In the main text, we considered the limit

semiclassical: q→ 1, ℓ fixed . (A.1)

In this appendix we will discuss two other limits. First, we have a close relative of the semi-
classical limit, but where we also take the temperature low so that certain fluctuations (the
Schwarzian mode) remains quantum:

triple-scaling (JT): q→ 1, ℓ̃ fixed (ℓ̃≡ ℓ+ 2 logλ) . (A.2)

Second, we have a sort of opposite limit to the semiclassical limit. We refer to this as the long
wormhole limit:

long wormhole: q fixed, ℓ→∞ . (A.3)

In both cases the algebra will simplify. In the JT limit the entire chord algebra simplifies to
the gravitational algebra of [17, 44] with the sl2 algebra of [10] as a subalgebra. In the long
wormhole limit, the U(J) algebra will simplify to Upq(sl2).

As an aside, we also mention that in the q→ 0 limit, the algebra simplifies as any crossing
of chords is completely forbidden. This corresponds to summing only planar Wick contractions
and is the subject of “free probability,” see [15,16]

A.1 The triple scaling/JT limit

The JT gravitational algebra AJT was introduced in [44] in the context of semi-classical JT
gravity. In [17] it was shown that the algebra exists exactly in the quantum Schwarzian theory
(coupled to arbitrary matter). The algebra is given by

[H̃L , H̃R] = 0 ,

−i[ℓ̃, H̃L/R] =
k̃L/R

C
,

[ℓ̃, k̃L/R] = i ,

[k̃L , k̃R] = 0 ,

−i[k̃L/R, H̃L/R] = H̃L/R −
k̃2

L/R

2C
,

−i[k̃L/R, H̃R/L] =
e−ℓ̃

2C
.

(A.4)

More formally, we consider the arbitrary products of H̃L , H̃R and ℓ̃, subject to the above rela-
tions.
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To derive this from the chord algebra, we set

H̃ ≡ H +
2
p

(1− q)λ
, ℓ̃≡ ℓ+ 2 logλ , C ≡

1
2λ

, k̃L ≡ −iC[ℓ̃, H̃L] . (A.5)

Here, H̃ is the energy above the ground state, and ℓ̃ is the renormalized length. Then the exact
chord algebra (28) becomes

[H̃L , H̃R] = 0 , (A.6)

−i[ℓ̃, H̃L/R] =
k̃L/R

C
, (A.7)

[ℓ̃, k̃L/R] = i

�
√

√ λ

1− q
−

1
4C

H̃L/R

�

, (A.8)

[k̃L , k̃R] = 0 , (A.9)

−i[k̃L/R, H̃L/R] =

√

√1− q
λ

2
1+ q

H̃L/R −
1− q
λ

2
1+ q

k̃2
L/R

2C
−

1− q
2(1+ q)

H̃2
L/R , (A.10)

−i[k̃L/R, H̃R/L] =
e−ℓ̃

2C
. (A.11)

To get the JT algebra (A.4) from this, we drop the final terms in (A.8) and (A.10) and further
approximate 1− q ≈ λ and 1+ q ≈ 2.

An interesting sub-algebra is the symmetry group of AdS2, as discussed in [10]. Here we
show the three symmetry generators of sl2,

B = P = →→→ E = ↑
↑

↑
(A.12)

In terms of the algebra, these can be written as

L0 = P = k̃R − k̃L , (A.13)

L+ = E + B = eℓ̃/2(2CH̃R − k̃2
R − e−ℓ̃) , (A.14)

L− = E − B = eℓ̃/2(2CH̃L − k̃2
L − e−ℓ̃) , (A.15)

where i[Lm, Ln] = (m−n)Lm+n. One can show that these symmetry generators commute with
ℓ̃ and the total momentum k̃ = 1

2(k̃L + k̃R). This allows us to identify an important subset

Heisenberg× sl2 ⊂AJT . (A.16)

The Heisenberg Lie algebra is spanned by {ℓ̃, k̃, 1}. In fact, one can argue that the JT gravita-
tional algebra is in fact the universal enveloping algebra of this Lie algebra (3). This means
that starting with the elements in the Lie algebra, we consider arbitrary words made out of
these elements. Since AJT is generated by {ℓ̃, H̃L/R} and ℓ̃ ∈ Heisenberg, to show (3) we
only need to express HL/R in terms of ℓ̃, k̃ and the sl2 generators. This can be done by using
(A.13)-(A.15), see also [23]. In our conventions:

H̃R =
1

2C

�

�

k̃+
1
2

L0

�2

+ L+e−ℓ̃/2 + e−ℓ̃
�

, (A.17)

H̃L =
1

2C

�

�

k̃−
1
2

L0

�2

+ L−e−ℓ̃/2 + e−ℓ̃
�

. (A.18)
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To verify this claim, it suffices to reproduce (A.4) using just the commutation relations [ℓ̃, k̃]=1
and i[Lm, Ln] = (m− n)Lm+n.

This algebra has explicit multi-particle representations that were worked out in [17].

A.2 The long wormhole limit

Here we consider the limit n̄→∞ holding q fixed. In this limit c → 0, and it is convenient
to rescale two of the generators J̃LL ≡

1
c JLL and J̃RR ≡

1
c JRR so that they remain nonzero. The

algebra (47) becomes

q[J̃LL , J̃RR] = JLR − JRL ,

[JLR, JRL] = 0 ,

[JLL , JLR]q = −JLL ,

[JRR, JRL]q = −JRR ,

[JRL , JLL]q = −JLL ,

[JLR, JRR]q = −JRR .

(A.19)

This turns out to be exactly equivalent to the algebra Upq(sl2) (I.1), after defining

K = 1− (q− 1)JLR , K−1 = 1− (q− 1)JRL ,

E+ = q3/4 J̃RR , E− = q3/4 J̃LL .
(A.20)

Representations: One can write more explicit formulas for the K , E± generators as follows.
First, consider a single-particle state |nL , nR〉 that the U(J) algebra acts on. The sum nL + nR
commutes with U(J), so we will suppress this variable and label the single-particle state by
|y〉, where y ≡ (nL − nR)/2 is the signed distance of the particle from the “midpoint.” This
makes the limit nL + nR →∞ effortless. More generally, we describe a state of m particles
|n0, n1, . . . , nm〉 by suppressing n̄ and using

|y1, . . . , ym〉 , (A.21)

where the yi are the signed distances of the various particles from the midpoint

y1 = n0 +
∆1

2
−

n̄
2

, yi = yi−1 + ni−i +
∆i +∆i−1

2
. (A.22)

We can define an operator that shifts the first i particles to the right as

a†
0αi|y1, . . . , yi , . . . , ym〉= |y1 + 1, . . . , yi + 1, . . . , ym〉 . (A.23)

Then by writing out the explicit formulas for (A.20) in terms of oscillators and taking the large
n̄ limit, one finds

K = a†
0αm = shift all particles to the right, (A.24)

K−1 = a†
mα0 = shift all particles to the left, (A.25)

E− =
q3/4

1− q

�

−q y1−∆1/2 +
m−1
∑

i=1

a†
0αi(q

yi+∆i/2 − q yi+1−∆i+1/2) + Kq ym+∆m/2

�

, (A.26)

E+ =
q3/4

1− q

�

K−1q−y1+∆1/2 +
m
∑

i=2

a†
mαi−1(q

−ym+∆m/2 − q−ym−1−∆m−1/2)− q−ym−∆m/2

�

.

(A.27)

These formulas give an infinite dimensional representations of Upq(sl2) with the property that
K is both Hermitian and unitary, and E± are Hermitian. We expect the one-particle represen-
tation is irreducible and the multiparticle representations are reducible to one-particle repre-
sentations.
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Coproduct: One can consider a tensor product

|y1, . . . , yi〉 ⊗ |yi+1, . . . , ym〉 . (A.28)

Note that this tensor product in the y variables is slightly different from the tensor product in
the n variables that was used in the discussion of the chord algebra. The generators acting on
the above tensor product can be obtained by a coproduct

D′(K) = K ⊗ K , D′(E+) = 1⊗ E+ + E+ ⊗ K−1 , D′(E−) = K ⊗ E− + E− ⊗ 1 . (A.29)

This is a legal coproduct for Upq(sl2) that differs from the textbook one (I.4) by

D′ = P(τ⊗τ) ◦ Dtextbook ◦τ−1 , (A.30)

where P(v ⊗ w) = w⊗ v swaps the two tensor factors [45] and τ is the anti-automorphism20

defined by τ(K±) = K∓ and τ(E±) = E±.

B Inner product

In this section, we discuss the inner product of states in the chord Hilbert space, see [16,17].
The ket vectors in this Hilbert space can be obtained by slicing open chord diagrams. Given
two points on the boundary (indicated by the gray points below), there is a unique “ket slice”
(dashed gray) which is defined so that all chords which cross the ket slice have not intersected
in the Euclidean past, for example:21

⇒ | ≀ 〉= |1,1〉 . (B.1)

Similarly, bra vectors are defined by “bra slices” which are defined so that all chords which
cross this slice have not intersected in the Euclidean future, for example:

⇒ 〈 ≀ |= 〈1,1| . (B.2)

The inner product between two chord states corresponds to the “middle region” in between
the bra slice and the ket slice. It is the region where chords which cross the ket or bra slice may
intersect each other. The numerical value of the inner product 〈v|w〉 is determined by summing
over all ways that chords may intersect, weighted by the appropriate factors of q#intersections for
each intersection of H chords, (or factors of q∆i , q∆i∆ j for H-matter intersections or matter-
matter intersections, respectively.)

