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Abstract

In media with only short-ranged couplings and interactions, it is natural to assume that
physical responses must be local. Yet, we discover that this is not necessarily true, even
in a system as commonplace as an electric circuit array. This work reports the experimen-
tal observation of non-local impedance response in a designed circuit network consisting
exclusively of passive elements such as resistors, inductors and capacitors (RLC). Mea-
surements reveal that the removal of boundary connections dramatically affects the two-
point impedance between certain distant nodes, even in the absence of any amplification
mechanism for the voltage signal. This non-local impedance response is distinct from
the reciprocal non-Hermitian skin effect, affecting only selected pairs of nodes even as
the circuit Laplacian exhibits universally broken spectral bulk-boundary correspondence.
Surprisingly, not only are component parasitic resistances unable to erode the non-local
response, but they in fact give rise to novel loss-induced topological modes at sufficiently
large system sizes, constituting a new manifestation of the critical non-Hermitian skin
effect. Our findings chart a new route towards attaining non-local responses in photonic
or electrical metamaterials without involving non-linear, non-local, active or amplifica-
tive elements.
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1 Introduction

Non-local or action-at-a-distance phenomena reveal deep enigmatic mechanisms behind in-
teresting physics, from the onset of phase transitions [1, 2] to the causality structure of the
universe [3–5]. The presence of non-locality is especially intriguing when it emerges unexpect-
edly from purely local couplings or interactions, since that implies a hidden mechanism that
propagates information beyond intrinsic system length scales. Such emergent non-locality has
recently attracted much attention in the context of non-Hermitian bulk-boundary correspon-
dence, where a single coupling perturbation can modify the spectral properties and topological
states of the entire system [6–20]

Across existing literature on non-Hermitian lattices, the reported non-local behavior can
always be intuitively attributed to directed amplification [21]. Non-Hermitian couplings with
asymmetric amplitudes in either direction lead to direction-dependent gain/loss, and together
give rise to a chain of amplifications that propagates signals non-locally [21], as experimentally
demonstrated in various metamaterial platforms [7,22–28].

What is interesting and practical though challenging, however, is achieving such non-local
signal propagation when there is no amplification at all. In this work, we experimentally
achieved this by detecting non-local impedance response in an electrical circuit designed with
purely passive and reciprocal RLC components, which would be easily integrated into chips
for sensing applications [29–34]. Specifically, we showed that in our circuit, the impedance
between two adjacent nodes can be profoundly modified by cutting off a remote connection,
no matter how distant, against common intuition. Unlike existing demonstrations of non-local
voltage responses with operational amplifiers [35], our setup contains no intrinsic direction-
ality. Its only non-Hermitian components are the resistors, which are neither active nor chiral,
and certainly incapable of causing a cascade of amplifications. When larger system sizes are
accessible, it would even be possible for topological modes to appear due to the interplay be-
tween parasitic resistances, the sublattice structure of the circuit lattice and the competition
between the emergent non-local influences in different sublattices. Exactly how our non-local
response is achieved will be explained in the following.

2 Results

2.1 Emergent non-locality without directed amplification

To understand how our setup can exhibit non-local responses with purely passive elements, we
first review the mechanism of directed amplification mechanism that gives rise to extreme non-
local sensitivity, and how this non-locality is preserved even if the amplifications in different
directions cancel. Even though we are ultimately concerned with the impedance response, we
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shall first illustrate how this non-local mechanism is directly observed from the state evolution
under generic non-Hermitian Hamiltonians.

