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Abstract

Hyperbolic geometry on the one-bordered torus is numerically uniformized using Liou-
ville theory. This geometry is relevant for the hyperbolic string tadpole vertex describing
the one-loop quantum corrections of closed string field theory. We argue that the Lamé
equation, upon fixing its accessory parameter via Polyakov conjecture, provides the input
for the characterization. The explicit expressions for the Weil-Petersson metric as well as
the local coordinates and the associated vertex region for the tadpole vertex are given in
terms of classical torus conformal blocks. The relevance of this vertex for vacuum shift
computations in string theory is highlighted.
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1 Introduction

Closed string field theory (CSFT) is a second-quantized formalism for string theory (for reviews
see [1–4]). Despite the ongoing activity at multiple fronts in recent years [5–25], an explicit
description of string vertices amenable to practical calculations is still lacking and this prevents
further developments in CSFT. In particular, the construction of CSFT solutions are obscured
primarily by our poor geometric understanding of the nature of string vertices.

In bosonic CSFT, the string vertices Vg,n are subsets of moduli spaces of Riemann surfaces of
genus g and n punctures Mg,n endowed with a choice of local coordinates around each punc-
ture up to a phase that satisfies the geometric Batalin-Vilkovisky (BV) equation [1]. Historically,
the minimal-area metrics [26–32] are used to specify Vg,n. Even though the minimal-area
vertices lead to many insights on CSFT in the past, the existence issue for the higher genus
surfaces persists and there is no clear efficient and systematic way to obtain a description for
them, except for genus 0.

On the contrary, the hyperbolic string vertices of Costello and Zwiebach [33] work at the
quantum level and it appears to be more amenable to an explicit description, see the devel-
opments [34–40]. These vertices are constructed by considering bordered Riemann surfaces
endowed with hyperbolic metric (that is, the metric with constant negative curvature K = −1)
whose borders have the length L = 2πλ and grafting semi-infinite flat cylinders of the same
circumference at each border. The grafted cylinders naturally provide the local coordinates
around each puncture and the vertex regions for the moduli integration are specified by re-
stricting to surfaces whose systoles are equal to or greater than L.1 It is shown that hyperbolic
string vertices solve the geometric BV equation if 0 < L ≤ 2arcsinh 1 ≡ L∗ = 2πλ∗ using the
collar lemma [41].

Hyperbolic string vertices are recently related to Liouville theory and classical conformal
blocks by the author [40]. It is shown that their local coordinates and the associated vertex
regions can be constructed in the spirit of conformal bootstrap. This connection is intriguing
and may eventually provide an improved understanding for the geometric input of the hyper-
bolic CSFT. The goal of this paper is to further elaborate on this emerging method in the case
of higher genus surfaces that has been only sketched in [40] and construct the local coordi-
nates and vertex region for the hyperbolic string tadpole vertex, hyperbolic tadpole for short.
The construction here heavily relies on the known expressions of the classical torus conformal
blocks [42,43].

To summarize, we demonstrate that the solutions ψ(z) to the Lamé equation

∂ 2ψ(z) +
1
2
(δ ·℘ (z,τ) + c)ψ(z) = 0 , (1)

1Systole of a Riemann surface is defined as the length of the shortest non-contractible curve that is non-
homotopic to a boundary component.
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can be used to obtain the local coordinates for the hyperbolic tadpole in the vertex and the
Feynman regions on the z-plane with the identification z ∼ z + 1 ∼ z + τ. Here ℘ (z,τ) is the
Weierstrass elliptic function and δ = 1/2 + λ2/2, with L = 2πλ is the circumference of the
grafted cylinder. The accessory parameter c as a function of the moduli of the torus τ and
the length of the border L is fixed in terms of a (version of) on-shell Liouville action (40)
upon using a (version of) Polyakov conjecture (30). Its expression for the vertex and Feynman
regions are given in (60) and (79) respectively. These regions are demarcated by finding the
length of the systole, see figure 5. A Mathematica package for the local coordinates is available
upon request.

As a byproduct of our motivation from CSFT, we effectively provide a numerical character-
ization of the hyperbolic geometry on the one-bordered torus. That is, we obtained the length
of the simple closed geodesics, as well as the hyperbolic metric, as a function of the moduli
and the length of the border. Furthermore, we also derived the Weil-Petersson (WP) metric on
the moduli space of the one-bordered torus as a series expansion and calculated its associated
volume. Similar work along these lines has been performed for the four-punctured sphere
in [44, 45] and for the four-bordered sphere in [40] in the limit L →∞. Extending them to
finite L amounts to a trivial work.

The local coordinates for the vertex region V1,1 and the Feynman region F1,1 can be used to
compute off-shell one-loop diagrams systematically in (super-)string theory, in particular ones
that appear in vacuum shift calculations, from first-principles. These calculations have been
addressed in the past either using CSFT-inspired arguments [46, 47] or at the semi-formal
level [48], with a suggestion of using SL(2,C) vertices to eventually make it explicit. How-
ever, we point out that there are serious drawbacks of using SL(2,C) vertices for systematic
calculations involving a vacuum shift and mass renormalization currently; the local coordi-
nates at the one-loop is semi-explicit and it is not clear how to extend SL(2,C) vertices to
remaining Riemann surfaces, especially to tori with two punctures. Since hyperbolic vertices
are specified by a geometric prescription from the get-go these issues never rise. As long as the
classical conformal blocks for Riemann surfaces are available everything can be determined
explicitly.

The rest of the paper is organized as follows. We begin by detailing the procedure for how
to solve for the local coordinates of quantum hyperbolic string vertices in section 2 and then
specialize to the hyperbolic tadpole vertex. We present the Lamé equation and the Polyakov
conjecture that determines its accessory parameter. The material in this section is primarily
from [43], but we provide a detailed summary in order to set our conventions and fit into the
framework of [40]. In section 3, we describe the conformal bootstrap procedure to uniformize
the hyperbolic geometry. We compare our results with the exact expressions for special situa-
tions and check the modular crossing equation numerically. Here, we also find the WP metric
and calculate its associated volume. Finally, we derive the vertex region and the local coordi-
nates for the hyperbolic tadpole vertex in the subsequent two sections. We conclude our paper
in section 6.

In appendices A and B we provide details on the special functions used in this work and our
derivation of the classical torus conformal blocks after [42]. In appendix C we give additional
details on our numerical results. We derive the Polyakov conjecture for tori with n hyperbolic
singularities in appendix D.

2 The Polyakov conjecture for the hyperbolic tadpole

In this section we introduce the Lamé Equation: the Fuchsian equation relevant for the hy-
perbolic tadpole vertex and argue for the Polyakov conjecture for tori with a single hyperbolic
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singularity.2 We begin by making general remarks on the behavior of Fuchsian equations on
higher genus surfaces and then immediately specialize to the case of hyperbolic tadpole. We
use the conventions and formalism of [40] with ingredients taken from [43].

2.1 The Fuchsian equation for higher genus surfaces

The (holomorphic) Fuchsian equation is given by

∂ 2ψ+
1
2

T (z)ψ= 0 . (2)

It is possible to use this equation and its hyperbolic monodromy problem to construct the
local coordinates of classical hyperbolic vertices, as shown in [37, 40]. The hyperbolic mon-
odromy problem asks for the conditions on T (z) such that the solutions ψ(z) can realize real
(PSL(2,R)) hyperbolic monodromy around the punctures, called hyperbolic singularities. This
problem is originally considered in [49,50].

In this paper, we consider genus g Riemann surfaces with n hyperbolic singularities. The
key point for the extension to non-vanishing genus is that the Fuchsian equation (2) is invariant
under the conformal transformation z→ ez as long as the objects ψ(z) and T (z) transform as

ψ(z) =
�

∂ ez
∂ z

�−1/2
eψ(ez) , T (z) =

�

∂ ez
∂ z

�2
eT (ez) + {ez, z} , (3)

with the Schwarzian derivative {·, ·} is given by

{ez, z}=
∂ 3
ez

∂ ez
−

3
2

�

∂ 2
ez

∂ ez

�2

, (4)

as usual. The transformation property (3) allows to use (2) on any given patch z on the surface
by taking (3) as their transition functions. Then the ideas and proofs for the genus 0 surfaces
in [40] translates to higher genus surfaces word-by-word. In particular the equation (2), to-
gether with its solutions that realize hyperbolic PSL(2,R)monodromy around each puncture,
can be used to construct the local coordinates of quantum hyperbolic vertices. We point out
that T (z) in this context is commonly referred as complex projective structure [51].

Demanding a hyperbolic real monodromy around each puncture pi ∈ Σg,n(Li) with
i = 1, · · · , n forces T (z) to contain double poles of residue δi > 1/2 at each puncture. We
call δi the classical weights and parameterize them as

δi =
1
2
+
λ2

i

2
=

1
2
+

1
2

�

Li

2π

�2

. (5)

In order to see why such a pole structure is present in T (z), take a local coordinate patch z
around the puncture pi on the surface Σg,n(Li) and place pi at z = 0. Then we see

∂ 2ψ+
1
2
δi

z2
ψ(z) + · · ·= 0 =⇒ ψ±(z)∼ z1/2±iλi (1+ · · · ) . (6)

That is, there is a basis of solutions that produces a (diagonal) real hyperbolic monodromy as
a consequence of taking z → e2πiz. This is akin to the situation for the classical hyperbolic
vertices. Notice that we indicate the dependence of the surfaces and the moduli spaces to the

2We often use the words puncture, hyperbolic singularity, border (of length L) and the grafted flat cylinder (of
circumference L) interchangeably throughout this work, as these eventually describe the same situation as far as
the hyperbolic vertices are concerned. The usual sense of a puncture, that is a parabolic singularity or hyperbolic
cusp, corresponds to the case L = 0. We make the distinction when it may possibly lead to confusion.
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parameters Li ≡ 2πλi by parenthesis. These parameters are associated to the circumference
of the grafted flat cylinders of string vertices [37].

However, there is one crucial difference between the classical and quantum vertices in
terms of how the rest of T (z) is parameterized. Recall that there were n − 3 undetermined
accessory parameters that appeared as residues of the simple poles at the position of the punc-
tures for genus 0 surfaces [40]. Such a “global” representation for T (z) is not available for
higher genus surfaces. Nevertheless, there are 3g − 3 + n undetermined complex accessory
parameters contained in T (z), which can be argued by considering the pants decomposition
of Riemann surfaces [41]. Recall that all hyperbolic surfaces admits pant decomposition upon
specifying 3g −3+ n disjoint simple closed geodesics. Their lengths and twists provide a local
coordinate in the moduli space. In hyperbolic geometry these coordinates are real. However,
from the perspective of T (z) and its associated metric, this is not the case since the mon-
odromies are elements of PSL(2,C), not PSL(2,R), generally. So we should rather think that
there are additional 3g − 3+ n parameters (the “imaginary” parts of the lengths and twists)
that has been set to 0 in order to obtain real monodromies. This immediately shows that there
should be additional 3g − 3+ n complex parameter on top of the usual complex moduli that
has to be specified in T (z) for the hyperbolic geometry. These are the accessory parameters.

