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Abstract

We deal with quantum spin chains whose Hamiltonian arises from a representation of the
Temperley-Lieb algebra, and we consider the mean values of those local operators which
are generated by the Temperley-Lieb algebra. We present two key conjectures which
relate these mean values to existing literature about factorized correlation functions in
the XXZ spin chain. The first conjecture states that the finite volume mean values of the
current and generalized current operators are given by the same simple formulas as in
the case of the XXZ chain. The second conjecture states that the mean values of products
of Temperley-Lieb generators can be factorized: they can expressed as sums of products
of current mean values, such that the coefficients in the factorization depend neither
on the eigenstate in question, nor on the selected representation of the algebra. The
coefficients can be extracted from existing work on factorized correlation functions in
the XXZ model. The conjectures should hold for all eigenstates that are non-degenerate
with respect to the local charges of the models. We consider concrete representations,
where we check the conjectures: the so-called golden chain, the Q-state Potts model,
and the trace representation. We also explain how to derive the generalized current
operators from concrete expressions for the local charges.
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1 Introduction

One dimensional quantum integrable models are special systems, which allow for exact so-
lutions, at least for certain physical quantities and in certain physical situations [1, 2]. The
Bethe Ansatz is a central method which is used to solve many such models. The strength of
the Bethe Ansatz lies in diagonalizing the Hamiltonian: in finding the eigenvectors and the
associated eigenvalues. However, the computation of correlation functions is a notoriously
difficult problem, already in equilibrium situations.

In this work, we contribute to the computation of correlation functions in a selected class
of integrable models: those quantum spin chains, which are related to the Temperley-Lieb
algebra.

The Temperley-Lieb algebra was discovered in the paper [3], where it was used to compute
the partition function of selected 2D statistical physical models by relating them to the XXZ
Heisenberg spin chain. The key observation is that the defining relations of the algebra are
strong enough to guarantee equivalences in the spectrum of different models. These models
are then seen as different representations of the same algebra. The precise statement is that
the eigenvalues of the Hamiltonians in some representation of the Temperley-Lieb algebra
are included in the spectrum of the XXZ model (with the same volume, and open boundary
conditions). However, the degeneracies of the states can differ in the various representations
[4–6] (see also [7]).
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As opposed to the many studies dealing with the spectrum and the representation theory,
the correlation functions of these models have received far less attention. In fact, we are not
aware of any work dealing systematically with this problem. Specific correlation functions in
Temperley-Lieb models have been investigated in selected cases [8, 9], but we are not aware
of a general treatment. Meanwhile, correlation functions of the XXZ spin chain have been
investigated for multiple decades (see the book [10] and the habilitation thesis [11]). This
leads to the idea of utilizing the Temperley-Lieb algebra to make connections between the XXZ
chain and other representations also on the level of the correlation functions, thus yielding
useful results for many models for which there are no results for correlators in the literature.

It is our goal to use the theory of factorized correlation functions of the XXZ chain (also
known as the “hidden Grassmann structure”) to compute correlations for other Temperley-
Lieb models. In the Heisenberg chain, this theory was initiated in [12], where it was observed
that certain multiple integrals for correlation functions in the XXX chain factorize: they can be
expressed as sums of products of single integrals. This led to the development of a complete
algebraic theory, which led to convenient factorized formulas for the mean values of short-
range operators [13–20]. On a practical level, the theory states that mean values of short-
range correlators can be expressed using the Taylor coefficients of a few number of functions
of one and two variables. The theory consists of two parts: the algebraic part expresses the
correlation functions using sums of products of these building blocks, whereas the physical part
gives concrete values to the building blocks, depending on the concrete physical situations. In
the first works, the ground state and finite temperature [21–23]mean values were considered
directly in the infinite volume limit. An extension to the finite volume ground state was given
in [24]. Excited states (with arbitrary Bethe root distributions) were later treated in [25], and
finally, an extension to arbitrary finite volume excited states was given in [26].

As an alternative method towards factorized correlations, functional relations for reduced
density matrices were considered in [27], and later for higher spin versions of the XXZ chain in
[28,29]. Higher rank models were considered in [30–32]. The work [33] raises the question of
whether all correlation functions of higher rank models can be expressed in a simple factorized
form, and [34] treated factorized correlations in the XYZ model.

A new contribution to the theory was given in the works [35–37], where a connection was
established to Generalized Hydrodynamics (GHD), a theory describing the large-scale trans-
port properties of integrable models [38,39]. The papers [35–37] considered the mean values
of current operators (including the so-called generalized current operators), which describe
the flow of conserved charges during real-time evolution. It was found that these mean values
are exceptionally simple: they are given simply by the Taylor coefficients of the so-called ω
function. In the finite volume case, these building blocks can be expressed in a very simple
way: they involve the one-particle charges corresponding to the Bethe roots and a single copy
of the inverse of the so-called Gaudin matrix. The final expression has a semi-classical interpre-
tation [35,40]: the currents of the conserved charges are given by a sum over the one-particle
charge eigenvalues, multiplied by a certain effective velocity describing particle propagation in
the background of the other particles. This simple result demonstrates the completely elastic
and factorized scattering characteristic of integrable models, and it underlies the formulation
of Generalized Hydrodynamics. The result for the current mean values was later extended to
the XYZ model in [41].

It is then very natural to ask whether some of the above results about the currents and the
factorized correlators can be worked out also for other integrable quantum spin chains. The
algebraic construction of [37] appears rather general, but so far it has been applied only to
the XXZ and XYZ spin chains. However, there is motivation to study other types of models as
well.
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As examples, we mention the integrable quantum spin chains acting on constrained Hilbert
spaces with the Rydberg blockade [42]. The Hamiltonians of these models are related to
the Restricted Solid On Solid (RSOS) models of Andrews, Baxter, and Forrester [43, 44], and
they have been studied for example in [45, 46]. Interest in these models also comes from
the various studies on the so-called PXP model and its relatives, see [47–52]. The transport
in these integrable models has been studied numerically in [51], but GHD has not yet been
established. At the same time, short-range correlation functions in these models were treated
in [9,53], although general formulas have not yet been found. A specific model in this family
is the so-called “golden chain” introduced in [54]. It is a special point in the integrable family
where the Hamiltonian density satisfies the Temperley-Lieb algebra.

The goal of this work is to use the connections to the XXZ chain to find exact correlation
functions in the golden chain and other Temperley-Lieb models. Such an approach cannot
yield the factorized correlation functions of all short-range operators, but it is natural to expect
exact relations for correlators built from the Temperley-Lieb algebra. This is the task that we set
ourselves in this work. Apart from the golden chain, we will consider the Q-state Potts model
and also the so-called trace representation of the Temperley-Lieb algebra, which appeared
recently in the study of Hilbert space fragmentation [55].

In the main text, we formulate the conjecture that for operators constructed in terms of
the Temperley-Lieb algebra, the factorization of the mean values works in essentially the same
way in all representations of the Temperley-Lieb algebra, and only minor modifications need
to be added. This seems to hold for all states with singlet eigenvalues of commuting set of
transfer matrices. Thus, we claim that both the algebraic part and the physical part of the
construction will be essentially the same. In particular, we conjecture that the physical part can
be computed in finite volume using the formulas first derived in [26]. We test our conjectures in
several representations. We also develop a method to compute generalized current operators
from local charges, and afterward, we present a few concrete generalized current operators
expressed via the Temperley-Lieb generators. These concrete formulas are then used to check
our conjectures. We should note that in [56], explicit and exact formulas were found for all
local conserved charges in the Temperley-Lieb models. However, we use a different basis of
charges and, therefore, do not directly use the results of [56].

This paper consists of the following Sections: In Section 2 we review the Temperley-Lieb
algebra and its several representations and explain the decomposition of the spectrum. In
Section 3, we discuss the local charges in the Temperley-Lieb algebra and derive a way to
construct the current operators. Section 4 gives a review of the factorization of correlation
functions in the XXZ chain. In Section 5, we formulate our main conjectures and give some
explicit formulas for short-range correlators. Section 6 contains our conclusions. Finally, some
examples of the expressions for the local charges and currents in the Temperley-Lieb algebra
are given in Appendix A, and some numerical checks are presented in Appendix B.