Consider the simplest illustrative Hatano-Nelson (HN) model [36]

HHN =
∑

x

�

t+|x + 1〉〈x |+ t−|x − 1〉〈x |
�

, (1)

which amplifies and propagates a state by asymmetric factors of |t−| and |t+| towards the left
and the right. If |t−/t+|< 1, an arbitrary signal will be amplified by a factor of approximately
|t−/t+|x after propagating x states towards the right (Top chain of Fig. 1a Left) [37]. Likewise,
H†

HN would amplify a state by the same factor towards the left (Bottom chain of Fig. 1a Left).
This is a classical manifestation of emergent non-locality, since a small input signal can be
amplified to yield a very strong output signal arbitrarily far away. Yet, amplification does not
always need to accompany non-locality. If the HHN and H†

HN chains interact through a coupling
strength ∆ according to

H∆ = HHN ⊗ | ↑〉+H†
HN ⊗ | ↓〉+ I⊗ (| ↑〉〈↓ |+ | ↓〉〈↑ |)∆ , (2)

the exponentially large amplification of the states near either end would effectively close up
the two chains into a “loop” that still experiences the non-local response (Fig. 1a) [37], despite
arising from a purely linear system [38]. Importantly, because of the juxtaposition of equal
and opposite amplifications, this response is not accompanied by any amplification.

The above-mentioned mechanism for amplification-less non-local response can be adapted
to electrical circuits if we consider a circuit Laplacian that is the analog of H∆ [39–50]. Unlike
a Hamiltonian which represents a time-evolution operator, a Laplacian J describes the steady-
state relationship between the electrical potentials V and input currents I across the nodes.
Explicitly, we write I= JV, which can be thought of as the matrix form of Kirchhoff’s law, with
the matrix element Ji j describing the linear relationship between the potential Vj at node j
and the input current Ii at node i.

Since our objective is to design a non-local response circuit that does not even exhibit
directed amplification, its Laplacian must not explicitly contain HHN and H†

HN, which harbor
asymmetric terms. The most direct way to construct such a circuit Laplacian is to consider a
basis-rotated version of H∆, such that the asymmetric terms from HHN and H†

HN do not exist
independently, but are combined to form reciprocal terms (Fig. 1a Right). Physically, this
implies that operational amplifiers will not be needed [37], and all non-Hermiticity can be
contained in passive lossy resistors. A minimal RLC circuit with such non-locality is illustrated
in Fig. 1b, and described by the Laplacian

J(k) = iωC

�

1 −eik

−e−ik 1

�

+
1

iωL

�

1 −e−ik

−eik 1

�

1
r

�

1 −1
−1 1

�

+
2− 2 cos k

R

�

1 0
0 1

�

, (3)

where k is the quasimomentum along its ladder-like structure. Each unit cell consists of nodes
A and B on either side of the ladder, and resistors r and R connect the nodes across and between
the rungs respectively. Capacitors C and inductors L connect across the ladder diagonally and
induce AC dynamics. At the resonance frequency ω = ω0 = (LC)−1/2, its circuit Laplacian
simplifies to

J(k)|ω=ω0
=

2
R

�

i(t sin k)σy + v(I−σx) + (1− cos k)I
�

, (4)

where σx ,σy are the Pauli matrices and t = ω0RC = R
q

C
L , v = R

2r are two independent
dimensionless control parameters.

To relate this circuit to H∆, we perform an unitary basis transformation

U : σy → σ̃y = Uσy U−1 = σz , (5)
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Figure 1: Constructing a non-local RLC circuit from the cancellation of non-
reciprocity. (a) Two Hatano-Nelson chains individually experience non-local di-
rected amplification of states (Left). Coupling them can cancel off the directed am-
plification whilst retaining the non-local response. This inspires the design of our
reciprocal lattice with emergent non-locality, which is unitary equivalent to the cou-
pled HN chains (Right). (b) Schematic of our designed reciprocal circuit with 8 unit
cells spanned by sublattices A and B, as described by J(k) from Eq. 3. By appropri-
ately configuring the switches SR1 to SR6 (see Appendices), one can tune the circuit
between open and periodic boundary condition (OBC and PBC) configurations. (c)
The corresponding experimental circuit, with measured two-point impedances sig-
nificantly depending on whether PBCs or OBCs are used.

which preserves the spectrum, such that the Laplacian is rotated into the form

J(k)|ω=ω0
→ J̃(k)|ω=ω0

= (2iω0C sin k)σz + r−1(I−σx) + 2R−1(1− cos k)I

=

�

2ω0Ceik + ξ(k) −r−1

−r−1 2ω0Ce−ik + ξ(k)