Another way to argue for the existence of 3g − 3 + n undetermined complex accessory
parameters is as follows [52]. Assume we have two complex projective structures G(z) and
G′(z). Their difference G(z)−G′(z) is a quadratic differential since it transforms as such by (3).
Moreover, the vector space of quadratic differentials on an n punctured genus g surface Σ,
Q(Σ), is 3g−3+n complex dimensional [53]. As a consequence, a generic complex projective
structure T (z) on Σ can be parameterized as

T (z) = R(z) +
3g−3+n
∑

n=0

γi Q i(z) , (7)

where R(z) is a reference complex projective structure and {Q1(z), · · · ,Q3g−3+n(z)} is a basis
for Q(Σ). Here γi ∈ C are the undetermined 3g − 3 + n complex accessory parameters of
this parametrization that have to be fixed according to our demands on the monodromy. They
depend on the choice of the reference R(z) and the basis for Q(Σ). There exists ways to
construct R(z) directly given the surfaceΣ, for example, via symmetric bidifferential onΣ [54].
A yet another argument for the existence of the accessory parameters for higher genus can be
found in [55].

In the next subsection we specialize to the simplest quantum vertex g = n = 1 which
contains a single complex accessory parameter. We are going to comment on the ways to
make progress for remaining quantum vertices in conclusion 6 and appendix D.

2.2 The Lamé equation

In this subsection we specialize to tori with one hyperbolic singularity Σ1,1(L). They can
be viewed as a quotient of the complex z-plane sans origin C× by a lattice Λ = Z + τZ for
τ= τ1 + iτ2 ∈ C,

Σ1,1(L)≃ C×/Λ , (8)

where the singularity is placed at the origin using the translation invariance. In other words,
we identify z ∼ z + 1 ∼ z + τ for z ∈ C×. It is sufficient to take τ ∈ H as Λ contains negative
integer lattice points. In fact, τ belongs to the moduli space M1,1(L) which is simply the
quotient of the upper-half plane H by the modular group PSL(2,Z)

τ ∈M1,1(L) =H/PSL(2,Z) =
�

τ ∈H
�

� |Re τ| ≤ 1/2, |τ| ≥ 1 ,τ∼ τ+ 1 ,τ∼ −1/τ
	

, (9)
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as these describe inequivalent tori with a hyperbolic singularity. We call the set (9), considered
as a subset ofH, the fundamental domain. Per usual, the action of the modular group PSL(2,Z)
is generated by the transformations

T : z→ z, τ→ τ+ 1 , S : z→
z
τ

, τ→−
1
τ

. (10)

For the hyperbolic tadpole, the only moduli is τ when we fix L = 2πλ and the position
of the singularity. Rather than working with Σ1,1(L) directly, we are going to work on C×

after (8). This forces us to puncture the origin, as well as its images under the action of the
lattice Λ, which makes the geometric quantities doubly-periodic. The coordinate z refers to
the global coordinate of C× henceforth unless stated otherwise.

Since having a hyperbolic monodromy demands having a double poles at the singularities
with classical weights δ > 1/2 as explained earlier in (6), T (z) in (2) takes the form of

T (z) =
δ

z2
+
∑

λ∈Λ\{0}

�

δ

(z −λ)2
−
δ

λ2

�

+ c = δ ·℘ (z,τ) + c , (11)

by double periodicity. Notice that we have included a double pole (with appropriate subtrac-
tion factor for the convergence) for z = 0 and each of its images. The constant c = c(τ,τ) is
the single accessory parameter that should be fixed upon demanding a real hyperbolic mon-
odromy around the puncture and its images. Crucially, simple poles at z = 0 and its images
is absent because of the z→−z symmetry and regular terms are forbidden by the periodicity
condition under the action of Λ. Thus we are naturally lead to consider the Weierstrass elliptic
function ℘(z,τ). Some of its useful properties are listed in appendix A.

The relevant (holomorphic) Fuchsian equation for the hyperbolic tadpole is then given by

∂ 2ψ(z) +
1
2
(δ ·℘ (z,τ) + c)ψ(z) = 0 . (12)

This is known as the Lamé equation whose solutions are the Lamé functions [43]. Before
we solve this equation in order to find the local coordinates, the accessory parameter c as a
function of the moduli τ has to be found so that the solutions can realize a real hyperbolic
monodromy around the puncture. This is equivalent to demanding T (z) is given by

T (z) = −
1
2
(∂ ϕ)2 + ∂ 2ϕ , (13)

where ds2 = eϕ|dz|2 is the hyperbolic metric on the torus with a geodesic border of length
L ≡ 2πλ. We observe that the Lamé equation (12) stays invariant under z → z + 1 and
z → z + τ by (A.2), so it is indeed doubly periodic. Also we demand that the accessory
parameter c under the action of the modular group PSL(2,Z) (10) changes as

T : c(τ,τ)→ c(τ+ 1,τ+ 1) = c(τ,τ) , S : c(τ,τ)→ c
�

−
1
τ

,−
1
τ

�

= τ2 c(τ,τ) , (14)

so that the Lamé equation (12) stays modular invariant. We have used the property (A.2) here
and taken ψ(z) to be invariant under the modular group. The anti-holomorphic counterpart
is similar. As a consequence, the local coordinates would be modular-invariant as well.

Finally we point out the accessory parameter is endowed with an involution symmetry.
That is

τ→−τ =⇒ c→ c . (15)

This can be argued taking the complex conjugate of (12) and noticing the torus with the
moduli τ is equivalent to the torus with the moduli τ = −τ. The involution symmetry
forces c ∈ R when Reτ = 0. Combined with the constraints from the modular transforma-
tions (14) the involution symmetry further demands arg c = −argτ for |τ| = 1. This shows
for τ= i, exp(iπ/3) we have c = 0 regardless of the value of the length of the border 2πλ.
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2.3 The Polyakov conjecture

In this subsection we determine the accessory parameter c = c(τ,τ) of the Lamé equation (12)
by considering the first non-trivial null state of the Virasoro algebra on the one-bordered torus,
which we subsequently use to argue for the Polyakov conjecture for the hyperbolic tadpole. We
are going to use the (modified) Liouville theory of [40]. The ideas here made an appearance
in [43] before, but in the case of parabolic/elliptic singularities—we extend them to the hy-
perbolic singularities trivially. Like in [40], the methods here stem from heuristic path integral
arguments so they don’t consist of rigorous proofs. Nonetheless, we are going to justify the
results by its consequences in the upcoming sections.

We begin with the relevant correlator for us, which is

〈Σ1,1〉τ ≡ 〈Hλ(0,0)〉τ . (16)

We indicated the dependence of the correlator on the moduli of the torus by the subscript
τ and set the position of the “hole operator” (see [40]) to the origin using the translational
symmetry. Here we have

∆=
Q2

2
δ =

Q2

2

�

1
2
+
λ2

2

�

= β (Q− β) , β =
1
2
+

iλ
2

. (17)

As usual, Q = b+ b−1 and it is related to the central charge of Liouville’s theory by c = 1+6Q2.
An important thing to notice that under the modular group the correlator (16) changes as

T : 〈Σ1,1〉τ→ 〈Σ1,1〉τ+1 = 〈Σ1,1〉τ , S : 〈Σ1,1〉τ→ 〈Σ1,1〉− 1
τ
= |τ|2∆〈Σ1,1〉τ , (18)

using the weights (17) and the modular transformations (10).
We are interested in the first non-trivial null state of a Verma module. This is given by

|χ±〉=
�

L−2 −
3

2(2∆± + 1)
L−1

�

|φ±〉 , (19)

where |φ±〉 is a primary state of weight ∆± where

∆+ = −
1
2
−

3b2

4
, ∆− = −

1
2
−

3
4b2

, (20)

and L−n are the Virasoro charges. We denote the fields associated to the states in (19) without
a ket. Inserting the null field into the correlator in (16) leads to a decoupling equation
¬

χ+(z)Hλ(ξ,ξ)
¶

τ
=
¬

L−2φ+(z)Hλ(ξ,ξ)
¶

τ
+

1
b2

¬

L2
−1φ+(z)Hλ(ξ,ξ)

¶

τ
= 0 . (21)

Here L−n are the Virasoro charges acting on the fields. Note that L−1 = ∂z is the generator of
translations. Also notice that we have

¬

L−2φ+(z)Hλ(ξ,ξ)
¶

τ
= 〈TL(z)φ+(z)Hλ(ξ,ξ)〉τ , (22)

from the fact that L−2φ+(z) appears in the correlator and it is equal to the constant term
in TLφ+ operator product expansion by the normal ordering. Here TL(z) is the stress-energy
tensor of Liouville theory.

Now we use the conformal Ward identity on n-punctured tori derived in [56]. In particular,
what we require are the equations (28) and (29), which we report here3

〈TL(z)X 〉τ − 〈TL(z)〉τ〈X 〉τ =
n
∑

i=1

�

∆k (℘ (z − ξi ,τ) + 2η1(τ))

+ (ζ (z − ξi ,τ) + 2η1(τ)ξi)∂ξi

�

〈X 〉τ + 2πi∂τ〈X 〉τ , (23)

3In our conventions 2πT there(z) = T here
L (z), see section 3 in [56] and [40].
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and

〈TL(z)〉τ = 2πi∂τ log Z(τ) , (24)

where X = φ1(ξ1) · · ·φN (ξn) is a collection of primaries of weights ∆i and Z(τ)≡ 〈1〉τ is the
partition function. We have used the following special functions in the expression above

ζ(z,τ) = ∂z logϑ1(z|τ) + 2η1(τ)z , (25a)

℘(z,τ) = −∂zζ(z,τ) , (25b)

η1(τ) = (2π)
2

�

1
24
−
∞
∑

n=1

nqn

1− qn

�

= −2πi∂τ logη(τ) , (25c)

where ζ(z,τ) is the Weierstrass zeta function, ϑ1(z|τ) is the odd Jacobi theta function, and
η(τ) is the Dedekind eta function whose conventions are given in appendix A. Observe that the
Weierstrass elliptic function ℘(z,τ) has already introduced from different perspective in (11).

Taking X = φ+(z)Hλ(ξ,ξ) in (23) and subsequently using (22), (24) and (25), we see
that the decoupling equation (21) takes the form of
�

1
b2
∂ 2

z + (2∆+η1(τ) + 2η1(τ)z∂z) +∆ (℘ (z − ξ,τ) + 2η1(τ)) (26)

+ (ζ (z − ξ,τ) + 2η1(τ)ξ)∂ξ + 2πi∂τ

�

¬

φ+(z)Hλ(ξ,ξ)
¶

τ
+ 2πi∂τ log Z(τ) = 0 .

We take ξ→ 0 using the translational symmetry on the torus in the subsequent analysis.
Now we are going to consider the semi-classical limit (b → 0) of the equation (26). The

important thing to notice here that φ+ field remains light and ∆+ → −1/2, while the hole
operator becomes heavy (i.e. it scales with ∼ 1/b2). So we expect that there will be a factor-
ization

〈φ+(z)Hλ(0,0)〉τ ∼ φ
cl
+ (z)〈Σ1,1〉τ , (27)

where φcl
+ (z) is the classical configuration for the field φ+(z).

We can evaluate 〈Σ1,1〉τ using the saddle point approximation to the path integral

〈Σ1,1〉τ ∼ exp
�

−
1

2b2
S(1,1)

HJ (τ,τ;λ)
�

. (28)

Here S(1,1)
HJ (τ,τ;λ) is the on-shell action resulting from the (modified) Liouville theory on the

torus. We call this the on-shell Hadasz-Jaskólski (HJ) action as in [40]. Note that it depends
on the moduli τ and it’s complex conjugate, as well as the parameter λ. It is a real function.
We are going to discuss evaluation of this action in the next section.