2 Temperley-Lieb algebra and its representations

The Temperley-Lieb (TL) algebra is defined as follows. There are generators e j with index
j = 1, . . . , L − 1, which satisfy the relations

e2
j = de j , e je j±1e j = e j , [e j , ek] = 0 , for | j − k|> 1 . (1)

Here, d ∈ C is a fixed parameter of the algebra, which is also commonly parametrized as

d = q+ q−1 = 2cosγ , q= eiγ . (2)
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Here, we are interested in the case of periodic boundary conditions, where another gener-
ator eL is introduced, satisfying [5]:

e2
L = deL , eLebeL = eL , ebeLeb = eb , [eL , e j] = 0 , (3)

where b = 1, L−1 and j ̸= 1, L−1. The TL Hamiltonian with periodic boundary conditions is
then defined as

H =
L
∑

j=1

e j . (4)

The Temperley-Lieb algebra has multiple representations that are of physical interest. In
particular, we will be interested in representations such as the XXZ spin chain, the quantum
Potts chain, the RSOS representations (also known as anyon chains), and the so-called “trace
representation”.

A crucial fact is that since the Hamiltonian (4) is part of the (periodic) TL algebra, its
spectrum in a given representation is entirely determined by the way the latter decomposes
as a sum of irreducible representations. Starting from a given model, an important task is,
therefore, to see how its Hilbert space decomposes as a direct sum of the TL irreducible rep-
resentations.

Below, we discuss a few key statements about the representation theory of the TL algebra,
and concrete representations will be considered in the following sections.

2.1 Irreducible representations of the (periodic) TL algebra

The TL algebra (1) can be viewed as an algebra of diagrams acting on L vertical strands, by
assigning to the generators ei the following graphical representation [57]

ei =
. . . . . .

1 i i + 1 L

(5)

Multiplication of two generators corresponds to stacking the corresponding diagrams on top
of each other, and the rules (1) translate into the fact that diagrams are identified modulo
smooth stretching of strands, or removing of closed loops at the cost of a multiplicative scalar
factor d.

A natural basis for representations of the TL algebra is constructed in terms of “reduced
states”, obtained by cutting in half horizontally all possible diagrams formed by products of
TL generators. Those are constituted of a set of non-intersecting arcs joining pairs of strands,
and “through lines”, or “strings”, which propagate vertically without the possibility of being
contracted with one another by the action of TL generators. Irreducible representations are
characterized by their number 2 j of through-lines (where 0≤ j ≤ L/2 is an integer when L is
even, a half-integer when L is odd), and denoted as W j[L]. For instance, for L = 4 there are
three irreducible modules with respective basis states

W0[4] = { , } ,
W1[4] = { , , } ,
W2[4] = { } .

(6)

Turning to periodic boundary conditions by introducing the generator eL ≡ e0, the TL
algebra becomes infinite-dimensional, due to the possibility for through-lines to wind an ar-
bitrary number of times around the cylinder, as well as, in the sector with no through-lines,
the possibility for an arbitrary number of non-contractible loops wrapping around the cylinder.
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Finite-dimensional quotients can be recovered by allowing to undo the winding of through-
lines at the price of multiplication by a complex factor z±1 (one such factor per through-line
per turn around the cylinder), and to eliminate non-contractible loops at the price of multipli-
cation by a factor z+ z−1 [58,59]. The corresponding irreducible representations are denoted
by W j,z[L], and generically have more states than the open TL ones. For instance, for L = 4,
basis states for the representations with j ̸= 0 are

W1,z[4] = { , , , } ,
W2,z[4] = { } .

(7)

For j = 0, we have to distinguish arcs which connect two strands by going one way or the
other around the cylinder, therefore, a basis is

W0,z[4] = { , , , , , } , (8)

where an arc marked by a dot means that it goes around the periodic boundary conditions of
the cylinder. All these representations have dimension

dimW j,z =
�

L
L/2− j

�

, (9)

irrespectively of z.
These representations are irreducible for generic q and z. For specific cases, however (q

equal to a root of unity or z equal to some integer power of q), they become reducible but
indecomposable, as a result of the TL algebra becoming non-semisimple (similar conclusions
hold for the open case at root of unity). We refer to the existing literature [57, 60, 61] for a
more detailed exposition.

2.2 The XXZ model

In this case, the generators act on the Hilbert space of a spin-1/2 chain, and we have

e j = hXXZ
j, j+1 , (10)

where hXXZ
j, j+1 is a two-site operator given by [62]

hXXZ
j, j+1 = −

1
2

�

2eiφ/Lσ+j σ
−
j+1 + 2e−iφ/Lσ−j σ

+
j+1 + cosγ

�

σz
jσ

z
j+1 − 1

�

+ i sinγ
�

σz
j −σ

z
j+1

�

�

,

(11)
where γ is the parameter introduced above (see eq. (2)), in practice, restricted to be real
or pure imaginary. It is related to the so-called anisotropy parameter ∆ of the XXZ chain by
∆ = cosγ. Furthermore, φ ∈ C is the so-called twist parameter. In our representation, we
chose to apply a homogeneous distribution of the twist and focus on the periodic case. Note
that the normalization of the Hamiltonian density is now different from the usual one: now it
includes an overall factor of −1/2 so that hXXZ

j, j+1 satisfies the Temperley-Lieb algebra.
The XXZ model can be solved by the Bethe Ansatz. Eigenstates are constructed using

interacting spin waves, that are created on top of a reference state. The resulting eigenstates
are characterized by a set of rapidities λN = {λ1, . . . ,λN}, which satisfy the Bethe equations

eiφ

�

sinh(λ j + iγ/2)

sinh(λ j − iγ/2)

�L
∏

k ̸= j

sinh(λ j −λk − iγ)

sinh(λ j −λk + iγ)
= 1 . (12)

Here ∆ = cos(γ). If |∆| < 1 then γ ∈ R and the ground state configuration consists of real
roots.
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The energies of the states (eigenvalues of H with the normalization given above) are
given by

E =
N
∑

j=1

ϵ(λ j) , (13)

with

ϵ(λ) =
sin2 γ

sinh(λ+ iγ/2) sinh(λ− iγ/2)
. (14)

Decomposition of the spectrum The Hilbert space can be split into sectors of fixed mag-
netization Sz = 1

2

∑L
i=1σ

z
i , and any operator written in terms of the TL generators (11) is

block-diagonal in this decomposition. In fact, for generic γ and φ, we can identify each of
these sectors with one of the irreducible representations of the periodic TL algebra. Recalling
from Section 2.1 that those are indexed by a number 2 j of “through lines” and by a “twist”
parameter z, and denoted W j,z , we find that the XXZ sector of magnetization Sz and twist φ
identifies as the representation W j,z , with the following correspondence

j = |Sz| , z = eiφ . (15)

Note in particular that sectors of opposite magnetization correspond to the same representa-
tion of TL and have the same spectrum.

Note that for a given TL representation, we can always find the same eigenenergy within
a sector of the XXZ chain with the same parameter d and with an appropriate twist up to the
degeneracy [5].

2.3 The Potts model

The Q-states quantum Potts model is defined on a chain of L/2 sites carrying Q-dimensional
spins. On each sites one defines matrices X and Z , generalizing the Pauli matrices σx and σz ,
which satisfy the following “ZQ clock” algebra

X † = XQ−1 , Z† = ZQ−1 , XQ = ZQ = 1 , X Z =ωZX , (16)

where ω= ei 2π
Q . A concrete representation can be obtained, for instance, by taking

Z =









1
ω

. . .
ωQ−1









, X =











0 1
... . . .

. . . 1
1 0











. (17)

From there, the generators e1, . . . eL defined as [6]

e2 j =
1
p

Q

Q−1
∑

a=0

�

X †
j X j+1

�a
, e2 j+1 =

1
p

Q

Q−1
∑

a=0

Za
j , (18)

satisfy the Temperley-Lieb algebra with d =
p

Q, and periodic boundary conditions. Further-
more, they are manifestly Hermitian operators.
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Decomposition of the spectrum As for the XXZ case, we can decompose the Hilbert space
of the periodic Potts chain in terms of the representations W j,z , where we recall the correspon-
dence (15) between the parameters j, z and the magnetization and twist in the XXZ chain.

We start with the case Q = 3, which corresponds to d =
p

3 = 2cos(π/6) and hence
γ= π

6 . At such “roots of unity” cases (namely, whenever q is a root of unity), the TL algebra is
known to be non-semisimple, which means that the representations W j,z become reducible but
indecomposable: they cannot be decomposed as a direct sum of irreducible representations.
For our matters, we will not need to go into the details of this complicated subject, and we
refer the interested reader to the existing literature [57, 59–61]. In practice, we should only
stick to the observation that at the root of unity, the spectrum of the TL Hamiltonian (or more
general operators built out of the TL algebra) in representation W j′,z′ may arise as a subset of
the spectrum in a larger W j,z , and we note W j,z/W j′,z′ the remaining subspace. For L = 4, we
find that the Potts chain Hilbert space decomposes as

HQ=3 =W0,−1 ⊕ (W0,q2/W1,1)⊕W2,1 . (19)

Similar decompositions can be written for other system sizes L (note that for j = 2 here, or
j = L/2 in general, WL/2,z is a one-dimensional representation where all TL generators cancel,
so the precise value of the twist z does not matter).