�

, (6)

where ξ(k) = r−1 + 2R−1 − 2(R−1 +ω0C) cos k. In this rotated basis, we evidently have two
effective chains coupled by ∆ = −r−1, each containing a reciprocal (symmetric) part ξ(k),
and an asymmetric part 2ω0Ce±ik = 2te±ik/R that supports equal and opposite directed am-
plification. Expressed in this basis, our Laplacian is clearly a realization of the non-reciprocity-
cancellation picture given in Fig. 1a, even though its effective chains contain (fictitious) ca-
pacitors with imaginary capacitances −iC , and cannot be directly realized without the basis
rotation. From it, we can also interpret the dimensionless parameter v = R/(2r) as the ef-
fective interchain coupling strength, and the other dimensionless parameter t = ω0RC as
controlling the effective coupling asymmetry for the hidden (canceled) directed amplification.
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In the above, what was achieved is the design of a RLC circuit that has similar non-local
properties as coupled effective chains with oppositely canceled directed amplification. From its
effective model, it is for sure that it exhibits modified spectral bulk-boundary correspondence
i.e. that perturbing a “boundary” coupling can significantly affect the spectrum of the entire
lattice [6–8,10,51,52]. Explicitly, the impedance Zi j between two nodes i and j is related to
the Laplacian eigenspectrum and eigenstates via [46]

Zi j =
∑

µ

||ψµ(i)−ψµ( j)||2

zµ
. (7)

Here Jψµ = zµψµ, µ= 1, ..., 2N , and the biorthogonal norm [8,11] is used since the Laplacian
is non-Hermitian. However, it has never been proven that the directly measurable impedance
response also exhibits similar sensitivity, particularly when the directed amplification channels
cancel. Below, we shall verify the affirmative by showing experimental data on its non-local
current response.

2.2 Non-local impedance response measurements

To probe non-local impedance response, we build a circuit represented by Laplacian J(k)
(Fig. 1c), and measure the two-point impedance Zi j between all sets of nodes i, j for both
periodic and open boundary conditions (PBCs and OBCs), as elaborated in the Appendices
section. In our setup, we utilized eight unit cells, each comprising capacitors (C) with a nom-
inal value of 1nF , inductors (L) of 1mH, and resistors (R) of 5kΩ and (r) of 50kΩ. These
components led to the dimensionless parameters t (defined as ωRC), with a value of 5, and
v = R/(2r)), with a value of 0.05. We observed the maximum deviation in component values
to be ±1% for the 1nF capacitors, ±2% for the 1mH inductors, and ±0.5% for both the 5kΩ
and 50kΩ resistors, as per our measurements.

Under PBCs, the first and last unit cells of the ladder are connected in a translation-
invariant manner; under OBCs, their disconnected connections are grounded. Going from
PBCs to OBCs amount to the elimination of the two end-to-end connections, which would
naively seem like a tiny perturbation in a long ladder with large number of unit cells N . Yet,
our experimental measurements reveal that changing the boundary connections indeed has a
dramatic non-local impact.

2.2.1 Parasitic resistances and accurate modeling of our circuit Laplacian

To accurately model our circuit, it is necessary to assume some level of parasitic resistance in
each capacitor and inductor. Through measurements on single components, it was found that
using capacitors of C = 1nF and inductors of L = 1mH minimizes the effects of parasitic resis-
tances while keeping the resonance frequency in the order of ω0 = (LC)−1/2 = 106Hz, which
is convenient for measurements. Through circuit simulation by the Cadence virtuoso software,
we discovered that the deviations minimally affect the impedance and fail to account for the
discrepancies observed between the simulated and measured results. Consequently, we chose
to overlook these discrepancies, incorporating parasitic resistances into the simulation, which
led to a nice alignment between our simulation and experimental data. By adding serial para-
sitic resistances to them in our simulations, and comparing the simulated and experimentally
measured impedances across all pairs of nodes (Fig. 2), we found that it suffices to assume a
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common serial parasitic resistance Rpc and Rpl to all capacitors and inductors respectively:

iωC →
iωC

1+ iωCRpc
, (8)

