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Abstract

In this paper we discuss a constructive approach to check whether a constant Hamilto-
nian is Yang-Baxter integrable. We then apply our method to long-range interactions and
find the Lax operator and R-matrix of the three-loop SU(2) sector in N=4 SYM. We show
that all known integrable long-range deformations of the 6-vertex models of this type
can be obtained from a Lax operator and an R-matrix. Finally we discuss what happens
at higher loops and highlight some general structures that these models exhibit.
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1 Introduction

The question whether a model is integrable or not is an important one. Integrable models
have special behaviour and allow for a whole range of techniques that can be used to obtain
exact results. Most of these techniques, such as the algebraic Bethe Ansatz, are based on the
existence of a Lax-matrix and an R-matrix that are subject to certain relations.

Recently, we have started a research direction that focuses on the classification of regular
solutions of the quantum Yang-Baxter equation [1–5]. However, from a practical point of view,
using our classification to decide whether a Hamiltonian is integrable and descends from an
R-matrix is not always very practical. First, there is a lot of freedom in possible identifications
and dependence on the spectral parameter. Second, the model under consideration would
have to be in the set of models that have been classified so far and this is not always obvious.

In this paper we try to fill this gap by proposing a constructive method to derive the Lax
operator and R-matrix for a Hamiltonian and show whether or not it comes from a regular
integrable model. We will demonstrate the method by looking at 6-vertex models, where the
situation is under control and very well-understood.

Next we focus on a set of integrable spin chains where the existence of a Lax operator
and R-matrices are still an open problem. These are the perturbative spin chains that appear
in the context of AdS/CFT, see [6] for a review. At one loop, the dilatation operator can be
mapped to an integrable nearest neighbour spin chain [7]. However, at each increasing order
in perturbation theory, the interaction range of the corresponding spin chain increases [8–10].
Hence, the spin chain Hamiltonian takes the form

H =HNN + g2HNNN + . . . (1)

At each order in g these spin chains are perturbatively integrable and the full Hamiltonian
would have infinite range. We say that a spin chain is perturbatively integrable if all rela-
tions related to integrability (like the commutation of the conserved charges, the Yang-Baxter
equation and the fundamental commutation relations) are satisfied up to the order we specify.

A general frame work for these types of spin chains was put forward in [11,12]. The idea
is to introduce a long-range deformation of a nearest neighbour spin chain in a perturbative
way. However, this formalism focuses on the level of the charges. Indeed, the idea is to
perturbatively introduce long-range deformations of the charges of the system in such a way
that they still commute. However, it is unclear if these charges come from a Lax operator and
if there is a corresponding solution of the Yang-Baxter equation. In this paper we will show
that seems to be the case and we will derive the Lax operator and the R-matrix for the two-loop
Hamiltonian in the SU(2) sector of N = 4 SYM.

To this end, we will build on the formalism of medium range spin chains studied in [13]
and [14]. The idea is to double the local Hilbert space so that the interaction range gets
increased. We will find additional evidence for some of the conjectures put forward in [14] in
this context.

In [15] the perturbative long-range deformations for a general 6-vertex model were clas-
sified and could be mapped one-to-one to solutions of the so-called deformation equation
introduced in [11, 12]. Here we will repeat this classification but starting from our method
and we find that they coincide. This indicates that perturbative long-range deformations are
all descendant from a Lax operator and a solution of the Yang-Baxter equation. We then go
to three loops and we furthermore find that the Lax operator and the R-matrix satisfy some
interesting properties. In particular, we find that our Lax operator factorises as conjectured
in [14] and reduces to a Lax operator with a larger auxiliary space.

This paper is organised as follows. We first give an overview of regular integrable spin
chains and the equations that Lax operators and R-matrices satisfy. Then we discuss how to
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check for a given Hamiltonian whether it is integrable or not and how to find the correspond-
ing Lax operator. We demonstrate our method on a 6-vertex model. After this we turn our
attention to long-range spin chains and focus in particular on the SU(2) sector in N = 4 super
Yang–Mills theory. We classify long-range deformations of 6-vertex models and finally discuss
some further observations and applications of our results. We end with conclusions and a
discussion.

Note added During the final stages of this paper we became aware of [16], which has overlap
with this work.

2 Regular integrable spin chains

Let us define what we mean by a regular Yang-Baxter integrable spin chain and discuss some
of its properties.

Definition We consider a homogeneous spin chain of length L with local Hilbert space V and
Hamiltonian H. Suppose there is a Lax operator L and an R-matrix R

L(u) : V ⊗ V → V ⊗ V , R(u, v) : V ⊗ V → V ⊗ V , (2)

such that L satisfies the fundamental commutation or RLL relations

R12(u, v)L1a(u)L2a(v) = L2a(v)L1a(u)R12(u, v) , (3)

and R satisfies the quantum Yang-Baxter equation

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2) . (4)

We call the spin chain (Yang-Baxter) integrable if the Hamiltonian can be written as the loga-
rithmic derivative of the transfer matrix t(u)

H =
d
du

log t(u)
�

�

�

u=0
, t(u)≡ tra[LaL(u) . . .La1(u)] . (5)

Along the paper we will call this type of Hamiltonian constant, since it does not depend on the
spectral parameter u. We call the spin chain (5) regular if

Lia(0) = Pia , (6)

where Pia is the permutation operator acting on sites i and a. From this it follows that the
R-matrix is regular in the sense that

Rab(u, u) = Pab . (7)

This can be shown by considering (3) at the point v = u. At this point we get

R12(u, u)L1a(u)L2a(u) = L2a(u)L1a(u)R12(u, u) . (8)

We can expand this around u = 0 and use the regularity of L. To leading order it is clear we
need R(0,0) = P. Let us then write R(u, u) = P(1 + Au + . . .). Plugging this into the above
equation and expanding to first order implies that A∼ 1 and hence it follows by induction that
R(u, u) is proportional to the permutation operator and is regular.

A special solution of the fundamental commutation relations is the case where L ∼ R. In
this case (3) becomes equivalent to the Yang-Baxter equation. Furthermore notice that we
take the auxiliary space to be the same as the local Hilbert space. More generally they can be
different, but in that case the regularity condition (6) needs to be modified. We will see an
example of this when we discuss long-range interactions.
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Conserved charges From the the fundamental commutation relations (3) it is easy to show
that

[t(u), t(v)] = 0 . (9)

Hence by expanding the transfer matrix as a power series in u, we find that the Hamiltonian
is part of a family of conserved, commuting charges.