20An anti-automorphism means τ satisfies the same algebra but with multiplication defined in the reverse order.
21As explained in footnote 16, rearrangement of the chord picture may be needed before such a slice exists.
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B.1 Single-particle states

For states with a single particle, the inner product is determined by the chord algebra, up to
an overall choice of normalization that can be fixed by setting 〈0,0|0,0〉 = 1. To see this, one
can use (61) to write a recursion relation that lowers n′L [17]:

〈n′L , n′R|nL , nR〉= 〈n′L − 1, n′R|aL|nL , nR〉 (B.3)

= [nL]〈n′L − 1, n′R|nL − 1, nR〉+ q∆+nL [nR]〈n′L − 1, n′R|nL , nR − 1〉 , (B.4)

and a similar one that lowers n′R:

〈n′L , n′R|nL , nR〉= 〈n′L , n′R − 1|aL|nL , nR〉 (B.5)

= [nR]〈n′L , n′R − 1|nL , nR − 1〉+ q∆+nR[nL]〈n′L , n′R − 1|nL − 1, nR〉 . (B.6)

The inner product is then a sum over lattice paths that begin at (nL , nR) and end at (0,0) after
a sequence of moves of the form nL → nL − 1 or nR→ nR− 1. Specifically, we make n′L moves
with weighting factors (B.4) and n′R moves with weighting factors (B.6):

(0, 0)

(nL , nR)

(B.7)

The result will have a simple factor of [nL]![nR]! that is independent of the path of the walker,
and the remaining sum over paths can be evaluated using the q-Binomial coefficient

∑

1≤x1<···<xk≤m

qx1+x2+···+xk = qk(k+1)/2 [m]!
[k]![m− k]!

. (B.8)

We will not show the details of this, only the answer. Setting

nL =
n
2 + y , nR =

n
2 + y , n′L =

n
2 + y ′ , n′R =

n
2 − y ′ , (B.9)

one can use the symmetry of the inner product to assume |y|> y ′ and y > 0. Then

〈n′L , n′R|nL , nR〉=
∑

0≤k≤ n
2−y

qk2+(2∆+y−y ′)k+(y−y ′)∆ [ n
2 + y]![ n

2 − y]![ n
2 + y ′]![ n

2 − y ′]!

[k]![y − y ′ + k]![ n
2 + y ′ − k]![ n

2 − y − k]!
.

(B.10)
More generally, it is the same sum, restricted to the range for k such that the arguments of the
q-factorials in the denominator are positive.

In the semiclassical limit, we claimed in the main text that the inner product becomes

〈n′L , n′R|nL , nR〉= [n]!

�

(1− c2)/2

cosh x−x ′
2 − c cosh x+x ′

2

�2∆

, (B.11)

where x = λy and the y coordinate is defined in (B.9). For the purposes of this formula, we
can set either c2 = qn or c2 = qn+∆ – the difference is higher order in λ. To verify (B.11), we
need to check the normalization and the recursion relations. For the normalization, in the case
n′L = nL = n and n′R = nR = 0 we get the correct zero-particle inner product [n]!. Due to the
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symmetry of (B.11) under x ↔ x ′ and (x , x ′)↔ (−x ,−x ′) we can just check one recursion
relation (B.4), which amounts to

(1− c2)

�

(1− c2)/2

cosh x−x ′
2 − c cosh x+x ′

2

�2∆
?
= (1− ce−x)

�

(1− c2eλ)/2

cosh x−x ′
2 − ceλ/2 cosh x+x ′−λ

2

�2∆

(B.12)

+ e−λ∆−x c(1− cex)

�

(1− c2eλ)/2

cosh x−x ′+λ
2 − ceλ/2 cosh x+x ′

2

�2∆

.

This equation is trivially satisfied at order λ0, and nontrivially satisfied at order λ.

B.2 Two-particle states

For states with two particles V,W, we can use (72) to write down a recursion relation that
lowers n′L . If the particles are in the order VW in both the ket, the recursion is




n′L , n′1, n′R
�

�nL , n1, nR

�

= 〈n′L − 1, n′1, n′R|aL|nL , n1, nR〉 , (B.13)

= [nL]〈n′L − 1, n′1, n′R|nL − 1, n1, nR〉
+ qnL rV [n1]〈n′L − 1, n′1, n′R|nL , n1 − 1, nR〉
+ qnL+n1 rV rW [nR]〈n′L − 1, n′1, n′R|nL , n1, nR − 1〉 . (B.14)

One can similarly write down three further equations that lower n′R, nL , nR. These can be used
to reduce to the case where n′L = n′R = nL = nR = 0, for which the inner product is determined
by the 0-particle inner product

〈0, nm, 0|0, nm, 0〉= [nm]! , no crossing, (B.15)

〈0, nm, 0|0, nm, 0〉= [nm]!(r1r2)
nmq∆1∆2 , crossing. (B.16)

To analyze the inner product in the limit λ→ 0, it is convenient to define xV , xW coordi-
nates that measure the locations of the V and W particles:

nL =
1
2 n+ yV ,

n1 = yW − yV ,

nR =
1
2 n− yW ,

xV/W = λyV/W ,

λn= −2 log c .

(B.17)

One can check that (B.14) is satisfied to order λ by

〈n′L , n′1, n′R|nL , n1, nR〉= [n]!





(1− c2)/2

cosh
xV−x ′V

2 − c cosh
xV+x ′V

2





2∆V




(1− c2)/2

cosh
xW+x ′W

2 − c cosh
xW−x ′W

2





2∆W

.

(B.18)
In principle there could be a different proportionality constant in the crossed vs. uncrossed
cases. This can be fixed by considering the case where xV → xW and x ′V → x ′W . Then the ratio
between the crossed and uncrossed inner products is just q∆V∆W ≈ 1.

B.3 Non-hermiticity of position operators

The position operator x of a single particle (relative to the center of the wormhole) is a non-
Hermitian operator with respect to the inner product that we defined above. Similarly, if we
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Figure 1: We plot |x |∞ for different values of q with qn/2 = 1/2 and ∆ = 1. The
maximum eigenvalue of x is constant and equal to log 2 ≈ 0.693. As q → 1, we
expect |x |∞ ≥ arccosh(2)≈ 1.317.

have multiple particles, the various positions x i or the lengths ℓi between the particles are
non-Hermitian.
The non-Hermiticity of these operators means that their expectation values can have counter-
intuitive properties. For example, we are used to the idea that the expectation value of a
Hermitian operator is bounded by its maximum eigenvalues. However, this is not necessarily
true for a non-Hermitian operator. Instead,

| 〈v,Ov〉 |
〈v,v〉

≤

√

√〈Ov,Ov〉
〈v,v〉

≤ |O|∞ =
Æ

max eigenvalue(O†O) . (B.19)

For a general inner product matrix 〈v,w〉 = vTGw where T is matrix Hermitian conjugation
(e.g. with respect to the trivial inner product), |O|∞ is equal to the maximum singular value of
G1/2OG−1/2, which is equivalent to the square root of the maximum eigenvalue of the matrix
G1/2OG−1OTG1/2. If G has very small eigenvalues, it is possible that the singular values of
G1/2OG−1/2 could be quite large even if the eigenvalues of G1/2OG−1/2 are not.

A related counterintuitive property is that even if two states have a large overlap, their
expectation values of a non-Hermitian operator can be surprisingly different. Let v,w be two
states such that 〈v,v〉 = 〈w,w〉 ≈ 〈v,w〉. The ≈ sign means that the error is controlled by a
small parameter λ. Then on general grounds,

〈v,Ov〉 − 〈w,Ow〉= 〈v,O(v−w)〉 − 〈w− v,Ow〉 (B.20)

≤ |〈v,O(v−w)〉+ | 〈w− v,Ow〉 | (B.21)

≤
Æ

〈v,v〉 〈O(v−w),O(v−w)〉+
Æ

〈w− v,w− v〉 〈Ow,Ow〉 (B.22)

≤ 2|O|∞
Æ

〈v−w,v−w〉 〈v,v〉 . (B.23)

B.4 Lengths of 2-particle states

One can obtain states that have some qualitative similarity with the late time wormhole states
with two matter particles that we discussed in Section 5.3. We obtain such states by starting
with a state where the particle is in the fake region, e.g., a state like in (200) and then acting
with WR:

WR

�

�

�

�

�

← aR→
¸

=
�

�

�

E

. (B.24)
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Then one can act with the translation operator eiPa to move both particles out of the fake
region:

e−iPaWReiPaR VR |TFD〉=

�

�

�

�

�

← aR→

← a →

+

. (B.25)

This state is prepared by evolving with an “out-of-time-order” Schwinger-Keldysh contour.
However since the “Hamiltonian” associated with this contour is P, we call this an “out-of-
space-order” contour. One may wonder how the state specified above compares to the state
where the red particle is to the left of the blue particle (but the positions relative to the center
are the same), e.g.,

¬

�

�

�

¶

= 〈TFD| (e−iP(a−aR)VReiP(a−aR)e−iPaWReiPa)†e−iPaWReiPaR VR |TFD〉 (B.26)

= 〈TFD|WReiPaR VRe−iPaRWReiPaR VR |TFD〉 . (B.27)

The bra and ket states here have an inner product that tends to one in the limit q→ 1, but 〈ℓM 〉
remains fixed and of opposite sign for the two states. This appears to require |ℓM |∞→∞.

