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Abstract

Different classes of low-dimensional superconducting systems exhibit an inhomogeneous
filamentary superconducting condensate whose macroscopic coherence still needs to be
fully investigated and understood. Here, we present a thorough analysis of the superfluid
response of a prototypical filamentary superconductor embedded in a two-dimensional
metallic matrix. By mapping the system into an exactly solvable random impedance
network, we show how the dissipative (reactive) response of the system non-trivially
depends on both the macroscopic and microscopic characteristics of the metallic (super-
conducting) fraction. We compare our calculations with resonant microwave transport
measurements performed on LaAlO3/SrTiO3 heterostructures over an extended range of
temperatures and carrier densities finding that the filamentary character of supercon-
ductivity accounts for unusual peculiar features of the experimental data.
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1 Introduction

The availability of low-dimensional compounds exhibiting superconductivity is steadily in-
creasing, often allowing for the detection of unconventional behaviours in their physical prop-
erties. The unavoidable presence of (even weak) microscopic disorder in the vast majority
of two-dimensional (2D) materials, as well as other external and/or internal electron inter-
actions, can fragment the superconducting (SC) condensate, leading to inhomogeneity on a
mesoscopic scale. In particular, there is increasing evidence that in several classes of low-
dimensional SC systems the strongly inhomogeneous nature of the electronic condensate ap-
pears as a filamentary SC pattern. Inhomogeneous superconductivity can indeed result from
several different mechanisms, where the competition of the SC order parameter with other
phases can act as a primary source of filamentarity. This is the case for the competition with
charge-density waves in high-temperature SC cuprates [1, 2], in Cu-intercalated TiSe2 [3, 4],
and in HfTe3 [5]. Hints of filamentary superconductivity have been observed also in the low-
temperature antiferromagnetic phase of Fe-based superconductors [6–11], persisting until the
long-range antiferromagnetic order is completely suppressed. The clustering of SC electrons
into anisotropic stripe-like or puddle-like geometry is also found in WO2.90, probably caused
by the presence of W5+ − W5+ electron bipolarons [12]. Besides chemical doping, also gat-
ing fields can trigger phase separation leading to a filamentary SC condensate. For instance,
the ionic-liquid gating technique, used to inject carriers in systems such as transition metal
dichalcogenides (TMD) and transition metal nitrides (TMN), and tune their number, can in-
duce a negative compressibility, thereby acting as a primary source of phase separation [13].
One paradigmatic class of materials displaying a strong anisotropy of SC regions in their 2D
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electron gas (2DEG) are SrTiO3-based heterostructures, like, e.g., LaAlO3/SrTiO3 (LAO/STO).
The inhomogeneities in these systems can be ascribed to various causes related to oxygen va-
cancies [14, 15], to the so-called polar catastrophe, connected with the abrupt polar disconti-
nuity between stacked planes [16,17], to a kind of combination of them [18], or to the sizable
Rashba spin-orbit coupling [19,20].

While the microscopic origin of filamentary superconductivity depends on the specific na-
ture of the system under investigation, some properties of the emergent SC condensate are
generically related to its filamentary inhomogeneous nature, the study of which is therefore
of interest to a very broad class of systems. Indeed, it has already been discussed how the
anomalous transport properties observed in some inhomogeneous superconductors can be al-
most entirely ascribed to spatial inhomogeneities of the condensate on a mesoscopic scale,
rather than to its microscopic nature. This is the case, for instance, of the large broadening
of the resistive transition, which cannot be ascribed to paraconductivity effects [21], and is
instead the hallmark of the percolating nature of the SC transition. Furthermore, the rela-
tive width of the transition ∆Tc/Tc = (Th − Tc)/Tc (where Th is the temperature of the first
high-temperature-downturn of the resistance R as a function of the temperature T , and Tc
is the zero-resistance temperature) gives a quantitative measure of the inhomogeneity of the
sample. In fact, paraconductivity effects due to Cooper pair fluctuations, e.g., à la Aslamazov-
Larkin or à la Halperin-Nelson, can account at most for widths of the transition of the order
∆Tc/Tc ∼ 0.1, whereas in several compounds such as STO-based heterostructures [21–23],
TMD [4,24], TMN [13,25], one observes∆Tc/Tc ∼ 1. Along with the broad resistive transition,
anomalous metallic states, sometimes termed failed superconductors, also find an explanation
within this percolative transition scenario, which we proposed, inspired by the seminal work
of Kirkpatrick [26]. This is the case, for instance, of granular and amorphous films of TaNx
and InOx [27,28]. Failed SC behaviours are also found in films of Bi, Al, In, Ga, Pb, Sn, and
a−MoGe (see Ref. [29] for a review). More recently, a similar theoretical framework was also
used to account for the anomalous transport properties observed in random nanocrystalline
samples fabricated combining half-metallic ferromagnet and SC components [30]. Likewise,
the observation on non-linear I −V characterics [31], or pseudo-gap signatures in the tunnel-
ing spectra of STO-based interfaces [32] at temperatures higher than Tc have also been con-
nected with the physics of inhomogeneities. Finally, the well-known conundrum of pre-formed
Cooper pairs in the pseudogap region of cuprates has been related to a possible percolative
scenario emerging from the presence of strong inhomogeneities [33, 34]. Yet, the debate is
still ongoing [35].

So far, several studies have focused on the effect of the mesoscale inhomogeneity on the SC
transition above the critical temperature, while few studies have investigated the superfluid
response of the resulting filamentary condensate [36,37]. In this paper, we face this issue by
mapping the problem onto a random-impedance network (RIN) model that we solve exactly.
By studying different RIN realizations, we show how the superfluid response of the system
non-trivially depends on its microscopic and macroscopic characteristics. At the same time,
by comparing our theoretical results with complex conductivity measurements on LAO/STO
interfaces, we show how the different doping regimes can be understood in terms of an intrin-
sically more or less robust filamentary SC condensate.

The paper is organized as follows. In Section 2, we introduce the problem of the superfluid
stiffness in a filamentary superconductor. In Section 3, we discuss the RIN model implemented
to study the odd features that can arise from a fractal-like geometry of the SC condensate. Sec-
tion 4 is devoted to the specific case of LAO/STO interfaces, summarizing what has been done
and what are the unconventional observations of superfluid density and residual conductivity.
Finally, in Section 5 we present our theoretical results and in Section 6 our concluding remarks.
Appendix A contains details about the RIN equations and the generation of the SC network.
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Appendix B provides information about the resonant microwave transport experiment. The
choice of the model parameters is discussed in Appendix C.

2 Filamentary superconductivity

Disregarding the specific microscopic origin of inhomogeneities, we aim at investigating the
superfluid stiffness response of a filamentary superconductor.