We now turn to Q = 4 and Q = 5, which correspond to γ= 0 and γ=arccos(
p

5/2)≃0.48i,
respectively. Those are not “root of unity” points of the kind discussed above, however we shall
still encounter quotients of the form W j,z/W j′,z′ . The reason is that, as explained in [8] (see
also [58, 62]), even for generic q representations W j,z become reducible when z = q2 j+2k,
where k is some positive integer, and contain some irreducible submodule isomorphic to
W j+k,q2 j . For Q = 5 we find accordingly, for L = 4

HQ=5 = (W0,q2/W1,1)⊕ 2W0,−1 ⊕ 11W2,1 , (20)

while for Q = 4, L = 4

HQ=4 =W0,1 ⊕ (W0,−1/W1,1)⊕
1
2
W0,−1 ⊕ 5W2,1 (21)

(in this last case, other subtleties arise, leading in particular to the 1
2 factor which results from

the fact that W0,−1 contains two copies of the same irreducible representation, but we shall
not discuss these further here).

2.4 The golden chain

The Hamiltonian of the so-called golden chain was published in [54]. It is a special case of the
family of Hamiltonians related to the RSOS models [45,46].

In this case, the Hilbert space is constrained: in a volume L it is spanned by the states of
the computational basis, which do not have two neighboring down spins.

Let us define the local projectors

Pj = (1+σ
z
j )/2 , N j = (1−σz

j )/2 . (22)

Then, the constraint can be formalized as

N jN j+1 = 0 . (23)

A representation of the Temperley-Lieb algebra is the following:

e j = h j, j+1, j+2 , (24)
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where h j, j+1, j+2 is a three-site operator acting on the constrained Hilbert space, given explic-
itly by

h j, j+1, j+2 = −ϕ
�

(Pj + Pj+2 − 1)− Pj Pj+2

�

ϕ−3/2σx
j+1 +ϕ

−3Pj+1 +ϕ
−2 + 1

�

�

, (25)

where ϕ = (1 +
p

5)/2 = 2 cos(π/5) is the golden ratio. The Temperley-Lieb parameter is
d = ϕ.

Decomposition of the spectrum As for the XXZ and Potts representations, the RSOS Hilbert
space can be decomposed in terms of the TL standard representations. We have here q= eiπ/5,
again a root of unity, so similar comments to those made above for the Potts chain can be
addressed here. We find, for L = 4:

HRSOS = (W0,q2/W1,1)⊕ (W0,q4/W2,1) ,

where again the correspondence with the XXZ parameters is encoded in (15).

2.5 The trace representation

In this representation, we are dealing with local Hilbert spaces Cd with d ≥ 2, and the gener-
ators are given by

e j = K j, j+1 , (26)

where K is the so-called trace operator, given explicitly by

K =
d
∑

a,b=1

|aa〉〈bb| . (27)

In this case, the parameter of the Temperley-Lieb algebra is equal to the local dimension d
(more generally, representations where d is a positive or negative integer can be constructed
by using graded vector spaces [63]).

These models appeared recently in the study of Hilbert space fragmentation [55].

Decomposition of the spectrum We take d = 3 for the example. Here γ = arccos(3/2) is
pure imaginary, and q = eiγ is not a root of unity. In terms of the modules W j,z , with again
(15), we find for L = 2

Hd=3 =W0,q2 ⊕ 7W1,1 . (28)

For L = 4, we find
Hd=3 =W0,q2 ⊕ 7W1,1 ⊕ 47W2,1 . (29)

For L = 6, we find

Hd=3 =W0,q2 ⊕ 7W1,1 ⊕ 27W2,1 ⊕ 20W2,−1 ⊕ 322W3,1 . (30)

3 Charges and currents in the Temperley-Lieb algebra

In this Section we discuss the family of conserved charges and their currents in the models
related to the Temperley-Lieb algebra. To this order we first discuss the integrability properties,
and afterward we turn to the charges and currents.
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3.1 Integrability

The models defined by (4) are integrable, both in the periodic case and in the open case (where
the additional generator eL is absent in (4)). The Hamiltonians can be embedded into a family
of commuting transfer matrices. It is possible, by going to a specific representation, to construct
commuting transfer matrices in finite volume with periodic or open boundary conditions. For
the XXZ representation such transfer matrices are related to the six-vertex model [64]; in this
case we give concrete formulas in the Appendix B.1. For the golden chain the transfer matrices
are related to integrable RSOS models [65]; for the Potts representation, they are based on
the Star-Triangle Relation [66,67]. However we do not know of a representation-independent
formulation in finite volume, and will therefore restrict to a definition in infinite volume, valid
for any representation.

First, we define
Ř j(u) = 1+ ue j , (31)

where u ∈ C is a spectral parameter. Then, the formal definition of the transfer matrices can
be given as

t(u) =
∏

j

Ř j(u) . (32)

For the ordering of the operators, we choose a convention that operators with lower indices
act first. These operators should be regarded as a formal power series in u. Their finite volume
counterparts can also be specified.

It can be shown by formal manipulation that

[t(u), t(v)] = 0 . (33)

Let us now define the operators with k > 1

Ak = (∂u)
k−1 log(t(u))

�

�

u=0 . (34)

We have
A2 = H . (35)

It follows from (33) that the Ak form a commuting family, and their construction ensures that
they are extensive operators with a short-range operator density.

The alternative to the transfer matrix is the boost operator formalism [68–70]. This method
for obtaining the charges is also limited to the infinite volume case. We define formally

B =
∞
∑

j=−∞
je j , (36)

and define a series of charges via the formal rule

Qk+1 = [Qk,B] , (37)

with the initial condition
Q2 = H . (38)

These charges are linear combinations of the Ak given by (34). The definition (37) does not
yield Hermitian charges, in fact with this definition every second charge is anti-Hermitian.
However, we use this convention because it is convenient for our purposes.

The Hamiltonians (4) also enjoy translational invariance, either in finite volume with peri-
odic boundary conditions, or formally in the infinite volume case. However, there is a subtlety
in connection with the translations.
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For a given model, let us define U as the one-site translation operator acting on the physical
Hilbert space. In all cases we have

[U , H] = 0 . (39)

Furthermore, U also commutes with the higher charges. It is then very natural to consider the
simultaneous diagonalization of U and the extensive local charges. The Bethe states will be
eigenvectors of U as well, therefore U is the natural translational symmetry of both the charges
and the states.

However, the situation is more delicate in the Potts model. In that case, we can also define
the operator U based on its action in real space, but then U will shift the Temperley-Lieb
generators by two indices, due to the staggering introduced in (18). On the level of operators,
we have an additional symmetry V , which shifts the indices of the operators by one. However,
on the level of the Hilbert space, the operation V is seen as a duality, and it is not guaranteed
that the Bethe states will be eigenvectors of V .

3.2 Local charges and currents in Temperley-Lieb models

The charges introduced above are extensive and are expressed as

Qα =
∑

j

qα( j) , (40)

where qα( j) is a short-range operator density which can be expressed using the generators of
the Temperley-Lieb algebra.

We choose our conventions such that qα( j) spans α sites in the XXZ representation, and
we choose q2( j) = e j , which also implies that Q2 = H in our conventions.

The first non-trivial charge above the Hamiltonian is

q3( j) = e je j+1 − e j+1e j . (41)

Further examples are found in the Appendix A.
The general explicit expressions for the local charges of the Temperley-Lieb models were

derived by Nienhuis and Huijgen [56]. However, these expressions are some linear combina-
tion of the charges obtained from expanding the transfer matrix constructed from the usual
6-vertex R-matrix in the XXZ representation, or obtained through the boost operation. There-
fore, the concrete formulas of [56] coincide neither with our Ak nor with our Qk.