C Characterizing the U(J) algebra

The algebra (47) involves c explicitly. However, one can define four new combinations of the
generators that eliminate this dependence. These combinations are:

L+
.
= b

c2 + (q− 1)JRR

(1− q)c4/3
,

L−
.
= b

c2 + (q− 1)JLL

(1− q)c4/3
,

κ+
.
= −

1+ (1− q)JLR

bc2/3
,

κ−
.
= −

1+ (1− q)JRL

bc2/3
,

b = q1/6(1− q)1/2

(C.1)

Since we have shifted the generators by the identity, L±,κ± do not annihilate the thermofield
double. Their algebra is

[κ±,L±]q = −1 ,

[L±,κ∓]q = −1 ,

[L−,L+] = −
�

1− q
q

�1/2

(κ+ −κ−) ,

[κ−,κ+] = −
�

1− q
q

�1/2

(L+ −L−) .

(C.2)

We chose the factor of b in (C.1) so that the same factor appears in the last two lines of (C.2).
Notice that the algebra (C.2) has an automorphism A that preserves the algebra (C.2):

A(κ±) = −L± , A(L±) = −κ∓ . (C.3)
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We can use this indirectly to show that the algebra generated by L±,κ± is a proper subalgebra
of Upq(sl2).We will define the Upq(sl2) algebra following the conventions22 of [46]:

KK−1 = K−1K = 1 , KE±K−1 = q±1E± ,

[E+, E−] =
K − K−1

q1/2 − q−1/2
.

(C.4)

The notation U(· · · ) means that we can multiply/take linear combinations of the generators.
For example, U(sl2) contains not only the usual Lie algebra sl2 but also elements such as
L0 L1 L2

−1, which cannot be written as a Lie bracket of two generators. (The Lie bracket con-
ditions are imposed as relations on this universal enveloping algebra.) Then, there exists an
algebra homomorphism ρ : U(J)→ Upq(sl2):

ρ(κ±) = −b−1
�

q1/2 + (1− q)E±
�

K± ,

ρ(L±) = bq−1/2
�

1
1− q

K∓ − E±

�

.
(C.5)

One can check explicitly that the operators ρ(κ±),ρ(L±) satisfy the algebra (C .2). Using the
automorphism A we can also define an alternative homorphism ρ′ = ρ ◦ A:

ρ′(κ±) = −ρ(L±) = −bq−1/2
�

1
1− q

K∓ − E±

�

,

ρ′(L±) = −ρ(κ∓) = b−1
�

q1/2 + (1− q)E±
�

K± .
(C.6)

Given that we found an algebra homomorphism ρ: U(J)→ Upq(sl2), it is natural to wonder
whether whether ρ could be an isomorphism. We will now prove that ρ is not an isomorphism
by considering the action of the automorphism A. If the algebras were isomorphic, there must
exist an automorphism θ of Upq(sl2) such that ρ ◦ A= θ ◦ρ. So we must be able to find a θ
that satisfies, e.g.,

ρ′(L±) = b−1q1/2K∓ + b−1(1− q)E∓K∓

= bq−1/2(1− q)−1θ (K∓)− bq−1/2θ (E±) .
(C.7)

On the other hand, if q isn’t a root of unity, it has been proved [47] (see also Proposition 3
of [46]) that the automorphism group of Upq(sl2) is generated by τ and ϑα,n,ν, where

τ(E±) = E∓ , τ(K±) = K∓ ,

ϑα,n,ν(E+) = αKnE+ , ϑα,n,ν(E−) = να
−1q−nK−nE− , ϑα,n,ν(K) = νK ,

(C.8)

where α is any non-zero complex number, n ∈ Z and ν ∈ {−1,+1}. For A to be compatible
with this theorem, the first term in (C.7) implies that θ (K±)∝ K± but the second term implies
that θ sends E± to something proportional to E∓. However this implies θ (K±)∝ K∓ which is
a contradiction. Hence we conclude that ρ is not an isomorphism.

C.1 Casimir

The Upq(sl2) algebra has a Casimir element which is quadratic in the generators and commutes
with all the elements [46]. A simple question is whether the U(J) ⊂ Upq(sl2) subalgebra that

22This convention is common in the math literature on quantum groups. It differs slightly from [14].
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we found also has a Casimir. In fact, it is possible to write the standard Upq(sl2) Casimir in
terms of the U(J) generators:

Ω=
�

q1/2 − q−1/2
�2

E+E− + Kq−1/2 + K−1q1/2

= b

�

�

1− q
q

�1/2

L−L+ −κ+ − q−1κ−

�

−
1
q

.
(C.9)

Using some experimentation, one can upgrade Ω to a Casimir Ω̂ of the full chord algebra by
defining

Ω̂= qn̄/3(Ω+ q−1)− qn̄ . (C.10)

We can write the full Casimir in terms of the a operators:

2Ω̂= q1−n̄ {qmL , qmR}+ (1− q2)
�

a†
LaR + a†

RaL

�

+ 2qn̄ ,

a†
L/RaL/R = [mL/R] =

1− qmL/R

1− q
.

(C.11)

One can check that Ω̂ commutes with HL , HR, n̄, and therefore commutes with the entire alge-
bra.

C.2 Finite N, p numerics for the Casimir

We simulated two copies of N = 14 SYK with p = 4, 6,8. For each instance of the random draw,
we normalized the Hamiltonian H such that 2−N tr H2 = λ−1. Then we used the expressions
(16) and (29) to write finite N , p versions of the chord oscillators and finally computed Ω̂ from
(C.11).

We started with the maximally entangled state |Ω〉 which satisfies (ψL
i + iψR

i ) |0〉 = 0.
We then considered states obtained by acting with a small number of fermions, e.g.,
ψi |0〉 ,ψiψ j |0〉 ,ψiψ jψk |0〉. We computed the expectation value of the Casimir Ω̂ in these
states. To get statistics, we averaged over the choice of operator that we inserted. For in-
stance for ∆ = 2/p case, we considered ψiψi+1 and averaged over the choice of i. Note that
since we have the maximally entangled state, it does not matter whether we insert left or right
fermions. We then compared the expectation value to the theoretical prediction in the double
scaled limit (67):

Ω̂= q1−∆ + q∆ , ∆= {1/p, 2/p, 3/p} . (C.12)

For a direct test of whether Ω̂ is a symmetry, one can compute

−
〈0|[HL , Ω̂]2|0〉
〈0|H2

L |0〉 〈0|Ω̂
2|0〉

≈ 0.5 , N = 14 , p = 4 . (C.13)

Here the agreement with the double scaling limit is not very impressive, although the RHS
would be four times larger if HL and Ω̂ were random operators.

D Single-particle representations of sl2

In this appendix we will discuss the representation of sl2 associated to single-particle chord
Hilbert space states (139) and (132).

First, let’s review the representation of sl2 as isometries of hyperbolic space. The hyperbolic
disk can be viewed as the locus X · X = −1, embedded in Minkowski space with signature
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Table 1: Results of numerics for the Casimir Ω̂, for N = 14 SYK and different values
of of p.

Operator p Double scaled prediction N=13 SYK Error

ψi

4 0.7448 0.722± 0.002 −3%

6 0.4381 0.4498± 0.0005 +3%

8 0.3192 0.3103± 0.0002 −3%

ψiψ j

4 0.638 0.605± 0.003 −5%

6 0.213 0.207± 0.001 −3%

8 0.103 0.114± 0.001 +11%

ψiψ jψk

4 0.745 0.673± 0.008 −10%

6 0.153 0.133± 0.002 −13%

8 0.0357 0.037± 0.002 +3%

(−,+,+). Two explicit parametrizations will be useful:

X 0 = coshρ = coshσ cosh x ,

X 1 = sinhρ cosφ = coshσ sinh x , (D.1)

X 2 = sinhρ sinφ = sinhσ .