At the special point u= 0 the transfer matrix becomes the shift operator U

t(0) = traPaL . . . Pa1 = P12 . . . PL−1L ≡ U . (10)

Let us denote the derivative of the Lax operator by a dot, then we obtain

ṫ(u) =
∑

n

tra

�

LaL . . . L̇an . . .La1

�

. (11)

We define the Hamiltonian density by L̇ab(0) = PabHab. When we evaluate the logarithmic
derivative at u= 0

Q2 ≡ H = t(0)−1 ṫ(0) (12)

= U−1
∑

n

tra

�

PaL . . . PanHan . . . Pa1

�

(13)

=
∑

n

Hnn+1 , (14)

we obtain a charge that has nearest-neighbour interactions. The next term in the expansion
depends on the second derivative of the R-matrix L̈ab(0)≡ PabAab and takes the form

Q3 ≡ t(0)−1 ẗ(0)−Q2
2 (15)

=
∑

i

Ai−1i + 2
∑

i> j

Hi−1,iH j−1, j −
∑

i, j

Hi−1,iH j−1, j

=
∑

i

�

Ai−1,i −H2
i−1,i

�

−
∑

i

[Hi−1,i ,Hi,i+1] . (16)

Notice that this expansion of the transfer matrix holds in general and does not depend on the
fundamental commutation relations. For an integrable spin chain, however, Q2 and Q3 need
to commute which will put restrictions on H and A.

Boost operator We can define a boost operator that recursively generates the charges of the
spin chain [17]. Let us expand the fundamental commutation relations around u = v. Let us
denote

H̃ab(v) = Pab
d
du

Rab(u, v)
�

�

�

u→v
. (17)

Notice that contrary to the definition in (5), this density Hamiltonian is not constant, since
it still depends on the spectral parameter v. Along the paper we will refer to this type as
functional.1 We find that the first order in (3) is automatically satisfied by regularity of R and
at the next order we find

[H̃12,L1aL2a] = L̇1aL2a −L1aL̇2a . (18)

1This distinction between constant and functional Hamiltonian is very important in the context of the boost auto-
morphism mechanism (see for example [3]), where it allows to construct difference-form (Ri j(ui , u j) = Ri j(ui−u j))
and non-difference form (Ri j(ui , u j) ̸= Ri j(ui − u j)), respectively.
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This is the Sutherland equation. Let us put u→ 0, then we find

H̃2a(0)− H̃12(0) =H2a −H12 . (19)

Hence, we find that H̃(0) =H. Since R is the unique solution of the Sutherland equation, this
implies that

L(u) = R(u, 0) . (20)

Let us consider a spin chain of infinite length. From the Sutherland equation we can then show
that

∑

k∈Z
k[t(u), H̃k,k+1(u)] = ṫ(u) . (21)

Writing Q1 = t(0) = U and the remaining charges Qi as

log t(u) =
∞
∑

r=2

Qru
r−1 , H̃ =H+

∞
∑

r=1

H(r)ur , (22)

we derive that

Qr+1 =
r−1
∑

s=0

[B[H(s)],Qr−s] , B[M] =
∑

k

kMk,k+1 . (23)

We note that H(0) = H. The operator B[M] is called the boost operator associated with the
operator M. For instance, we see that

Q3 = −
∑

k

[Hk−1,k,Hk,k+1] +H(1)k,k+1 . (24)

Comparing this against (16), we see that we can identify Ak,k+1 =H2
k,k+1 +H(1)k,k+1.

3 Lifting a constant Hamiltonian

In previous works we focused on classifying solutions of the Yang-Baxter equation. However,
in practice going through the solutions in the classification while accounting for all possible
identifications, such as basis transformations, twists and reparameterizations is not the most
efficient approach to determine if a spin chain is integrable. In this section we will discuss a
structured approach to determine whether a given constant Hamiltonian comes from a regular
integrable spin chain.

Approach Consider a spin chain with a nearest neighbour Hamiltonain H. Let us assume that
it comes from a regular integrable spin chain. This means that there is a tower of conserved
charges Qr with Q2 = H that mutually commute

[Qr ,Qs] = 0 . (25)

From the boost operator (24), we find that we can expressQ3 in terms of H up to an unknown
range 2 term H(1). Hence, imposing that

[Q2,Q3] = 0 , (26)

will constrain H(1). Since Q3 is of range 3, it is easy to see that this generically gives a set of
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equations on the components of H(1) which is overdetermined. Thus, there are two possibili-
ties

1. There is no solution⇒ the spin chain is not Yang-Baxter integrable.

2. There is a solution⇒ the spin chain is potentially integrable.

As with our classification approach, it seems that in case two, the spin chain is actually always
integrable. However, this is only backed by experimental evidence and we have no proof of
this at this point.

In the second case we will have solved H(1) and then we can compute Q4, which can be
seen from (23) to depend on H,H(1) and H(2). Again we find that the only new information
for this operator is encoded in a new range 2 term and we can repeat the above process to
compute H(2) and so on. This will allow us to completely reconstruct both L and H̃, from
which we can easily recover the R-matrix and check that both the fundamental commutation
relations and the Yang-Baxter equation are satisfied.

Freedom Just like in the R-matrix classification, there is a redundancy in the solution space.
This corresponds to different ways a constant Hamiltonian can be extended into a functional
one. This differs slightly from our previous works. Since the starting point is a fixed Hamilto-
nian, the normalisation and reparameterisation symmetries are modified. We can take

L(u) 7→ f (u)L(g(u)) , (27)

but we need to have

f (0) = 1 , g(0) = 0 , (28)

f ′(0) = 0 , g ′(0) = 1 , (29)

in order for this identification to be compatible with the boundary conditions. Clearly these
degrees of freedom will show up starting from the quadratic order in the expansion of L.

Furthermore, we can consider a basis transformation in the auxiliary space

Lia(u) 7→ Va(u)Lia(u)V
−1
a (u) . (30)

Since the transfer matrix is defined by a trace over the auxiliary space, such maps will drop out
of the explicit form of any charge. These identifications can be used to bring L to a nice form,
but when solving the coefficients order by order it is not always clear what the best choice is.

Practical implementation In practice, the above approach can be very efficiently imple-
mented on the computer. Since for each operator, the new information is encoded in a range
2 term, we found that it is sufficient to take logarithmic derivatives of the transfer matrix on
spin chains of low length. Writing

L(u) = P

�

1+ uH+
∑

i>1

L(i)ui

i!

�

, (31)

it is straightforward to explicitly compute the charges Q on a spin chain of small length and
by imposing that they all commute fixes the components L(i). Because of this, it is feasible to
compute charges up to Q20 without too much problems. Consequently, one finds the first 20
terms in the expansion of L. At this point resumming the power series is usually doable and
some closed formulas can be obtained.
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However, once several components of the Lax operator have been computed, there is a
faster way to compute the remaining ones. In particular, on a spin chain of sufficient length,
we can compute the transfer matrix with the partially known Lax operator. This operator has
to commute with the Hamiltonian. This relates the known and unknown coefficients of L and
usually allows for a very easy way to fix the full Lax operator. Finally, once L is computed R
can be solved from the fundamental commutation relations linearly.