Employing two equations above, we find the semi-classical limit of the equation (26) to be

∂ 2
z φ

cl
+ (z) +

1
2

�

δ ·℘ (z,τ) + 2δ ·η1(τ)− 2πi∂τS(1,1)
HJ (τ,τ;λ)
�

φcl
+ (z) = 0 . (29)

This is nothing but the Lamé equation (12) whose accessory parameter is given

c(τ,τ;λ) = 2δ ·η1(τ)− 2πi∂τS(1,1)
HJ (τ,τ;λ) . (30)

This is the Polyakov conjecture for the torus with one hyperbolic singularity. We remark that
the entire reasoning here can be generalized to the n-bordered torus by considering the decou-
pling equation (21) upon insertion of additional hole operators in the correlator. Since this is
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outside of the main development of the paper and for completeness we present its derivation
in appendix D.

Let us remark on the relation (30). First, the choice of the accessory parameter c in (30)
guarantees that the Lamé equation (12) can realize a real hyperbolic monodromy around the
puncture and its images. The justification for this as follows. The second derivative term
in (29) purely comes from the L2

−1 term in (21), while the rest of the terms comes from L−2
which is related to the correlator 〈TL(z)φ+(z)Σ1,1〉τ as explained in (22). This correlator
factorizes in the semi-classical limit and 〈Σ1,1〉τ factor drops out of the equation (29) and we
are left with

〈TL(z)〉 ∼ T cl
L (z) , where T cl

L (z) =
1

2b2

�

δ ·℘(z,τ) + 2δ ·η1(τ)− 2πi∂τS(1,1)
HJ (τ,τ;λ)
�

.

(31)

The expression inside the parenthesis is precisely the stress-energy tensor (13) associated with
the hyperbolic metric [40]. Additionally, we see that φcl

+ (z) is related to the weight −1/2
primaries ψ(z) used to construct the local coordinates in (2).

Deriving the Polyakov conjecture from the decoupling equation (21) and interpreting the
classical null field φcl

+ (z) as a weight −1/2 primary is not special to the case here: it holds for
any Riemann surface. In particular, we can run a similar argument for genus 0 surfaces, for
details see [57]. This provides an alternative argument to the one used in [40]. For higher
genus surfaces, on the other hand, the derivation by the decoupling equation sketched above
is more accessible.

One of the important checks for the conjecture (30) is to test its consistency with the
involution (15) and modular symmetries (10). The consistency for the involution symmetry
is apparent given S(1,1)

HJ is a real function. The consistency for the modular symmetry can be

established by noticing S(1,1)
HJ have the following modular transformations

T : S(1,1)
HJ (τ,τ;λ)→ S(1,1)

HJ (τ+ 1,τ+ 1;λ) = S(1,1)
HJ (τ,τ;λ) , (32a)

S : S(1,1)
HJ (τ,τ;λ)→ S(1,1)

HJ

�

−
1
τ

,−
1
τ

;λ
�

= S(1,1)
HJ (τ,τ;λ)− 2δ log |τ| , (32b)

by (18) and (28). This immediately shows the Polyakov conjecture (30) is consistent with the
T transformation by (A.10). It is also consistent with the S transformation via (14), (25c)
and (A.10).

Given the Polyakov conjecture for the hyperbolic tadpole (30), solving the hyperbolic mon-
odromy problem turns into determining S(1,1)

HJ (τ,τ;λ), i.e. the on-shell action of the (modi-
fied) Liouville theory on the torus. It is possible to construct this action via classical modular
conformal bootstrap.We evaluate S(1,1)

HJ (τ,τ;λ) as a function of the moduli τ and the length
of the border L = 2πλ in the next section.

3 Uniformizing one-bordered torus

In this section we uniformize the hyperbolic geometry on the one-bordered torus. By this we
mean finding the length of the simple closed geodesic of one-bordered torus as a function of
moduli and the length of the border, evaluating the on-shell HJ action S(1,1)

HJ (τ,τ) specifying
the accessory parameter of (12) through (30) and solving the Weil-Petersson (WP) metric on the
moduli space. We test our results by comparing them with the exact results at the symmetric
points and checking modular crossing, as well as computing the WP volume of the moduli
space M1,1.
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We begin by considering the correlator (16). Like in [40], we use the operator formalism
to write the following modular bootstrap equation

〈Hλ(0, 0)〉τ =
∫

Q
2 (1+iR+)

dλ′ eC(λ′,λ,−λ′) eQ2λ′2s/2 |F∆1+6Q2,∆′(q)|
2 . (33)

Let us describe the equality (33) in more detail. Here eC is the reflection-symmetric DOZZ
formula for the three-point function of Liouville theory. Only its semi-classical limit is relevant
for us and this is evaluated in [50] for hyperbolic singularities. It is given by

eC(λ3,λ2,λ1)∼ exp

�

−
Q2

2
S(0,3)

HJ (λ3,λ2,λ1)

�

, (34)

where S(0,3)
HJ (λ3,λ2,λ1) is the on-shell HJ action on the sphere with three hyperbolic singular-

ities, whose expression is given by

S(0,3)
HJ (λ3,λ2,λ1) = 2

∑

σ2,σ3=±
F
�

1
2
+

iλ1

2
+σ2

iλ2

2
+σ3

iλ3

2

�

+ 2
3
∑

j=1

h

H(iλ j) +
π

2
|λ j|
i

, (35)

for λi ∈ R up to an irrelevant additive constant. The functions F and H are defined by

F(x)≡
∫ x

1
2

d y log
Γ (y)
Γ (1− y)

, H(x)≡
∫ x

0

d y log
Γ (−y)
Γ (y)

. (36)

The on-shell action S(0,3)
HJ (λ3,λ2,λ1) is invariant under flipping the sign of its arguments and

totally symmetric by construction.
In (33), we have taken two of the arguments of eC equal and opposite of each other and

integrate over them. This is because we are supposed to identify two hole operators with
border length L = 2πλ′ in the generalized hyperbolic three-vertex to construct the hyperbolic
tadpole. We additionally included eQ2λ′2s/2 in order embed a possible finite flat cylinder of
circumference 2πλ′ in the geometry. The external hole operator has the associated border
length 2πλ. We take λ,λ′ ≥ 0 without loss of generality.

Finally, the function F∆1+6Q2,∆′(q) in (33) is the torus conformal blocks and it is entirely

determined by the Virasoro algebra as a function of the moduli q = e2πiτ. It depends on the
central charge c = 1+6Q2 and the conformal weights ∆,∆′ of the external and internal oper-
ators respectively. Its semi-classical limit, the classical torus conformal blocks f λ

λ′
(q) is expected

to be related to the torus conformal blocks by [43]

F∆1+6Q2,∆′(q)
Q→∞∼ exp
�

Q2 f λλ′(q)
�

. (37)

Although there is no rigorous proof of this relation, like in the case of the four-punctured
sphere [58], the non-trivial exponentiation behavior is well-supported by the expansion of the
torus conformal block, which can be found by a recursion [42]. More details on this recursion
are given in appendix B.

We are interested in the semi-classic limit (Q → ∞) of the expression (33), as this is
expected to describe the hyperbolic geometry in question. Combining the remarks above,
together with (28), we see that

exp

�

−
Q2

2
S(1,1)

HJ (τ,τ;λ)

�

∼

∞
∫

0

dλ′ exp

�

−
Q2

2

�

S(0,3)
HJ (λ

′,λ,−λ′)−λ′2s− 2 f λλ′(q)− 2 f
λ

λ′(q)
�

�

.

(38)
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Here the bar indicates the complex conjugation. This integral is dominated by the saddle point
at λ′ = λs(τ,τ;λ) in the Q→∞ limit and the action S(1,1)

HJ (τ,τ;λ) is evaluated by solving

∂

∂ λ′

h

S(0,3)
HJ (λ

′,λ,−λ′)−λ′2s− 2 f λλ′(q)− 2 f
λ

λ′(q)
i

λ′=λs(τ,τ;λ)
= 0 . (39)

This produces

S(1,1)
HJ (τ,τ;λ) = S(0,3)

HJ (λs,λ,−λs)−λ2
s s− 2 f λλs

(q)− 2 f
λ

λs
(q) , (40)

and the accessory parameter c (30) reads,

c(q, q;λ) = (1+λ2) η1(q) + 4π2q
∂ S(1,1)

HJ (q, q;λs)

∂ q
= (1+λ2) η1(q)− 8π2q

∂ f λ
λ′
(q)

∂ q

�

�

�

�

λ′=λs(τ,τ;λ)
.

(41)

3.1 The saddle-point and the length of the simple closed geodesic

As in [40], the semi-classical expectation suggests that the length of the simple non-
contractible geodesic (called simply as internal geodesic) is 2πλs on Σ1,1(L) and the length
of the string propagator to be proportional to s. We set s = 0 for now and come back to s > 0
case relevant for Feynman diagrams in the next section.

We begin by solving for the saddle-point (39). For this we need the derivative of
S(0,3)

HJ (λ
′,λ,−λ′) and f λ

λ′
(q). Let us focus on the first one. As pointed out in [50], we have

∂ S(0,3)
HJ

∂ λ′
(λ′,λ,−λ′) = −2π+ 2i log

�

γ

�

1
2
+

iλ
2
+ iλ′
�

γ

�

1
2
−

iλ
2
+ iλ′
�

Γ (1− iλ′)2

Γ (1+ iλ′)2

�

= 4λ′ log R(λ′,λ,−λ′) , (42)

where γ(z) ≡ Γ (z)/Γ (1 − z). The extra π’s come from using the gamma function identity
Γ (z + 1) = z Γ (z) and their associated branch differences after integrating. We point out
the right-hand side is related to the mapping radius of the (generalized) hyperbolic three-
vertex [37]

R(λ1,λ2,λ3) = e−π/2λ1

�

Γ (1− iλ1)2

Γ (1+ iλ1)2
γ
�1

2(1+ iλ1 + iλ2 + iλ3)
�

γ
�1

2(1− iλ1 − iλ2 + iλ3)
�

γ
�1

2(1+ iλ1 − iλ2 + iλ3)
�

γ
�1

2(1− iλ1 + iλ2 + iλ3)
�

�i/2λ1

,

(43)
which we have used in (42).

It is advantageous to consider the series expansion of (42) in λ′. Fortunately, we can obtain
it in closed form using the polygamma functions ψ, see (A.13) for conventions. This is simply
due to

log Γ
�

a+ iλ′
�

= log Γ (a) +
∞
∑

n=1

�

ψ(n−1) (a)
n!

(iλ′)n
�

. (44)

After some algebra and using (A.14a) it can be shown that

∂ S(0,3)
HJ

∂ λ′
(λ′,λ,−λ′) =

∞
∑

n=0

sn(λ)(λ
′)n , (45)

where the coefficients sn(λ) are given by

sn(λ) =























−2π , if n= 0 ,

−8
�

γ+Reψ(0)
�1

2 +
iλ
2

��

, if n= 1 ,

0 , if n ∈ 2Z≥1 ,
8 (−1)⌈n/2⌉

n

�

Reψ(n−1)
� 1

2+
iλ
2

�

(n−1)! + ζ(n)
�

, if n ∈ 2Z≥1 + 1 .