The current operators Jα(x) are defined through the continuity equations

[H, qα(x)] = Jα(x)− Jα(x + 1) . (42)

We also introduce the generalized currents Jα,β(x) [35,37] that describe the flow of qα(x)
under the time evolution generated Qβ by

�

Qβ , qα(x)
�

= Jα,β(x)− Jα,β(x + 1) . (43)

The locality of the charge densities and the global relation [Qα,Qβ] = 0 imply that the operator
equation (43) can always be solved with a short-range operator Jα,β(x).

The definition (43) holds for α,β ≥ 2, but it will turn out convenient to extend it to β = 1
by setting

Jα,1(x)≡ qα(x) . (44)
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3.3 Construction of the current operators

Below, we demonstrate the procedure for constructing the expressions of current operators and
generalized current operators from the corresponding expressions of local conserved quanti-
ties. The construction of the current operators was originally derived for the spin-1/2 XYZ
chain [71]. Here, we generalize this result of [71] to the construction of the generalized cur-
rent operators. Notably, this method applies to general quantum integrable spin chains of local
Hamiltonian. We first show the general procedure, which does not involve the Temperley-Lieb
algebra. Afterwards, we apply the result to the Temperley-Lieb Hamiltonian.

We start by reviewing the procedure for constructing the current operators [71]. In the
following, we refer to an operator that acts on the x-th site and also locally on sites beyond the
x-th site as “starting from the x-th site”. We assume qα(x) is starting from x-th site. Since the
Hamiltonian is a two-site operator, the left-hand side of (42) is constructed from the operator
starting from the (x −1)-th, x-th, and (x +1)-th sites, which we denote by F−1

α (x −1), F0
α(x),

and F1
α(x + 1), respectively:

[H, qα(x)] = F−1
α (x − 1) + F0

α(x) + F1
α(x + 1) . (45)

The current operator is given by

Jα(x) = F−1
α (x − 1)− F1

α(x) . (46)

The proof of (46) is as follows: substituting (46) to the RHS of (42), we have

Jα(x)− Jα(x + 1) = [H, qα(x)]−δα(x) , (47)

where we defined δα(x) ≡ F−1
α (x) + F0

α(x) + F1
α(x). Summing over x of (45), we have

0 =
∑L

x=1δα(x). Since {δα(x)}x=1,2,...,L are mutually linear independent, each δα(x) should
be zero itself. Now, we have proved (46) satisfies the continuity equation (42).

Concrete examples for current operators are found in the Appendix A.

3.4 Construction of the generalized current operators

We generalize the result for the current operator [71] to the generalized current operator.
Since Qβ is a β-site operator, the left-hand side of (42) is written as

�

Qβ , qα(x)
�

=
β−1
∑

y=−(β−1)

F y
α,β(x + y) , (48)

where F y
α,β(x+ y) is an operator starting from x+ y-th site. By summing up the x in (48) and

in the same manner as the usual current operator case, we have

β−1
∑

y=−(β−1)

F y
α,β(x) = 0 . (49)

The generalized current operator is given by

Jα,β(x) =
β−1
∑

b=1

b
∑

y=1

�

F−b
α,β(x − y)− F b

α,β(x + y − 1)
�

. (50)

The β = 2 case of (50) recovers (46).
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We prove (50) in the following. We define E y
±(x) ≡

∑β−1
b=y F±b

α,β(x), and we can write the

generalized current as Jα,β(x) =
∑β−1

y=1

�

E y
−(x − y)− E y

+(x + y − 1)
�

. Substituting (50) to the
RHS of (43), we have

Jα,β(x)− Jα,β(x + 1) =
β−1
∑

y=1

�

E y
−(x − y) + E y

+(x + y)
�

−
β−1
∑

y=1

�

E y
−(x − y + 1) + E y

+(x + y − 1)
�

=
∑

β−1≥|y|>0

F y(x + y) +
β−2
∑

y=1

�

E y+1
− (x − y) + E y+1

+ (x + y)
�

−
β−1
∑

y=1

�

E y
−(x − y + 1) + E y

+(x + y − 1)
�

=
�

Qβ , qα(x)
�

− F0
α,β(x)− E1

+(x)− E1
−(x)

=
�

Qβ , qα(x)
�

−
β−1
∑

y=−β+1

F y
α,β(x)

=
�

Qβ , qα(x)
�

, (51)

where in the second equality, we have used E y
±(x) = E y+1

± (x)+ F y
α,β(x) and Eβ±(x) = 0, and in

the last equality we have used (49). Thus, we have proved (50) actually satisfies (43).
In principle, we can obtain the explicit expressions of the generalized currents by eval-

uating the commutator in the continuity equation and subsequently obtaining F y
α,β(x) and

using (50), provided that we have the explicit expressions of the local charges Qα.
The aforementioned index x need not strictly denote a physical site index; the only re-

quirement is that the operators with different indices are to be linearly independent. Thus,
the above construction of the generalized currents is also applicable to the Potts representa-
tion where the indices of the Temperley-Lieb generators do not correspond to the physical site
indices.

Concrete examples for generalized current operators in the Temperley-Lieb algebra are
found in the Appendix A.

4 Factorized correlation functions in XXZ

4.1 Hidden Grassmann structure

The theory of the factorized correlation functions [13–20] concerns the mean values of local
operators in the XXZ chain in a variety of physical situations. The goal is to compute mean
values of the form

〈Ψ|O|Ψ〉 , (52)

in finite volume or in the thermodynamic limit. The papers [13–20] considered the ground
state and finite temperature situations in infinite volume. The ground state in finite volume
was treated in [24], and an extension to arbitrary finite volume excited states was given in [26].
Excited states in thermodynamic limit were treated earlier in [25].

The results of the theory for the homogeneous limit can be summarized as follows. The
statements below hold for all the physical situations mentioned above, thus also for the finite
volume excited states considered in [26].

The mean values can be expressed as a sum of products of certain building blocks, which
are the Taylor expansion coefficients of a few number of functions of one and two variables.
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For example, in the XXZ spin chain the mean values of spin reflection invariant operators are
expressed using the Taylor coefficients of just two functions ω(x , y) and ω′(x , y), both of
which are symmetric with respect to the exchange of the two variables. The construction con-
sists of the algebraic part and the physical part. The algebraic part describes the expressions of
the mean values of a given operator as a combination of the building blocks, and this compu-
tation is independent of the physical situation. The physical part gives concrete values to the
functions involved, depending on the physical situation considered.

Simple examples of short-range correlators are:



σz
1σ

z
2

�

= coth(η)ω0,0 +W1,0 ,



σx
1σ

x
2

�

= −
ω0,0

2sinh(η)
−

cosh(η)
2

W1,0 ,




σz
1σ

z
3

�

= 2coth(2η)ω0,0 +W1,0 + tanh(η)
ω2,0 − 2ω1,1

4
−

sinh2(η)
4

W2,1 ,




σx
1σ

x
3

�

= −
1

sinh(2η)
ω0,0 −

cosh(2η)
2

W1,0 − tanh(η) cosh(2η)
ω2,0 − 2ω1,1

8
+ sinh2(η)

W2,1

8
.

(53)

Here
ωa,b =ωb,a = (∂x)

a(∂y)
bω(x , y)

�

�

x ,y=0 , (54)

and the function ω(x , y) coincides with the one defined in [21, 22], and Wa,b are given sim-
ilarly by the coefficients of the function W (x , y) = ω′(x , y)/η, where ω′(x , y) is defined
in [21,22] and ∆ = cosh(η). The concrete values of these functions in the finite temperature
ensembles were given in [21,22], whereas for finite volume excited states they were computed
in [26].

For operators which are invariant under the action of the quantum group Uq(sl(2)) the
mean values involve only the function ω [18, 72]. For the closely related SU(2)-symmetric
case see [20, 24, 27, 73]. In the XXZ chain the operators invariant under the quantum group
are generated by the Temperley-Lieb algebra. Therefore, the works [18, 72] compute those
mean values which we are interested in, specifically in the XXZ chain.

4.2 Specific results for mean value of the current operators

The key result of the works [35–37] is that the mean values of the generalized currents are
given by the coefficients of the ω function. This was proven in [35–37] by realizing that the
formulas for the current mean values are identical to the formulas for the ω function found
originally in [26].