The 6-vertex B model As an example to demonstrate our procedure, let us consider a density
Hamiltonian given by

H =h1 + h2(σz⊗1− 1⊗σz) + h3σ+⊗σ− + h4σ−⊗σ+ + h5(σz⊗1+ 1⊗σz) . (32)

and a corresponding Lax operator L(i) of the form

L(i) = l(i)1 + l(i)2 (σz⊗1− 1⊗σz) + l(i)3 σ+⊗σ− + l(i)4 σ−⊗σ+ + l(i)5 (σz⊗1+ 1⊗σz) + l(i)6 σz⊗σz

≡











l̃(i)1 0 0 0
0 l̃(i)2 l̃(i)3 0
0 l̃(i)4 l̃(i)5 0
0 0 0 l̃(i)6











. (33)

Substituting (31) and (33) in the transfer matrix we can compute the coefficients in the Lax
operator perturbatively. For example, we can use [Q2,Q3] = 0 to determine L(2),

�

Q2,Q4

�

= 0
to determine L(3) and so on. For simplicity let us consider h1 = 0. Moreover, on a periodic
chain the term proportional to h2 vanishes. This agrees with the observation in [3,4] that such
terms follow from a local basis transformations, which are irrelevant. Hence, we derive

Q2 =
4
∑

i=1

�

h3σ
+
i σ
−
i+1 + h4σ

−
i σ
+
i+1 + 2 h5σ

z
i

�

, (34)

and

Q3 = −
�

8 h2
2 + 2h3h4 + 8 h2

5 − 2 l(2)1 − l(2)3 − l(2)4 − 2 l(2)6

�

I+ 2 l(2)5

∑

i

σz
i

+
1
4

�

8 h2
2 + 2h3h4 − 8 h2

5 + 2 l(2)1 − l(2)3 − l(2)4 + 2 l(2)6

�∑

i

σz
iσ

z
i+1

−
�

4h3h5 − l(2)1 + 2l(2)2 + l(2)6

�∑

i

σ+i σ
−
i+1

+
�

4h3h5 + l(2)1 + 2l(2)2 − l(2)6

�∑

i

σ−i σ
+
i+1

+
∑

i

�

h2
3σ
+
i σ
−
i+2 − h2

4σ
−
i σ
+
i+2

�

σz
i+1 . (35)

By requiring [Q2,Q3] = 0 we obtain that

l̃(2)6 = −8h2
2 − 2h3h4 + 8h2

5 − l̃(2)1 + l̃(2)3 + l̃(2)4 , (36)

and no restrictions on the other l̃(2)i . By computing
�

Q2,Q4

�

= 0 we find again a condition

for l̃(3)6 but the other l̃(3)i remain free. We repeated this process until Q8 and found only one
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condition per step. The remaining degrees of freedom have a clear interpretation that we will
discuss shortly, but let us now put all the free l̃( j)i to zero for simplicity which yields

L(u) =







1+ 2uh5 0 0 0
0 uh4 1− 2uh2 0
0 1+ 2uh2 uh3 0
0 0 0 1− 2uh5 + u2A(u)






, (37)

where

A(u) = (4h2
2 + h3h4 − 4h2

5)(−1+ 2uh5 − 4u2h2
5 + 8u3h3

5 − 16u4h4
5 + 32u5h5

5 + ...+) . (38)

We can see that the expression for A(u) can be easily summed, such that we can write the
complete L(u) as

L(u) =









1+ 2uh5 0 0 0
0 uh4 1− 2uh2 0
0 1+ 2uh2 uh3 0

0 0 0
1−u2(4h2

2+h3h4)
1+2uh5









. (39)

In the next step we use the RLL relations to very easily obtain the corresponding R-matrix

R(u) =













u(1−4v2h2
2)+(u−v) f (v)

v(1−2uh2)(1+2vh2)
0 0 0

0 (v f (u)−uf (v))h4
(1−2uh2)(1+2vh2)

1 0

0 (1+2uh2)
(1−2uh2)

(1−2vh2)
(1+2vh2)

(u−v)h3
(1−2uh2)(1+2vh2)

0

0 0 0
v(1−4u2h2

2)−(u−v) f (u)
u(1−2uh2)(1+2vh2)













, (40)

where

f (u) =
u2(4h2

2 + h3h4)− 1

1+ 2uh5
. (41)

Of course this is a case that was already classified in [3,4] and it is illustrative to compare the
results. The Hamiltonian (32) is of type 6-vertex B and the corresponding R-matrix depends
on several free functions. In order to give a regular R-matrix with the correct Hamiltonian,
these functions will need to specify some boundary conditions, but are otherwise free. If we
write the functions as a Taylor series in u, then the boundary conditions will fix the lowest two
orders, but not the rest. This is exactly what we see in this way of solving for our Lax operator.

4 Long-range interactions

A more interesting direction are spin chains with long-range interactions. In this section we
will focus on the framework of long-range interactions that was introduced in [11, 12]. The
idea is to introduce a long-range deformation of a nearest neighbour spin chain in a perturba-
tive way.

Framework Consider a regular integrable spin chain with conserved charges {Q(0)r }. The
range of Q(0)r is r. Let us introduce a coupling constant g and write

Qr(g) =Q(0)r + gQ(1)r + g2Q(2)r + . . . (42)
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We impose that Q(n)r is of range r + n. This clearly defines a long-range deformation which is
integrable if we also impose that

[Qr(g),Qs(g)] = 0 . (43)

This needs to hold at each order in g and this allows us to define a perturbative notion of
long-range interaction, where the spin chain is integrable up to some order in g.

In [11,12], and later [15] it is further argued and checked that all long-range deformations
correspond to the solutions of the deformation equation

d
d g
Qr(g) = [X (g),Qr(g)] , (44)

where X (g) =
∑∞

n=0 X (n)gn. Thus, we obtain the perturbative solution

Q(n+1)
r =

n
∑

m=0

[X (m),Q(n−m)
r ] . (45)

There are different types of operators X which give an integrable deformation with increasing
range, namely

• local operators,

• boosted charges,

• bilocal charges.

Both the boosted charges and the bilocal operators are only defined on an infinite open chain,
but the commutator on the RHS of the deformation equation will be a finite range operator
that can consistently be restricted to a spin chain of finite length. A fourth possibility is a basis
transformation which simply mixes the conserved charges of the original chain

Qr →
∑

s

γr,s(g)Qs . (46)

This is of course a trivial deformation as it has no effect on the eigenvectors and acts trivially
on the eigenvalues of the spin chain.

Long-range Lax operator However, the approach from [11,12] focuses on the charges and
it is not clear if there is a Lax operator and R-matrix that underlie these deformations. In
order to include long-range interactions we need to increase the size of our Hilbert space and
consider a spin-ladder system. In the context of medium-range interactions, this was recently
applied in [14].

Consider a spin chain with local Hilbert space V in which the Hamiltonian HV is of range
3. If we assume the spin chain has even length, then we can define a new spin chain with local
space W = V ⊗ V . On this spin chain, the Hamiltonian HW which corresponds to HV lifted to
the larger spin chain is now nearest neighbour and we apply our regular spin chain formalism
again. This can easily be generalised to longer range interactions.

For simplicity let us restrict to range 3. Hence, we look for a Lax operator of the form
La1,a2,n1,n2

, acting on W ⊗W and the indices ai , ni reflect the decomposition of W = V ⊗ V .
In [14] it was argued and conjectured that such a Lax operator should actually split into two
factors

La1,a2,n1,n2
(u) = La1,a2,n2

(u)La1,a2,n1
(u) . (47)
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In all the examples we have worked out and will present in the following sections, we found
that this was indeed the case. Hence it seems like all the perturbative long-range models of
range r can be build from a Lax operator whose auxiliary space is V⊗(r−1) and whose physical
space is unchanged. Furthermore, in [14] the corresponding regularity condition was also
derived and is

La1,...an,i(0) = Pa1,i . . . Pan,i = Pi,an
Pan,an−1

. . . Pa2,a1
. (48)

Because of this we conjecture, analogous to [14], that we can derive the Lax operator for
perturbative long-range interactions by applying the formalism from Section 3 with such a
Lax operator instead. This will mean a significant computational simplification.