According to the Bardeen-Cooper-Schrieffer (BCS) theory, in conventional superconduc-
tors the energy scale ∆ – associated with the formation of the Cooper pairs – is much smaller
than the superfluid stiffness Js – associated with the global phase rigidity of the SC conden-
sate. Being ∆≪ Js, the SC transition is thus essentially driven by the suppression of ∆. This
scenario holds even in the presence of strong disorder and in partially inhomogeneous sys-
tems [38, 39]. At the same time, in BCS conventional superconductors, Js ≈ EF (EF being
the Fermi energy of the metal) is directly proportional to the number of superfluid carriers
ns, with Js ∼ ns/m

∗, and m∗ the carrier effective mass. Due to this proportionality, Js and ns
are often used as synonyms. However, it is important to emphasize that superfluid density
and superfluid stiffness are generally two distinct quantities. This is clear in those SC systems
where, being Js < ∆, the SC phase transition is driven by phase fluctuations that destroy the
phase rigidity of the condensate, while preserving a finite density of paired carriers. Granular
superconductors and some Josephson-junction arrays are well-known examples of such cases.
In 2D superconductors, the leading role of phase fluctuation clearly emerges in the Berezinskii-
Kosterlitz-Thouless (BKT) theory [40–42] that provides a clear picture of the SC transition in
terms of vortex-antivortex unbinding [39]. The BKT fingerprints in real SC systems can be,
however, partially or completely masked by the presence of disorder. While spatially uncor-
related disorder is essentially irrelevant to the BKT SC transition [43, 44], the presence of
spatially-correlated inhomogeneities can, indeed, significantly modify its non-universal prop-
erties [45, 46]. Finally, in some systems, the inhomogeneities are so strong and correlated in
space, that the vortex-antivortex unbinding is no longer the leading mechanism for the SC tran-
sition [31]. An even stronger role of phase fluctuations takes place in nearly one-dimensional
(1D) superconductors, where the so-called phase slips, induced either by thermal or quantum
excitations, prevent the onset of a global SC phase coherence [47].

The occurrence of superconductivity on structures made of random nearly 1D filaments,
which can intersect and/or run almost parallel, obviously raises the complex issue of phase
rigidity both at the local level of single filaments and at the global level of interconnected fil-
aments with more or less pronounced long-range connectivity. While this issue was already
addressed some time ago for DC transport [48], and in comparing the BKT physics with the
effects of inhomogeneities [31], it is of obvious interest to directly investigate, both experi-
mentally and theoretically, the phase rigidity of the condensate in such complex filamentary
geometry. In the present work, we precisely aim at studying the superfluid response of a fil-
amentary superconductor, devoting specific attention to the separate role of local and global
(geometric) properties in determining the complex conductivity response.

Having this goal in mind, we investigate a model system, keeping separate the role of the
geometric structure, i.e., the density of filaments and their long-range connectivity, and that
of the local disorder, from the role of local superfluid density and conductivity. The former
determines the distribution of the local SC temperature in the various regions of the system
(embedded in an otherwise metallic matrix), while the latter determines the local stiffness in
the single individual pieces of the random SC structure.

To keep our study as general as possible, we will assume the filamentary structure to be
given from the start, regardless of its microscopic origin.

4

https://scipost.org
https://scipost.org/SciPostPhys.15.6.239


SciPost Phys. 15, 239 (2023)

3 Theoretical description: The random impedance network

Several 2D SC systems, such as LAO/STO [48, 49], TMD, and TMN [13], exhibit an unusual
gradual and broad vanishing of R(T ) that cannot be ascribed to conventional SC fluctua-
tions, rather to the emergence of an inhomogeneous SC condensate. The first depletion of
R(T ) by lowering the temperature can be, indeed, attributed to the appearance of SC pud-
dles, i.e., rather bulky regions that, at lower temperatures, get connected through SC filamen-
tary branches, with long-distance connectivity, ultimately responsible for the long tail of R(T ),
when T approaches the critical temperature (see Fig. 1). In what follows, we will refer to the
bulky SC puddles with the subscript b, and to the filamentary SC regions with f .

In a series of previous works, we demonstrated that DC transport in such strongly inho-
mogeneous compounds can be conveniently described by a random-resistor network (RRN)
model [26], in which the 2D system is discretized on a square lattice, where each bond is
associated with a resistor. Kirchhoff’s and Omh’s Law’s are then exactly solved for all currents
and voltages on bonds and nodes, given an applied external voltage V ext and open boundary
conditions. More details about the algorithm can be found in Appendix A.

Note that in this coarse graining procedure, a resistor represents a mesoscopic region, large
enough so that a critical temperature can be locally defined, but still small with respect to the
size of the sample.

While a fraction of the resistors remains in the normal-metal state down to the lowest at-
tained temperatures, thereby forming a metallic matrix, some resistors become SC when T
decreases below their local critical temperature T i, j

νc , where i, j label the sites of the square
lattice and ν = x , y is the direction identifying the resistor bond. Specifically, a Gaussian
distribution of critical temperatures T i, j

νc ̸= 0 was assumed, characterized by a given average
value µ and a standard deviationσ. An extended analysis also showed that different statistical
distributions provide more or less equivalent physical results [48]. Therefore, for the sake of
simplicity, we only consider Gaussian distributions of local critical temperatures. A more pre-
cise description of transport data also led to distinguishing between the Gaussian distribution
of bulkier (puddle-like) regions, with a mean value of the SC critical temperature (µb) slightly
higher than the global Tc, and a Gaussian distribution of the filamentary regions where the
average SC temperature (µ f ) is slightly lower and, in general, more broadly distributed.

Once the random inhomogeneous structure of the system has been specified, we define Rm
as the resistance of the metallic matrix, while for the SC bonds, which include both the fila-
mentary and the puddle-like regions, we assign a resistance value such that Ri, j

ν (T > T i, j
νc ) = Rs

and Ri, j
ν (T < T i, j

νc ) = 0.
The standard deviations, σ f and σb, relative to the two Gaussian distributions for the fila-

mentary and puddle-like SC regions, determine the extension in temperature of the resistance
tail, while the spatial filamentary structure of the SC cluster is crucial to recover the behavior
of R(T ) approaching Tc with a long slowly vanishing tail.