The isometries of the hyperbolic disk act on the X coordinate as

b=





0 0 0
0 0 −1
0 1 0



 , e=





0 0 1
0 0 0
1 0 0



 , p=





0 i 0
i 0 0
0 0 0



 . (D.2)

So in particular the b generator increases the φ coordinate and the p generator increases the
x coordinate. These matrices satisfy the sl2 algebra

[e,p] = ib , [b,e] = ip , [b,p] = ie . (D.3)

Now let’s relate this representation to chord states with one matter particle inserted. Con-
sider a state |φ〉 in the chord Hilbert space obtained by acting with a matter operator at a
position φ on the fake circle, |φ〉= |O(θ )〉 with θ and φ related by (137). Then we have

|φ〉 ∼ lim
ρ→∞

(ceρ)∆O(ρ,φ)|TFD〉 . (D.4)

In this expression, the ∼ means “transforms under sl2 the same way as,” where the transfor-
mation of the LHS under sl2 is (139) and the transformation of the RHS under sl2 is obtained
by acting with the corresponding matrices (D.2) on the X coordinate parametrized by ρ,φ.
The sl2 representation determines the inner product up to normalization

〈TFD|O(X ′)O(X )|TFD〉= e−∆dist(X→X ′) ≈
�

−1
2X ′ · X

�∆

. (D.5)

The normalization in (D.4) was defined so that this inner product matches the inner product
of the states on the LHS. Concretely, after taking the ρ→∞ limit one finds

〈φ2|φ1〉=
�

−2c2

Y (φ2) · Y (φ1)

�∆

=
c2∆

(sin φ2−φ1
2 )2∆

, (D.6)
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where
Y (φ) = {1, cos(φ), sin(φ)} . (D.7)

More usefully, the sl2 representation also determines the inner product with sl2 generators
inserted:

〈φ2|eaB+a′E+a′′P|φ1〉=
�

−2c2

Y (φ2) · eab+a′e+a′′pY (φ1)

�∆

. (D.8)

The B,E,P operators on the LHS are the generators acting on the chord Hilbert space, or
the double-scaled SYK Hilbert space. The b,e,p operators on the RHS are the explicit three-
by-three matrices above, acting on the Y vector. As an application of this formula, we can
compute the two point function of matter operators inserted at θ = 0 on the physical circle,
with an insertion of the generator E + B:

〈O(0)e−a(E+B)O(0)〉= 〈(1− v)π2 |e
−a(E+

p
1−c2B)| − (1− v)π2 〉 (D.9)

=

�

c2e−ca/2

1− (1− c2)e−ca

�2∆

. (D.10)

In the first line, we used (137) to translate θ2 = 0 and θ1 = 0 to the fake circle asφ2 = (1−v)π2
and φ1 = −(1 − v)π2 . These lead to Y (φ1) = {1,

p
1− c2,−c} and Y (φ2) = {1,

p
1− c2, c}

and to get the final expression we just did the matrix exponentiation and dot products in
mathematica.

So far we have discussed the representation for states |φ〉 defined by inserting a matter
operator in the boundary. For the states |x〉 corresponding to inserting the matter particle at a
fixed position x = λ(nL−nR) among the chords, the representation (132) can also be matched
to an operator inserted at the boundary of hyperbolic space, but in a different coordinate
system:

|x〉 ∼
Æ

[n]! lim
σ→−∞

�

e|σ|

2coshη

�∆

eηEO(σ, x)|TFD〉 , (D.11)

〈x | ∼
Æ

[n]! lim
σ→∞

�

e|σ|

2coshη

�∆

〈TFD|O(σ, x)eηE . (D.12)

The normalization here is chosen to reproduce the inner product (134).
As an aside, let us note that using (D.1) to find the relationship between the (ρ,φ) and

(σ, x) coordinate systems, one can confirm (142). This implies that

〈φ +δφ|x |φ −δφ〉= 〈φ| e−Bδφ xeBδφ |φ〉 (D.13)

= xφ−δφ 〈φ|φ〉 . (D.14)

One can check this using to find the Heisenberg equation of motion:
p

1− c2[x ,B] = c − cosh x , (D.15)

⇒



e−Bδφ xeBδφ
�

= −2 tanh−1

�√

√1− c
1+ c

tan
�1

2(φ −δφ)
�

�

. (D.16)

Here the expectation value means the normalized quantity 〈φ| e−Bδφ xeBδφ |φ〉/ 〈φ|φ〉. With
the help of (143), one can show that this agrees with (D.14).
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E Diagonalizing E + B

E.1 Finite qomputation

Acting on the Hilbert space with a single matter particle, the combination of generators E + B
is given by

E + B =
1

(1− q)c

�

qn−nL − c2 + c2a†
RαL(1− q−nL )
�

. (E.1)

Acting on a state

| f 〉=
n
∑

nL=0

fnL
|nL , n− nL〉 , (E.2)

the eigenvector condition is

(E+B)| f 〉= χ| f 〉 =⇒ χ fnL
=

1
(1− q)c

�

(qn−nL − c2) fnL
+ c2(1− q−nL−1) fnL+1

�

, (E.3)

which can be rewritten as

fnL+1 =
(1− q)cχ − qn−nL + c2

c2(1− q−nL−1)
fnL

. (E.4)

Because fnL
should be supported on nL ≤ n, we need the numerator in this expression to

vanish for some value nL = m ∈ {0,1, 2,3, . . . , n}. This determines the possible eigenvalues

χ(m) =
qn−m − c2

(1− q)c
, m= 0,1, 2,3, . . . , n . (E.5)

In the limit q→ 1 holding fixed c2 = qn+∆ and m, the eigenvalues are approximately

χ(m)→ (m+∆)c . (E.6)

In the main text we found that in this limit, B =
p

1− c2B̃ and E = Ẽ, where B̃ and Ẽ are
standard SL(2) generators. This is consistent with (E.6), because

p
1− c2B̃+ Ẽ is conjugate to

cẼ, and the eigenvalues of Ẽ in a representation with primary of dimension ∆ are m+∆.
The corresponding eigenvectors of E + B (normalized so that f (m)0 = 1) are

| f (m)〉=
∑

0≤nL≤m

(−1)nL q
nL (nL−1)

2 −nL(m+∆−1)
�

m
nL

�

q
|nL , n− nL〉 ,

�

m
nL

�

q
≡

nL−1
∏

k=0

1− qm−k

1− qk+1
.

(E.7)
The state corresponding to a particle all the way on the left side of the chord Hilbert space is
very simple to express in this eigenbasis:

|0, n〉= | f (0)〉 . (E.8)

The state with a particle all way on the right side is more complicated, but because the matrix
of eigenvectors is triangular, one can still solve for the correct linear combination explicitly,
and the answer can be written as

|n, 0〉=
n
∑

m=0

(−1)mq
m(m−1)

2 +n∆ (q1+m; q)∞
(q1+n; q)∞(q; q)n−m

| f (m)〉 . (E.9)

Now let’s compute

〈n, 0|e−a(E+B)|n, 0〉=
n
∑

m=0

(−1)mq
m(m−1)

2 +n∆ (q1+m; q)∞
(q1+n; q)∞(q; q)n−m

〈n, 0| f (m)〉e−aχ(m) . (E.10)
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After inserting the expression for | f (m)〉 in (E.7), we will get terms that involve the inner
product 〈n, 0|nL , n− nL〉. This was computed in [17]:

〈n, 0|nL , n− nL〉
〈n, 0|n, 0〉

= q∆(n−nL) . (E.11)

Substituting this in gives the expression

〈n, 0|e−a(E+B)|n, 0〉
〈n, 0|n, 0〉

=
n
∑

m=0

(−1)m
q

m(m−1)
2 +n∆(q1+m; q)∞

(q1+n; q)∞(q; q)n−m

×
m
∑

nL=0

(−1)nL
q

nL (nL−1)
2

qnL(m−1)+nL∆

�

m
nL

�

q
q∆(n−nL)e−aχ(m)

=
n
∑

m=0

(−1)m
q

m(m−1)
2 +2n∆(q1+m; q)∞

(q1+n; q)∞(q; q)n−m
(q1−m−2∆; q)me−aχ(m) . (E.12)

To get to the last line we used the “q-Binomial theorem”

m
∑

nL=0

q
nL (nL−1)

2 (−q−2∆−(m−1))nL

�

m
nL

�

q
=

m−1
∏

p=0

(1− qp+1−m−2∆) = (q1−m−2∆; q)m . (E.13)

A nice feature of the expression (E.12) is that it is a sum of positive terms, because the
(q1−m−2∆, q)m term contains a factor of (−1)m that cancels the explicit one in (E.12). This
is nontrivial because for a < 0, the wave function of the evolved state is very large and oscilla-
tory, see (156), and dangerous to try to approximate. The sum of positive terms is convenient
because it can be safely approximated in the q→ 1 limit, using

(q1+m, q)∞→
(1− q)−m(q, q)∞
Γ (1+m)

, (E.14)

(q1−m−2∆; q)m→
Γ (m+ 2∆)
Γ (2∆)

(−1)m(1− q)m , (E.15)

(q; q)n−m→
(q; q)n
(1− c2)m

, (E.16)

e−aχ(m) → e−ac(m+∆) . (E.17)

In each case the leading error is a multiplicative correction of order (1− q) times a quadratic
polynomial in m. Using also (q, q)∞ ≈ (q; q)n(q1+n; q)∞, we get

〈n, 0|e−a(E+B)|n, 0〉
〈n, 0|n, 0〉

→ q2∆n
∞
∑

m=0

Γ (m+ 2∆)
Γ (2∆)Γ (1+m)

(1− c2)me−ac(m+∆) (E.18)

=

�

c2e−ca/2

1− (1− c2)e−ca

�2∆

, (E.19)

as quoted in the main text.