Let us now summarize these results. For our purposes it is convenient to define a new
function ψ(x , y) =ψ(y, x) which is related to ω via

ψ(x , y) = −i sin(γ)
�

1
2
ω(i sin(γ)x , i sin(γ)y) +

i
4

K(i sin(γ)(x − y))
�

, (55)

where

K(u) =
sin(2γ)

sinh(u+ iγ) sinh(u− iγ)
. (56)

Similarly to (54) we define

ψa,b =ψb,a = (∂x)
a(∂y)

bψ(x , y)
�

�

x ,y=0 . (57)

They are related to the coefficients ωa,b via

ψa,b = −
�

1
2
ωa,b + (−1)a

i
4

�

(∂u)
a+bK(u) |u=0

�

�

sinha+b+1(iγ) . (58)
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The main result of [35–37] is that for any Bethe state |λN 〉 given by the set of Bethe roots
λN = {λ1, . . . ,λN}, the current mean values are given by

〈λN |Jα,β |λN 〉=ψα−2,β−1 , (59)

whereψ(x , y) is now defined by theω function for the Bethe state |λN 〉, and it is written using
the Bethe roots by

ψ(x , y) = h(i sin(γ)x) · G−1 · h(i sin(γ)y)× (− sin(γ)) , (60)

where h(x) is a parameter dependent vector of length N with elements h j(x) = h(λ j− x) with
h(λ) given by

h(λ) = coth(λ− iγ/2)− coth(λ+ iγ/2) , (61)

and G is the Gaudin matrix, defined as

G jk = δ jk

�

L
sin(γ)

sinh(λ j + iγ/2) sinh(λ j − iγ/2)
−

N
∑

l=1

K(λ jl)

�

+ K(λ jk) , (62)

where we denote λ jk ≡ λ j −λk.
In the specific case of the charge densities we get

〈{λ}N |qα|{λ}N 〉=ψ0,α−2 . (63)

Note that the quantities ψα,β are symmetric with respect to α,β , but the current mean
values involve certain shifts in the indices. These shifts appear due to our definitions of the
charges and currents. The symmetry of the ψα,β leads to the symmetry

〈λN |Jα,β |λN 〉= 〈λN |Jβ+1,α−1|λN 〉 , (64)

for the mean values. This equation does not hold on the level of the operators, only on the
level of the mean values.

5 Correlation functions

In this section, we formulate two conjectures about the correlation functions for the quantum
integrable models, which are representations of the (affine) TL algebra (4).

We are interested in correlation functions of the form

〈ΨL|O|ΨR〉
〈ΨL|ΨR〉

. (65)

Here, |ΨR〉 is an eigenvector of the Temperley-Lieb Hamiltonian in a selected representation.
For the correlation functions, we will consider only the periodic case. Furthermore, we will
focus on states which are singlets of the transfer matrix. The vector 〈ΨL| is the left eigenvector
of the transfer matrices corresponding to the same eigenvalue.

The operator O is chosen to be a word from the Temperley-Lieb algebra. We will focus on
short-range operators, which include products of Temperley-Lieb generators with indices close
to each other.
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5.1 Main results and numerical checks

We first introduce the linear map T over the TL algebra. This map generates a shift-invariant
operator, such that the result is translationally invariant with respect to the Temperley-Lieb
indices. More concretely, the action of T is defined by:

T [ei1 ei2 · · · eim]≡
1
L

L
∑

j=1

ei1+ jei2+ j · · · eim+ j . (66)

In many representations, T generates operators that are invariant with respect to a shift in the
physical sites. However, in the case of the Potts model, we are dealing with the invariance with
respect to shifts in the Temperley-Lieb indices, which is not identical to the physical shifts.

In the following, we assume |E〉 is an eigenstate of a Hamiltonian of TL representation with
an eigenenergy E. We assume that |E〉 is a singlet of the commuting set of charges. We define
the translational mean value 〈·〉 ≡ 〈E|T [ · ]|E〉.

Below, we present two conjectures, which we tested in multiple representations and various
volumes and singlet eigenstates.

Conjecture 1 The translationally invariant mean values of the generalized current operators are
given by




Jβ+2,α+1( j)
�

=ψα,β (α,β ≥ 0) , (67)

where ψα,β are the Taylor coefficients of the function ψ(x , y), which is expressed via the Bethe
roots in eq. (60), corresponding to the eigenstate with the same value of local charges in the XXZ
representation with the same TL parameter d, and appropriate twist φ.

The expression for ψα,β is the same in all different representations with the same TL pa-
rameters d.

Conjecture 2 In eigenstates |E〉 which are singlets, the translationally invariant mean values of
operators generated by the TL algebra are universally factorized as:




ei1 ei2 · · · eim

�

=
p f
∑

p=1

∑

α,β

 

p
∏

j=1

ψα j ,β j

!

Cα,β(d) , (68)

where α = {α1,α2, . . . ,αp} and β = {β1,β2, . . . ,βp} satisfies 0 ≤ αn ≤ βn ≤ M and αn ≤ αn+1
and βn ≤ βn+1, and M and p f are some positive integers. The coefficients Cα,β(d) are independent
of the choice of the eigenstate |E〉 and the representation of the TL algebra. The information about
our choice of the operator ei1 . . . eim is encoded in Cα,β(d). They depend only on the parameter d
of the TL algebra. This implies that all the Cα,β(d) can be found in the concrete example of the
XXZ spin chain, and they can be extracted from the existing works [18,22,72].

We stress that the conjectures refer to the shift-invariant mean values generated by the
operator T . In many models, it is not necessary to introduce T , because all mean values
are shift-invariant. However, in the Potts model, there is a distinction between translational
invariance and shift invariance, and while all mean values are translationally invariant (with
respect to physical translations), they are not shift-invariant. We observed that the conjectures
hold only for the shift-invariant combinations.

We computed several examples of factorized formulas, using the results of [22]. These
are presented in the following. Furthermore, in Subsection 5.2 below we consider special
combinations of charges and currents, whose mean values are always bi-linear in ψa,b.
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The simplest short-range correlation function (involving at least two TL generators) is

〈e1e2〉=
1
d

�

1
2
ψ0,2 − 2ψ0,0 −ψ1,1

�

+
1
2
ψ0,1 . (69)

In this case, there is no actual factorization happening because the decomposition above works
on the level of the operators, guaranteed by the operator identity

e1e2 =
1
d

§

1
2

q4(1)− 2q2(2)− J3,2(2)
ª

+
1
2

q3(1) . (70)

Actual factorization is observed in more complicated cases. For example

〈e1e3〉=
1

d(d2 − 1)

�

(d2 − 4)ψ0,0 + 2ψ0,2 +
d2 − 40

12
ψ1,1 +

1
6
ψ1,3 −

1
4
ψ2,2

�

+
1

d2 − 1

�

d2 − 28
12

(ψ2
0,1 −ψ0,0ψ1,1)−

1
4
(ψ2

0,2 −ψ0,0ψ2,2)

+
1
2
(ψ0,2ψ1,1 −ψ0,1ψ1,2) +

1
6
(ψ0,1ψ0,3 −ψ0,0ψ1,3)

�

. (71)

Furthermore

〈e1e2e3 + e3e2e1〉=
1

6d (d2 − 1)

�

5d3ψ1,1 + 11d2
�

ψ2
1,0 −ψ0,0ψ1,1

�

+d(36ψ0,0 + 34ψ1,1 − 24ψ2,0 + 3ψ2,2 − 2ψ3,1) + 3ψ2,0(ψ2,0 − 2ψ1,1)

+2ψ1,0(8ψ1,0 + 3ψ2,1 −ψ3,0) +ψ0,0(−16ψ1,1 − 3ψ2,2 + 2ψ3,1)
�

, (72)

and




e1e4

�

=
1

d(d2 − 1)(d2 − 2)

�

2(d2 − 4)ψ0,0 −
11d2 − 92

12
ψ0,2 +

d4 + 40d2 − 392
36

ψ1,1 +
d2 + 56

36
ψ1,3

−
d2 + 44

24
ψ2,2 −

1
12
ψ0,4 +

1
24
ψ2,4 −

1
18
ψ3,3

�

+
1

(d2 − 1)(d2 − 2)

�

5d4 − 28d2 − 220
18

�

ψ2
0,1 −ψ0,0ψ1,1

�

+
2d2 + 16

9

¦

2(ψ0,1ψ0,3 −ψ0,0ψ1,3) + 3(ψ0,0ψ2,2 −ψ2
0,2)
©

+
7d4 + 226d2 + 928

144

�

ψ0,2ψ1,1 −ψ0,1ψ1,2

�

+
5d2 + 22

144

¦

ψ0,1ψ1,4 −ψ1,1ψ0,4 − 2ψ0,1ψ2,3 + 6(ψ1,1ψ2,2 −ψ2
1,2)
©

+
10d2 + 140

144
ψ0,3ψ1,2 +

1
6

�

ψ0,2ψ0,4 −ψ0,0ψ2,4

�

+
2
9

�

ψ0,0ψ3,3 −ψ2
0,3

�

−
2
3
ψ0,2ψ1,3

+
1

12

�

ψ1,3ψ2,2 −ψ1,2ψ2,3

�

+
1

18

�

ψ1,1ψ3,3 −ψ2
1,3

�

+
1

24

�

ψ1,2ψ1,4 −ψ1,1ψ2,4

�

+
1

36

�

ψ0,3ψ2,3 −ψ0,2ψ3,3

�

+
1

48

�

ψ0,2ψ2,4 −ψ0,4ψ2,2

�

+
1
72

�

ψ0,4ψ1,3 −ψ0,3ψ1,4

�

�

. (73)