So far, the discussion of the consequences of filamentarity on transport has focused only
on the metallic phase stressing the tailish behaviour of R(T ), as the signature of filamentary
superconductivity. In this work, we more directly address the issue of the SC response of the
system by generalizing the RRN to finite frequencies, thereby calculating the complex conduc-
tivity of the system. Thus, we assign to each bond a complex impedance Z i, j

ν = Ri, j
ν + iω0 L i, j

ν ,
whereω0 is the frequency of the circuit and L i, j

ν is either the inductance of the SC bonds, Ls, or
that of the metallic matrix, Lm. The extension of the RRN model to finite frequencies, resulting
in a RIN model, was already investigated in its effective medium analytical solution [36, 37],
which, however, correctly describes the physics of the system only when disorder is not spa-
tially correlated. Here, we calculate exactly the global effective impedance Ztot = Rtot+iω0 Ltot
of the lattice by solving the Kirchhoff’s and Ohm’s laws of the network (see Appendix A.1).
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That allows us to account for the role played by the SC cluster geometry that we generated
using a diffusion-limited aggregation (DLA) algorithm, discussed in Appendix A.2. In order to
be quantitative, in the present work we will take as a case study the resonant-microwave mea-
surements performed on LAO/STO interfaces, which we discuss in the next Sections. That is
why, in our numerical study, we will fix the frequency to the experimental resonant frequency
ω0/2π = 0.36 GHz. Here, we are interested in the linear response of the system, neglecting
possible non-linear effects that might arise, e.g., from currents exceeding critical currents in
the system. We are thus implicitly assuming that I i, j

ν < I i, j
νc on each bond, I i, j

ν being the cur-
rent flowing from the site i, j of the lattice in the direction ν, and I i, j

νc the corresponding local
critical value. Our goal is to identify the physical ingredients needed to reproduce the specific
peculiarities found in experiments and summarized in the next Section.

4 LAO/STO interfaces

In STO-based heterostructures, the carrier density of the 2DEG formed at the interface can be
tuned by a gate voltage VG . Despite their very clean and regular structure, these heterostruc-
tures have revealed an intrinsic tendency to electronic phase separation [16], leading to the
formation of an inhomogeneous SC state with a filamentary character [49,50]. This happens
even for the [001] orientation, i.e., when the interface is orthogonal to the c-axis of both LAO
and STO; henceforth, we will always refer to [001] LAO/STO samples. Tunnelling [32, 51],
atomic force microscopy [52], and critical current [53] experiments provide clear evidence of
an inhomogeneous SC condensate at the LAO/STO interface. Direct measurements of the su-
perfluid density via SQUID measurements [54] showed that Js(T ) exihibits neither a BCS nor
a BKT behaviour; its features were instead well captured once the inhomogeneous character
of the condensate was considered [49]. Transport measurements report further signs of inho-
mogeneity, with a percolating metal-to-superconductor transition, where a sizable fraction of
the 2DEG remains metallic down to the lowest accessible temperature [21,48–50]. The result-
ing inhomogeneous landscape can be described as a filamentary state, where the SC regions
live on 100-nanometer length scales [55], coexist with the linear SC regions identified on the
micron scale at structural domain boundaries [56,57]. The length scales at play are in perfect
agreement with the effective medium approach used in [49], which accounts for the intrinsic
averaging operated by the SQUID device over the micrometric scale.

In a previous publication [58], we reported the results of resonant microwave transport
experiments at the lowest temperatures. Dynamical transport measurements provide in fact
direct access to the superfluid stiffness Js. When ħhω0≪∆, the system behaves as a RLC res-
onant circuit, allowing to identify the inductive response with the superfluid stiffness through
Js =

ħh2

4e2 Lk
, where Lk is the kinetic inductance of the circuit. The imaginary part of the con-

ductivity σ2 ∝
1
ω0 Lk
∝ Js accounts for the inertia of Cooper pairs. In analogy with optical

conductivity, the real part of the conductivity σ1 accounts for the transport of unpaired elec-
trons. From a comparison between the gap and the superfluid stiffness energy scales, we iden-
tified two distinct regimes: an overdoped (OD) regime (i.e., with a carrier density higher than
the one corresponding to the maximum SC critical temperature Tc), in which the LAO/STO
system has the character of a dirty but rather homogeneous 2D superconductor, and an un-
derdoped (UD) regime (i.e., with a carrier density lower than the one corresponding to the
maximum SC critical temperature Tc), where the SC state closely resembles a disordered 2D
Josephson-junction array (see Fig. 4 of Ref. [58]).

In this work, we consider the resonant microwave transport experiments over a broad
temperature and carrier density range. The correspondence between gate voltage and car-
rier density is given in Fig. 5 of Ref. [58]. By measuring both the complex conductivity, i.e.,
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1UD 1OD

a)                                                   c)                                                d)

b)

Figure 1: DC resistance (green), superfluid stiffness Js∝ σ2 (red) and optical con-
ductivity σ1 (black) as functions of temperature. (a) Experimental data for a gate
voltage VG = 50 V (OD) and (b) for VG = 20V (UD). The grey dashed line is the
BKT critical line 2T/π. (c) Sketched summary of the observed features in the UD
(dashed lines) and OD (solid lines) regimes: (1) the broad and tailish transition of
R(T ) coincide with a very gradual increase of Js at T ∼ Tc; this results in a wide sep-
aration between the two, paradigmatic of a percolating yet filamentary SC cluster;
(2) increase of Js at T ≲ Tc, more abrupt in OD systems than in the UD ones, thus
signalling the more or less homogeneous nature of the superconductor at different
carrier densities; (3) the substantial residual value of σ1, more important in the UD
case yet more peaked in the OD. Those features are clearly at odds with the scenario
of a dirty yet homogeneous 2D superconductor, schematically reported in (d).

σ = σ1 + iσ2, and the DC resistivity, we study the superconductor-to-metal transition charac-
terizing the emerging filamentary SC state, via the temperature dependence of its superfluid
stiffness Js and conductivity σ1.

In Fig. 1, we report the DC resistivity (green) and complex conductivity data (real part in
black, imaginary part in red) for a LAO/STO sample. In particular, Figs. 1(a) and 1(b) show
two paradigmatic examples for the OD (gate voltage VG = 50 V) and UD (VG = 20V) regimes,
respectively. The data of DC resistivity and complex conductivity in a wider range of back-gate
voltage, from 8 V up to 50 V, are presented in Fig. 8 of Appendix B.

In Fig. 1(c), we schematically summarize the peculiar features found in the two doping
regimes of LAO/STO samples. Besides the broad transition and tailish behaviour of the re-
sistance curve R(T ) (green solid line), near the temperature Tc that marks the transition to a
filamentary SC state [21,48–50], we outline three main peculiar features:

(1) Going through the metal-to-superconductor transition, an unusual and surprising sepa-
ration appears between the temperature at which the resistivity vanishes and the tem-
perature for the onset of a sizable superfluid stiffness. Both R(T ) and Js(T ) show a long
tail, symptomatic of a percolating filamentary SC state, still too fragile to yield a 2D rigid
condensate;

(2) lowering the temperature below Tc, the superfluid stiffness shows an increase, steep in
the OD case and more gradual in the UD regime; notice that, in the OD regime, the steep
increase of Js occurs at a temperature much lower than Tc;
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(3) at T ≪ Tc, the real part of the conductivity σ1(ω0, T ) takes a significant residual value.
This last feature marks the persistence of a sizable fraction of normal metal down to the
lowest temperatures, further supporting the idea of an inhomogeneous SC state.