E.2 Semiclassical limit

The wormhole state with the matter chord all the way to the left |0, n〉 = |≀ · · · 〉 is
an eigenvector of E + B with an eigenvalue that approaches c∆ in the λ → 0 limit.
We can see this directly from the expression (139). Acting on the two point function,
E+B = (sin(πv/2)+ cosφ1)∂φ1

−∆ sinφ1 so at φ = −1
2π(1+ v) the derivative term vanishes
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and the last term gives ∆ cos(πv/2) =∆c. Similarly, the state |n, 0〉= | · · · ≀ 〉 is an eigenvec-
tor of E − B. This gives another interpretation of the boundary of the fake region as the fixed
point of the symmetry generators E ± B:

E + B = E+
p

1− c2B = ↑ ↑

←

→

(E.20)

One can also consider the expressions for E + B (132) acting on wave functions ψ(x) for
a state
∫

dxψ(x)|x〉:

(E + B)ψ=∆exψ+ ∂x[(c − ex)ψ] . (E.21)

Setting x∗ = log(c) = −ℓ/2, one finds that the wave function ψ= δ(x − x∗) is an eigenvector
with eigenvalue c∆ as expected. It is curious that a particle localized at some position x = x∗
is an eigenstate of the E + B generator given that there is no bulk fixed point of the symmetry
E + B isometry. More generally, we can diagonalize the λ→ 0 expression (132) for E + B. We
arrive at

(∆− 1)exψ(x) + (c − ex)ψ′(x) = χψ(x) . (E.22)

Writing χ = c(m+∆) we seem to find smooth eigenfunctions (c − ex)−m−1 ex(∆+m). These are
not normalizable at x = x∗, but the closely related distributions

f (m)(x) = ex(∆+m)(e−x∂x)
mδ(c − ex) , (E.23)

are normalizable with respect to the chord inner product, and one can check that these are also
eigenvectors in the distributional sense, with eigenvalue χ = c(∆+m). We can then compare
these to (E.7). For example, the m= 1 and m= 2 cases are

f (1)(x)≈∆δ(x − x⋆)−δ′(x − x⋆) , (E.24)

f (2)(x)≈∆(∆− 1)δ(x − x⋆)− (1+ 2∆)δ′(x − x⋆) +δ
′′(x − x⋆) , (E.25)

and the states
∫

dx f (x)|x〉 agree with the answers from (E.7) for small λ:

| f (1)〉= |0, n〉 − q−∆ |1, n− 1〉 (E.26)

≈ λ∆(|x⋆ +λ〉) + (|x⋆〉 − |x⋆ +λ〉) , (E.27)

| f (2)〉= |0, n〉 − q(∆+1) |1, n− 1〉+
q−1−2∆

1+ q
|2, n− 2〉 (E.28)

≈ |x⋆〉 − (1−λ(∆+ 1)) |x⋆ +λ〉+
1
2(1− (1+ 2∆)λ) |x⋆ + 2λ〉 . (E.29)

Note that if we use x to label the 1-particle states, we have |m, n−m〉= |x∗ +λm〉.

F Expanding two-particle states in double-trace primaries

In this appendix we will discuss the decomposition of a two particle VW state into a sum of
“double-trace” primary states:

|nL , n1, nR〉=
∑

k+mL+mR=n1

ψk,mL ,mR
|[VW]k; nL +mL , nR +mR〉 . (F.1)
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To determine the coefficients, one can start by acting with aL on both sides of this equation in
the special case nL = nR = 0. One finds

rV
1− qn1

1− q
|0, n1 − 1,0〉 (F.2)

=
∑

k+mL+mR=n1

ψkmL mR

�

1− qmL

1− q
|[VW]k; mL − 1, mR〉+ rV rW qmL+k 1− qmR

1− q
|[VW]k; mL , mR − 1〉

�

.

The LHS can be written in terms of the double-trace states using (F.1). The descendants in
these double-trace families are not orthogonal but they are linearly independent, so we get
a recursion relation for ψ by collecting the coefficients that multiply a given state. Explicitly,
from this equation and a similar one obtained by acting with aR, we get the recursions

rV
1− qk+mL+mR+1

1− q
ψk,mL ,mR

=
1− qmL+1

1− q
ψk,mL+1,mR

+
1− qmR+1

1− q
rV rW qk+mLψk,mL ,mR+1 , (F.3)

rW
1− qk+mL+mR+1

1− q
ψk,mL ,mR

=
1− qmL+1

1− q
rV rW qk+mRψk,mL+1,mR

+
1− qmR+1

1− q
ψk,mL ,mR+1 . (F.4)

These two equations can be rearranged to give decoupled recursions

ψk,mL ,mR
= rV

(1− r2
W qk+mL−1)

1− r2
V r2

W q2k+mL+mR−1

1− qk+mL+mR

1− qmL
ψk,mL−1,mR

, (F.5)

ψk,mL ,mR
= rW

1− r2
V qk+mR−1

1− r2
V r2

W q2k+mL+mR−1

1− qk+mL+mR

1− qmL
ψk,mL ,mR−1 , (F.6)

with the solution

ψk,mL ,mR
= rmL

V rmR
W

(qk+1r2
W ; q)mL

(qk+1r2
V ; q)mR

(q2k+1r2
W r2

V ; q)mL+mR

(qk+1; q)mL+mR

(q; q)mL
(q; q)mR

ψk,0,0 . (F.7)

These equations are linear and homogeneous so they do not determine ψk,0,0. But one can
impose that the LHS and RHS of (F.1) should have the same norm in the case nL = nR = 0. The
norm of the LHS is simply 〈0, n1, 0|0, n1, 0〉= [n1]!, and the norm of the RHS can be computed
using (B.10). Based on the explicit answers for small values of k, we guessed the following
formula

ψ2
k,0,0 = [k]!

(r2
V ; q)k(r2

W ; q)k
(r2

V r2
W qk−1; q)k

, (F.8)

which we then checked up to k = 25, giving us confidence that it is exactly correct. The
ambiguity in the sign in the square root reflects an ambiguity in the overall sign of the operator
[VW]k, and to be definite we will choose ψk,0,0 to be the positive square root.

Another interesting property that we guessed based on small k is

〈[VW]k|[WV]k〉= (−1)kq
k(k−1)

2 +k(∆V+∆W )+∆V∆W 〈[VW]k|[VW]k〉 . (F.9)

Note that on the LHS we have [VW] and [WV] and on the RHS we have [VW] in both terms.
We checked this up to k = 25 using our formula for the expansion (F.1) in the case nL = nR = 0,
where 〈 ≀ n1 ≀ | ≀ n1 ≀ 〉= qn1(∆V+∆W )+∆V∆W [n1]!.

As an application, let’s see how to use (F.7) to expand the operator

V( ε2)W(−
ε
2) = eεH/2Ve−εHWeεH/2 , (F.10)
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into double-trace primaries in the semiclassical limit. More explicitly, what we mean is that
we act with these operators on the infinite temperature state with zero chords and exand the
result in terms of double-trace primaries and their descendants:

V( ε2)W(−
ε
2)|Ω〉= | ≀ ≀ 〉+

ε
p
λ

�1
2 | ≀ ≀ 〉 − | ≀ ≀ 〉+

1
2 | ≀ ≀ 〉
�

+ . . . (F.11)

= |0, 0,0〉+
ε
p
λ
(|1,0, 0〉 − 2|0,1, 0〉+ |0, 0,1〉) + . . . (F.12)

One can then use (F.1) to write the RHS in terms of double-trace primaries and descendants.
At higher orders in ε the expansion becomes tricky because one needs to account for the fact
that H insertions can contract with each other. However, the leading order (in ε) term that
multiplies |[VW]k; 0, 0〉 is easy to write down: this comes from the term

V( ε2)W(−
ε
2)|Ω〉 ⊃

1
k!

�

−ε
p
λ

�k

|0, k, 0〉

⊃
1
k!

�

−ε
p
λ

�k

ψk,0,0|[VW]k; 0, 0〉

≈ (−ε)k
√

√ (2∆V )k(2∆W )k
(2∆V +∆W + k− 1)kk!

|[VW]k; 0, 0〉 .

(F.13)

Here (x)k = Γ (x + k)/Γ (x) is the ordinary Pochhammer symbol. In the semiclassical limit we
expect an sl2-invariant OPE, and this indicates that the OPE coefficients for the expansion of
VW in terms of primaries [VW]k are

f 2
VW[VW]k

=
(2∆V )k(2∆W )k

(2∆V +∆W + k− 1)kk!
. (F.14)

The other terms in the expansion should be sl2 descendants. This is consistent with the leading
order results for the 〈WVVW〉 correlation function. At leading order for small λ, this simply
factorizes into the product of two point functions

〈W2V4V3W1〉
〈W2W1〉〈V4V3〉

= 1 . (F.15)

This “t channel” identity is reproduced by the sum over “s channel” conformal blocks with the
coefficients (F.14):

1=
∞
∑

n=0

f 2
VW[VW]n

k∆W+∆V+n(χ) , (F.16)

kh(χ)≡ (1−χ)2∆Wχh−∆W−∆V
2F1(h+∆W −∆V , h+∆W −∆V , 2h,χ) , (F.17)

χ ≡
sin φ13

2 sin φ42
2

sin φ14
2 sin φ32

2

. (F.18)

∆V ∆W

∆V ∆W

1 =
∑

n

f 2
VW[VW]n

∆V ∆W

∆V ∆W

∆V +∆W + n . (F.19)
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F.1 Decomposition of a commutator state

Let’s now apply this same idea to decompose a state created by the commutator [V( ε2),W(−
ε
2)].

One can just re-use (F.13) and subtract off an additional term with ε↔−ε and V↔W:

[V( ε2),W(−
ε
2)]|Ω〉 ⊃

ψk,0,0

k!

�

−ε
p
λ

�k

|[VW]k; 0, 0〉 −
ψk,0,0

k!

�

ε
p
λ

�k

|[WV]k; 0, 0〉 (F.20)

=
ψk,0,0

k!