1
iωL
→

1
Rpl + iωL

, (9)

where Rpc = 2Ω and Rpl = 17Ω. These parasitic resistance values optimize the fit between
the experimental and simulated impedances, with magnitude and argument discrepancies re-
spectively smaller than 4% and 2% respectively for most data points. To recall, the other
component parameters are C = 1nF , L = 1mH, R = 5kΩ, r = 50kΩ, such that the resonance
frequency is f0 =ω0/2π = 159.15kHz, and t =ω0RC = 5, v = R/(2r) = 0.05. Note that the
parasitic corrections to the C and L are very small, of the order of 0.2% and 1.7% respectively.

Substituting Eq. 9 into Eq. 3 of the main text, we arrive at the experimental circuit Laplacian

Jexp(k) =
iωC

1+ iωCRpc

�

1 −eik

−e−ik 1

�

+
1

Rpl + iωL

�

1 −e−ik

−eik 1

�

+
1
r

�

1 −1
−1 1

�

+
2− 2 cos k

R

�

1 0
0 1

�

. (10)

At resonance, such that ω=ω0 =
1p
LC
= 106Hz,

Jexp(k)|ω=ω0
=

iω0C
1+ iω0CRpc

(I− cos kσx + sin kσy) +
1

Rpl + iω0 L
(I− cos kσx − sin kσy)

+
1
r
(I−σx) +

2− 2 cos k
R
I

≈
2
R
[i(t sin k)σy + v(I−σx) + (1− cos k)I]

+ iω0C





1
1+ iω0RpcC

−
1

1+
Rpl

iω0 L



 [I−σx cos k]

≈
2
R
[i(t sin k)σy + v(I−σx) + (1− cos k)I] + (ω0C)2(Rpc + Rpl)[I−σx cos k]

=
2
R

�

i(t sin k)σy + v(I−σx) + (1− cos k)I+
t2(Rpc + Rpl)

2R
(I−σx cos k)

�

,

(11)

where t = ω0RC = R
q

C
L = 5 and v = R/2r = 0.05. Going from the 1st to the 2nd line,

we made the approximation that iω0C/(1+ iω0CRpc)−1 + (Rpl + iωL)−1 ≈ iω0C + (iωL)−1,
which holds because ω0RpcC ≪ 1 and Rpl/iω0 L≪ 1. This is also used to simplify line 3 from
line 2.

Comparing with Eq. 4 of the main text, the additional term from the parasitic resistances

is the rightmost term containing (I − σx cos k), with coefficient
t2(Rpc+Rpl )

2R ≈ 0.0475 that is
comparable in magnitude with the other symmetric (σx) inter-ladder coupling v.

2.2.2 Selectivity of non-local impedance response

Fig. 3a shows the ratio between the measured PBC and OBC impedances ZPBC and ZOBC across
all pairs of nodes on our fabricated N = 8 ladders. When the two nodes i ∈ {A} and j ∈ {B}
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(a) Periodic boundaries.
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(b) Open boundaries.

Figure 2: Empirical determination of parasitic resistances. Experimentally mea-
sured impedances across all 2N(N − 1)/2+ N = 8× 7× 2/2+ 8 = 64 unique pairs
of nodes (orange) are compared with the impedances obtained by circuit simulation
(blue) with the Cadence virtuoso software, with effective parasitic resistances ad-
justed to Rpc = 2Ω, Rpl = 17Ω such that the fit is optimal.

belong to different sides of the ladder i.e. different sublattices, the ratio is substantially higher
than unity (red pixels in the rightmost plot). In other words, removing the boundary connec-
tions between the 1st and 8th unit cells always significantly affect the two-point impedance
across the ladder, even if the measurement is taken across two nodes that are furthest from
the boundaries (i.e. 4A and 4B).