5 Two-loop SU(2) sector

As a first application let us consider the case where our Lax operator is SU(2) invariant. This
long-range spin chain corresponds to the SU(2) sector in N = 4 SYM. The interaction range
of the Hamiltonian grows with every loop order and to three loops it is given by [7–9,18]

H = {} − {1}+ g2
�

−2{}+ 3{1} −
1
2
({1,2}+ {2,1})

�

+ g4
�

15
2
{} − 13{1}+

1
2
{1,3}+ 3({1, 2}+ {2, 1})−

1
2
({1,2, 3}+ {3,2, 1})

�

+O
�

g5
�

,

(49)

where

{p1, p2, ...}=
L
∑

p=1

Pp+p1,p+p1+1Pp+p2,p+p2+1 · · · (50)

As far as integrability is concerned, we can write the density Hamiltonian H corresponding to
(49) as given by

H ∼ 1− P12 − g2P13 + g4P14 + . . . , (51)

by using identities like P12P23 + P23P12 = P12 + P23 + P13 − I and changing normalization and
adding a constant shift. Given that we can easily put those terms back in the Lax operators,
for simplicity we will continue working with the simple expression (51).

Even though integrability was shown in [9], the approach focuses on the charges and not
on the R-matrix. In this section we will show that this model is Yang-Baxter integrable and
compute the corresponding R-matrix and Lax operator that generates them.

Doubling XXX Let us first have a look at which range 3 interactions are allowed. Let us start
with the XXX spin chain Hamiltonian

H12 = 1− P12 . (52)

It is generated by the usual Lax operator and R-matrix

Lai(u) =
u 1− Pai

u− 1
, Rab(u) =

u 1− Pab

u− 1
. (53)

In order to allow for range 3 interactions, we need to consider an auxiliary space of double
dimension and a bigger corresponding Lax operator L(3)a1a2 i .

Hence, starting from the XXX spin chain Hamiltonian, we can lift this Hamiltonian to a
Lax operator of the form L(3)a1a2 i by applying our formalism. We find that the most general
solution is

L(3)a1a2 i(u) = A(u)Va1a2
(u)La1 i( f (u))La2 i(g(u))V

−1
a1a2
(u) , (54)
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where A is an overall normalisation, f (u), g(u) are smooth functions such that

f (0) = g(0) = 0 , f ′(0) + g ′(0) = 1 , (55)

and V = α(u)1− P , (56)

is a basis transformation in the auxiliary space. Clearly such a basis transformation will drop
out of the transfer matrix due to cyclicity of the trace. It is easy to check that L(3) satisfies the
correct boundary conditions and satisfies the usual RLL relations with the following R-matrix

Ra1a2,b1 b2
(u, v) = Ra1,b2

( f (u), g(v))Ra1,b1
( f (u), f (v))Ra2,b2

(g(u), g(v))Ra2,b1
(g(u), f (v)) .

(57)

This is of course unsurprising since this corresponds to the well-known way of doubling a spin
chain and simply expresses the R-matrix as pairwise scattering of four particles

(12)(34)→ (34)(12) . (58)

Hence at this level, the Lax operator and R-matrix simply decomposes into fundamental ones.

Long-range deformations of XXX Let us now add a range 3 part. It is easy to check that
there are only two range 3 interactions that are compatible with SU(2) symmetry. They are

O1 = P13 , O2 = [P12, P23] . (59)

The operator O2 corresponds to the third charge of the XXX spin chain and hence it can be
added to the Hamiltonian as a trivial deformation as it will simply commute with H. We will
discard it for that reason and consider

H123 = 1− P12 − g2P13 , (60)

corresponding to (51). On periodic chains we only need to add P12 and can discard possible
P23 terms.

We find that this Hamiltonian is indeed Yang-Baxter integrable and we are able to construct
the Lax operator and R-matrix. Remarkably, we find that adding the g2 part influences the g0

part from (54). More precisely, it fixes g(u) = 0. After fixing our remaining freedom such that
V = 1 and f = u, we find

La1a2 i(u) = Pa1 i Pa2 i

�

Pa1a2
La1a2

(u)−
2g2u

(u− 2)(u2 − 1)
Pa1 i

�

. (61)

A second remarkable feature is that this Lax operator only describes an integrable spin chain
at order g2. There is no range 3 extension of this Lax operator that works at order g4. Hence
in order to make this spin chain fully integrable to all orders in g one has to consider longer
range interactions.

The final thing to check is whether there is an R-matrix which solves the Yang-Baxter equa-
tion and makes L satisfy the fundamental commutation relations (3). If we fix the normalisa-
tion of R such that its (1,1)-component is 1, then (3) gives a unique solution. The form of R
is not very enlightening, but it can still be factorised into four terms

Ř12,34(u, v) = Ľ234(u)Ľ123(u− v)R̃34R̂23 , (62)

where now R̃ and R̂ contain range 3 terms, i.e.

R̃i,i+1 = 1+αi Pi,i+1 + βi Pi+1,i+2 + γi Pi−1,i +δi Pi,i+2 + εi Pi−1,i+1 . (63)
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It is easy to check that this R-matrix satisfied the Yang-Baxter equation to order g2. This
R-matrix satisfies the Yang-Baxter equation and braiding unitarity. Finally, at v = 0 it factorises
into a product of Lax operators confirming Conjecture 4 from [14]. The above decomposition
is not really unique. There are several ways of decomposing R in four factors and the factors
also depend on the explicit form of the Lax operator.

6 Long-range deformations of 6-vertex models

The long-range deformations of 6-vertex models have been studied in [15] and they were
classified. Here we now take a different approach, we will classify them by finding the Yang-
Baxter integrable ones. One important question is whether the two sets coincide or if the YB
integrable ones are a subset.

To demonstrate our method in a well-known setting, let us work out the general procedure
for a Hamiltonian of 6-vertex type. We assume a constant Hamiltonian of the form

H =h1 + h2(σz⊗1− 1⊗σz) + h3σ+⊗σ− + h4σ−⊗σ+ + h5(σz⊗1+ 1⊗σz) + h6σz⊗σz .
(64)

Following the classification in [3] we know which R-matrices are allowed and that there are
two independent cases corresponding to h6 ̸= 0 and h6 = 0, which we called 6-vertex A and
B, respectively. In the case where h6 ̸= 0, we found the following Lax operator2

L(u) = e(h1+2h5+h6)u











1 0 0 0

0 h4e−4h5u

2h6+ω coth uω
ωe−2(h2+h5)u

2h6 sinh uω+ω cosh uω 0

0 ωe2(h2−h5)u

2h6 sinh uω+ω cosh uω
h3

2h6+ω coth uω 0
0 0 0 e−4h5u











, (65)

where3 ω =
q

4h2
6 − h3h4. Notice that h1 corresponds to an overall normalisation of L and

h2 to a local basis transformation in the auxiliary space. We will use this to put h1 = −h6 and
h2 = 0 in the remainder of this section.