�

−
ε
p
λ

�k
�

|[VW]k; 0, 0〉 − (−1)k|[WV]k; 0, 0〉
�

. (F.21)

The state on the RHS is a primary of the chord algebra, but it is not normalized. We will
use |[VW]k〉 and |{V,W}k〉 to mean normalized commutator and anticommutator primaries.
Using (F.9) one finds

|[VW]k〉 − (−1)k|[WV]k〉=
Ç

2(1− q
k(k−1)

2 +k(∆W+∆V )+∆W∆V )

¨

|[VW]k〉 , k even,

|{V,W}k〉 , k odd.
(F.22)

In the semiclassical limit the factor inside the square root is small, proportional to λ:

2
�

1− q
k(k−1)

2 +k(∆W+∆V )+∆W∆V
�

≈ λ
�

n(n− 1) + 2n(∆V +∆W ) + 2∆V∆W

�

. (F.23)

This means that our state [V,W]|Ω〉 has small norm in the semiclassical limit, where the opera-
tor almost commute. We expect that the double-commutator four point function 〈[V,W][V,W]〉
should have a conformal block decomposition identical to 〈WVVW〉, except with an extra fac-
tor of (F.23). This is in fact correct because

〈[W2,V4][V3,W1]〉
〈W2W1〉〈V4V3〉

= 2λ∆V∆W
1+χ
1−χ

(F.24)

= λ
∞
∑

n=0

�

n(n− 1) + 2n(∆V +∆W ) + 2∆V∆W

�

f 2
VW[VW]k

k∆W+∆V+n(χ) ,

(F.25)

where the coefficients fVW[VW]k are given in (F.14).
Notice that the primaries that appear in (F.21) are [V,W]k for even k and {V,W}k for odd

k. To explain this, consider the operator

R̃= (−1)nR , (F.26)

where n counts the number of Hamiltonian chords. Then the commutator satisfies

R̃ [V( ε2),W(−
ε
2)] R̃= −1 , (F.27)

and the primaries that appear are precisely the ones with the same property.

G Time-ordered 4-pt function

G.1 Computation using the 2-sided OPE

We consider the time-ordered correlator in the following configuration:




W(τL)W(τR)V(τ
′
L)V(τ

′
R)
�

=
τL

−τ′L

τR

−τ′R

W W

VV

(G.1)
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To compute the O(λ) connected contribution to the TOC, we will adopt the following strategy.
First we write WW = e−∆W ℓ and VV = e−∆V ℓ. This is a valid substitution as long as there are
no other V and W operators around. We then expand ℓ= 〈ℓ〉0+δℓ where 〈ℓ〉0 is the classical
answer, e.g., the answer obtained by solving Liouville’s equation (30). Then the O(λ) contri-
bution to the connected correlator will be just ∆V∆W




δℓ(τ+)δℓ(τ′+)
�

where τ+ = τL + τR
and τ′+ = τ

′
L +τ

′
R.

We can write an operator expression for δℓ using (174), specialized to the case with no
matter:

δℓ(τ+) = −λ
p

1− c2

c2
(1+ cτ tan cτ+)(δH) + c−1 tan(cτ+)ℓ̇ . (G.2)

Here ℓ̇ is evaluated at the time-symmetric slice: ℓ̇= ∂τ+ℓ(τ+)|τ+=0. Then the 2-pt function of
this operator is given by




δℓ(τ+)δℓ(τ
′
+)
�

= λ2 1− c2

c4
(1+ cτ+ tan cτ+)(1+ cτ′+ tan cτ′+)




δH2
�

−λ
p

1− c2

c3

�

(1+ cτ+ tan cτ+) tan cτ′+〈H ℓ̇〉+ (1+ cτ′+ tan cτ′+) tan cτ+〈ℓ̇H〉
�

+ c−2 tan cτ+ tan cτ′+〈ℓ̇
2〉 .

(G.3)

The 〈(δH)2〉 term can be evaluated using (182). The 〈H ℓ̇〉 = 〈ℓ̇H〉 terms can be evaluated by
writing τ+ =

1
2(τbottom −τtop) and representing H = −∂ /∂ τbottom = −

1
2∂ /∂ τ+:

ℓ̇(τ+) = −2c tan(cτ+) , (G.4)

〈ℓ̇H〉= −1
2(∂τ+ ℓ̇)|τ+=0 = c2 . (G.5)

In principle, we still need to evaluate 〈ℓ̇2〉. However, we can avoid a direct computation by
demanding that the TOC agree with the OTOC in the coincident limit. More precisely, note
that the 4-pt function in the coincident limit must satisfy

〈WVWV〉 → q∆V∆W 〈WWVV〉 . (G.6)

This relation is derived from the chord formalism; in the limit where the operators are nearly
coincident the only difference between the crossed and uncrossed configuration is a single
intersection between red and blue chords:

W
WV
V

= q∆V∆W ×

W W
V V

(G.7)

In the small λ limit, this becomes the requirement

〈WVWV〉c
〈WW〉 〈VV〉

+λ∆V∆W ≈
〈VVWW〉c
〈VV〉 〈WW〉

. (G.8)

The OTOC on the LHS is (183) with τ+ → τ′+,τ− → −β/2, and the correlator on the RHS is
∆V∆W 〈δℓ(τ+)2〉. This fixes the final term in (G.3) to be 〈ℓ̇2〉/c2 = 1+ c−1

p
1− c2 arccos c, so




δℓ(τ+)δℓ(τ
′
+)
�

= A[1+ (b+ cτ+) tan cτ+]
�

1− (b− cτ′+) tan cτ′+
�

, (G.9)

A= λ
1− c2

c2 + c
p

1− c2 arccos(c)
= λ

tan πv
2

πv
2 + cot πv

2
, (G.10)

b =
c

p
1− c2

+ arccos c = cot
�πv

2

�

+
πv
2

. (G.11)
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To write this in a way that transparently matches [8], we can define

φWW =
2πv
β
(τ+ +

1
2β) , φV V =

2πv
β
(1

2β −τ
′
+) , (G.12)

f (φ) = 1−
�

φ

2
+ cot

πv
2

�

tan
�1

2(πv −φ)
�

. (G.13)

Here, φ are some fake angles going the “long way around”. Then

〈WWVV〉c
〈WW〉 〈VV〉

= λ∆V∆W
tan πv

2
πv
2 + cot πv

2
f (φV V ) f (φWW ) . (G.14)

G.2 Chord block argument

As noticed by Streicher [8], the formula (G.14) may be written

〈VVWW〉= 〈VV〉 〈WW〉+ 〈(δH)VV〉 〈(δH)WW〉/



(δH)2
�

β
. (G.15)

Here δH = (HL +HR)/2− 〈H〉, where 〈H〉 is the average energy at temperature 1/β . We can
argue for this as follows. We can insert a resolution of the identity in the 2-sided Hilbert space.
If we cut (G.1) on the horizontal τL = τR slice, the state has zero matter particles. So we just
need a resolution of the identity in the 0-matter-particles portion of the chord Hilbert space.
A convenient basis for this is

|TFD〉 , H |TFD〉 , H2 |TFD〉 , . . . (G.16)

Then performing the Gram-Schmidt procedure,

|TFD〉 , δH
|TFD〉
Æ

〈δH2〉β
,

H2 −



H2
�

Ç

(H2 − 〈H2〉)2
β

|TFD〉 , . . . (G.17)

Now so far this argument is at general λ. However as λ→ 0, we expect that the states (G.16)
to correspond to the power series expansion in λ. For example, the O(λ2) terms gives

1
〈(H2 − 〈H2〉)2〉β

〈VV|
�

H2 −



H2
��

|TFD〉〈TFD|
�

H2 −



H2
��

|WW〉

=

�


VVH2
�

− 〈VV〉



H2
�� �


H2WW
�

−



H2
�

〈WW〉
�

〈H4〉β − 〈H2〉β 〈H2〉β
. (G.18)

In (G.18), the denominator is of order 1/λ2, whereas both factors in the numerator are O(1).
Hence at O(λ) we only need to insert the first two terms in the Gram-Schmidt basis (G.17)
into the LHS of (G.15), which gives the desired result.

H The collective field approach

In this appendix, we describe how some of the results using the chord algebra can be derived
from the collective-field description of double-scaled SYK. This description arises by taking the
double-scaled limit of the standard G,Σ action of SYK, integrating out the Σ field (which ap-
pears quadratically in this limit), and changing variables G(τ1,τ2) =

1
2sgn(τ1−τ2)eg(τ1,τ2)/q.

The result is that the a nonstandard Liouville-like action

I = −
N
2

log(2) +
1

2λ

∫ β

0

dτ1

∫ β

0

dτ2

�

1
4
∂1 g∂2 g −J 2eg

�

. (H.1)
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Unlike the usual G,Σ action, this one is local in τ1,τ2. An important detail is that the path
integral over Σ also imposes the boundary conditions

g(τ,τ) = 0 , g(τ1,τ2) = g(τ2,τ1) . (H.2)

This means that we can restrict to a g variable defined in the domain

0≤ τ1 ≤ τ2 ≤ β , (H.3)

which can be pictured as the shaded region below:

boundary condition

identification (H.4)

This space has a boundary at τ1 = τ2 where g is required to vanish. The two sides with
dotted lines are identified with each other in an orientation-reversing way, and the end result
is a space with the topology of a disk with a crosscap inserted. Restricting to this region, the
action is

I = −
N
2

log(2) +
1
λ

∫ β

0

dτ2

∫ τ2

0

dτ1

�

1
4
∂1 g∂2 g −J 2eg

�

. (H.5)

The path integral over g is done with a flat measure, normalized so that the answer is exactly
2N/2 in the free theory J 2 = 0. We will use brackets 〈·〉0 to refer to expectation values in the
free theory, normalized so that 〈1〉0 = 1.