Interestingly, the boundary connections only affect the impedance non-locally across the
circuit ladder, not across the nodes within the same ladder. As seen in the left two plots in
Fig. 3a, the ratio ZPBC/ZOBC is close to unity (light blue) if the two nodes are on the same
ladder, except when the nodes are at the boundaries themselves. Intuitively, this is because in
an impedance measurement between two nodes of the same ladder, most of the current takes
the most direct route within that ladder, and is not affected by the hidden non-reciprocity in
the inter-ladder couplings.

This selective non-local impedance response is maintained even if we extrapolate to much
longer circuit chains, where the boundary couplings will ordinarily give rise effects that are
even more negligible. As evident in Fig. 3b, as the chain length N increases, the ratio
ZPBC/ZOBC of impedances calculated using the formula in Eq. 7 across the middle of the ladders
(red asterisked) remains significantly greater than unity. Since the middle unit cell is furthest
from the boundaries, the fact that the presence(absence) of boundary connections can lead
to significantly different ZPBC(ZOBC) of a long circuit is clear evidence of non-local response.
By contrast, the PBC and OBC impedance between any two points within the same ladder
converge towards each other in the large N limit (blue, Intra), signifying the lack of non-local
influence from the boundary couplings. Perhaps most surprisingly, the inter-ladder impedance
across the same edge (red circled) or across different edges (red squared) are not as strongly
affected by PBCs or OBCs as compared to that involving middle unit cell nodes, even though
it is the edge nodes that are directly connected by the boundary couplings. This suggests that
the hidden directed amplification is manifested as more strongly far away, rather than in the
proximity of the OBC cutoff.
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Figure 3: Selective non-local impedance response and its persistence in the large
system limit. (a) The 2-point impedance experimentally measured across all pairs
of nodes of our N = 8-unit cell circuit, plotted as a ratio ZPBC/ZOBC between PBC
and OBC scenarios. Within either the A or B ladders (left two plots), ZPBC/ZOBC ≈ 1
(light blue), implying no nontrivial effect from the boundary connections. However,
ZPBC/ZOBC ≈ 6≫ 1 (red) for the impedance across all inter-ladder pairs (rightmost
plot), indicative of the non-local influence from boundary connections. (b) PBC and
OBC impedance ratios extrapolated to larger system sizes across various types of
intervals, using the formula in Eq. 7: A and B nodes of the ⌈N2 ⌉th unit cell (Middle
Inter), 1st unit cell (Edge Inter), 1st and N th unit cells (Edge-to-edge Inter); AA or
BB nodes of the ⌊N2 ⌋th and ⌈N2 ⌉th unit cells (Middle Intra), 1st and 2nd unit cells
(Edge Intra), 1st and N th unit cells (Edge-to-edge Intra). Evidently, ZPBC/ZOBC is
significantly higher than unity (dashed line) even for large N , further establishing
that the boundary connections affect faraway impedances non-locally.

2.3 Reciprocal non-Hermitian skin effect

We would like to clarify the distinction between selective non-local impedance response and
the breakdown of spectral bulk-boundary correspondence due to the reciprocal non-Hermitian
skin effect [6, 10, 53–55]. Calculated in Fig. 4a are the completely different PBC and OBC
Laplacian spectra of our circuit, which indicates broken spectral bulk-boundary correspon-
dence due to the “hidden” asymmetric couplings of a reciprocal system. However, having very
different PBC and OBC spectra does not imply that impedance response is equally sensitive to
the boundary connections. Typically, Zi j from Eq. 7 is contributed by many µ terms of compa-
rable magnitudes, and the spatial gradients ψµ(i)−ψµ( j) of the eigenstates can conspire to
produce approximately equal PBC and OBC Zi j even if their spectra {zµ} are significantly dif-
ferent. Exceptions would be “topolectrical resonance” contributions from zµ ≈ 0 eigenvalues
- but note that in our case (Fig. 4a), the almost vanishing PBC zµ arises from the arbitrariness
of the reference voltage, and possesses an uniform eigenstate that does not contribute to the
impedance.
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(a)

(b)