We find that this Lax operator satisfies the fundamental commutation relations with the
R-matrix.

R(u, v) =











1 0 0 0

0 h4e−4h5u

2h6+ω coth(u−v)
ωe−2(h2+h5)(u−v)

2h6 sinhω(u−v)+ω coshω(u−v) 0

0 ωe2(h2−h5)(u−v)

2h6 sinhω(u−v)+ω coshω(u−v)
h3e4h5 v

2h6+ω cothω(u−v) 0
0 0 0 e−4h5(u−v)











. (66)

Notice that the expression that we find for R,L are also valid in the h6 → 0 limit, where this
should reduce to a special case of the 6-vertex B operators.

Let us now add a range 3 operator and hence we consider the Hamiltonian density as

H(r=3)
123 =H12 + g2H̃123 , (67)

where H12 is constructed from (64) and H̃123 is given by

H̃123 =
∑

a,b,c

h̃a,b,cσ
a
1σ

b
2σ

c
3 , and

�

H̃123,
3
∑

i=1

σz
i

�

= 0 , (68)

2This case can be mapped to the XXZ model.
3In order to simplify the form of the expressions in this paper we are writing in several places h3, h4 and ω.

Notice however that only two of those are independent and when doing our procedure it is important to choose
two and consistently use them all the time.
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where the sum runs over a = 0,±, z. Consider the Lax operator

L(r=3)
123 (u) = P23P12

�

P12L12(u) + g2
∑

i≥1

L̃(i)123ui

i!

�

, (69)

where L12(u) is given by the matrix (31). The g0 part is again only embedded in spaces 1 and
2, just as in the SU(2) sector from the previous section. In this way the boundary conditions
at leading order in g are automatically satisfied.

The matrix L̃(i)123 should conserve total spin and takes the form

L̃(i)123 =





























l̃(i)11 0 0 0 0 0 0 0
0 l̃(i)22 l̃(i)23 0 l̃(i)25 0 0 0
0 l̃(i)32 l̃(i)33 0 l̃(i)35 0 0 0
0 0 0 l̃(i)44 0 l̃(i)46 l̃(i)47 0
0 l̃(i)52 l̃(i)53 0 l̃(i)55 0 0 0
0 0 0 l̃(i)64 0 l̃(i)66 l̃(i)67 0
0 0 0 l̃(i)74 0 l̃(i)76 l̃(i)77 0
0 0 0 0 0 0 0 l̃(i)88





























. (70)

Sometimes it will be useful to write the whole sum instead of the perturbative formula. For

this reason we also define λi j =
∑

k≥1
l̃(k)i j uk

k! .
We then apply a combined set of strategies to discover which type of deformation is allowed

and which kind of freedom do we have. We first follow a very similar procedure to the one
discussed in section 3, but just at order u2. With this we discover that five other conditions are
required on the elements of H̃123 in order for the deformation to be integrable, namely

h̃−z+ = −
h2

4

h2
3

h̃+z− , h̃z0z =
h4

4h3
h̃+0− +

h3

4h4
h̃−0+ , (71)

h̃z+− = −h̃+−z −
4h6

h3
h̃+z− , h̃z−+ =

4h4h6

h2
3

h̃+z− − h̃−+z , (72)

h̃zzz = 0 . (73)

Notice that this gives us a total of five relations on ten possible range 3 deformations. This
matches exactly with the long-range deformations found in [15]. As is easy to check, we have
the same operators that are allowed.

The next step we performed was to compute the Hamiltonian H and the transfer matrix
t(u) for a periodic spin chain with L = 6 sites and solve [t(u),H] = 0 for the coefficients in the
Lax, with this we found the solution given in Appendix A. As noted before, there is residual
freedom and this needs to be partially fixed by considering the boundary conditions. Writing

λi j = Ai ju+ Bi ju
2 + . . . (74)

Then we find that

A32 =
4h4h6

h2
3

h̃+z− − h̃−+z , A33 = A66 = −A44 = −A55 =
h4

4h3
h̃+0− +

h3

4h4
h̃−0+ ,

A46 = −h̃+−z , A53 = h̃−+z , (75)

A74 =
h2

4

h2
3

h̃+z− + h̃−0+ , A25 = h̃+0− + h̃+z− ,
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and

B74 =
h2

4h̃+0−(5ω2 − 24(2h2
5 + h2

6))

48h2
3h5

−
h4(h2

3B5,3 +ω2B4,6 − 4h2
6B4,6)

8h2
3h5

−
4h5h2

4h̃+z−

h2
3

+
h̃−0+(24(h2

6 − 6h2
5)− 5ω2)

48h5
+
(3h5 − 2h6)h2

4h̃+−z

4h3h5
+
(h5 − 2h6)h4h̃−+z

4h5
, (76)

B25 =
4h2

6B4,6 − h2
3B5,3 −ω2B4,6

8h4h5
+

h2
3h̃−0+(24(2h2

5 + h2
6)− 5ω2)

48h2
4h5

+ 4h5h̃+z−

+
h̃+0−(144h2

5 − 24h2
6 + 5ω2)

48h5
−
(3h5 + 2h6)h2

3h̃−+z

4h4h5
−
(h5 + 2h6)h3h̃+−z

4h5
. (77)

For this Lax operator we then compute the R-matrix and check that it satisfies the Yang–Baxter
equation. Hence all long-range deformations obtained from the deformation equation are Yang-
Baxter integrable for 6-vertex models.

It is interesting to highlight that until range 3, the limit h6→ 0 is well defined and we can
therefore take this limit directly in our Lax operator and R-matrix.

7 General formalism and higher range

Let us now extend this to range four and see if we can recognise a pattern. This would corre-
spond to the three-loop Dilation operator in the SU(2) sector. As remarked in [9], in this case
integrability does not fix the form of the operator and extra input is needed.

Range 4 It is easy to check that there are 6 independent operators of range 4 that are invari-
ant under SU(2), which are

ρ1 = A1

3
∑

i=1

σi ⊗ 1⊗ 1⊗σi , ρ2 = A2

3
∑

i, j=1

σi ⊗σ j ⊗σ j ⊗σi , (78)

ρ3 = A3

3
∑

i=1

σi ⊗σ j ⊗σi ⊗σ j , ρ4 = A4

3
∑

i=1

σi ⊗σi ⊗σ j ⊗σ j , (79)

ρ5 = A5 ε
i jkσi ⊗σ j ⊗ 1⊗σk , ρ6 = A6 ε

i jkσi ⊗ 1⊗σ j ⊗σk . (80)

When discussing the range 3 deformation, we saw that this was unique up to a trivial defor-
mation with Q3 if we impose SU(2) symmetry. Hence, we will look for a deformation of the
form

H1234 =H123 + g4
∑

i

ρi , (81)

where H123 is given by (51). We can then compute the Lax operator and we notice a few
things. First, not all terms are integrable. In particular, we find that (81) is only integrable if

A3 =
1− 2A1 − 4A2

4
, A4 =

1− 2A1

4
. (82)

Second, we note that if we impose that our Hamiltonian is parity invariant (or symmetric),
then A5 = A6 = 0 and we are left with just two possible integrable deformations. One of them
will be Q4 from the original XXX spin chain. Hence also at this level, there is only one non-
trivial integrable deformation of our Hamiltonian. The relative coefficients, however, between
the different terms are not fixed.
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We also notice something interesting. The presence of the range 3 part automatically
implies that we need to have a non-zero range 4 part. Indeed, we can not set all Ai = 0
due to the conditions (82). This agrees with the fact that we could not extend our range 3
deformation to order g4.