As a first step, we would like to show that this theory reproduces the chord expansion for
the partition function. To do so, we study the theory using perturbation theory in J 2, bringing
down powers of the eg operator. To work out this expansion, we need the 〈g g〉 propagator in
the free theory. It has the following convenient expression:

〈g(τ1,τ2)g(τ3,τ4)〉0 =

¨

−λ , chord(τ1,τ2)∩ chord(τ3,τ4) ̸= ; ,

0 , chord(τ1,τ2)∩ chord(τ3,τ4) = ; .
(H.6)

Here by chord(τa,τb)we mean a straight line connecting the points τa and τb viewed as living
on the thermal circle τ ∼ τ+ β . The propagator is −λ if a chord connecting τ1,τ2 intersects
a chord connecting τ3,τ4, and it vanishes otherwise. For fixed τ3,τ4, the region where the
propagator is nonzero as a function of τ1,τ2 is shown shaded below:

(H.7)
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This propagator respects the boundary conditions (H.2), but we need to check that it satisfies
the correct equation for the propagator:

∂τ1
∂τ2
〈g(τ1,τ2)g(τ3,τ4)〉0 = −2λδ(τ13)δ(τ24) . (H.8)

This reduces to checking that we have the correct behavior near τ1 = τ3 and τ2 = τ4. Near
this point, we have

〈g(τ1,τ2)g(τ3,τ4)〉0 = −λ
�

θ (τ13)θ (τ24) + θ (τ31)θ (τ42)
�

, (H.9)

and indeed this satisfies (H.8).
Now let’s imagine doing perturbation theory in J 2

Z = 2N/2
∞
∑

k=0

J 2k

λkk!

k
∏

i=1

�

∫ β

0

dτ(i)1

∫ τ
(i)
1

0

dτ(i)2

�

〈e
∑k

i=1 gi 〉0 , gi ≡ g(τ(i)1 ,τ(i)2 ) , (H.10)

= 2N/2
∞
∑

k=0

J 2k

λkk!

k
∏

i=1

�

∫ β

0

dτ(i)1

∫ τ
(i)
1

0

dτ(i)2

�

exp

(

∑

i< j

〈gi g j〉0 +
1
2
〈gi gi〉0

)

(H.11)

= 2N/2
∞
∑

k=0

J 2k

λkk!

k
∏

i=1

�

∫ β

0

dτ(i)1

∫ τ
(i)
1

0

dτ(i)2

�

q# chord crossings . (H.12)

This precisely matches the answer from the perspective of the chord diagram expansion of the
partition function. In the last step we used q = e−λ, and we used the prescription 〈gi gi〉0 = 0
which is needed to give the correct answer for 〈eg〉0 = 1.

We can also compute a correlation function

〈e∆g〉=
2N/2

Z

∞
∑

k=0

J 2k

λkk!

k
∏

i=1

�

∫ β

0

dτ(i)1

∫ τ
(i)
1

0

dτ(i)2

�

〈e∆g+
∑k

i=1 gi 〉0 (H.13)

=
2N/2

Z

∞
∑

k=0

J 2k

λkk!

k
∏

i=1

�

∫ β

0

dτ(i)1

∫ τ
(i)
1

0

dτ(i)2

�

exp

(

∆
∑

i

〈g gi〉0 +
∑

i< j

〈gi g j〉0

)

(H.14)

=
2N/2

Z

∞
∑

k=0

J 2k

λkk!

k
∏

i=1

�

∫ β

0

dτ(i)1

∫ τ
(i)
1

0

dτ(i)2

�

r# chords that cross g insertionq# chord crossings ,

(H.15)

where r = q∆. This again matches the chord rules, and the logic is similar for an arbitrariy
insertions of e∆g operators. So we see that the chord diagrams are exactly equivalent to doing
the J 2 perturbation theory of the Liouville theory. From this point forward we will set J 2 = 1,
as in the main text of the paper.

A nice feature of the Liouville perspective is that because the whole action is multiplied
by 1/λ, it is clear that small λ is a semiclassical limit, with small fluctuations of the g field.
One can derive the leading thermodynamics by solving for the saddle point g∗ of this action
(see [48,49] for loop computations). The equation of motion (after setting J 2 = 1) is

∂1∂2 g∗ = −2eg∗ . (H.16)

The solution corresponding to the thermal state is

g∗(τ1,τ2) = 2 log
cos πv

2

cos[πv
2 (1−

2τ21
β )]

, 0< τ21 < β , (H.17)
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where in order to solve the equation of motion, v must satisfy

πv
β
= cos

πv
2

. (H.18)

By plugging this solution into the action, one can derive the classical energy and entropy, which
are conveniently expressed in terms of v:

〈H〉= −
2
λ

sin
πv
2

, S =
N
2

log(2)−
π2v2

2λ
. (H.19)

For small but nonzero λ, one can expand

g = g∗ + h , (H.20)

and study the small fluctuations of h. The action for this field is

I = I∗ +
1
λ

∫ β

0

dτ2

∫ τ2

0

dτ1

�

1
4
∂1h∂2h− eg∗

�

1
2!

h2 +
1
3!

h3 + . . .
��

. (H.21)

The propagator for the h field has an expansion in powers of λ. The leading term, proportional
to λ, was computed in [8,9]. In the crossed region (where the chords intersect), the result is

〈h(τ1,τ2)h(τ3,τ4)〉λ = λ
�

−
tan πv

2

2
Y tan

X
2

tan
X ′

2
−

1
cos πv

2

cos Y
2

cos X
2 cos X ′

2

+
tan2 πv

2

2πv tan πv
2 + 4

(2+ X tan
X
2
)(2+ X ′ tan

X ′

2
)

�

. (H.22)

In the uncrossed region (where the chords do not intersect) it is

〈h(τ1,τ2)h(τ3,τ4)〉λ =
λ

2(πv tan πv
2 + 2)

�

�

2+ X tan
X
2

�

tan
πv
2
− (2+πv tan

πv
2
) tan

X
2

�

×
�

�

2+ X ′ tan
X ′

2

�

tan
πv
2
− (2+πv tan

πv
2
) tan

X ′

2

�

.

(H.23)

The X , X ′, Y parameters are simple functions of the locations of the points on the thermal
circle. For configurations 0 < τ1 < τ2 < τ3 < τ4 < β or 0 < τ1 < τ3 < τ2 < τ4 < β , they are
given by

Y = πv(1− 2
βτ3+4−1−2) , X = πv(1− 2

βτ21) , X ′ = πv(1− 2
βτ43) . (H.24)

All other configurations can be obtained from these two by relabeling points. The free theory
J 2 = 0 corresponds to the limit v → 0, and one can easily check that these expressions
reproduce (H.6) in that limit.

One can try to reproduce the chord algebra from the perspective of the λ expansion of
the Liouville theory. Suppose that τ1,τ2 are two points on the thermal circle, where we will
regard point 1 as the left boundary and point 2 as the right boundary. From the perspective of
the chord theory, there is a Hilbert space associated to these two points, and there is an algebra
of operators generated by the two-sided size (length) operator n̄ and the Hamiltonians HL , HR
acting on the two points.

This Hilbert space does not seem very natural from the perspective of Liouville theory,
but one can nevertheless try to reproduce the algebra of the operators. To do so we need to
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translate the size operator and the Hamiltonians into functions of the Liouville field. The size
or length operator becomes g itself:

n̄→−
1
λ

g(τ1,τ2) , (H.25)

and the two Hamiltonians are translated to

HL →
1
λ

g(1,0)(τ1,τ1) , HR→
1
λ

g(0,1)(τ2,τ2) . (H.26)

Here the superscript on g(a,b) indicates the number of derivatives that we take with respect
to its first and second arguments. In taking these derivatives we should stay in the re-
gion where the first argument of g is less than the second argument. So, more explicitly,
HL =

1
λ limε→0+ ∂εg(τ1 − ε,τ1) and HR =

1
λ limε→0+ ∂εg(τ2,τ2 + ε). The above formulas for

HL , HR are based on the SYK relation pH =
∑

i[H,ψi]ψi (see 5.76 of [25]). Note that HL is
independent of τ2 and HR is independent of τ1; unlike n̄ these are actually one-sided opera-
tors.

Given Liouville representations of two chord operators A→ A(τ1,τ2) and B→ B(τ1,τ2),
we can represent their commutator as a Liouville insertion

[A, B]→ A(τ1,τ2) (B(τ1+,τ2−)−B(τ1−,τ2+)) , (H.27)

where the notation τ1± means τ1 ± ε in the limit ε → 0+. So in particular, an insertion of
B(τ1+,τ2−) is slightly earlier on both the L and R boundaries than an insertion of A(τ1,τ2).