Figure 4: Calculated Laplacian spectrum of our circuit and emergent topologi-
cal modes from parasitic resistances. (a) The OBC and PBC Laplacian spectra of
our circuit with N = 8 unit cells, which are very different due to the non-locality of
boundary connections. Nominal parameters are C = 1nF , L = 1mH, R = 5kΩ and
r = 50kΩ, with parasitic resistances Rpc = 2Ω and Rpl = 17Ω determined through
fitting simulation with experiments. (b) At a large (N = 50) system size, topological
modes (isolated circles) emerges in our circuit as the coupling δv = t2(Rpc+Rpl)/2R
from parasitic resistances is increased: while a near-zero topological eigenvalue ap-
pears when δv equals the coupling v = 0.05 from the resistors, an additional topo-
logical eigenvalue appears in the point gap beyond δv = 0.08. Their spatial profiles
are manifestly boundary-localized, as presented for δv = 0.15 when the topological
modes become well-separated from other eigenmodes.

2.4 Size-dependent appearance of topological modes from parasitic resistances

Usually, we expect inevitable parasitic resistances in the circuit components to erode experi-
mental signatures, such that they must be minimized in order to have meaningful results. Yet,
unexpectedly, parasitic resistances not only do not significantly threaten the non-local signa-
tures in our fabricated circuit, but in fact stabilize enigmatic topological modes which appear
when the OBC circuit is sufficiently long.

This unusual size-controlled appearance of topological modes is a manifestation of the
critical non-Hermitian skin effect [37], which has so far never been experimentally observed.
Physically, it arises due to the highly non-linear scaling of the effective inter-chain couplings
as N increases. Even though the “bare” coupling is always ∆ = −r−1, corresponding to a
weak v = R/2r = 0.05 when put into dimensionless form, the exponentially large “virtual”
non-Hermitian skin modes from the hidden directed amplification renormalizes their effective
strengths to far larger values which are exponentially increasing with N . As such, we expect the
same circuit to be in different regimes corresponding to effectively weak and strong coupling
at small and large N respectively.
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The critical non-Hermitian skin effect (NHSE) in this circuit is best understood in the ro-
tated basis as shown in Eq. 6, where it assumes the form of two coupled effective chains. For
sufficiently long chains of length N , NHSE modes in each effective chain (Fig. 1a) grow ex-
ponentially large in N , such the hopping probability across the chain may be non-negligible
even if the inter-chain couplings are very small. In this case, the NHSE modes can dynamically
hop across to the other chain whenever it hits the end of each chain, thereby continuing the
amplification cycle. The existence of such an amplification cycle at large N , and their absence
at smaller N , therefore leads to qualitatively different long-time behavior that is reflected in
the value in the imaginary part of the spectrum. Exactly when this threshold occurs has been
evaluated for the simplest critical NHSE model in Refs. [56,57].

The qualitative transition between these two regimes occurs when the energetics within
a single chain is comparable to the effective inter-chain coupling strength. For our circuit in
particular, the effective coupling depends on the product of the bare coupling given by (see
Eq. 11)

v +δv cos k = v +
t2(Rpc + Rpl)

2R
cos k , (12)

and a renormalization factor that increases rapidly with system size N . As δv contributes to
a sublattice modulation δv ± i t, it gives rise to Su-Schrieffer-Heeger (SSH)-like topological
modes whenever the capacitors and inductors harbor sufficiently large parasitic resistances
Rpc and Rpl . Shown in Fig. 4b are the Laplacian spectra for three illustrative δv at fixed
N = 50. The two topological modes start to emerge at δv = 0.05 and 0.08 respectively, and
become more distinctively isolated and spatially well-defined at larger δv. In Fig. 8 in the
Appendices, the emergence of topological modes is documented across different system sizes
N for δv = 0.1, first appearing at N = 20 and becoming more distinct beyond that. In all
cases, these size-controlled isolated modes only exist in the OBC and not PBC spectra, further
confirming that they result from the critical non-Hermitian skin effect.