(46)
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These coefficients can be further simplified for the punctured torus (λ= 0) using (A.14b).
We also need to take derivative of the torus conformal blocks with respect to λ′. This is

∂ f λ
λ′
(q)

∂ λ′
=
λ′

2
log q−

(1+λ2)2λ′

4(1+λ′2)2
q+O(q2) =

λ′

2
log q−
�

1
4
(1+λ2)2λ′ + · · ·

�

q+O(q2) . (47)

We point that in the second line we have expanded in λ′ like we did for derivative of S(0,3)
HJ and

dots stand for this expansion.
For a moment, let us focus on the log q part of the classical conformal block and ignore

the remaining higher powers in q and consider the linear term in λ′ in (45). The saddle-point
equation (39) reads

0= −2π− 8λs

�

γ+Reψ(0)
�

1
2
+

iλ
2

��

−λs log |q|2 + · · · (48)

=⇒ λs =
−2π

8
�

γ+Reψ(0)
�1

2 +
iλ
2

��

+ log |q|2
+ · · ·=

2π
s1(λ)− log |q|2

+ · · ·

For convenience, we define the parameter

ξ≡
2π

s1(λ)− log |q|2
. (49)

Now it is possible to set up a recursive procedure to compute λs as an expansion of ξ. For
example, the saddle-point equation to order λ3

s is given by

0= −2π+λss1(λ) +λ
3
s s3(λ) + · · · −λs log |q|2 + · · · =⇒ λs = ξ−

ξ

2π
s3(λ)λ

3
s + · · · (50)

Plugging this equation back into itself we find

λs = ξ−
ξ4

2π
s3(λ) + · · ·= ξ−

2ξ4

3π

�

Reψ(2)
�1

2 +
iλ
2

�

2
+ 2ζ(3)

�

ξ4 + · · · (51)

This procedure can be repeated to arbitrarily high orders to find λs as an expansion of ξ.
Before we do that, let us discuss the inclusion of higher powers of q to this expansion.

Keeping only the linear terms in λ′ again, the saddle-point equation (39) takes the form

0= −2π+λss1(λ)−λs log |q|2 +λs(1+λ
2)2 Re(q) + · · · (52)

=⇒ λs =
2π

s1(λ)− log |q|2 + (1+λ2)2 Re(q) + · · ·
+ · · ·= ξ−

ξ2

2π
(1+λ2)2 Re(q) + · · ·

We can also write a recursion similar to (50) and then use the geometric series to expand the
denominator. In the language of [44, 45], the expansion in q can be understood as a “non-
perturbative” correction on top of the ξ series because we have q ∼ e−1/ξ2

. We point that these
corrections are highly suppressed relative to the “perturbative” series for |τ|> 1.

In summary, we conclude that λs can be found as a double expansion in ξ and q:

λs = ξ+

�

−
(1+λ2)2

2π
Re(q) +

3(1+λ2)2(−75+ 154λ2 + 37λ4)
1024π

Re(q2) + · · ·
�

ξ2

+

�

(1+λ2)4

4π2
Re(q)2 + · · ·
�

ξ3 (53)

+
�

−
2Reψ(2)
�1

2 +
iλ
2

�

+ 4ζ(3)

3π
+
(1+λ2)2

π
Re(q)

−
3(1+λ2)2(−27+ 1018λ2 + 341λ4)

2048π
Re(q2) + · · ·
�

ξ4 + · · ·
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Table 1: The comparison between the exact and computed results for the length of
the internal geodesics for the square (τ = i) and rhombus (τ = eπi/3) torus with a
border of length 0 and L∗ = 2 arcsinh 1. The exact results are taken from [59].

Moduli τ Border length L Exact result Computed result Relative error
i 0 2 arccosh

p
2≈ 1.7627471740 1.7627471745 4.03× 10−10

eiπ/3 0 2 arccosh 3/2≈ 1.9248473 1.9248475 1.20× 10−7

eiπ/3 2 arcsinh 1≈ 1.76 ≈ 2.0006589936 2.0006589940 1.72× 10−10

Numerical

Exact

0.0 0.5 1.0 1.5

1.92

1.94

1.96

1.98

2.00

L = 2 π λ

L
s=
2
π
λ s

The geodesic length Ls(L) for τ=eπ i/3

Ls

L

Figure 1: The progression of the length of the internal geodesic Ls = 2πλs as a
function of the length of the border L = 2πλ for the rhombus torus τ = eiπ/3. The
black dashed line is the exact result obtained from [59].

We have obtained the expansion to the order O(ξ19, q4). Setting λ to a precise value allows us
to go even higher-orders in the expansion so we always used the highest order possible for our
result. In the context of hyperbolic CSFT, the most natural value for λ is λ= λ∗ = arcsinh 1/π
[33], so we often investigate this case explicitly. However, we additionally investigate λ = 0
(i.e. one-punctured torus) because of its simplicity. We point out this procedure is similar
to [44, 45] and different from the one in [40]. In principle, it is possible to do something
similar for the case considered in [40].

The comparison of our results with the exact results by Maskit [59] is shown in table 1 and
figure 1. The agreement is stellar and the relative errors are usually less than ∼ 10−7. Further
evidence of the convergence of the series (53) is given in appendix C.

3.2 The on-shell HJ action, modular symmetry, and the accessory parameter

Having a saddle-point at λ′ = λs allows us to write down the on-shell action S(1,1)
HJ (τ,τ;λ) as

an expansion in ξ and q via (40). A crucial observation here is that S(0,3)
HJ has the following

expansion in λ′ by integrating (45)

S(0,3)
HJ (λ

′,λ,−λ′) = s−1(λ) +
∞
∑

n=1

sn−1(λ)
n

(λ′)n . (54)

Here s−1(λ) is given by evaluating S(0,3)
HJ (0,λ, 0)

s−1(λ) = S(0,3)
HJ (0,λ, 0) = 8F

�

1
2
+

iλ
2

�

+ 2H(iλ) +πλ , (55)

where we have used the fact F(1/2+ x) = F(1/2− x), see (36). Take note that s−1(λ= 0) = 0.
Similarly, we will expand the classical conformal block (B.4) in λ′.
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The relative crossing error for λ=arcsinh1/π

Border Length Mean Standard deviation Median Minimum Maximum
0 1.16× 10−5 1.18× 10−5 7.75× 10−6 2.08× 10−7 7.21× 10−5

2arcsinh1 4.30× 10−7 5.08× 10−7 2.48× 10−7 7.89× 10−11 3.39× 10−6

Figure 2: The distribution of the relative errors for the crossing equation (58) for
λ = 0 and λ = arcsinh1/π. The points are sampled from the fundamental domain
with Im(τ)< 1.2. We observed errors tend to increase for larger values of Im(τ).

The on-shell action S(1,1)
HJ (τ,τ;λ) is then given by

S(1,1)
HJ (τ,τ;λ) = s−1(λ) + s0(λ)λs +

s1(λ)
2
λ2

s + · · · (56)

−
λ2

s

2
log |q|2 −
�

(1+λ2)2

2
−
(1+λ2)2

2
λ2

s + · · ·
�

Re(q) + · · ·

= 8F
�

1
2
+

iλ
2

�

+ 2H(iλ) +π|λ| − 2πλs +
π

ξ
λ2

s + · · ·

−
�

(1+λ2)2

2
−
(1+λ2)2

2
λ2

s + · · ·
�

Re(q) + · · · ,

where we have combined the leading term coming from classical torus conformal blocks with
the λ2

s term in S(0,3)
HJ . Since we have λs ∼ ξ, we can plug (53) in the expansion above and that

would produce a double expansion in ξ and q given by

S(1,1)
HJ (τ,τ;λ) =

�

8F
�

1
2
+

iλ
2

�

+ 2H(iλ) +π|λ| −
(1+λ2)2

2
Re(q) + · · ·
�

−πξ

+
�

1
2
(1+λ2)2 Re(q) + · · ·

�

ξ2 + · · · (57)

Note that O(ξ) term won’t receive any non-perturbative correction because of the construction
in (56) and due to λs ∼ ξ at the leading order in ξ. We further observe the coefficient of O(ξ0)
terms always contain terms of the form Re(qn), but this will not be the case for higher orders.

The on-shell action S(1,1)
HJ (τ,τ;λ) has to satisfy the modular crossing

S(1,1)
HJ (τ,τ;λ) = S(1,1)

HJ

�

−
1
τ

,−
1
τ

;λ
�

+ (1+λ2) log |τ| , (58)

as a result of its modular invariance property given in (32). In order to test its validity we
randomly sampled≈ 7.5×103 points in M1,1(L), evaluated both sides of (58), and calculated
their relative errors. The results are shown in figure 2 for λ = 0,λ∗. The errors are indeed
tiny and the modular crossing (58) is numerically satisfied to good accuracy.
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-π

-π /2

0

π /2

π

-π

-π /2

0

π /2

π

Border Length τ= i τ= eiπ/3

0 −1.52× 10−4 −1.02× 10−3

2 arcsinh1 1.12× 10−5 5.85× 10−5

Figure 3: The accessory parameter c = c(τ,τ). The black contours are for the real
and imaginary parts, white contours are for the absolute value, and the color shading
indicates the phase in the figure. We show the result we obtained for τ = 0, eiπ/3 in
the table blow. Recall c = 0 for them.

Let us finally consider the expansion of the accessory parameter c = c(q, q) (41) in moduli.
Observe that we have, from (49)

4π2q
∂

∂ q
= 4π2q

∂ ξ

∂ q
∂

∂ ξ
= 2πξ2 ∂

∂ ξ
. (59)

Endowed with this, we can find the perturbative expansion for the accessory parameter us-
ing (25c) and (57). This is given by

c(q, q;λ) = π2

�

(1+λ2)
6
− (1+λ2)(5+λ2)q+ · · ·

�

+π2
�

−2+ (1+λ2)2 q+ · · ·
�

ξ2 + · · ·

(60)

This series is invariant under involution symmetry (15) by construction. We note that the
coefficient of ξ0 is a holomorphic function of q, despite the entire series is not. This point will
be important in the next subsection when we investigate the asymptotics of this formula.

The overall behavior of the accessory parameter c = c(τ,τ) inM1,1(L) is shown in figure 3.
It is apparent from the figures that the accessory parameter is indeed involution symmetric
and we obtained results closer to the exact values whenever available. The investigation of
the modularity of the accessory parameter (60) is relegated to appendix C.

Given (60), it is possible to investigate the degeneration limit q→ 0 (τ→ i∞) analytically,
albeit it is not relevant for CSFT. We see c→ (1+λ2)π2/6= δπ2/3 from (60). On top of this,
the Weierstrass elliptic function takes the form

lim
τ→i∞

℘(z,τ) =
∑

n∈Z

�

1
(z − n)2

−
1
n2

�

= π2 csc2(πz)−
π2

3
, (61)

as the sum over the lattice Λ reduces to just the sum of the real lattice points. In the second line
we evaluated the infinite sum using an identity and the Riemann zeta function. As a result,
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T (z) in the Lamé equation (12) evaluates to

T (z) = δπ2 csc2(πz) . (62)

In the limit τ→ i∞, we have a punctured infinite strip in the z-plane due to identification
z ∼ z + 1 and the punctures are placed at z = 0 and its images. This geometry can be con-
formally mapped to the thrice-punctured sphere u with the exponential map u = exp(2πiz).
The puncture at z = 0 (and its images) gets mapped to u = 1 and z = ±i∞ are mapped
to u = 0,∞ respectively. Because of the degeneration limit, the classical weights associated
with u= 0,∞ are supposed to taken to be 1/2 (i.e they are genuine cusps). These points are
identified with each other to create a noded once-bordered torus.