We numerically confirmed the above equations in the XXZ chain, the golden chain, the
Potts chain with 2 ≤ Q ≤ 5, and for the trace representation, in various finite volumes. A
selection of concrete numerical data is presented in Appendix B. We note that the denominator
of (73) diverges for Q = 2 Potts (Ising case), thus we checked the formula (73) works in the
Potts chain for 2 < Q ≤ 5. However, we checked in the representations where d can be
tuned continuously that this divergence is compensated by a cancellation of the numerator as
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d2→ 2. A similar phenomenon, which has also been observed in the works [9,53] occurs also
for the above correlators as d2→ 1, and ensures that all correlation functions remain finite.

Here, we only consider the eigenstates which are singlets of the commuting set of charges,
i.e., the eigenstates that can be distinguished by the values of the local charges and also the
fundamental charges, such as the momentum operator. In the setups where we used to check
Conjecture 1 and Conjecture 2 up to L = 10, almost all eigenstates are singlets, and we con-
firmed Conjecture 1 and Conjecture 2 holds for singlet eigenstates. For the case that q is a
root of unity, we observed that non-singlet eigenstates can appear. In the case of non-singlet
eigenstates, there remains the freedom to select a basis within the degenerate eigensubspace,
and the value of the correlation function might vary depending on this choice. We leave the
treatment for non-singlet eigenstates to future research.

5.2 Special bi-linear combinations

The work [74] found a special family of operators, whose mean values always factorize in
integrable quantum spin chains. These operators are bi-linear combinations of (generalized)
currents and charge densities. Now we also summarize these results here.

Let us introduce the operators Kα,β ,γ( j, k), which depend on three indices α,β ,γ and two
coordinates (site indices) j, k:

Kα,β ,γ( j, k) = Jα,γ( j)qβ(k)− qα( j)Jβ ,γ(k+ 1) , (74)

It can be shown that the mean values of these operators do not depend on k; the proof relies on
the continuity equations. Afterwards, it can be shown that the mean values factorize, namely
for the mean values in all eigenstates we have




Kα,β ,γ( j, k)
�

=



Jα,γ

� 


qβ
�

− 〈qα〉



Jβ ,γ

�

. (75)

In the present conventions this means that



Kα,β ,γ( j, k)
�

=ψα−2,γ−1ψβ−2,0 −ψα−2,0ψβ−2,γ−1 . (76)

These special operator combinations can be seen as the lattice version of the famous T T̄ -
operator known in conformal field theories [75,76].

6 Conclusions and outlook

It has been known for many decades that the Temperley-Lieb algebra connects the spectra of
different models, which are seen as different representations of the same algebra. However, no
systematic study of correlation functions of Temperley-Lieb models existed before our work.
The main conclusion of this work is that the TL algebra also connects the correlation functions,
and that the existing results of the XXZ spin chain can be used to compute correlation functions
in many other models. It is important that our results are not limited to the ground states,
instead they can be applied to any state which is a singlet of the local charges in the Temperley-
Lieb algebra.

We presented our results in the form of conjectures, an actual proof of which is desirable.
A possible route to follow is to exploit the algebraic construction of the conserved current
in integrable models [37] in order to derive algebraic relations relating the latter with local
correlators. We plan to explore this direction in a future work.

At present, our conjectures hold for the translationally invariant mean values. In those
cases when the translational invariance is broken by the representation of the Temperley-
Lieb algebra (for example the Potts chain), we observed that the conjectures hold for the
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translationally invariant averages. At the moment there is no theoretical explanation as to
why the conjectures still work for the averages. This is a question that also deserves further
study.

Also, it would be useful to investigate those states which are not singlets of the Temperley-
Lieb algebra. In such cases it was observed that the mean values can depend on the choice of
the basis within the degenerate sub-space. A more detailed investigation is beyond the scope
of the present paper.

As a by-product of our computations, we found an apparently new way to construct the
generalized current operators from the expressions for the local charges, see Sections 3.3-3.4.
This result is independent of the Temperley-Lieb algebra, therefore it could be applied to the
other integrable spin chains, and it might facilitate the search for factorized correlators in other
circumstances.
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A Current operators of Temperley-Lieb Hamiltonian

Here, we provide examples of the current and generalized current operators. We use the
conventions given in the main text; this convention corresponds to using the boost operator,
or equivalently, the usual R-matrix in the 6-vertex model.

Examples of the lower-order charges are

q4( j) = 2(e j+2e j+1e j − e j+1e je j+2 − e je j+2e j+1 + e je j+1e j+2) + de j+1e j + de je j+1 , (A.1)

q5( j) = 6(e je j+1e j+2e j+3 − e j+3e j+2e j+1e j + e j+2e j+1e je j+3 + e j+1e je j+3e j+2 + e je j+3e j+2e j+1

− e j+1e je j+2e j+3 − e je j+2e j+1e j+3 − e je j+1e j+3e j+2 − de j+2e j+1e j + de je j+1e j+2)

+ (2+ d2)
�

e je j+1 − e j+1e j

�

, (A.2)

q6( j) = 24(e j+4e j+3e j+2e j+1e j − e j+3e j+2e j+1e je j+4 − e j+2e j+1e je j+4e j+3 − e j+1e je j+4e j+3e j+2

− e je j+4e j+3e j+2e j+1 + e j+2e j+1e je j+3e j+4 + e j+1e je j+3e j+2e j+4 + e j+1e je j+2e j+4e j+3

+ e je j+3e j+2e j+1e j+4 + e je j+2e j+1e j+4e j+3 + e je j+1e j+4e j+3e j+2 − e j+1e je j+2e j+3e j+4

− e je j+2e j+1e j+3e j+4 − e je j+1e j+3e j+2e j+4 − e je j+1e j+2e j+4e j+3 + e je j+1e j+2e j+3e j+4)

+ 36d(e j+3e j+2e j+1e j + e je j+1e j+2e j+3)− 12d(e j+2e j+1e je j+3 + e j+1e je j+3e j+2

+ e je j+3e j+2e j+1 + e j+1e je j+2e j+3 + e je j+2e j+1e j+3 + e je j+1e j+3e j+2)

+ (16+ 14d2)(e j+2e j+1e j + e je j+1e j+2) + (−16− 2d2)(e j+1e je j+2 + e je j+2e j+1)

+ (8d + d3)(e j+1e j + e je j+1)− 24de je j+2 . (A.3)
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We give a few examples of the corresponding current operators:

J3,2( j) = e j+1e je j−1 − e je j−1e j+1 − e j−1e j+1e j + e j−1e je j+1 − 2e j , (A.4)

J3,3( j) = −e j+2e j+1e je j−1 − e j+1e je j−1e j−2 + e j+1e je j−1e j+2 + e je j−1e j+2e j+1 + e je j−1e j−2e j+1

+ e j−1e j+2e j+1e j + e j−1e j−2e j+1e j + e j−2e j+1e je j−1 − e je j−1e j+1e j+2 − e j−1e j+1e je j+2

− e j−1e je j+2e j+1 − e j−1e j−2e je j+1 − e j−2e je j−1e j+1 − e j−2e j−1e j+1e j + e j−1e je j+1e j+2

+ e j−2e j−1e je j+1 − de j+1e je j−1 + de j−1e je j+1 + e j+1e j + e je j−1 − e je j+1 − e j−1e j ,
(A.5)

J4,2( j) = −2e j+2e j+1e je j−1 + 2e j+1e je j−1e j+2 + 2e je j−1e j+2e j+1 + 2e j−1e j+2e j+1e j

− 2e je j−1e j+1e j+2 − 2e j−1e j+1e je j+2 − 2e j−1e je j+2e j+1 + 2e j−1e je j+1e j+2

− de j+1e je j−1 − de je j−1e j+1 + de j−1e j+1e j + de j−1e je j+1 + 2e j+1e j − 2e je j+1 , (A.6)