Finally, in Fig. 1(d) we sketch the behaviour of the same quantities as a function of tem-
perature within the BKT scenario in the presence of moderate disorder [59]. The BKT scheme
clearly fails to reproduce the main features of the data. Even the seeming jump experimentally
observed in the superfluid stiffness, e.g., at VG = 50 V, cannot be interpreted as the paradig-
matic hallmark of the BKT transition, rather expected at the intercept with the 2T/π critical
line [dashed-grey line in Fig. 1(a)].

In what follows, we present our extensive resonant microwave transport analysis. We show
the actual occurrence of these three peculiar features in the experimental data, and we dis-
cuss our theoretical analysis to extract information about the structural characteristics of the
SC system throughout the temperature and carrier density range considered. It is worth not-
ing that the three peculiar features summarized above are indeed characteristic of the rather
disordered sample, whereas in more homogeneous ones the long tails in R(T ∼ Tc) and in
Js(T ∼ Tc), and the huge σ1 residue at T ≪ Tc are less enhanced and one would recover
an intermediate phenomenology between a standard BKT scenario [Fig. 1(d)] and the one
presented here [Fig. 1(a–c)]. Nonetheless, although this sample may not be representative of
every LAO/STO interface, it offered the motivation to study the effect of filamentarity and
to generalize its consequences, without the burden of worrying about microscopic details.
Indeed, measurements on different samples could lead to different resistive and superfluid
responses having, in general, a different amount of mesoscopic disorder, which is intrinsic and
unavoidable in LAO/STO heterostructures. Our theoretical framework provides insights both
into the amount and the spatial distribution of this emerging mesoscopic inhomogeneity. For
the present disordered sample, our theoretical investigation provides a coherent rationale for
the observed peculiar experimental features in terms of a filamentary SC structure embedded
in a metallic matrix and following their evolution with carrier density and temperature.

4.1 Resonant microwave transport experiment

In this work, we used the same sample and experimental setup of Ref. [58]. While in Ref.
[58] only the data at the lowest temperature were presented, here we perform a complex
conductivity analysis of the back-gated [001] LAO/STO sample throughout an extensive carrier
density and temperature range. We refer the reader to Appendix B and Ref. [58] for further
experimental details.

In Fig. 2(b–c) we report the real and imaginary part of the complex conductivity as a func-
tion of temperature for a resonant frequencyω0/2π= 0.36 GHz and several values of the gate
potential. Panel (c) reports the imaginary part of the conductivity σ2(ω0, T ), proportional to
the superfluid stiffness, displaying two markedly different temperature trends, according to
the applied gate voltage. In the OD regime, with gating between 28 V and 50 V, the superfluid
stiffness grows slowly with reducing the temperature below 0.16 K and then rapidly increases
with a downward curvature between 0.11−0.13 K. In the UD regime, from 26 V down to 8 V,
the superfluid stiffness grows much more gradually, with an upward curvature down to lower
temperatures 0.04−0.07 K. A similar dichotomous behaviour is observed in the real part of
the conductivity σ1(ω0, T ) [panel (b)]: in the OD regime, a rather sharp peak is observed at
temperatures corresponding to the rapid increase of the superfluid stiffness, while in the UD
regime, σ1(ω0, T ) presents a much broader peak or no peak at all. In both cases, however,
the real part of the conductivity stays finite at the lowest temperatures, assuming values that
are non-monotonic and maximal around gate voltages ∼ 20− 24 V.
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Figure 2: (a) Critical temperature dome Tc as function of the gate voltage VG (green
dots) experimentally measured in LAO/STO interfaces. In the same plot we com-
pared Tc(VG) with the extrapolated temperature of the peak in σ1 [T (σmax

1 ) grey
dots]. In red (right axis) we display ∆exp = 4e2JsRN/ħhπ. In a bare BCS scenario,
this should be proportional to the Tc dome, i.e., ∆BCS = 1.76kB Tc (right axis). The
dashed vertical line indicates the crossover from the UD to the OD system at VG = 26V.
(b) The imaginary σ2(ω0, T ) and (c) the real σ1(ω0, T ) part of the complex con-
ductivity measured as functions of the temperature and at different gate voltages.
The microwave frequency experimentally used, i.e., the circuit resonant frequency,
is ω0/2π= 0.36 GHz.

This crossover is even more evident if one looks at the whole picture as a function of the
gate voltage. While the voltage dependence of the critical temperature Tc vs VG [green dots
in Fig.2(a)] does not give any clear indication, the temperature at which σ1 reaches its max-
imum value [T (σmax

1 ) in grey] gives a rather clear idea of the crossover from the UD to the
OD regime. At the same time, the saturation value of Jmax

s = Js(T → 0) shows how the sys-
tem falls outside the theoretical framework of conventional BCS superconductors. Within the
standard BCS scenario, the SC gap at zero temperature ∆0 is expected to follow the Tc dome,
being ∆0 ≈ 1.76 kB Tc; in Fig. 2(a), we report in green ∆BCS (right axis). On the other hand,
assuming the dirty limit, the same gap should behave as ∆0 ∼ Js(0)RN , with RN the normal-
state resistance. We display in red (right axis) the quantity ∆exp = 4e2JsRN/ħhπ, to underline
once again the discrepancy of such measurements with the BCS scenario [58]. The devia-
tion observed, i.e., ∆exp < ∆BCS, is consistent with our idea of filamentary superconductivity
presented in Section 2.

5 Theoretical results and their interpretation

Despite its conceptual simplicity, the RIN model is complete and flexible enough to reproduce
the rather unconventional trends observed in the experiments. By lowering T , the bonds with
T i, j
νc ≥ T become SC, so that the SC network nucleates inside the normal-metal matrix with

specific signatures depending on the geometric structure (more or less dense filaments), the
disorder (represented by the width of the random distribution of T i, j

νc ), and on the charac-
teristics of the mesoscopic metallic/SC regions, as modelled by the parameters Rm, Lm, Rs, Ls.
We anticipate that the choice of the values for the microscopic resistors and impedances are
made to match the experimental measurements at our disposal assuming an angular frequency
ω0 = 2×109 s−1. More details can be found in Appendix C. Our goal is to infer and understand
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micro- and mesoscopic features of the electronic condensate from the macroscopic phenomenol-
ogy given by transport measurements.