Now recall that eT (u) in the Fuchsian equation for the three-punctured sphere is given
by [37]

eT (u) =
δ1

u2
+

δ2

(1− u)2
+
δ1 +δ2 −δ3

u(1− u)
. (63)

Pulling back eT (u) to the z-plane with the exponential map u= exp(2πiz) using (3), evaluating
{u, z} = 2π2, and subsequently taking δ1 = δ,δ2 = δ3 = 1/2 it can be shown that it indeed
produces (62). We see that our procedure generates a sensible result in the degeneration limit.

3.3 The Weil-Petersson metric and the volume of M1,1(L)

In this subsection, we solve for the Weil-Petersson (WP) metric gW P on the moduli space
M1,1(L) as a series expansion in moduli and compute its associated volumes. A mathemati-
cally oriented introduction to the WP metric can be found in [41].

We claim that the WP metric gW P = gττ|dτ|2 = gqq|dq|2 on M1,1(L) is given by

gττ = A∂τ c = −2πiA∂τ ∂τ S(1,1)
HJ (τ,τ;λ)

=⇒ gqq = −2πiA ∂q ∂q S(1,1)
HJ (q, q;λ) =

A
2πi |q|2

q ∂q c(q, q;λ) , (64)

where A is a complex constant (with a possible dependence on λ) that we are going to deter-
mine momentarily. In other words, we claim that the on-shell action S(1,1)

HJ is essentially the
Kähler potential for gW P . As far as the knowledge of the author goes such a relation hasn’t
been proven and we are not going to argue for it, as it would take us far from the scope of
this work. Instead we will just explore its consequences. Still, it may be possible to argue this
relation using the conformal Ward identity heuristically just as in (23), but with two stress-
energy insertions, along the lines discussed in [60–62] and this was our motivation behind our
claim in (64). We remark that in the case of genus 0 with elliptic/parabolic singularities an
analogous relation has already established rigorously [63] and tested for the four-punctured
sphere in [45]. Clearly the metric (64) is invariant under modular transformations.

Let us begin by fixing the constant A. We do this by investigating the degeneration limit
τ→ i∞ (q→ 0). In this limit it is easy to see that the length of the internal geodesic ℓ and
twist θ it goes under (with ℓ ∼ ℓ + θ describing the same surface) asymptotically takes the
form

ℓ= 2πλs ≈ −
4π2

log |q|2
,

2πθ
ℓ
≈ arg q , (65)

from (49) and (53). Using the Wolpert’s magic formula [64], the WP 2-form ωW P associated
with the WP metric asymptotically becomes

ωW P = dℓ∧ dθ ≈ −
16π3

|q| log3 |q|2
d(|q|)∧ d(arg q) = −

8π3i

|q|2 log3 |q|2
dq ∧ dq , (66)
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and from this we see that the WP metric is

ωW P =
i
2

gqq dq ∧ dq =⇒ gqq ≈ −
16π3

|q|2 log3 |q|2
, (67)

asymptotically. Given the equations (59) and (60), we also find the WP metric asymptotically
to be, through (64),

gqq̄ ≈
�

A
2πi |q|2

�

×
�

16π4

log3 |q|2

�

≈ −
8π3iA

|q|2 log3 |q|2
=⇒ A= −2i . (68)

The first term was due to the normalization in (64) while the second term is from (60). Note
that the coefficient of the ξ0 term in (60) being holomorphic was crucial to have this asymp-
totic form. In summary, we conclude that A = −2i from last two relations and we find it
is independent of the length of the border. We emphasize that it should be possible to ob-
tain this normalization factor by deriving the identity (64) from the conformal Ward identity.
Regardless, it is already promising that two distinct methods of calculating the WP metric
close to degeneration yields the same result. In fact, this is exactly the expected asymptotic
form [65–67].

Equipped with the normalization, we can use (64) to write the WP metric as a series
expansion

gqq =
ξ3

|q|2

�

�

2− 2(1+λ2)2Re(q) + · · ·
�

+

�

−
6(1+λ2)2

π
Re(q) + · · ·
�

ξ+ · · ·
�

. (69)

An important point to notice here that this metric has to be real by (64) and its normalization.
We see this is indeed the case: the non-perturbative corrections always combine with each
other to have a dependence on the real part of q exclusively.

Given gW P , it is possible to compute the WP volume VW P of M1,1(L) by

VW P(L) =

∫

M1,1(L)

ωW P =
i
2

∫

M1,1(L)

gττ dτ∧ dτ . (70)

This volume has an exact expression and it is given by [68]

VW P(L) =
π2

6
+

L2

24
≈ 1.645+ 0.0417L2 , (71)

in our conventions. We compute the volume VW P using (69) and the results are shown in
figure 4. We performed Monte-Carlo (MC) integration by uniformly sampled 105 points in the
fundamental region with a cutoff placed at Im(τ) = 20 to evaluate (70). For each value of L,
we have repeated the integration 10 times and take the mean. As shown in figure 4, we have
a satisfactory match and the quadratic dependence of the volume to the length of the border is
apparent. This result strongly suggests the formula (64) produces the WP metric on M1,1(L).

4 The vertex and Feynman regions

In this section we consider the case with s > 0 in (38), which is relevant for the geometries
that contain internal flat cylinders, i.e. string propagators. This will subsequently lead to the
description of the boundary of the vertex region ∂ V1,1(L) and the dependence of the Schwinger
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c1 + c2 L2 Estimate Error
c1 1.635 0.004
c2 0.04134 0.0003

Figure 4: The volume VW P(L) as a function of the length of the border L. The solid
curve is the exact result (71), the dashed curve is π2/6 and the red points are the
results of our integration. The uncertainties are due to MC integration. The best
fit weighted by the uncertainties is given by VW P(L) = 1.635 + 0.0413L2, which is
sufficiently close to the analytic result (71).

parameter of the propagator q = e−s+iθ to the moduli τ and the length of the border L of the
torus.

Begin by considering the saddle-point equation (39) again, but with s > 0

s = − log |q|=
1

2λs

∂

∂ λ′

h

S(0,3)
HJ (λ

′,λ,−λ′)− 2 f λλ′(q)− 2 f
λ

λ′(q)
i

λ′=λs

= 0 . (72)

Given the moduli τ and the border length L, the length of the internal geodesic 2πλs and s
are not independent from each other. Since the circumference of the string propagator in
hyperbolic CSFT is given by 2πλ, we consider the situation where we set λs = λ in this
subsection.

We would like to evaluate s as a function of the moduli τ and the length of the border L.
For that we need the following two derivatives. The first one is the derivative of the action
S(0,3)

HJ and the classical torus conformal blocks evaluated at λ′ = λ. We find

s = − log |q|= 2 log R(λ,λ,−λ)−
2
λ

Re

�

∂ f λ
λ′
(q)

∂ λ′

�

λ′=λ

(73)

= −
π

λ
+

i
λ

log

�

γ

�

1
2
+

3iλ
2

�

γ

�

1
2
+

iλ
2

�

Γ (1− iλ)2

Γ (1+ iλ)2

�

−
1
2

log |q|2 +
1
2

Re q+ · · ·

The boundary of the vertex region is placed at s = 0 and this produces the following curve
for ∂ V1,1(L) (notice the similarity to the form given in [40])

R(λ,λ,−λ)λ = e−π/2
�

γ

�

1
2
+

3iλ
2

�

γ

�

1
2
+

iλ
2

�

Γ (1− iλ)2

Γ (1+ iλ)2

�1/2i

=

�

�

�

�

�

exp

�

∂ f λ
λ′
(q)

∂ λ′

�

�

�

�

�

�

λ′=λ

.

(74)

The shape of this curve for assorted values of λ has been plotted in figure 5. Note that the
boundary curves ∂ V1,1(L) may appear like constant Im(τ) lines, but this is just an illusion of
Re(qn) terms in classical torus blocks being highly suppressed when Im(τ)≳ 1/2. We observed
decreasing the value of λ decreases the size of the Feynman region. This makes sense, given
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Figure 5: Left: The decomposition of the moduli space M1,1(L∗) to the vertex
V1,1(L∗) and the Feynman F1,1(L∗) regions. Right: The progression of the boundary
curve ∂ V1,1(2πλ) as a function of λ. As λ increases, the vertex region shrinks and
eventually disappears.

that λ→ 0 the entire moduli space turns into the vertex region since the length of the internal
geodesics is always larger than the boundary length [34].

There appears to be two “critical” values for λ: the values when the boundary touches
τ = i and τ = eiπ/3. Let us name them λ1 and λ2 respectively. We estimated λ1 ≈ 0.292 and
λ2 ≈ 0.332. When 0 < λ < λ1, as in the case of quantum hyperbolic CSFT, the vertex and
Feynman regions are present and the Feynman region is covered once (see figure 6). When
λ1 < λ < λ2, the vertex and Feynman region are still present, however the part of the Feynman
region gets covered finitely many times, as we have to map the Schwinger parameter q to the
outside of the fundamental region. Once this part gets mapped back to the fundamental region
it leads to overcounting. Finally, we have λ > λ2, for which the vertex region disappears
entirely whereas the Feynman region is still covered multiple times.

Looking at the λ → ∞ limit is also interesting. In this case the hyperbolic three-string
vertex with two punctures got sewed reduces to the minimal-area vertex described by a Strebel
differential with the same punctures got sewed together [40]. This is precisely the situation
investigated three decades ago in [69] and it is argued that the Feynman region gets covered
infinitely-many times.4 Our claim is that the curve (74), in the λ →∞ limit, produces the
behavior for the same curve shown in figure 10 of [69]. We have qualitatively observed that
∂ V1,1(L) in (74) appears to approach the behavior given in [69] as L increases, see figure 5.

We point out that it is difficult to investigate the behavior around |q| ≈ 1 (i.e. Im(τ) ≈ 0)
directly by taking the λ → ∞ limit of (74), even though we have observed such WKB-like
limit appears to exist for the classical torus blocks of [42], akin to the case of classical 4-point
blocks [40]. This can be attributed to the facts that the torus conformal block (B.1) converges
uniformly on the regions {q, |q| = e−ε < 1} for any ε > 0 (which is apparent following the
reasoning in [70]) and the series seem to require increasing number of terms in q for smaller ε.

4The author thanks Barton Zwiebach for pointing out this reference.
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Figure 6: The behavior of the Schwinger parameter q = q(τ) (75) in the Feynman
region F1,1(L∗).

Finally, we can find the Schwinger parameter of the string propagator q as a function of
the moduli τ and the length of the border L using (73). This is given by

q(τ;λ) = eπ/λ
�

γ

�

1
2
+

3iλ
2

�

γ

�

1
2
+

iλ
2

�

Γ (1− iλ)2

Γ (1+ iλ)2

�−1/iλ

exp

�

2
λ

∂ f λ
λ′
(q)

∂ λ′

�

λ′=λ

= R(λ,λ,−λ)−2 exp

�

2
λ

∂ f λ
λ′
(q)

∂ λ′

�

λ′=λ

. (75)

The argument for this is just as in [40]. The parameter q is a holomorphic function of the mod-
uli τ (therefore q) for 0< |q| ≤ 1 for which the curve |q|= 1 describes ∂ V1,1(L). Furthermore,
the point q = 0 has to get mapped to the boundary of the moduli space τ = i∞ (i.e q = 0)
with a well-defined Taylor expansion [69, 71]. This fixes the function above uniquely (up to
an unimportant phase) by the Riemann mapping theorem. The behavior of this function for
λ= λ∗ is shown in figure 6.