The explicit form of L is not completely fixed and depends on some free functions. We
present its explicit form in Appendix B. The explicit form of the R-matrix was not explicitly
written here because it is very long. But it can be easily computed perturbatively for up to
three loops by plugging the Lax operators up to this order in the fundamental commutation
relations. As mentioned before this equation is linear in the R-matrix and therefore simple
to solve on Mathematica. We further checked that it perturbatively satisfies the Yang-Baxter
equation up to order g4.

Higher range We can now very efficiently compute the Lax operators of perturbative long-
range interactions recursively. Let us define Ľ as

La1,...,an,i = Pa1 i . . . Pan iĽa1,...,an,i . (83)

Let us denote the different possible terms of range r by A(i)r , then we want

Hr =Hr−1 + g2r
∑

i

ciA
(i)
r , (84)

for some constants ci . We can then make the following Ansatz for our Lax operator

Ľa1,...,an,i(u) = Ľa1,...,an
(u) + g2nAa1,...,an,i . (85)

The first part in the above expression guarantees that this Lax operator will satisfy the correct
boundary conditions up to order g2n−2, since it is the lower-order Lax operator embedded in
the first n coordinates.

The new information is encoded in A and since it is at the highest order in g, we can
actually derive a set of linear equations for it. In particular, we can compute

[T (g
2n),H] = 0 , (86)

on a spin chain of sufficient length. This equation is automatically satisfied up to order g2n

and at this order it gives a set of linear equations for A, which are straightforward to solve.
Similarly, from the RLL relations we obtain a linear set of equations for the R-matrix. How-
ever, we were unfortunately not able to find an elegant recursive structure on the R-matrix.
Nevertheless, we found that Ansatz (85) works.

Deformation equation The remaining question is how the deformation equation factors in
this story. We have demonstrated a one-to-one correspondence between the known long-range
deformations and integrable Lax operators. Let us now work out at first order what happens
in the deformation equation. Let us write

Ľa1,a2,i(u) = Ľa1,a2
(u) + g2
∑

n>0

A(n)a1,a2,iu
n . (87)

Then we can easily find that to order g2

Habc =Hab + g2A(1)abc , (88)

(Q3)abcd = [Hab,Hbc] + L̈ab + g2
�

[A(1)abc ,Hbc +Hcd] + [Hab,A(1)bcd] +A(2)abc

�

. (89)
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Let us now plug this into the deformation equation (44). In particular, the g2 part of the above
charges can be written as a commutator with X . Hence, when we apply it to H we find

∑

a

A(1)a,a+1,a+2 =
∑

a

[X ,Ha,a+1] . (90)

At next order, however, things become more interesting. We find
∑

a

[A(1)a−1,a,a+1,Ha,a+1 +Ha+1,a+2] + [Ha−1,a,A(1)a,a+1,a+2] +A(2)a−1,a,a+1

=
∑

a

[X , [Ha−1,a,Ha,a+1] + L̈a−1,a] . (91)

By using the result of the NN term, we can rewrite this as

A(2)a−1,a,a+1 =
∑

a

[X , L̈a−1,a]− [[X ,Ha−1,a],Ha+1,a+2] . (92)

The right hand side is a priori of range 4 while the left hand side is of range 3. In general we see
that the deformation equation will involve commutators of increasing range and it is not clear
that those can be written in terms of a term of range 3. We see that at best the Lax operator
can only be implicitly defined perturbatively by the deformation equation. It would be very
interesting to see if a deformation equation can be written down for the full Lax operator.

8 Possible applications

Finally, let us highlight some possible applications of our results. There clearly are applications
in N = 4 SYM theory and related theories. The spectrum for the integrable theories in the
AdS/CFT correspondence is mainly solved, but the question of form factors and correlation
functions is still open. Many of these approaches use the explicit wave function of the op-
erators at higher loops, see e.g. [19–21]. We have constructed the explicit Lax operator and
the corresponding R-matrix at two-loops and that should open the door for applications of
the algebraic Bethe Ansatz for loops and construct the eigenstates with the creation operators
corresponding to these operators.

Correlators Second, there is an elegant application of this to computing form factors and
correlation functions on spin chains in general. This was used in [22] to compute certain
correlation functions of the XXZ spin chain.

Consider an integrable spin chain that depends continuously on some parameter ε. Let us
denote the conserved charges by Q̂εi . The operator Q̂εi generically has interaction range i. This
means that Q̂ε2 corresponds to a term with nearest neighbor interaction and is usually taken
to be the Hamiltonian of the spin chain.

Assume that we can diagonalize these conserved quantities by means of a Bethe Ansatz.
Let |uε〉 be an eigenstate of all the operators Q̂εi with corresponding eigenvalues Qεi , i.e.

Q̂εi |u
ε〉=Qεi |u

ε〉=
�

qεi +
∑

n

qεi (u
ε
n)
�

|uε〉 . (93)

We have split the eigenvalue Q into a constant term q and a magnon contribution given by the
dispersion relation qεi (u

ε
n).

Next, we interpret ε as a small parameter around which we do quantum mechanical per-
turbation theory. We expand the operators and their eigenvalues as power series in ε as

Q̂εi = Q̂i + ε Q̂′i + . . . , Qεi =Q i + εQ′i + . . . (94)
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The first correction in ε to the eigenvalue Qεi is given by the expectation value of Q̂′i in the
unperturbed system

Q′i = 〈u
0|Q̂′i|u

0〉 . (95)

Since we have a closed formula for Q′i , we can derive an exact formula for 〈u0|Q̂′i|u
0〉. More

precisely, from (93), we derive

〈u0|Q̂′i|u
0〉= q′i +
∑

n

�

∂ qεi
∂ ε
+
∂ qεi
∂ uεn

∂ uεn
∂ ε

�

�

�

�

�

ε=0
. (96)

Apart from
∂ uεn
∂ ε all the terms in (96) depend on the explicit form of the dispersion relations

in the integrable model. The correction to the rapidities can be computed from the Bethe
equations.

Suppose the rapidities of the magnons in our spin chain satisfy a set of Bethe equations.
Generically, the Bethe equations can be written in the form

Φi = mi ∈ Z , (97)

where Φ is the counting function. We can then express ∂ uε
∂ ε in terms of the usual Gaudin matrix

Gi j = ∂ui
Φ j as follows

〈u0|Q̂′i|u
0〉= q′i +

∂ qεi
∂ uεn
· G−1

nm ·
∂Φm

∂ ε
+
∑

n

∂ qεi (un)

∂ ε

�

�

�

�

ε=0
. (98)

All the quantities in the above formula are known and it allows us to derive closed formulas
for a large class of operators in a large class of integrable models.