5.1 Effect of the geometry and disorder on the resistance and superfluid be-
haviours

The geometry of the SC cluster and the widths, σb andσ f , of the random distribution, P(T i, j
νc ),

of the critical temperatures of the individual SC bonds T i, j
νc , encode the most prominent peculiar

property (1) of the LAO/STO superconductor [Fig. 1(c)]. Starting from the normal state, by
lowering the temperature, the resistance smoothly decreases, mostly due to the puddle-like
regions becoming SC; if these were absent, with a SC cluster only made of filaments, the
decrease of R(T )would indeed start in a much steeper way. We thus investigated the relevance
of both filaments and puddles.

The filamentary structure is built via a DLA algorithm [13,48]. See Appendix A for details.
We stress here that extensive iterations of the DLA algorithm would produce a fractal-like geo-
metrical structure, yet in our case this is a mere technical tool to produce a random assembly of
filamentary structures on our finite square-lattice cluster. The SC puddles, with a given radius
rpd , are afterwards added to the cluster, to reach the total SC density w we fixed. It follows that
the larger rpd , the less numerous the puddles will be. Their role is fundamental in explaining
the first downturn of R(T ) but, once they became SC, their size is almost irrelevant to the
complex conductivity properties. Indeed, the superfluid rigidity and the residual dissipation
are mainly determined by the structure and the density of the filamentary components of the
SC cluster, while the puddles play a minor role. Specifically, by lowering T , the filamentary
structures become more and more SC and, when a SC percolating path forms, the resistance
vanishes at the global critical temperature Tc, R(Tc) = 0. Due to the nearly 1D character of
the filamentary structure and its poor connectivity, the resistance stays low but finite until the
very last resistor of the percolating path is switched off. That explains why the filamentary
geometry is crucial to account for the tailish behaviour of R(T ).

How broad the transition and how long the tail depends instead on the width σ f ,b of

the Gaussian distribution of the T i, j
νc s, accounting for the microscopic impurities generically

present in real systems. At the same time, the filamentary percolating cluster is formed by a
low fraction of SC bonds with a nearly 1D structure. Therefore, they cannot result in a large
rigidity of the SC condensate. Indeed, a rather small σ2∝ Js is found for T ≲ Tc. The long
tails observed in LAO/STO interfaces in both R(T ) and Js(T ), which also lead to the separation
of the two curves, find in this way a natural explanation [Fig. 1(c)].

By further lowering the temperature, more and more bonds in the random filamentary sub-
set become SC, leading to the more or less rapid growth of the condensate rigidity depending
on the specific features of the SC subset. Quite obviously, the more or less dense (and inter-
connected) character of the filamentary structure determines the more or less rapid growth
and the intensity of the condensate rigidity Js (see Appendix A).

5.2 Effects of the internal character of the mesoscopic metallic and SC regions

Besides the effect of the geometry and density of the filaments, the more or less rapid growth
of σ2 ∝ Js at some T < Tc – peculiarity (2) of Fig. 1(c) – is also dependent on the internal
rigidity of the individual mesoscopic SC bonds, via their parameter Ls. The smaller the local
inductance Ls, the more rigid the individual mesoscopic SC bond and the more rapidly and
intensely the overall rigidity grows.

In Fig. 3, we show how both the two experimentally observed regimes, OD and UD, can be
successfully captured by fixing the geometric structure of the SC cluster, shown in Figs. 3(b)
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Figure 3: Temperature dependence of complex conductivity and DC resistivity cal-
culated with the RIN model to describe the (a) OD and (d) UD system (real part in
black, imaginary part in red and DC resistivity in green). The SC structure to which
they correspond are shown in panels (c) and (f) respectively; the colour code refers
to the local critical temperatures, yellow to blue regions are SC, while the metallic
matrix is the white background. Both cases in (a) and (d) refer to the same geometry
of the underlying RIN, with total SC density w = 0.43, and the same parameters of
the metallic matrix Rm = 200Ω, Lm = 2nH. Instead, the parameters of the SC cluster
are different: (a) OD: Rs = 2000Ω Ls = 0.7nH (d) UD: Rs = 90000Ω Ls = 2nH
as well as the width of the T i, j

νc distribution for the filamentary SC regions, as visible
from the corresponding panels in which (b) OD: σb = 0.03K, and σ f = 0.02 K and
(e) UD: σb = 0.03K, and σ f = 0.05 K. This last difference is highlighted in panels

(c) and (f) where we show the corresponding distributions of T i, j
νc for the puddles

and the filamentary structure.

and 3(e), whose filamentary character keep R(T ) and Js(T ) well separated. By simply varying
the value of the inductances Ls and the width of the random distribution P(T i, j

νc ) for both the
filamentary, σ f , and the puddle-like, σb, SC regions. For the OD regime [see Fig. 3(a)], by
fixing Ls = 0.7 nH, σ f = 0.02 K, and σb = 0.03 K, we recover both the steep increase of σ2(T )
(red curve) and the peak of the optical conductivity σ1(T ) (black curve) found experimen-
tally. At the same time, for the UD regime [see Fig. 3(d)], we recover the slow increase of
σ2(T ) as well as the much broader peak of σ1(T ) by employing a larger value of Ls =2.0 nH
and a slightly wider distribution of critical temperatures for the filamentary SC bonds, with
σ f =0.05 K [see Figs. 3(f) and 3(c)]. By comparing our calculations with the experimental

results, we can affirm that: a) disorder, i.e., the width of the T i, j
νc distributions, is comparatively

larger in UD systems and b) the local mesoscopic SC regions, in the UD regime, have a smaller
intrinsic rigidity, i.e., a larger inductance, likely as a consequence of a lower carrier density.
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Finally, we address the issue of the substantial residual normal-state real conductivity at
T ≪ Tc [peculiarity (3) of Fig. 1(c)]. According to our analysis (see also Appendices A and
C), we found that at low temperatures the resistance of the residual metallic bonds largely
determines the real (dissipative) part of the complex conductivity, with the residual σ1 being
inversely proportional to Rm. At the same time, a sparser geometry of the filaments will result
in a more abundant residual metallic component, hence enhancing the dissipation in the SC
state. The use of different values for the internal character of the resistors, Rs and Rm, re-
flects the presence of two different types of carriers in [001] LAO/STO samples, with different
mobilities, whose relative density depends on the applied gate voltage (see Appendix C for
details).