4.1 The accessory parameter for Feynman diagrams

In this subsection we modify the arguments of the previous section to derive the accessory
parameter for the situation where there is a string propagator present in the geometry. Calling
the on-shell action resulting from (40) S(1,1)

HJ ,s>0(q, q;λ) when s > 0 and defining

S(1,1),F
HJ (q, q;λ)≡ S(1,1),s>0

HJ (q, q;λ) +λ2s , (76)

the relevant accessory parameters is given by, upon replacing S(1,1)
HJ → S(1,1),F

HJ in (41),

c(q;λ) = (1+λ2) η1(q) + 4π2q
∂ S(1,1),F

HJ

∂ q
(q, q;λ) . (77)

The justification for this can be provided as in [40]: there is an annulus part in the geometry
so there should be additional contributions to the on-shell action due to the modulus of the
cylinder, while the rest of the on-shell action does not get affected.
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Using (40), we immediately see

S(1,1),F
HJ (τ,τ;λ) = S(0,3)

HJ (λ,λ,−λ)− 2 f λλ (q)− 2 f
λ

λ(q) (78)

= 2F
�

1
2
+

3iλ
2

�

+ 6F
�

1
2
+

iλ
2

�

+ 6H(iλ) + 3πλ− 2 f λλ (q)− 2 f
λ

λ(q) ,

where we have used (35), together with identities F(1/2+x) = F(1/2−x) and H(x) = H(−x),
see (36). From this, the accessory parameter for the Feynman region cF is given by

cF (q;λ) = (1+λ2) η1(q)− 8π2q
∂ f λ
λ
(q)

∂ q
= δ

π2

3
− 2π2λ2 − 5π2(1+λ2)q+O(q2) , (79)

which is a holomorphic function in the moduli as somewhat expected.
Similar to what we did in subsection (3.2), an interesting limit to investigate is the degen-

eration limit, i.e. τ→ i∞ or q→ 0. In this limit we have cF → δπ2/3− 2π2λ2. Given this
and the identity (61), T (z) in the Lamé equation evaluates to

T (z) = δπ2 csc2(πz)− 2π2λ . (80)

Observe howδπ2/3 part of cF coming fromη1 has canceled. Whenλ→ 0, this is equal to (62).
This is consistent, the flat cylinder degeneration reduces to the cusp-like degeneration when
λ= 0.

Like earlier, the punctured infinite strip in the z-plane can be conformally mapped to the
three-punctured sphere u with the exponential map u= exp(2πiz). Because of the flat cylinder
degeneration, we identify the holes around u = 0 and u =∞ this time. Accordingly, we take
δ1 = δ2 = δ3 = δ in (63). After pulling eT (u) to the z-plane, we indeed obtain (80). This
result supports the validity of (79). For the general cases, we should compare (79) with the
accessory parameter obtained from sewing the pair-of-pants with itself. Unfortunately, the
description of the latter is not currently available.

Given the accessory parameter (79), it is possible to find the local coordinates for the sur-
faces in the Feynman region F1,1(L) using the Lamé equation as well. This is the task we de-
scribe in the next section, along with finding the local coordinates for the vertex region V1,1(L).

5 The local coordinates

Finally, we describe the procedure to derive the local coordinate for the hyperbolic tadpole
vertex and the one-loop Feynman diagrams. We have already found the accessory parameters
solving the hyperbolic monodromy problem through the Polyakov conjecture for both, so all we
have to do is to solve the Lamé equation (12) and relate its solutions to the local coordinates.
In the first subsection we describe the Lamé function that will be used to construct the local
coordinates. Then we make some remarks on the computation of the mapping radii in the
subsequent subsection and derive the local coordinates in the final subsection.

5.1 Lamé functions

The solutions to the Lamé equation are called Lamé functions and we are going to consider
their expansions around z = 0. Suppose they have the expansion of the form

ψ(z) = zα
∞
∑

n=0

anzn , with a0 = 1 , (81)
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where α is a complex number. Considering the series (A.3), we arrive to the following equality

∞
∑

n=0

an(n+α)(n+α− 1)zn−2 +

�

c
2
+
δ

2z2
+
δ

2

∞
∑

n=1

(2n+ 1)G2n+2 z2n

��∞
∑

n=0

anzn

�

= 0 . (82)

Let us focus on the leading term ∼ z−2. This gives

α=
1
2
(1± iλ) , (83)

essentially by our construction. This choice realizes a diagonal real hyperbolic monodromy
around the puncture z = 0. Different sign choices in α leads to two linearly independent
solutions.

The rest of the expansion can be found by matching powers of z with each other and solving
for the coefficients an recursively. For example, it is easy to see that a1 = 0 for the next term
from the coefficient of z−1 (in fact all odd powers of z vanishes by symmetry). We find

ψ±(z) =
z(1±iλ)/2
p

iλ

�

1−
c

4(−2± iλ)
z2 −

c2 − 6(2± iλ)(1+λ2)G4

32(−8+λ(λ∓ 6i))
z4 + · · ·
�

. (84)

Here we have included an overall multiplicative factor to normalize the Wronskian to one,
W (ψ−,ψ+) = 1. We point out that the overall phase of z itself is ambigious while solving (82).
This is not to be confused with the irrelevant overall phase of the local coordinates of CSFT.
We are going to comment on how this phase ambiguity can be resolved momentarily.

The associated scaled ratio is given by

ρ(z) =
�

ψ+(z)
ψ−(z)

�1/iλ

= z

�

1+
c

2(4+λ2)
z2 +

36 c2 + 3(1+λ2)(4+λ2)2G4

8(4+λ2)2(16+λ2)
z4 + · · ·
�

. (85)

We emphasize the dependence on the moduli τ appears in the accessory parameter c and the
Eisenstein series G2n, see (A.4). This series is expected to converge until z hits an image of the
puncture at z = 0, but it is possible to analytically continue beyond it. Notice the hyperbolic
monodromy for these solutions is not compatible yet–it will be upon including the correct
mapping radii, which we undertake next subsection.

5.2 Mapping radii

Like in [37], the local coordinates are related to the scaled ratio up to a multiplicative constant
that depends on λ, whose inverse is the mapping radius associated with the local coordinate.
Recall that the definition and transformation of the mapping radius is given by

r(z) =

�

�

�

�

dz
dw

�

�

�

�

w=0
, and r(z) =

�

�

�

�

∂ ez
∂ z

�

�

�

�

−1

r(ez) . (86)

This quantity has determined by the pair of hypergeometric functions 2F1(a, b; c; z) realizing
the hyperbolic monodromy around each puncture and demanding compatible monodromies
in the case of hyperbolic three-string vertex. Such connection formulas are not available for
the Lamé functions generally. Despite this obstacle, it is possible to obtain the mapping radii
like it is done for the four-bordered spheres in [40].

Before we discuss the derivation of the mapping radius for once-bordered tori, we expand
the discussion in [40,50] and argue for the following identity for a Riemann surface Σg,n and

the on-shell action S(g,n)
HJ [ϕ] associated with such surface:

∂ S(g,n)
HJ [ϕ]

∂ λi
= 2λi log ri(u) , (87)
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where Hi is the flat region around ith puncture (“hole”) and ri(u) is its associated mapping
radius in the u-plane. This is the plane for which the surfaceΣg,n is uniformized as the Riemann
sphere containing n+ 2g punctures and the holes around g punctures are identified with the
plumbing fixture in their local coordinates to account for the genus. The geodesic length of
∂ Hi is given by 2πλi as usual. The distinguishing feature of this plane is that it is like the
complex plane considered in [40], but addition of appropriate identifications. Given this, the
calculus in such plane is simple and we will be able to do the operations described below.
Finally, Note that we are taking partial derivative with respect to one of the λi ’s while keeping
the others fixed in (87).

In the u-plane, upon taking derivative with respect to λi , integrating-by-parts and employ-
ing the equation of motion, the only remaining terms are the ones associated with the holes
Hi around the punctures. This is because after these operation we are left with terms local-
ized on the boundary of the patches after these operation and sewing them cancel each other,
localizing the terms to the small regularization circles around each puncture. This reasoning
here also restricts the appearance of the derivative of the mapping radii with respect to λi , see
the form given in equation (B.2) of [40] and equation (23) in [50]. In the view of this remark,
let us place the ith puncture at u= 1 and write

∂ S(g,n)
HJ [ϕ]

∂ λi
= lim
ε→0

�

i
4π

n
∑

j=1

∫

|u−1|=ε

∂ ϕ

∂ λi

�

∂ ϕ

∂ u
du−

∂ ϕ

∂ u
du
�

+
1

2πε

n
∑

j=1

∫

|u−1|=ε

|du|
∂ ϕ

∂ λi

�

+ 2λi log ri(u) . (88)

Furthermore, we have the Weyl factor around the ith puncture as the following expansion
on CHi

ϕ(u, u) = logλ2
i − log |u− 1|2 +O(u− 1, u− 1) , (89)

since it describes flat semi-infinite cylinder around u= 1. As a result, the only remaining term
in (88) are those associated with the ith puncture. But a quick observation shows that these
two terms in (88) cancel each other and we indeed obtain (87).

We emphasize again that the mapping radius ri(u) above is given in the u-plane. Depending
on the way surface Σg,n is uniformized, we have to transform the mapping radii according
to (86). In the case of g = n = 1, we would like the mapping radius r(z) = r for the z-plane
and using the exponential map u= e2πiz we actually have to use the relation

∂ S(1,1)
HJ

∂ λ
(τ,τ;λ) = 2λ log2πr , (90)

given ri(u) = 2πr(z) = 2πr by (86).
As a consistency check, let us demonstrate the change in both sides of (90) is the same

under the modular transformations (10). The T portion of the modular transformation is
trivial. For the S portion, the change of the right-hand side of (87) is given by, from the
definition of the mapping radius (86),

r
�

z
τ

,−
1
τ

�

=
r(z,τ)
|τ|

=⇒ 2λ log r
�

z
τ

,−
1
τ

�

= 2λ log r(z,τ)− 2λ log |τ| . (91)

This is exactly how the left-hand side of (87) changes by (32) upon taking derivative with
respect to λ. So we see they are indeed consistent.

We would like to take a derivative of S(1,1)
HJ (τ,τ;λ) with respect to λ now. We first notice

is the parameter ξ of (49) depends on λ and we have

∂ ξ

∂ λ
= −

ξ2

2π
ds1(λ)

dλ
= −

2ξ2

π
Imψ(1)
�

1
2
+

iλ
2

�

. (92)
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In the view of this, we find

log2πr =

�

−
π

2λ
+

i
2λ

log

�

γ

�

1
2
+

iλ
2

�4�Γ (1− iλ)
Γ (1+ iλ)

�2�

− (1+λ2)Re(q) + · · ·
�

+ · · · (93)

We have adjusted branches in the expression above in order to match the form given in [37].
Notice that when q→ 0 this generates the mapping radius derived in [37], more specifically
R(0,λ, 0) in (43). Also notice as λ→ 0, we have

2πr ≈ 16exp
�

−
π

2λ

�

[1+ · · · ] , (94)

which is the expected behavior from the appearance of a hyperbolic cusp [34,37]. Here dots
indicate the subleading terms in λ.

The identity analogous to (87) applies to the situation when the internal flat cylinders are
present. Imagine for each 3g − 3+ n disjoint simple closed geodesics of length 2πλk we have
grafted flat cylinder of size sk. This will modify the on-shell action by

S(g,n),F
HJ [ϕ]≡ S(g,n),s>0

HJ [ϕ] +
3g−3+n
∑

k=1

λ2
ksk . (95)

Here λk ’s of the internal geodesics are distinct from those of the borders. The identity (87) still
holds in this situation upon replacing S(g,n)

HJ [ϕ]→ S(g,n),F
HJ [ϕ] by the similar reasoning before.