J4,3( j) = 2(e j+3e j+2e j+1e je j−1 + e j+2e j+1e je j−1e j−2 − e j+2e j+1e je j−1e j+3 − e j+1e je j−1e j+3e j+2

− e j+1e je j−1e j−2e j+2 − e je j−1e j+3e j+2e j+1 − e je j−1e j−2e j+2e j+1 − e j−1e j+3e j+2e j+1e j

− e j−1e j−2e j+2e j+1e j − e j−2e j+2e j+1e je j−1 + e j+1e je j−1e j+2e j+3 + e je j−1e j+2e j+1e j+3

+ e je j−1e j+1e j+3e j+2 + e je j−1e j−2e j+1e j+2 + e j−1e j+2e j+1e je j+3 + e j−1e j+1e je j+3e j+2

+ e j−1e je j+3e j+2e j+1 + e j−1e j−2e j+1e je j+2 + e j−1e j−2e je j+2e j+1 + e j−2e j+1e je j−1e j+2

+ e j−2e je j−1e j+2e j+1 + e j−2e j−1e j+2e j+1e j − e je j−1e j+1e j+2e j+3 − e j−1e j+1e je j+2e j+3

− e j−1e je j+2e j+1e j+3 − e j−1e je j+1e j+3e j+2 − e j−1e j−2e je j+1e j+2 − e j−2e je j−1e j+1e j+2

− e j−2e j−1e j+1e je j+2 − e j−2e j−1e je j+2e j+1 + e j−1e je j+1e j+2e j+3 + e j−2e j−1e je j+1e j+2)

+ d(+3e j+2e j+1e je j−1 + e j+1e je j−1e j−2 − e j+1e je j−1e j+2 − e je j−1e j+2e j+1

+ e je j−1e j−2e j+1 − e j−1e j+2e j+1e j − e j−1e j−2e j+1e j − e j−2e j+1e je j−1 − e je j−1e j+1e j+2

− e j−1e j+1e je j+2 − e j−1e je j+2e j+1 − e j−1e j−2e je j+1 − e j−2e je j−1e j+1 + e j−2e j−1e j+1e j

+ 3e j−1e je j+1e j+2 + e j−2e j−1e je j+1 − 2e je j−1e j+1e j + 3e j+1e j + e je j−1

+ 3e je j+1 + e j−1e j) + d2(e j−1e je j+1 + e j+1e je j−1 + 2e j) + 4(e j + e j+1) . (A.7)

The higher-order generalized currents have a more complicated structure.
The explicit expressions for the local conserved quantities of the Temperley-Lieb Hamilto-

nian were obtained by Nienhuis and Huijgen [56]. However, the local conserved quantities
obtained in [56] differ from those obtained by the boost operation; they are linearly depen-
dent, but the choice of the linear combination is different.

B Numerical checks

We performed exact diagonalization to check our conjectures. Our procedure included the
following steps:

• We numerically constructed the transfer matrix of the XXZ representation, local charges
and generalized current operators which are relevant to our factorization formula (69)–
(73) using (50). Our definitions and conventions are listed in Section B.1 Then, we
exactly diagonalize the transfer matrix and store the eigenstates for the local charges.

• For each eigenstate, we numerically computed the current mean values to obtain ψα,β
and then calculated the prediction of short-range correlation functions from the factor-
ization formula (69)–(73), and compared them to the numerics from exact diagonaliza-
tion.
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• We also checked the current mean values are actually reproduced by the formula (60)
using the corresponding Bethe roots. We utilized the famous TQ relation and calculated
the Q function from the eigenvalue of the transfer matrix, and then we obtained the
corresponding Bethe roots. This strategy is described in detail in [77].

• For other representations, the Potts, the golden, and the trace representation, we con-
struct the eigenstates simultaneously diagonalizing the local charges and additional sym-
metries such as momentum and check the factorization formula in the same way as the
case of the XXZ rep. If there are common eigenstates with the XXZ representation with
the same energies and the same eigenvalues of the higher local charges, we checked the
current mean values also coincide.

It was observed that our factorization formula (69)–(73) holds for all the eigenstates for the
finite size system in all representations we give in this work.

B.1 Definition of the transfer matrix in the XXZ representation

The transfer matrix for the XXZ model with periodic boundary conditions and twist φ is de-
fined as:

T (u) = Tr0 (R0L(u) . . . R01(u)) , (B.1)

where each index i = 1, . . . L stands for a spin-1/2, and 0 is an auxiliary spin-1/2 which is
traced over in the definition of T (u). The R matrix acting on the ith spin and the auxiliary spin
is defined as:

R0i(u) = ei φ2Lσ
z
0

�

cos γ2 sin(u+ γ
2)

sinγ
+

sin γ2 cos(u+ γ
2)

sinγ
σz

0σ
z
i + (σ

−
0σ
+
i +σ

+
0σ
−
i )

�

. (B.2)

B.2 Numerical data

We list some concrete numerical data in Table 1–14. In the upper table on each page, i.e.
in Table 1, 3, 5, 7, 9, 11, 13, we list the values of the correlation functions considered in the
factorization formula (69)– (73) w.r.t. several eigenstates. The detailed setups are explained in
the next paragraphs. In the upper table on each page, we denote 〈e1e2e3〉

′ ≡ 〈e1e2e3 + e3e2e1〉.
In the lower table on each page, i.e., in Table 2, 4, 6, 8, 10, 12, 14, we list the values of the
current mean values used in the factorization formula (69)– (73) w.r.t. the same eigenstates
as those referred to in the corresponding upper tables. The errors of the correlation functions
listed in the upper tables and the predicted values from the factorization formula (69)– (73)
calculated by the current mean values listed in the lower tables are at most of the order of
10−9.

We list the values of the correlation functions related to the factorization formula (69)–(73)
for several eigenstates in the XXZ representation for L = 8 and the corresponding Bethe roots
in Table 1, 3, 5, 7, and list the corresponding current mean values in Table 2, 4, 6, 8. Table 1
and 2 are the zero-twist case. Table 3 and 4 correspond to the Q = 3 Potts case. Table 5 and 6
correspond to the golden chain case. Table 7 and 8 correspond to the trace representation
with d = 3.

We also list examples of numerical data for the other representations. We consider the
3-state Potts representation, the golden chain, and the trace representation for L = 8, and
consider Q = 3 for the Potts representation and d = 3 for the trace representation. We show
the values of the correlation functions and the current mean values of the 3-state Potts repre-
sentation in Table 11 and 12, and for the golden chain representation in Table 9 and 10, and
for trace representation with d = 3 in Table 13 and 14.
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We note that for the trace representation, the Hamiltonian is non-Hermitian, and we have
to use the left and right eigenvectors for the calculation of the current mean values and the
correlation functions.

Table 1: List of the correlation functions in the first 8 eigenstates of the XXZ represen-
tation calculated by exact diagonalization for d = 0.35, φ = 0, total magnetization
sector of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum
quantum number. We list the eigenstates with 0 ≤ k ≤ 4 to resolve degeneracies
caused by inversion symmetry. We also list the corresponding Bethe roots. We de-
note 〈e1e2e3〉

′ ≡ 〈e1e2e3 + e3e2e1〉. The numerical errors of the correlation functions
compared to those computed from the factorization formula (69)–(73), using the
current mean values in Table 2, are at most 10−13. The third eigenstate marked with
a star includes singular rapidities iγ/2.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉
′ 


e1e4

�

λ1 λ2 λ3 λ4

1 6.2368 0 0.8020 0.5782 1.6032 0.6098 −0.7220 −0.1795 0.1795 0.7220
2 4.7474 4 0.6817 −0.0914 0.9435 0.8249 1.5708i −0.2551 0 0.2551
3∗ 4.6747 4 0.4845 0.4747 1.2679 −0.1142 −0.6974i −0.1881 0.1881 0.6974i
4 4.5583 1 0.5222+ 0.2063i 0.1942 0.9298 0.3235 −0.7688+ 1.5708i −0.1538 0.1915 0.7311
5 3.5526 3 0.5550− 0.0321i −0.0375 0.6384 −0.0798 −0.3035+ 1.5708i −0.3514 −0.0980 0.7529
6 3.4703 2 0.4184+ 0.1691i 0.2523 0.6000 0.0446 −0.4989+ 1.5708i −0.4435 0.2022 0.7402
7 3.4083 3 0.2689− 0.0114i 0.2701 0.4907 0.2383 −0.2845− 0.6975i −0.1751 −0.2845+ 0.6975i 0.7442
8 3.3539 2 0.3032+ 0.2103i 0.0395 0.2004 0.1721 −0.4630− 0.6977i 0.1901 −0.4630+ 0.6977i 0.7358