Let’s work out an example by choosing A= HR and B = n̄. Then

[HR, n̄]→−
1
λ2

g(0,1)(τ2,τ2) (g(τ1+,τ2−)− g(τ1−,τ2+)) . (H.28)

If we have represented the Hamiltonian correctly, then it should act in Liouville variables as ∂τ2
,

so the RHS of this expression should actually be equal to−λ−1∂τ2
g(τ1,τ2). More precisely, the

two expressions should give the same answers when inserted into the Liouville path integral
(along with other possible insertions). We will now verify this using the semiclassical small λ
expansion of the Liouville theory.

At leading order λ−2, we can evaluate the RHS of (H.28) by plugging in the saddle point
value g = g∗. Then the two terms in parentheses cancel. There is a similar cancellation if
we replace one of the factors of g by the saddle point value g∗ and the other by the small
fluctuation h. But if we replace both factors of g by the fluctuation h, we can get something
nonzero. The biggest nonzero term is at orderλ−1 and it arises from contracting the two factors
of h against each other using the propagator worked out above. The two terms correspond to
two different regions of the uncrossed correlator. For both terms we have X = πv(1 − 2

β ε),
where ε is the small separation between the two arguments in g(0,1)(τ2,τ2) allows us to take
the derivative. For the first term, we have X ′ = πv(1− 2

βτ21), and for the second term we have

X ′ = −πv(1− 2
βτ21). Taking the difference between the two and then taking the derivative

with respect to ε and setting ε= 0, we get

[HR, n̄] ⊃
1
λ

2πv
β

tan
�

πv
2
(1−

2τ21

β
)
�

(H.29)

= −
1
λ
∂τ2

g∗(τ1,τ2) . (H.30)

This looks promising but it only gives g∗ on the RHS, not g. To make up the difference we need
an additional term −λ−1∂τ2

h(τ1,τ2). To find this we need to go to the next order, allowing
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the insertions of h to contract with a cubic interaction term from the expansion of the action
(H.21). This gives

[HR, n̄] ⊃ −
1
λ2

h(0,1)(τ2,τ2) (h(τ1+,τ2−)− h(τ1−,τ2+))
1
λ

∫ β

0

dτ′2

∫ τ′2

0

dτ′1eg∗+h 1
3!

h3 .

(H.31)
Naively this expression will give zero, due to a cancellation between the two terms in paren-
theses. The fact that it is nonzero is due to the singularities (step function discontinuities)
of the 〈hh〉 propagator along the “lightcones” that form the boundary of the shaded region of
(H.7). An important fact is that the discontinuities of the propagator across these lightcones
are actually equal to their value in the free theory J 2 = 0. The reason for this is that the prop-
agator (in either J 2 or λ perturbation theory) is bounded, and when we connect an external
propagator to an interaction vertex, the integral over the location of the interaction vertex will
smooth out the discontinuity in the propagator, so perturbative corrections to the propagator
will be continuous across the lightcones. This means that the only singular term in the 〈h(0,1)h〉
propagator comes from the discontinuity of (H.6) across the lightcone, and therefore

h(0,1)(τ2,τ2)h(τ
′
1,τ′2) = −λδ(τ

′
2 −τ2)−λδ(τ′1 −τ2) + nonsingular. (H.32)

One can think of this as the Liouville theory “discovering” that it is describing correlators of
fermions in quantum mechanics, where this discontinuity represents the short-distance discon-
tinuity in the fermion propagator, which is determined by the algebra of Majorana fermions
and is independent of any interactions.

By similar logic, we find that

(h(τ1+,τ2−)− h(τ1−,τ2+))h(τ
′
1,τ2) = −λ sgn(τ′1 −τ1) , (H.33)

(h(τ1+,τ2−)− h(τ1−,τ2+))h(τ2,τ′2) = λ . (H.34)

Using these formulas, (H.31) becomes

[HR, n̄] ⊃ −
1
λ

�

∫ τ2

τ1

dτ′1h(τ′1,τ2)e
g∗ −
∫ τ1

0

dτ′1h(τ′1,τ2)e
g∗ +

∫ β

τ2

dτ′2h(τ2,τ′2)e
g∗

�

(H.35)

=
1

2λ

�

∫ τ2

τ1

dτ′1h(1,1)(τ′1,τ2)−
∫ τ1

0

dτ′1h(1,1)(τ′1,τ2) +

∫ β

τ2

dτ′2h(1,1)(τ2,τ′2)

�

(H.36)

=
1

2λ

�

h(0,1)(τ2,τ2)− h(0,1)(τ1,τ2)− h(0,1)(τ1,τ2)

+ h(0,1)(0,τ2) + h(1,0)(τ2,β)− h(1,0)(τ2,τ2)
�

= −
1
λ

h(0,1)(τ1,τ2) . (H.37)

In the second line we used the linearized equation of motion ∂τ1
∂τ2

h = −2eg∗h. Adding this
together with (H.30), we find that (H.28) is indeed equivalent to

[HR, n̄]→−
1
λ
∂τ2

g(τ1,τ2) . (H.38)

Because we used the linearized equation of motion for h and only expanded down once using
the cubic h3 vertex, this computation appears to only be approximate. However, from the SYK
perspective (H.38) should be exact, and with the benefit of hindsight we can see why: if the
two factors of h in (H.31) are contracted with different interaction vertices, the result will be
zero. The effect of including higher interactions hk/k! combines with nonlinear terms in the
equation of motion for h so that one still ends up with (H.36).
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I Review of the quantum algebra Upq(sl2)

Here we collect some facts about the quantum algebra Upq(sl2). The algebra is given by (C.4)

KK−1 = K−1K = 1 , KE±K−1 = q±1E± ,

[E+, E−] =
K − K−1

q1/2 − q−1/2
.

(I.1)

In the math literature, two of the generators are often denoted E = E+ and F = E−. In the
limit q→ 1, if we define K = 1− 1−q

2 H then the algebra contracts to the standard sl2 algebra
[H, E±] = ±2E± and [E+, E−] = H.

The Upq(sl2) algebra has finite dimensional irreducible representations. These are analo-
gous to the spin j representations of sl2. These representations are given explicitly via

E+ =













0 α1
0 α2

0
...
0 α2 j

0













, E− =













0
1 0

1 0
... 0

1 0













,

K± = diag(q± j , q±( j−1), · · · , q∓ j) .

(I.2)

There is a Casimir operator defined in (C.9), and for these representations it has the value

Ω= q− j + q j , dim R= 2 j + 1 . (I.3)

For |q| ̸= 1 these are the only finite dimensional, irreducible representations.
The algebra (I.1) can be promoted to a Hopf algebra by including a coproduct D

D(E+) = E+ ⊗ K + 1⊗ E+ , D(E−) = E− ⊗ 1+ K−1 ⊗ E− , D(K) = K ⊗ K . (I.4)

One can check that D satisfies the relations (I .1), e.g., it is an algebra homomorphism. There
is also an “antipode” S which is the analog of the group inverse:

S(K) = K−1 , S(E+) = −E+K−1 , S(E−) = −KE− . (I.5)

S is an algebra anti-automorphism.
As an aside, let us remark on that in this paper, we only need the quantum algebra Upq(sl2).

This should not be confused with the quantum group sometimes denoted SLq(2), see [46]. For
a discussion of SLq(2) in the context of double-scaled SYK, see [33] and [32].

In addition to the finite dimensional irreps, there are also irreps that are analogous to the
discrete series and the continuous series of the ordinary algebra sl2. For fixed and very large
n̄, the 1-particle states transform as the discrete series irrep of Upq(sl2), see Appendix (A.2).
The continuous series irrep also makes a brief appearance in the 6j symbol of Upq(sl2).

J Fake effects in low temperature SYK at general p

The order 1/N term in the four point function of the SYK model was studied at low temperature
but general p in [7]. The leading term at low temperature, proportional to βJ , agrees with
JT gravity. The first subleading term, at order (βJ )0, has a piece that has the same form as in
the large p limit (but with a p-dependent coefficient) and also a piece that comes from a sum
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over operators that depend on p – this part vanishes in the large p limit. The total shift in the
Lyapunov exponent away from the low temperature value λL = 2π/β is

δλtotal
L

λL
= −

1
k′R(−1)

αK

βJ
, (J.1)

and the contribution from the “large p” piece is

δλfake
L

λL
= −

1
|k′c(2)|

αK

βJ
. (J.2)

The ratio is

δλfake
L

δλtotal
L

=
k′R(−1)

|k′c(2)|
=

p((p− 6)p+ 6)− 2π(p− 2)(p− 1) cot
�

2π
p

�

p((p− 6)p+ 6)− 2π(p− 2)(p− 1) csc
�

2π
p

� . (J.3)

For p = 4 this is approximately 0.175. Note that the fake contribution to the correction to the
Lyapunnov exponent is also consistent with the leading correction to the conformal form of
the two point function, which involves the same coefficient [7]

� 〈ψ(τ)ψ(0)〉
〈ψ(τ)ψ(0)〉conformal

�p

= 1−
αK

|k′c(2)|βJ

�

2+
π− |θ |

tan |θ |2

�

+ . . . , (J.4)

where θ = 2πτ/β .
The fact that δλfake

L is only part of the correction to the Lyapunov exponent at finite p
means that the model does not saturate the strengthened chaos bound of [18], see [50].

Note, however, that while (J.3) is relatively small, the ratio λfake/λtotal is within ∼ 1% of
unity [50] over all temperatures (see their Figure 9b). By this measure, fake effects at βJ ∼ 1
dominate over “stringy” effects even at p = 4.
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