In the case of g = n= 1, this can be further written as

dS(1,1),F
HJ

dλ
(τ,τ;λ) = 2λ log2πrF + 2λs . (96)

Here rF stands for the mapping radius in the Feynman region in the z-plane. Note that we
take a total derivative with respect to λ in this expression. This is the form we are going to
consider due to simplicity of (78). The mapping radii rF is then given by

log 2πrF =
i

2λ
log

�

−
π

2λ
γ

�

1
2
+

3iλ
2

�

γ

�

1
2
+

iλ
2

��

Γ (1− iλ)
Γ (1+ iλ)

�2�

−Re(q) + · · · , (97)

using (78). Again, the branches are adjusted appropriately for this expression. In the q → 0
limit we generate the mapping radius R(λ,λ,−λ) in (43) of [37], as it is expected from this
limit. The modularity concerns work similarly to (91) and the λ → 0 behavior matches
with (94).

5.3 The local coordinates and the hyperbolic metric

Endowed with the mapping radii we can obtain the local coordinate patch on the one-
punctured torus for given τ ∈M1,1 and λ using (60) and (79). We have

ew(z) =
ρ(z)

r
=

z
r

�

1+
c

2(4+λ2)
z2 +

36 c2 + 3(1+λ2)(4+λ2)2G4

8(4+λ2)2(16+λ2)
z4 + · · ·
�

, (98)

where r, c are the associated mapping radii in the z-plane and the accessory parameter corre-
sponding to the vertex or Feynman regions, respectively.

The function w̃(z) is not exactly the local coordinate for the hyperbolic tadpole as there
was a phase ambiguity in z mentioned below (84), which has been propagated here. The
ambiguity in question can be set by letting

w(z) = ew
�

ie−i argτz
�

, (99)
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Figure 7: The local coordinate patch (inside the black curve) and the hyperbolic
metric for the bordered tori τ= i and τ= 0.40+ 0.99i. The length of the geodesics
border is L = L∗ = 2arcsinh1. Constant eϕ contours have plotted. We have used
O(z93) in the expansion (99).

which would produce the true local coordinates. This is the correct choice, given that when
w̃(z) is complex conjugated it describes the local coordinate for the torus whose moduli is τ̄.
On the other hand, when w(z) is complex conjugated it still describes the torus with τ. This
consideration fix the ambiguity. We also see (99) is modular invariant up to a phase, consistent
with our discussion below (14), using the equations (14), (91) and (A.4).

Some examples for the local coordinates in the vertex region are shown in figure 7. The
white region surrounded by the black curve is the local coordinate patch on the z-plane and its
boundary is where the flat cylinder makes contact with the hyperbolic surface. Along with the
local coordinate patch we have plotted the hyperbolic metric eϕ. Recall that its expressions is
given by [40]

ds2 = eϕ|dz|2 = λ2 |∂ w(z)|2

|w(z)|2
|dz|2

sin2 (λ log |w(z)|+λ log r)
. (100)

Any choice of w(z) in (100) leads to (possibly singular) hyperbolic metric. However,
only w(z) in (99) leads to the hyperbolic metric with geodesic boundary that is regular and
singularity-free on the one-bordered torus. The regularity is equivalent to the double period-
icity under the action of the lattice Λ in this context. Indeed, figure 7 shows that using (99)
gives an almost doubly-periodic metric. Since the problematic points are toward to the cor-
ners, it is reasonable to think that including higher-orders terms in the expansions achieves
double periodicity. We observed increasing order of the expansion systematically improves
this behavior.

6 Conclusion

In this paper, we have derived the local coordinates and vertex region of the hyperbolic tad-
pole vertex that is relevant for the one-loop diagrams in closed string field theory. To that
end, we have considered a torus with a hyperbolic singularity which lead us to the Lamé equa-
tion (12). We have used the Polyakov conjecture (30) to fix its accessory parameters and use
the formalism of [40] to obtain the relevant geometric data. We emphasize that only the cubic
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information of CSFT, together with the input from the classical torus conformal blocks, was
sufficient for our construction. As a byproduct, we uniformized the hyperbolic geometry on
the one-bordered torus numerically and find the Weil-Petersson metric in the moduli space
M1,1(L) as an expansion in moduli. We have ran non-trivial checks and confirmed it leads to
consistent results with the literature.

The hyperbolic tadpole vertex can be used to perform vacuum shift calculations in CSFT
from first principles and this was our primary motivation behind this study. However, the
vacuum shifts themselves are not observable [48] and there is no clear advantage of using
hyperbolic vertices over other possible choices at this moment. The real advantage of using
hyperbolic vertices is going to be apparent when the vacuum shift is considered in conjunction
with the mass renormalization, which will yield physical results such as renormalized masses
and S-matrix elements.5 For example, the prime target here is the SO(32) heterotic string
theory on Calabi-Yau 3-folds [47], for which the perturbative vacuum shifts and the external
states undergo mass renormalization.

However, the question of higher genus hyperbolic vertices remain open due to our poor
understanding of classical conformal blocks for them. In particular, we need to solve for the
hyperbolic geometry on the two-punctured torus in order to renormalize masses directly using
the microscopic theory. Even though its Polyakov conjecture can be derived with relative ease
(see appendix D), the classical conformal blocks necessary for the rest of the evaluation lacks.
The most straightforward way to approach this problem would be to derive an (efficient)
recursion relation for arbitrary blocks similar to the one given in [42] and take the semi-
classical limit. Some steps towards it has been already undertaken in [75]. Despite these set-
backs, we still see that the accessory parameter problem plays an important role in hyperbolic
CSFT and a deeper theoretical understanding of them is certainly required.

Beyond motivations stemming from CSFT, it may be interesting to look at the Weil-
Petersson Laplacian on the moduli space M1,1(L), similar to what is done for M0,4(0) in [45],
as it is expected the spectrum to exhibit chaos. Another possibility for a future work is to inves-
tigate the results of [76,77] by evaluating the Laplacian on the surface directly and compare.
Finally, it is possible to solve for the curvature of the Weil-Petersson metric over the moduli
space using our techniques and this may be of interest in the theory of Riemann surfaces.
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A Special functions

Here we list the definitions, conventions, and properties of the special functions we have used
throughout this work. For general references see [53, 78, 79]. The most important special

5These problems have been addressed using CSFT-inspired arguments in the past, see [72–74].
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function for us was the Weierstrass elliptic function ℘ (z,τ)

℘ (z,τ)≡
1
z2
+
∑

λ∈Λ\{0}

�

1
(z −λ)2

−
1
λ2

�

, (A.1)

associated with the lattice Λ= Z+τZ for τ ∈H. By construction it satisfies

℘ (z,τ) = ℘ (z + 1,τ) = ℘ (z +τ,τ) , ℘ (z,τ) = ℘ (z,τ+ 1) =
1
τ2
℘

�

z
τ

,−
1
τ

�

. (A.2)

This function has a Laurent expansion around z = 0 of the form

℘(z,τ) =
1
z2
+
∞
∑

k=1

(2k+ 1)G2k+2(τ) z
2k , where G2k(τ) =

∑

λ∈Λ\{0}

1
λ2k

, (A.3)

which converges for |z| < 1. Here G2k for k ≥ 1 are called the Eisenstein series. They have the
following modular transformations

G2k(τ+ 1) = G2k(τ) , G2k

�

−
1
τ

�

= τ2kG2k(τ) , (A.4)

and the q-expansions

G2k = 2ζ(2k) +
4ζ(2k)
ζ(1− 2k)

∞
∑

n=1

σ2k+1(n)q
n , where σ2k+1(n) =

∑

d|n

d2k+1 . (A.5)

Here ζ is the Riemann zeta function ζ(s) =
∑∞

k=1 k−s and σ2k+1(n) is the divisor sum function
defined as the sum of the (2k+ 1)-th powers of the divisors of the integer n.

An auxillary function to the Weierstrass elliptic function is the Weierstrass zeta function
ζ(z,τ) (not to be confused with Riemann zeta function). This is defined as

ζ(z,τ)≡
1
z
+
∑

λ∈Λ\{0}

�

1
z −λ

+
1
λ
+

z
λ2

�

. (A.6)

It is clear ℘(z,τ) = −∂zζ(z,τ) as given in (25a). This function is quasi-periodic, meaning

ζ(z,τ) = ζ(z + 1,τ)− 2ζ
�

1
2

�

= ζ(z +τ,τ)− 2ζ
�τ

2

�

, (A.7)

and it has the following modular transformations

ζ(z,τ) = ζ(z,τ+ 1) =
1
τ
ζ

�

z
τ

,−
1
τ

�

. (A.8)

These properties will be used in appendix D.
Furthermore, we encountered the Dedekind eta function, which is defined by

η(τ)≡ q
1
24

∞
∏

n=1

(1− qn) , where q = e2πiτ , (A.9)

as usual. This immediately implies the identity (25c). The Dedekind eta function enjoys the
following modular properties

η(τ+ 1) = eiπ/12η(τ) , η

�

−
1
τ

�

= (−iτ)1/2η(τ) . (A.10)
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We have also made use of the odd Jacobi theta function

ϑ1(z|τ)≡ i
∞
∑

n=−∞
(−1)nq(n−1/2)2/2un−1/2 = 2q

1
8 sin(πz)

∞
∏

n=1

(1− qn)(1− uqn)(1− u−1qn) ,

(A.11)

where u = e2πiz . The functions ζ(z,τ),ϑ1(z|τ) and η(τ) can be related to each other as
in (25a) or equivalently as [43,56]

℘ (z,τ) = −∂ 2
z logϑ1(z|τ) + 4πi∂τ logη(τ) . (A.12)

Finally, we have used the polygamma functions in our evaluation of the saddle-point (39).
These are defined as

γ(n)(z)≡
dn+1

dzn+1
log Γ (z) , for n≥ 0 . (A.13)

In particular, their values at z = 1,1/2 are evaluated in terms of the Riemann zeta function
and the Euler–Mascheroni constant γ as follows

γ(n)(1) =

¨

−γ , if n= 0 ,

(−1)n+1 n! ζ(n+ 1) , if n≥ 1 ,
(A.14a)

γ(n)
�

1
2

�

=

¨

−γ− 2 log 2 , if n= 0 ,

(−1)n+1 n! (2n+1 − 1)ζ(n+ 1) , if n≥ 1 .
(A.14b)

B Classical torus conformal blocks

In this appendix we present our conventions and computation of the classical torus conformal
blocks, based on the recursion relation derived in [42]. Begin with the torus conformal block,

F∆c,∆′(q) =
q∆
′− c−1

24

η(τ)

�

1+
∞
∑

n=1

qnH∆,n
1+6Q2,∆′

�

. (B.1)

The functions F∆c,∆′(q) are entirely determined by the Virasoro algebra and depends on the cen-
tral charge c, as well as the conformal dimensions∆,∆′ of the external and internal operators.
We are interested in their expansions in q = e2πiτ.