6 Discussion and concluding remarks

In summary, we presented here a detailed theoretical interpretation of the complex conduc-
tivity experimentally measured in a [001] LAO/STO interface. Our theoretical analysis sheds
light on the intriguing peculiar features experimentally observed, revealing that they stem
from the interplay between the filamentary structure of the SC cluster, embedded in a nor-
mal metal, and disorder, resulting in a random distribution of local critical temperatures. The
main consequence is that the superfluid properties, in particular, the rigidity of the conden-
sate, primarily depend on the geometrical structure of the SC cluster and only secondarily on
the density of the superfluid matter. This result is highly nontrivial since the concepts of su-
perfluid density and stiffness are often used as synonymous. We point out that, by neglecting
the role of phase fluctuations, that reduce the superfluid stiffness without affecting the density
of carriers, this identity is only true for homogeneous systems and can be strongly violated
when the system is highly inhomogeneous. Our LAO/STO interface can therefore be taken as
an example for a new paradigm of SC matter. We are aware that other interfaces and low-
dimensional superconductors do not always display the same peculiar features, but we here
point out precisely the physical ingredients leading to such anomalous behaviours, which may
or may not be present depending on the amount of inhomogeneous charge distribution (re-
sulting in regions with different local critical temperatures) and the more or less filamentary
spatial structure of the SC cluster.

The very starting point of the model, where disorder is encoded both in the randomly
generated filamentary-puddle SC cluster and in a random distribution of local critical temper-
atures, may seem at odds with the very clean and structurally ordered LAO/STO interface.
However, the presence of filamentary SC regions in [001] LAO/STO interfaces has been ex-
perimentally assessed both at the micron [56, 57] and at the submicron [55] scales and it is
supported by both experimental and theoretical evidence.

The main message of this work is that the peculiar features of the complex conductivity data
arise from the inhomogeneous filamentary character of the SC regions and the main differences
between OD and UD systems stem both from the more or less broad distribution of local T i, j

νc ’s
(i.e., from the relative relevance of disorder) and from the microscopic characteristics resulting
in different values of the parameters Ls, Lm, Rs, Rm. In particular, we were able to identify the
specific physical effects of each handle of the model on macroscopic transport: the resistivity
and inductance of the various regions, how rapidly the normal metal becomes SC by decreasing
T , due to the width of the T i, j

νc distribution associated with the microscopic disorder, and so on.
Finally, beyond its theoretical understanding, the study of inhomogeneous filamentary

electron condensates can pave the way for a systematic control and exploitation of super-
fluid systems with extremely small phase rigidity. This may result in interesting applications
for sensors; systems with stiffness that can be tuned by gating and/or temperature; or where
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the features of a Josephson-junction array can continuously be tuned from nearly homoge-
neous BCS to quasi-1D superconductors. Last but not least, filamentary superconductors in
the presence of large Rashba spin-orbit coupling could provide a new path for the emergence
and observation of Majorana fermions [60].
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A RIN equations and geometry of the SC network

A.1 RIN equations and algorithm

We present here the equations for the bonds and nodes of the RIN model. A sketch of the system
is shown in Fig. 4. We use open boundary conditions to have a more realistic description of a
finite sheet of impedances with an external applied voltage V ext at the left-right extrema. It is
worth noting that the parent model of the RIN, namely the RRN model, is recovered forω= 0
so Z i, j

ν = Ri, j
ν .

Kirchoff’s and Ohm’s equations are solved linearizing the problem as

Â · X⃗ = B⃗ , (A.1)

where B⃗ contains the known terms, i.e., the external voltage, which can be either V ext or zero,
Â is a sparse matrix, whose elements of a single row can contain at most three non-zero terms,
which can be either ±1 or Z i, j

ν ; X⃗ is the vector containing all the unknown (complex) currents
I i, j
ν , with ν = x , y , and (complex) potentials Vi, j . Note that the boundary condition V ext is a

real value and the total number of complex equations is N2 + 2N(N − 1) = 3N2 − 2N , where
N is the linear size of the network. Once Eq. (A.1) is solved for X⃗ , we compute the effective
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Zy
i,j

Zx
i,j

(i,j) 1,1

N,1 N,N

1,N

Vext 0
Zν

i,j

=
Rν

i,j+iωLν
i,j

Figure 4: Scheme of the impedance network with open boundary conditions. The
currents are positive when entering in the node, negative if exiting (upper left
sketch). Each impedance in the ν direction is Z i, j

ν = Ri, j
ν + iωL i, j

ν . The various col-
ors correspond to the 5 different domains: the bulk domain 1 is in black, the upper
and lower edges corresponds respectively to domains 2 and 3 in green (i = 1) and
blue (i = N) and a potential difference V ext is applied to the left and right edge, the
former corresponding to domain 4 in red ( j = 1), the latter in orange is domain 5
( j = N).

impedance of the whole system simply as:

Ztot =
V ext

∑

i, j I i, j
x

(N − 1) , (A.2)

The equations for the 5 different domains and showed with different colors in in Fig. 4 are
the following.
Domain 1 - bulk (black):











Vi, j − Vi, j+1 − Z i, j
x I i, j

x = 0 ,

Vi, j − Vi+1, j − Z i, j
y I i, j

y = 0 ,

I i, j−1
x − I i, j

x + I i−1, j
y − I i, j

y = 0 ,

(A.3)

where i, j runs over 2, N − 1.
Domain 2 - upper edge (i = 1) (green):











V1, j − V1, j+1 − Z1, j
x I1, j

x = 0 ,

V1, j − V1+1, j − Z1, j
y I1, j

y = 0 ,

I1, j−1
x − I1, j

x − I1, j
y = 0 ,

(A.4)

where i = 1 and j runs over 2, N − 1
Domain 3 - lower edge (i = N) (blue):

¨

VN , j − VN , j+1 − ZN , j
x IN , j

x = 0 ,

IN , j−1
x − IN , j

x + IN , j−1
y = 0 ,

(A.5)

i = N and j running over 2, N − 1.
Domain 4 - left edge ( j = 1) (red): Boundary conditions: the nodes are all set to a V ext

external potential, so the currents along y are all zero.
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









Vi,1 = V ext , i = 1, N ,

Vi,1 − Vi,2 − Z i,1
x I i,1

x = 0 , i = 1, N ,

I i,1
y = 0 , i = 1, N − 1 .

(A.6)

Domain 5 - right edge ( j = N) (orange): Boundary conditions.
¨

Vi,N = 0 , i = 1, N ,

I i,1
y = 0 , i = 1, N − 1 .

(A.7)

Note that the complex nature of such equations (if ω ̸= 0) doubles the actual number of
unknown elements in Eq. (A.1). Hence, numerically, we double the matrix Â in order to solve
separately Eq. (A.1) for the real and imaginary parts. We use a sparse matrix to save only non-
zero elements and we solve the two systems of linear equations using a standard algorithm for
sparse linear systems [61].