3 Conclusion

Resistors, capacitors and inductors (RLC) are the simplest of electronic components, but yet in
this work, we demonstrated theoretically and experimentally that they lead to enigmatic non-
local impedance responses. While this was achieved through careful circuit design that ap-
pealed to a virtual directed amplification mechanism, qualitatively similar non-local responses
should occur as long as non-reciprocity from LC phase delay is appropriately juxtaposed with
resistive loss. Unique to electrical circuit platforms (and not photonic or acoustic media for
instance), this non-locality in the impedance is distinct from the breakdown of spectral bulk-
boundary correspondence from the reciprocal non-Hermitian skin effect, since the impedance
between some pairs of nodes (such as our measured intra-ladder impedance) can remain al-
most unchanged by the removal of distant connections, even as the Laplacian spectrum has
already been drastically modified.

As a robust non-Hermitian phenomenon, the non-local impedance response is comfort-
ably robust against reasonable levels of parasitic resistances of the order of O(10)%. Perhaps
surprisingly, such parasitic resistances in the capacitive and inductive elements even lead the
fortuitous appearance of real topological modes at sufficiently large system sizes. These loss-
induced topological modes emerges when the effect of time-reversal and (virtual) sublattice
symmetry breaking from the parasitic resistive loss is compounded over many unit cells, and
constitutes a fresh new manifestation of the critical skin effect. Physically, the parasitic resis-
tances introduce another manner by which non-Hermiticity enters the system and, together
with the sublattice asymmetry intrinsic in the designed circuit, controls the extent to which
the topological modes are allowed to exist by virtue of the critical non-Hermitian skin effect.
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Based purely on basic electrical circuit elements, our non-local mechanism is compatible
with current technology for applications such as sensing [29–34]; its exclusive use of RLC
elements make it area-friendly, functional stable and easily integrated into a chip. Besides,
if we drop our lumped circuit assumption, our approach can be used to construct passive
microwave circuits with non-local responses, with the promise of superior performance in
impedance matching and tuning and as resonators, power dividers and directional couplers
and filters compared to current microwave engineering designs. This would inspire new mi-
crowave technology from state-to-art physics [58,59], and we leave it for future investigations.
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A PBC/OBC circuit setup and measurements

Shown in Fig. 5a is the full schematic of our fabricated circuit with N = 8 unit cells. It as-
sumes a ladder configuration, with resistors R = 5kΩ connecting successive nodes, resistors
r = 50kΩ forming the rungs, and capacitors C = 1nF as well as inductors L = 1mH diagonally
connecting adjacent nodes in the opposite rung.

To demonstrate non-local impedance responses, we design the circuit to be easily switch-
able between OBC and PBC configurations (Fig. 5b and c), such that 2-point impedance data
under OBCs and PBCs can be readily compared. This is achieved through “switches” labeled
SR1 to SR6 in the schematic as well as the photograph of the printed circuit board (Fig. 5d).

To implement OBCs or PBCs, SR1 to SR6 are to be substituted with resistors R, wires of
negligible resistance, or simply left empty. For OBCs, SR1 and SR2 (yellow) are replaced by
resistors R, and SR3 (white) is left disconnected. SR4, SR5 and SR6 (red) are replaced by dis-
sipationless wires. This grounds the edge unit cells, yielding the OBC configuration of Fig. 5b.
For PBCs (Fig. 5c), SR2 and SR3 are replaced by dissipationless wires, and SR1, SR4, SR5
and SR6 are disconnected. This restores the boundary connections of the PBC configuration
of Fig. 5c.

Since the exact resonance frequency ω0 is not a priori known due to component uncer-
tainty, we sweep through the relevant AC frequency range and identifyω0 from the impedance
peak. The two-point impedance between any two nodes is measured by connecting an LCR
meter across the nodes.
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Figure 5: OBC and PBC switching in our circuit. (a) Schematic of our circuit,
with six gaps SR1 to SR6 that can be used to “switch” between open and periodic
boundary conditions. (b) The OBC configuration is implemented by replacing SR1
and SR2 with resistors R, SR4, SR5 and SR6 by dissipationless wires and SR3 left
disconnected. (c) The PBC configuration is implemented by replacing SR2 and SR3
with resistors R, and all the others left disconnected. (d) The full circuit board with
the switches highlighted. Components used are rated C = 1nF , L = 1mH, R = 5kΩ
and r = 50kΩ.