The coefficients H∆,n
1+6Q2,∆′ satisfy a recursion relation of the form [42]

H∆,n
1+6Q2,∆′ =
∑

1≤rs≤n

Ars(c)
∆′ −∆rs(c)

Prs(c,∆,∆rs + rs)Prs(c,∆,∆rs)H
∆,n−rs
c,∆rs+rs , (B.2)

akin to the Zamolodchikov’s recursion for the 4-point conformal blocks. Here the base case is
given by H∆,0

1+6Q2,∆′ = 1 and the ingredients for the recursion are given as follows. First, the
function Ars(c) is defined as

Amn(c) =
1
2

� m
∏

k=1−m

n
∏

l=1−n

�′
1

kb+ l
b

, (B.3a)

where the prime indicates that the terms with (k, l) = (0,0), (m, n) are skipped in the product.
Furthermore, we have

Pmn(c,∆1,∆2) =
m−1
∏

p=1−m
p+m is odd

n−1
∏

q=1−n
p+n is odd

α1 +α2 + pb+ q
b

2

α1 −α2 + pb+ q
b

2
, (B.3b)
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with αi is related to ∆i through

∆i =
1
4
(Q2 −α2

i ) . (B.3c)

Finally ∆rs is defined by

∆rs(c) =
Q2

4
−

1
4

h

r b+
s
b

i2
. (B.3d)

The recursion relation (B.2) can be used to obtain the full torus conformal block (B.1).
We don’t report them since we are primarily interested in the classical torus conformal blocks
f λ
λ′
(q) given by the limit (37). We have computed f λ

λ′
(q) to order O(q4) for general λ (and

higher orders for the pre-determined values of λ). Its expressions is given by

f λλ′(q) =
1
4
λ
′2 log q+

(1+λ2)2

8(1+λ′2)
q

+
(1+λ2)2(−48(1+λ2)(1+λ

′2)2 + 96(1+λ
′2)2(2+λ

′2) + (1+λ2)2(−7+ 5λ
′2)

256(1+λ′2)3(4+λ′2)
q2

+O(q3) . (B.4)

We refrain listing higher orders as the expressions get highly convoluted.

C Numerical details

We provide additional details on our numerical computations in this appendix. We begin with
the investigation of the convergence of the series (53). Figure 8 shows the convergence of
the length of the internal geodesic 2πλs computed using the double series expansion (53)
for assorted values of τ and λ. We observe that the convergence is indeed achieved. It is
interesting to take note that the perturbative series (that is, the series in ξ (49)) plus the
first few non-perturbative corrections (that is, the series in Re(q)) already generates the exact
results in [59] to high accuracy, similar to [45]. This supports the validity of our procedure.
Analogous convergence behavior has observed for the different values of τ and the remaining
expansions in our study. We omit reporting them.

Next, we provide an evidence for the modular invariance of the accessory parameter c, see
figure 9. Like in figure 2, the relative errors are relatively tiny and it is not really surprising
given that we have also showed the modular invariance of S(1,1)

HJ . Compared to the errors for

the modular crossing of S(1,1)
HJ the errors here are about 3 orders of magnitude higher. This is

expected, as we have taken a derivative of S(1,1)
HJ to obtain c. This has necessarily decreased

the accuracy.

D The Polyakov conjecture for the n-bordered torus

In this appendix, we present the Polyakov conjecture for the torus with n hyperbolic singular-
ities for completeness. The relevant Fuchsian equation is given by

∂ 2ψ+
1
2

� n
∑

i=1

(δi ℘(z − ξi ,τ) +µi ζ(z − ξi ,τ)) + c

�

ψ= 0 , (D.1)
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Figure 8: The progression of the convergence of the length of the internal geodesic
with increasing orders in the expansion (53) . The dashed line indicates the exact
result due to [59].

assuming the hyperbolic singularities are placed at z = ξi and their associated classical weights
are δi for i = 1, · · ·n. Here the reason for the appearance of the function ℘(z−ξi ,τ) is exactly
same as before, while the function ζ(z−ξi;τ) appears as a consequence of having additional
punctures and subsequent breaking of the z→−z symmetry when there was a single puncture
placed at z = 0. This breaking allows us to include a simple pole at each puncture and its
images, see (A.6). The inclusion of regular terms are still restricted by the double-periodicity.
We point out this equation made an appearance in [80] in a different, but somewhat related,
context.

The torus moduli τ and the position of the punctures ξi are the complex moduli for fixed
classical weights. There are n independent moduli, upon noticing one of ξi can be set to a
fixed location by the translational invariance. Here τ is taking values inH/PSL(2,Z) as usual,
while ξi belongs to the set (C \ {ξ1, · · · ,ξi−1,ξi+1 · · ·ξn})/Λ.

The variables c and µi are the accessory parameters and they should be chosen so that
real hyperbolic monodromies can be realized. There are n of them given that they satisfy the
constraint

n
∑

i=1

µi = 0 . (D.2)

This can be argued by considering the contour integral of the expression inside the square
bracket in (D.1) for which the contour surrounds all n punctures. It is possible to deform this
contour to contain all the images instead. The consistency then requires all residues to add up
to zero, giving (D.2). When n= 1, µ1 = 0 as expected. Observe that this constraint guarantees
the term inside the square bracket (D.1) is doubly-periodic, using the (quasi-)periodicity prop-
erties (A.2) and (A.7). This was the primary reason why we added ζ(z;τ) function in (D.1)
in order to include simple poles at the punctures and their images.
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Figure 9: The distribution of the relative errors for the crossing equation for the
accessory (14) for λ = 0 and λ = arcsinh1/π. The points are sampled from the
fundamental domain with Imτ < 1.2.

We point out there is an involution symmetry of the form

τ→−τ, ξi → ξi −τ =⇒ c→ c + 2
n
∑

i=1

µi ζ

�

τ

2

�

= c , µi → µi , (D.3)

after complex conjugating (D.1) and using (D.2). Note that shifting ξi was necessary in order
to put ξi back in the “fundamental region” of the torus after complex conjugation. This can
be used to constrain the accessory parameters for sufficiently symmetric configurations.

Now consider the analog of the equation (26) when there are multiple insertions of n hole
operators Hλi

with their associated conformal weights ∆i . This is given by

�

1
b2
∂ 2

z + (2∆+η1(τ) + 2η1(τ)z∂z) +
n
∑

i=1

�

∆i (℘ (z − ξi ,τ) + 2η1(τ)) (D.4)

+ (ζ (z − ξi ,τ) + 2η1(τ)ξi)∂ξi

�

+ 2πi∂τ

�

®

φ+(z)
n
∏

i=1

Hλi
(ξi ,ξi)

¸

τ

+ 2πi∂τ log Z(τ) = 0 .

In the semi-classical limit we expect the correlator to have a factorization of the form
®

φ+(z)
N
∏

i=1

Hλi
(ξi ,ξi)

¸

τ

∼ φcl
+ (z)〈Σ1,n〉τ ∼ φcl

+ (z)exp
�

−
1

2b2
S(1,n)

HJ (τ,ξi)
�

, (D.5)

given φ+(z) stays light while the hole operators get heavy. We have indicated the collection of
hole operators simply by 〈Σ1,n〉τ above and evaluated it using the saddle-point approximation

to the path integral. Here S(1,n)
HJ (τ,ξi) is the (regularized) on-shell action relevant for this

particular geometry. It depends on τ and the position of the punctures ξi as well as their
complex conjugates, but we haven’t indicated the dependence on the latter for brevity.

Upon taking the semi-classical limit of (D.4) we get

∂ 2
z φ

cl
+ (z) +

1
2

� n
∑

i=1

�

δi℘ (z − ξi ,τ) + 2δiη1(τ) (D.6)

− (ζ(z − ξi ,τ) + 2η1(τ)ξi)∂ξi
S(1,n)

HJ (τ,ξi)
�

− 2πi∂τS(1,n)
HJ (τ,ξi)
�

φcl
+ (z) = 0 ,
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Ls2

Ls1

Figure 10: The two-bordered torus and its associated decomposition.

and the accessory parameters c and µi are fixed by

c = 2η1(τ)
n
∑

i=1

�

δi − ξi ∂ξi
S(1,n)

HJ (τ,ξi)
�

− 2πi∂τS(1,n)
HJ (τ,ξi) , (D.7a)

µi = −∂ξi
S(1,n)

HJ (τ,ξi) . (D.7b)

This is the Polyakov conjecture for the torus with n hyperbolic singularities. We point out the
linear constraint (D.2) can be thought as consequence of the translational invariance due to
the conformal Ward identity.

As a sanity check, let us test the modular invariance of the relation (D.7). The modular
invariance of the equation (D.1) demands

T : c(τ,τ)→ c(τ+ 1,τ+ 1) = c(τ,τ) , µi(τ,τ)→ µi(τ+ 1,τ+ 1) = µi(τ,τ) , (D.8a)

S : c(τ,τ)→ c
�

−
1
τ

,−
1
τ

�

= τ2 c(τ,τ) , µi(τ,τ)→ µi

�

−
1
τ

,−
1
τ

�

= τµi(τ,τ) . (D.8b)

Furthermore, we have

T : 〈Σ1,1〉τ→ 〈Σ1,1〉τ+1 = 〈Σ1,1〉τ , S : 〈Σ1,1〉τ→ 〈Σ1,1〉− 1
τ
= |τ|2
∑n

i=1∆i 〈Σ1,1〉τ , (D.9)

by the conformal weights of the hole operators, which subsequently produces

T : S(1,n)
HJ (τ,ξi)→ S(1,n)

HJ (τ+ 1,ξi) = S(1,n)
HJ (τ,ξi) , (D.10a)

S : S(1,n)
HJ (τ,ξi)→ S(1,n)

HJ

�

−
1
τ

,
ξi

τ

�

= S(1,n)
HJ (τ,ξi)− 2

n
∑

i=1

δi log |τ| . (D.10b)

From these relations it is apparent that the Polyakov conjecture is indeed consistent with the
modular invariance (D.7).

The relation (D.7) alone is not sufficient to construct the local coordinates for the n-
punctured torus: the on-shell action S(1,n)

HJ has to be known as well. Constructing S(1,n)
HJ as

function of the moduli requires the knowledge of the classical conformal blocks for the torus
with arbitrary number of puncture. Assuming these blocks are obtained (for example, using
a version of [75]) it is quite trivial to repeat an analogous bootstrap procedure to solve for
S(1,n)

HJ . For example, the two-bordered torus requires performing the decomposition shown in
figure 10.

Lastly, let us make some further, more speculative, comments. Like in subsection 3.3, it is
reasonable to expect that the on-shell action S(1,n)

HJ is the Kähler potential for the Weil-Petersson
metric gi j on the moduli space M1,n(Li). More precisely, it is natural to conjure

gi j ∼ ∂i∂ j̄S
(1,n)
HJ , (D.11)
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where i, j stands for the moduli τ,ξi and their complex conjugates or their combinations
thereof. Secondly, the ideas here may admit a generalization to the surfaces with genus
greater than one. In this case the most natural way to present the Fuchsian equation would be
on the hyperbolic upper half-plane H, with demanding invariance under the Fuchsian group
Γ ⊂ PSL(2,R) associated with the surface Σg,n ≃H/Γ . During this construction the analogs of
the functions ℘(z,τ) and ζ(z,τ) for the Fuchsian groups will be needed and this will require
introducing the sophisticated machinery of automorphic forms of the subgroups of PSL(2,R),
see [81]. It is quite probable that this may allow us to write down an appropriate Polyakov
conjecture. Once this is done, we are again only bounded by our ability to compute the classi-
cal conformal blocks and the on-shell action as far as the expressions for the local coordinates
and vertex regions are concerned.
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