A.2 Generation of the fractal

The generation of the SC filamentary structure is obtained by means of DLA algorithm [13,
48]. Of course, this choice is arbitrary and it does not rest on a straight physical reason nor
it aims at demonstrating that the SC regions have some defined fractal-like structure. It is
simply a technical way to represent strongly inhomogeneous systems with space correlation
and connectivity over large distances. The fractal-like structure is grown by diffusing from left
to right nRW random walkers in a square of size L□ larger than the size (L = N − 1) of the
square lattice network (L□ > L), that we investigate in the complex conductivity calculations.
We allow each of the nRW to move rDLA bonds (steps) to the right and yDLA bonds up or
down, with equal probability, whereas in the RRN calculations presented in Refs. [13, 48]
rDLA = yDLA = 1. Hence, we can construct a more or less dense network of filaments just by
tuning those parameters, keeping a higher fraction of the metallic residue without preventing
percolation.

This procedure is iterated until the particle stops, as soon as it reaches the top, bottom
or right edge where it sticks; if it reaches a site already occupied by one of the previously
diffused particles, it takes a step back and stops thereby increasing the cluster of aggregated
particles: the cluster obtained is defined by all the bonds connecting two stuck particles. From

a)                                                     b)

Figure 5: Examples of filamentary structures constructed via the improved DLA algo-
rithm launching nrw =15 000 diffusing particles across a 350 × 350 square lattice.
In orange are shown the obtained clusters with (a) rDLA = 10, yDLA = 10 and (b)
rDLA = 2, yDLA = 2. Highlighted in blue is the metallic region that defines the final
100× 100 square lattice.
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this super-network, a sub-network of size 100×100 is selected and it will be the SC backbone
of the RIN. Then, patches of radius rpd will be superimposed until a fraction w of SC resistors
is reached. In Fig. 5, we show two 250× 250 different super-network constructed launching
nRW = 15000 particles. In panel (a), the (orange) SC fractal is built from random walkers
allowed to do rDLA = 10 steps on the right and yDLA = 10 steps on the left, the same used for
the results shown in Fig. 3, while in panel (b) the constraints were rDLA = 2, yDLA = 2. In both
panels, the region coloured in blue is the metallic background of the final 100×100 network.

For the sake of completeness, we show here how a denser fractal geometry modifies the
superfluid and resistive responses. In Fig. 6 we present the RIN results obtained for a cluster
constructed from a rDLA = 2, yDLA = 2 fractal, all other parameters being equal to the ones
used in Fig. 3. By looking at panels (a) and (d) of Fig. 6 one can observe how the shapes
of the curves σ1, σ2 as functions of the temperature are qualitatively different from their
counterparts presented in Fig. 3. In particular, the saturation value of σ2 is increased by the
denser geometry of the underlying fractal. Concerning instead the optical conductivityσ1, one
can observe that the saturation value at T = 0 is unchanged with respect to the geometry of the
fractal, whereas its generic behaviour and, particularly, its peak are non-trivially dependent
on the filamentary geometry. That occurs despite the fact that the total number of SC bonds
is the same in all four cases presented in Figs. 3 and 6, being w = 0.43, revealing once again
the fallacy, in inhomogeneous systems, of the assumption that superfluid density is equivalent
to superfluid stiffness. One can also note that the probability distributions P(T i, j

νc ) [panels (b)
and (e)] are only slightly changed by the different geometry.

B Resonant microwave transport experiment

In this work, we used 8 uc-thick LAO layers grown on 3×3 mm2 (001) STO single crystals by
Pulsed Laser Deposition (PLD). The substrates were first treated with buffered HF to ensure
a TiO2 termination of the surface. The LAO layer was deposited at a temperature of 800
◦C in an oxygen partial pressure of 1×10−4mbar. PLD was performed with a KrF excimer
laser at a rate of 1 Hz with an energy density of 0.56-0.65 J cm−2. After the growth, a weakly
conducting metallic back-gate of resistance∼100 kΩ, to avoid microwave shortcut of the 2DEG
is deposited on the backside of the 200 µm thick STO substrate.

Resonant microwave transport measurements were performed using a setup identical to
that described in Ref. [58] and the same approach was used to extract the complex conductiv-
ity of the oxide 2DEG. In short, the LAO/STO sample was inserted into a parallel RLC electrical
resonant circuit to perform microwave measurement in a reflection configuration as already
used to probe the SrTiO3− and KTaO3−based SC interfaces [58, 62, 63]. Fig. 7 provides the
equivalent sample electrical circuit. Inductor L1 and resistor R1 are Surface Mounted mi-
crowave Devices (SMD) and capacitor CSTO represents the contribution of the STO substrate
itself in parallel with the 2DEG. Because of the high dielectric constant of STO at low temper-
ature (ε ≃ 24000), CSTO dominates the circuit capacitance. Cp are protective capacitors that
avoid DC current to flow through L1 and R1 without affecting the resonance. A bias tee allows
measuring both the DC and AC microwave transport properties of the 2DEG at the same time.

In the normal state, the sample circuit resonates at the frequency ω0 =
1p

L1Csto
, which can

be determined by measuring the reflection coefficient of the sample circuit Γ (ω) = Ain

Aout . The
resonance manifests itself as an absorption dip in the magnitude of Γ (ω) accompanied by a 2π
phase shift. In the SC state, the 2DEG conductivity acquires an imaginary part σ2(ω) =

1
Lkω

that generates a shift of ω0 towards high frequencies since the total inductance of the circuit
becomes Ltot(T ) =

L1 Lk(T )
L1+Lk(T )

(Lk is the kinetic inductance of the 2DEG). σ2(T ) or equivalently
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Figure 6: Temperature dependence of complex conductivity and DC resistivity cal-
culated with the RIN model using the same parameters and probability distributions
of Fig. 3 but with a denser fractal geometry. (a) Same parameters used to describe
the OD regime and (d) the UD regime (real part in black, imaginary part in red
and DC resistivity in green). The SC structure to which they correspond are shown
in panels (c) and (f) respectively; the colour code refers to the local critical tem-
peratures, yellow to blue regions are SC, while the metallic matrix is in the white
background. Both cases in (a) and (d) refer to the same geometry of the underly-
ing RIN, with total SC density w = 0.43, and the same parameters of the metallic
matrix Rm = 200Ω, Lm = 2 nH. Instead, the parameters of the SC cluster are differ-
ent: (a) OD: Rs = 2000Ω, Ls = 0.7nH (d) UD: Rs = 90000Ω, Ls = 2 nH as well as
the width of the T i, j