Circuit simulations were performed with the Cadence virtuoso software. A sinusoidal sig-
nal with magnitude 1V was connected across nodes to measure their 2-point impedance,
with the resonant AC frequency f0 = 2πω0 determined by searching across the range
150kHz ∼ 170kHz.

B Scaling behavior of circuit

B.1 Extrapolation to longer circuit ladders

Here, we present further results on the scaling behavior of the two-point impedance. As shown
in Fig. 6a, the inter-ladder impedance ratio ZPBC/ZOBC decreases universally as the system
size N increases. However, the ratio does not converge to unity when the two points are
at the center of the ladders, but to an asymptotic value that is significantly larger than one,
implying the robustness of the non-local response even with the empirically extracted parasitic
resistances included (“non-ideal” case). In general for inter-ladder intervals calculated by
Eq. 7, larger ZPBC/ZOBC ratios exist either across nearby points, or if one or both of the points
are near the edge (Fig. 7).
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Interestingly, at the fixed system size of N = 8, the non-local response is almost linearly
proportional to t =ω0RC = R

p

C/L, as shown in Fig. 6b. This is because t can be interpreted
as the “hidden” coupling asymmetry of the effective two HN-chain model. In the limit of large
t i.e. large C and/or small L, we expect a vastly larger ZPBC vs. ZOBC across the ladders, and
that limit could be further employed to generate very strong non-local response.

(a) (b)

Figure 6: Scaling of impedance ratio ZPBC/ZOBC against N and t. (a) Calculation
results of ZPBC/ZOBC vs N by Eq. 7, N = 8,10, ..., 30, comparing between ideal cases
without parasitic resistances, and non-ideal cases with parasitic resistances empiri-
cally obtained as Rpc = 2Ω and Rpl = 17Ω. While this inter-ladder impedance ratio
is consistently lower for the non-ideal case, the center-to-center interval still consis-
tently exhibits a ratio larger than unity, signifying response non-locality. (b) Center-
to-center ZPBC/ZOBC at N = 8 (across the A and B nodes of the 4th unit cell) and
its almost linear dependence on t = ωRC ≈ RC/

p
LC = R/1000, whereas dimen-

sionless parameter t is controlling the effective coupling asymmetry for the hidden
(canceled) directed amplification and v = R/2r = 0.05 is kept constant.

(a) (b) (c) 0

2

4

6

(d) (e) (f) 0

2

4

6

Figure 7: Two-point impedance ratios ZPBC/ZOBC calculated from Eq. 7 in longer
circuit arrays. (a-c) Intra-ladder impedance ratios for N = 9,17 and 25 respectively.
(d-f) Inter-ladder impedance ratios also for N = 9, 17 and 25 respectively. The circuit
dimensionless parameters are t = 5, v = 0.05 and δv = 0.0475 as obtained from our
experimental setup.
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Figure 8: Emergence of topological modes as system size is increased. (a-f)
Shown are the calculated PBC (green) and OBC (black) spectra for δv = 0.1 and
system sizes N = 20,30, 40,60, 100 and 150 respectively. Other parameters are set
at t = 5 and v = 0.05 as in our experiment. Budding topological modes (isolated
small black circles) start to emerge at N = 20 along the real line, and become more
and more isolated and distinct as N increases. Beyond N = 60, one of them gravitates
towards 0, and the other is well within the point gap of the spectrum.

B.2 Emergent topological mode at large system sizes

Here, we provide more detailed plots of the Laplacian spectrum of our circuit as N increases,
such as to substantiate our discussion of the size-dependent appearance of topological modes.
In Fig. 8, the emergence of two real topological modes - one near 0 and the other in the point
gap - is clearly observed as N increases from 20 to 150 through calculation. This provides
further evidence that parasitic losses in our circuit gives rise to the critical non-Hermitian skin
effect in the form of a topological phase transition.
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