This means that for instance in any 6-vertex model (64) we can exactly compute the ex-
pectation values of any two-site operator that preserves spin. However, it also means that,
once the Bethe Ansatz for the long-range model has been carried out, that the expectation
values of the different types of operators of the long-range deformations can also be computed
analytically. This will provide a large class of correlations functions that can be computed
explicitly.

9 Conclusions and discussion

In this paper we have demonstrated how to check if a Hamiltonian descends from a Lax oper-
ator satisfying the RLL relations. We have applied our approach on the known 6-vertex cases
and found agreement with our earlier classification [3].

Subsequently, we applied our method to perturbative long-range deformations of spin
chains [12]. These types of deformations naturally appear in integrable models that arise
in AdS/CFT. We found that the known integrable deformations of this type all derive from a
Lax operator and R-matrix. We present the Lax operator and R-matrix for the SU(2) sector
in N = 4 SYM up to two loops and the Lax operator up to three loops. We also constructed
the Lax operator and R-matrix for range 3 deformations of the 6-vertex model. We find some
recursive structure that relates the orders.

There are many interesting future directions in which this work could be extended. It
would be interesting to understand the explicit Lax operator and corresponding R-matrix to all
orders. This would include wrapping which is discussed in [16]. One can also use our method
to compute perturbatively the R-matrix and the Lax operator for other sectors in N = 4 SYM.
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Perturbative long-range interactions also have been formulated for open spin chains [23] and
it would be interesting to consider such a system. Maybe there are some other applications
to long range spin chains appearing from different approaches and contexts like free-fermions
[24–26] and coming from inhomogeneities in the bulk [27, 28] and in the boundary [29].
Finally, now that the ingredients for the algebraic Bethe Ansatz were computed, it would be
interesting to see if our approach can also help with the computation of form factors and
correlation functions in AdS/CFT.
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A Range 3 Lax operator for 6-vertex model

In this appendix we present explicitly the range 3 (order g2) Lax operator for the 6 vertex
model discussed in section 6.

There exist a few combinations that appear very often in the elements of the Lax, so in
order to make the expressions more compact we define

f ±n (u) =ω± nh6 tanh uω . (A.1)

The elements of the Lax are then given by

λ11(u) =
e2uh5ω

4h2
4

×
ω2 + 4h2

6 + cosh(2uω)(ω f −4 (2u)− 12h2
6) + cosh(4uω)(−2ω2 + 2ω f +2 (4u) + 8h2

6)

f +2 (u) f
−

2 (u) cosh3 uω sinh uω
h̃−0+

−
e2uh5ω

h2
3

f +2 (u)h̃+0−

f −2 (u) sinh(2uω)
+

4e2uh5h6

h2
3

ω f −4 (u)− 12h2
6

f +2 (u) f
−

2 (u)
h̃+z− tanh2 uω

+
e2uh5

h3

f +4 (u) +ω tanh2 uω

f +2 (u)
h̃+−z +

e−2uh5 f +2 (u)
2 coth uω

2h2
3 sinh uω

λ25(u)

+
e2uh5

h4

ω2 − 8h2
6 + 2h6(4h6 cosh(2uω) + 2ω sinh(2uω)− 3ω tanh uω)

f +2 (u) f
−

2 (u) cosh2 uω
h̃−+z

+
2e2uh5h6 f +2 (2u) cosh(2uω)

h4ω cosh uω
λ32(u) +

e2uh5 f +2 (u) cosh uω

ω
λ33(u)

−
e2uh5 f +2 (2u) cosh(2uω)

2ω cosh uω
λ44(u) +

f +4 (u) coth uω+ω tanh uω

2h3
λ46(u)

−
e4uh5ω

h4 sinh(2uω)
λ53(u) +

e2uh5

2cosh uω
λ55(u)−

e6uh5

4ωh2
4

�

ω3 +ω cosh(2uω)(ω2 − 12h2
6)

sinh2 uω cosh uω

18

https://scipost.org
https://scipost.org/SciPostPhys.15.6.241


SciPost Phys. 15, 241 (2023)

+
2h6(2h6(ω+ 2ω cosh(4uω) + 16h6 cosh uω sinh3 uω) +ω2 sinh(4uω))

sinh2 uω cosh uω

�

λ74(u) ,

(A.2)

λ22(u) = λ11(u)− e2uh5

�

h4

h3

h̃+0− tanh uω
f −2 (u)

+
h3

h4

h̃−0+ tanh uω
f +2 (u)

+ 4
h4h6

h3

h̃+z− tanh2 uω
f +2 (u) f

−
2 (u)

−
f −2 (2u) cosh 2uω+ω

f +2 (u) f
−

2 (u)2
tanh2 uω

cosh2 uω
h3h̃−+z +

f +2 (u) cosh uω

ω
(λ55(u)−λ66(u))

�

,

(A.3)

λ23(u) = e2 u h5

�

−
ω2

h3

h̃+0−sech2uω
f +2 (u) f

−
2 (u)

−
4h6

h3

h̃+z− tanh uω
f −2 (u)

+
2h3

h4

h̃−+z tanh uω
f −2 (u)

+
ωh3

h2
4

f +2 (2u)h̃−0+(1+ tanh2 uω)

f +2 (u) f
−

2 (u)

�

+
e−2 uh5ω

h3 sinh uω
λ25(u)

+
e2 u h5h3 f +2 (u)

ωh4
cosh uωλ32(u)−

e6 uh5h3 f +2 (u)
2

ωh2
4

cosh2 uω
sinh uω

λ74(u) , (A.4)

λ35(u) = e2 uh5

�

2h̃+−z tanh uω
f +2 (u)

+
4h6

h3

f −6 (u)h̃+z− tanh uω

f +2 (u) f
−

2 (u)
−

h4h̃+0− tanh2 uω
f +2 (u) f

−
2 (u)

+
h3

h2
4

ω2 + 4h6 coth uω f +1 (u)

f +2 (u) f
−

2 (u)
h̃−0+ tanh2 uω+

8h3h6

h4

h̃−+z tanh2 uω
f +2 (u) f

−
2 (u)

+
h3

ω

�

4h6

h4
λ32(u) +λ33(u)−λ44(u)

�

sinh uω

�

+λ46 −
4e6 u h5h3h6

ωh2
4

f +2 (u) cosh uωλ74(u) , (A.5)

λ47(u) = e2 uh5

��

h̃+0−ω

f +2 (u)
+

h2
3

h2
4

h̃−0+

f −2 (u)

�

tanh uω− 2

�

2h6h̃+z− −
h2

3

h4

�

tanh2 uω
f +2 (u) f

−
2 (u)

�

+
e2 uh5h2

3

ωh4
sinh uωλ32(u)−

e6 uh5h2
3

ωh2
4

f +2 (u) cosh uωλ74(u) , (A.6)

λ52(u) = e−2 u h5

�

2ωh̃−0+ tanh uω
f +2 (u) f

−
2 (u)