νc distribution for the filamentary SC regions, as visible from the
corresponding panels in which (b) OD: σb = 0.03K, and σ f = 0.02K and (e) UD:
σb = 0.03 K, and σ f = 0.05 K. This last difference is highlighted in panels (c) and

(f) where we show the corresponding distributions of T i, j
νc for the puddles and the

filamentary structure.

the superfluid stiffness Js(T ) can thus be extracted from the resonance shift for all gate voltage
values. Likewise, the depth of the resonance is controlled by the dissipation of the sample
circuit and gives access to the temperature-dependent σ1(T ) of the 2DEG. In our experiment,
Js(T ) and σ1 can be directly extracted from the measured data for most of the regions of the
phase diagram. Nevertheless, a calibration procedure can be applied to improve the precision
of the measured quantities. It involves the realization of three known impedances of the
sample circuit using three different gate voltage values. Details on the calibration method
including a comparison between calibrated and uncalibrated data can be found in Ref. [58].
Uncertainty in the determination of the absolute value ofσ2 is estimated to be lower than 15%
and the uncertainty on the absolute value of σ1 is estimated to be lower than 10%. In both
cases, the relative uncertainty in the temperature dependence is marginal.

17

https://scipost.org
https://scipost.org/SciPostPhys.15.6.239


SciPost Phys. 15, 239 (2023)
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Figure 7: Sketch of the microwave measurement setup.

For the sake of completeness, the temperature dependence of R, σ1 and σ2 for different
back gate voltages ranging from 8 to 50V are reported in Fig. 8.
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Figure 8: Experimental DC resistivity (green, right axis), real (black, left axis) and
imaginary part of the conductivity (red, left axis) plotted as a function of temperature
for different values of the gate potential 8V≤ VG ≤ 50 V.
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C Choice of the parameters

Besides its overall geometrical structure – filamentary density and broadness of the T i, j
νc distri-

bution – the model is endowed with local parameters characterizing the transport properties of
the individual mesoscopic regions, both the metallic (Rm, Lm) and the SC (Rs, Ls) ones. While
Lm plays a minor role at any temperature, the resistivity of the metallic regions is crucial to
determine the dissipative residual character of the system at low temperature: the lower is Rm,
the higher is σ1 [peculiarity (3) in Fig. 1(d)]. At the same time, the value of Rs is immaterial
in the same low-T regime, but is fundamental in fitting the resistivity in the overall normal
state R(T > Tc). Ls, instead, determines the local rigidity of the condensate inside each meso-
scopic SC region and plays a relevant role in determining the global rigidity: the lower is Ls
the higher is the saturation value of σ2 and the steeper is its growth. The choice of Rs and
Rm becomes rather stringent in UD systems, where the large low-T dissipation requires rather
small values of Rm, while R(T ) is rather large at high T . This requires the use of high values
of Rs. Although this might seem at odds with the idea that the SC regions correspond to those
regions where the electron density is higher, this choice of parameters can find a rationale by
carefully considering the two families of carriers appearing in these LAO/STO interfaces. As
discussed in Ref. [64], the 2DEG can be effectively described in terms of low-mobility and
high-mobility carriers (LMC and HMC, respectively), the latter being ultimately responsible
for the superconductivity onset. Indeed, one could argue that the density of states (DOS) of
the SC regions, i.e., the effective electron mass, is large in spite of a small fraction of HMC and
leads to a large local resistivity.

The mobility of these few carriers can be high if the small scattering compensates for the
larger mass. At the same time, the metallic regions could have a small DOS, preventing them
from becoming SC, but a large number of LMC can result in a comparatively smaller resistivity.
To be more quantitative, the values extrapolated in Ref. [64] for the density of the two carriers
n1, n2, for LMC and HMC, respectively, and their mobilityµ1,µ2, give us the order of magnitude
for the ratio Rm/Rs in the UD and OD regime. In particular, Rm

Rs
= n1µ1

n2µ2
∼ 30 for VG ≃ 50 V and

Rm
Rs
= n1µ1

n2µ2
∼ 100 for VG ≤ 25 V Finally, having an estimate of the effective masses of the two

carriers, we can also extrapolate the order of magnitude of the ratio L2/L1 = L f /L0. Being

m∗2/m
∗
1 ∼ 0.07 [65] and n1/n2 ∼ 100, we have L2

L1
=

L f
L0
≃ m∗2

m∗1

n1
n2
≃ 7.

We report in Fig. 9 the real σ1 and imaginary σ2 parts of the conductivity and the DC
resistivity R at various Rm and Ls for both UD and OD regimes. We use as a reference the cases
discussed in Section 5, reporting panels (a) and (d) in Fig. 3 in panels (a) and (d) of Fig. 9,
hence referring to Fig. 3(c–d) and (d–e) for the corresponding probability distributions P(T i, j

νc )
and the fractal geometry. As one can see looking at panels (b) and (e) of Fig. 9, an increase
of Rm acts differently on the σ1 and σ2 curves. Whereas σ2 is only suppressed by less than
0.01Ω−1 at T = 0, the real part of the conductivity, σ1, gets significantly reduced by larger
values of Rm. Conversely, a decrease in Ls from a value 2 nH to 0.7 nH results in the increase
of both σ1 and σ2, acting primarily on the latter. For the OD case, this effect can be observed
by comparing panels (c) and (a), whereas, for the UD case, one can compare panels (d) and
(f) of Fig. 9.

It is worth noting that even if Rm and Ls act on the behaviours in temperature ofσ1 andσ2,
they are not enough to capture the anomalous superfluid response experimentally observed.
Together with the fractal geometry, indeed, also a slight difference in the probability distri-
butions P(T i, j

νc ) – namely σ f = 0.02K for the OD case, σ f = 0.05 K for the UD case – of the
filamentary component is required in order to capture the qualitative experimental behaviour
of both the OD and UD regime, as already stated in Section 5.1.
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Figure 9: Temperature dependence of complex conductivity (real part in black, imag-
inary part in red and DC resistivity in green) and DC resistivity calculated with the RIN
model using the same parameters and probability distributions of Fig. 3 [see panels
(a-c) for the OD case, panels (d-f) for the UD case]. The tuning parameters are here
Rm and Ls, both acting on the superfluid response, keeping Lm = 2 nH. OD regime:
Rs = 200Ω. (a) Ls =0.7 nH and Rm = 200Ω, (b) Ls =0.7 nH and Rm = 1000Ω, (c)
Ls =2 nH and Rm = 200Ω. UD regime: Rs = 90000Ω. (d) Ls =2 nH and Rm = 200Ω,
(e) Ls =2 nH and Rm = 1000Ω, (f) Ls =0.7 nH and Rm = 200Ω.
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