− 2h4

�

2h4h6

h2
3

h̃+z− − h̃−+z

�

tanh2 uω
f +2 (u) f

−
2 (u)

�

+
e−2uh5h4

ω
sinh uωλ32(u)−

e2uh5

ω
f +2 (u) cosh uωλ74(u) , (A.7)

λ64(u) =
e−4 uh5h4

h3
λ35(u)−

2e−2 uh5

f +2 (u)

�

h4h̃+−z

h3
+ h̃−+z

�

tanh uω

−
e−2uh5h4

ω

�

λ33(u)−λ44(u)
�

sinh uω−
e−4uh5h4

h3
λ46(u) +λ53(u)

−
e−2uh5h4 sinh uω

ω
(λ55(u)−λ56(u)) , (A.8)
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λ67(u) =
ωe2uh5h3

sinh uωh2
4

λ52(u)−ωh3

�

h̃+0−

h2
3 f −2 (u)

+
h̃−0+

h2
4 f +2 (u)

�

sechuω

+ 2ω

�

h̃+−z +
2h6h̃+z−

h3

�

sechuω tanh uω
f +2 (u) f

−
2 (u)

+
e−4uh5

h3
f +2 (u) coth uωλ25(u) , (A.9)

λ76(u) = λ64(u)−
4e−2uh5

f +2 (u)

�

2h4h6h̃+z−

h2
3

− h̃−+z

�

tanh uω

+
e−2uh5

ω
f −2 (u) cosh uωλ32(u) +λ53(u)

+
e−2uh5

ω

�

h4λ55(u)− h4λ66(u) + h3λ74(u)
�

sinh uω , (A.10)

λ77(u) = e−2uh5

�

f +2 (u) f
−

2 (2u)h̃+0− coth(2uω)

h2
3 f −2 (u)

+
f +2 (u)(−2ω+ f +2 (2u) cosh(2uω))h̃−0+

f −2 (u) sinh(2uω)

+
8h6

h2
3

(ω f −2 (u)− 8h2
6)h̃+z− tanh2 uω

f +2 (u) f
−

2 (u)
−

f −6 (u)( f
+

4 (u) +ω tanh2 uω)h̃−+z

h4 f +2 (u) f
−

2 (u)

+

�

−ω2 + 2ωh6sech2uω tanh uω+ (ω2 − 8h2
6) tanh2 uω
�

h̃+−z

h3 f +2 (u) f
−

2 (u)

�

−
e−6uh5 f +2 (u) f

−
2 (u) coth uω

2h2
3 sinh uω

λ25(u) +
2e−2uh5h6 f +2 (2u) cosh(2uω)

ωh4 cosh uω
λ32(u)

+
e−2uh5 f +2 (u) cosh uω

ω
(λ33(u) +λ66(u))−

e−4uh5ω

h3 sinh(2uω)
λ46(u)

−
e−2uh5 f +2 (2u) cosh(2uω)

2ω cosh uω

�

λ44(u) +λ55(u)
�

+
f +4 (u) coth uω+ω tanh uω

2h4
λ53(u)

+
e2uh5

2ωh2
4

�

ω3 coth uω

sinh2 uω
− 8h6

�

4h6 f +1 (2u) coth(2uω) +ω(ω+ h6csch(2uω))
�

�

sinh uωλ74(u) ,

(A.11)

and

λ88(u) = λ77(u) + e−2uh5

�

h4h̃+0−

h3 f +2 (u)
+

h3h̃−0+

h4 f −2 (u)

�

tanh uω

+
2e−2uh5h4

f +2 (u) f
−

2 (u)

�

h̃+−z +
2h6

h3
h̃+z−

�

tanh2 uω

−
e−2uh5 f +2 (u)

ω

�

λ33(u)−λ44(u)
�

cosh uω . (A.12)

As one can see above, there is still a lot of freedom in the Lax since everything is written
in terms of λ25(u) ,λ32(u) ,λ33(u) ,λ44(u) ,λ46(u) ,λ53(u) ,λ55(u) ,λ66(u) and λ74(u). These
objects need however to satisfy some properties (see equations in (76) and (77)) in order to
the boundary conditions be satisfied.

The R-matrix was computed explicitly using the RLL relations and it was proved to satisfy
the Yang-Baxter equation.
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B Range 4 Lax operator

Setting A5 = A6 = 0, we can write for the g4 part

L(g
4) = λ11+λ2

∑

σi ⊗σi ⊗ 1⊗ 1+λ3

∑

1⊗σi ⊗σi ⊗ 1+λ4

∑

1⊗ 1⊗σi ⊗σi

+λ5

∑

σi ⊗ 1⊗σi ⊗ 1+λ6

∑

1⊗σi ⊗ 1⊗σi

+λ7εi jkσ
i ⊗σ j ⊗σk ⊗ 1+λ8εi jk1⊗σi ⊗σ j ⊗σk (B.1)

+λ9

∑

σi ⊗ 1⊗ 1⊗σi +λ10

∑

σi ⊗σ j ⊗σ j ⊗σi +λ11

∑

σi ⊗σ j ⊗σi ⊗σ j

+λ12

∑

σi ⊗σi ⊗σ j ⊗σ j +λ13 εi jkσ
i ⊗σ j ⊗ 1⊗σk +λ14εi jkσ

i ⊗ 1⊗σ j ⊗σk .

We have pulled out an explicit factor of u2 in order to make manifest where all the λi are
functions of u and they satisfy the following relations

λ4 =
(u− 1)3(3u− 2)

2(1− 2u)2u2
(2A1 − 1) +
�

2
u
− 1
�

λ10 , (B.2)

λ6 =
(u− 1)2

2(2u− 1)2

�

4(2u− 1)
u2

A1 − 2A1 + 1
�

+
�

2
u
− 1
�

λ9 , (B.3)

λ8 =
i(u− 1)3

(1− 2u)2(u− 2)

�

A1 −
(2A1 − 1) (u+ 2)

4u

�

+
�

2
u
− 1
�

λ14 , (B.4)

λ11 =
A1(u(u(2u− 5) + 9)− 4)(u− 1)2

2(1− 2u)2u2
+

A2(u− 1)2

u(2u− 1)
− iλ14 +
�

2
u
− 2
�

λ9

−

�

u
�

u
�

u
�

4u2 − 22u+ 31
�

− 17
�

− 4
�

+ 4
�

(u− 1)2

4(u− 2)2u(2u− 1)3
−

u
2
λ3 +
�

1−
u
2

�

λ5 , (B.5)

λ12 =
(1− 2A1) (u− 1)3

4(1− 2u)2u
+λ10 , (B.6)

λ13 =
iA1(3u− 2)(u− 1)2

2(1− 2u)2u
−

3iu(u− 1)2

4(1− 2u)2(u− 2)
+ iλ9 . (B.7)

In order to be compatible with the boundary conditions, we also need to impose behaviour for
u→ 0. Let us write

λi ∼
ai

u
+ bi +O(u) . (B.8)

Then we need that

a9 = A1 , a10 =
1
2
− A1 , b9 =

A1

2
, b14 =

i(2A1 + 1)
8

, (B.9)

and all the remaining constants ai , bi need to vanish.
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