Table 2: List of the current mean values in the XXZ representation used in the factor-
ization formula (69)–(73). The parameters and the setup are the same as Table 1.
The numerical errors of the current mean value formula (60) against the above nu-
merics are at most 10−10 except for the third eigenstate with singular Bethe roots.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 0.7796 0 1.0815 0 10.4254 −1.2991 0 −7.0213 0 8.8692 0 85.4961 −153.1087
2 0.5934 0 1.8072 0 13.7250 −0.5219 0 −8.5822 0 5.9757 0 83.4127 −141.1362
3∗ 0.5843 0 1.8194 0 14.7781 −0.4285 0 −8.4151 0 6.0217 0 78.4259 −143.1089
4 0.5698 0.4126i 1.6891 0.3878i 19.2954 −0.4778 −1.2087i −6.4624 −17.0919i 6.9130 0.0233i 72.5437 −140.0925
5 0.4441 −0.0641i 0.7184 −5.0049i 9.4013 −0.7232 −1.2983i −3.8280 −3.8111i 5.5405 −11.0802i 90.1072 −56.6526
6 0.4338 0.3381i 0.3301 3.2589i −7.8149 −0.8489 0.1415i −5.4473 12.3512i 3.7061 15.5615i 28.0494 −93.2620
7 0.4260 −0.0228i 0.6272 −4.7661i 6.4299 −0.6326 −1.5619i −3.5612 −11.3436i 4.5125 −14.1238i 65.2281 −63.3650
8 0.4192 0.4205i 0.5331 4.0813i 2.5638 −0.6781 −0.0447i −4.2107 2.4632i 3.8831 17.0993i 45.2646 −71.6897
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Table 3: List of the correlation functions in the 8 eigenstates of the XXZ represen-
tation calculated by exact diagonalization for d =

p
3, z = −1, total magnetization

sector of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum
quantum number. We list the eigenstates for which the TQ equation can be solved,
with 0 ≤ k ≤ 2 to resolve the degeneracy, and if there are still degeneracies, only
one of the degenerate states was listed. We also list the corresponding Bethe roots.
The numerical errors of the correlation functions compared to those computed from
the factorization formula (69)–(73), using the current mean values in Table 4, are at
most 10−9.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉
′ 


e1e4

�

λ1 λ2 λ3 λ4

1 10.0809 0 1.2053 1.7059 2.4500 1.5374 −0.1783 −0.0222 0.1171 0.4927
2 7.9421 1 0.8162+ 0.2823i 0.8367 1.3574 0.9696 −0.5795 −0.0068 0.1306 0.5258
3 7.4797 0 0.8192 0.6285 1.6802 0.7205 −0.5658− 0.3534i −0.5658+ 0.3534i −0.0603 0.0657
4 7.0595 2 0.6589 0.8285 0.5820 0.5595 −0.5470 −0.1381 0.1381 0.5470
5 6.1962 2 0.5458+ 0.4208i 0.3010 0.4200 0.5750 0.3458− 0.2891i 0.0564 0.2747 0.3458+ 0.2891i
6 5.8054 0 0.4385 0.5467 1.0597 0.3386 −0.5792 0.1972− 0.2614i −0.0033 0.1972+ 0.2614i
7 4.5898 0 0.2697 0.2594 −0.4439 0.0679 −0.4953− 0.3368i −0.4953+ 0.3368i −0.2421 0.2268
8 4.4528 1 0.4040+ 0.1477i 0.1972 0.8463 0.1012 0.2167− 0.5333i 0.0369 0.2167+ 0.5333i 0.2313

Table 4: List of the current mean values in the XXZ representation with the param-
eters being the same as Table 3. The numerical errors of the current mean value
formula (60) against the above numerics are at most 10−8.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.2601 0 3.3463 0 31.6763 −2.9346 0 −39.9194 0 34.6966 0 1172.5214 −931.3222
2 0.9928 0.5646i 3.3830 10.0458i 95.2807 −1.7078 −0.0231i −18.8898 −137.1473i 34.2995 0.1941i 1198.6269 −528.0020
3 0.9350 0 4.9451 0 98.2431 −0.8162 0 −31.1809 0 27.9266 0 614.1580 −1106.1864
4 0.8824 0 0 0 −121.1016 −2.9061 0 −40.3672 0 3.7137 0 −171.0383 −910.7546
5 0.7745 0.8415i 2.0736 15.6585i 35.9072 −1.4575 0.2653i −16.7290 −32.4849i 21.4550 79.1153i 712.4336 −429.6805
6 0.7257 0 3.3595 0 159.4623 −0.5310 0 2.6678 0 34.2559 0 1208.7936 −126.7140
7 0.5737 0 −1.5182 0 −65.9139 −2.3736 0 −8.1776 0 6.4392 0 272.2224 −8.7733
8 0.5566 0.2953i 2.9808 9.1305i 115.1619 −0.3225 1.2303i −4.7323 63.9288i 23.5032 74.0467i 836.7167 −226.6202
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Table 5: List of the correlation functions in 8 eigenstates of the XXZ representation
calculated by exact diagonalization for d = 1+

p
5

2 , z = ei2γ, total magnetization sector
of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum quan-
tum number. We list the eigenstates for which the TQ equation can be solved, with
0 ≤ k ≤ 4 to resolve the degeneracy, and if there are still degeneracies, only one of
the degenerate states was listed. We also list the corresponding Bethe roots. The
numerical errors of the correlation functions compared to those computed from the
factorization formula (69)–(73), using the current mean values in Table 6, are at
most 10−11.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉
′ 


e1e4

�

λ1 λ2 λ3 λ4

1 10.0259 0 1.2264 1.7212 2.4912 1.5016 −0.2745 −0.0580 0.1055 0.4036
2 7.9546 4 0.8090 1.0181 1.8625 0.6663 0.3081− 0.3184i −0.0967 0.0665 0.3081+ 0.3184i
3 6.2683 3 0.5180− 0.0180i 0.6133 0.7581 0.6905 0.0797− 0.3142i −0.0868 0.0797+ 0.3142i 0.3956
4 6.2025 2 0.5312+ 0.3708i 0.3187 0.3476 0.6375 −0.0397− 0.3142i −0.0397+ 0.3142i 0.0966 0.4025
5 4.6077 4 0.2387 0.2136 −0.4355 0.0837 0.1632− 0.3142i −0.3152 0.1632+ 0.3142i 0.3873
6 4.1221 0 0.3851 0.1706 1.0268 0.0217 0.4136− 0.6247i −0.0010 0.4136+ 0.6247i 0.4584
7 3.4399 1 0.2320− 0.2680i 0.0412 0.0510 0.1185 0.4503− 0.6307i −0.1456 0.4503+ 0.6307i 0.4963
8 2.4143 0 −0.1593 0.1490 −0.0909 0.0357 −0.1660− 0.3142i 0.4358− 0.3290i −0.1660+ 0.3142i 0.4358+ 0.3290i

Table 6: List of the current mean values in the XXZ representation with the param-
eters being the same as Table 5. The numerical errors of the current mean value
formula (60) against the above numerics are at most 10−8 except for the eigenstates
indexed by 3 and 4. The current mean values of the eigenstates indexed by 3 and 4
calculated by (60) have larger numerical errors up to the order of 10−3 because the
corresponding Bethe roots include (small value)+ iγ/2 and cause loss of digits in the
calculation of the Gaudin matrix.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.2532 0 2.7575 0 40.1762 −3.1122 0 −30.4413 0 35.7292 0 699.9198 −1041.1975
2 0.9943 0 4.4673 0 58.7948 −1.0641 0 −35.8730 0 24.2381 0 636.4054 −977.7322
3 0.7835 −0.0360i 1.6763 −14.6067i 23.9194 −1.5671 −4.8238i −15.9397 −64.9254i 17.9797 −77.5466i 514.1511 −421.2121
4 0.7753 0.7416i 1.4832 12.7286i 10.2488 −1.6686 −0.1011i −18.3237 9.9267i 15.8433 90.9083i 386.2803 −477.2798
5 0.5760 0 −1.2677 0 −24.5509 −2.1720 0 1.5124 0 11.0947 0 359.2093 133.1447
6 0.5153 0 3.4066 0 139.3342 0.0497 0 0.2926 0 24.9705 0 1033.3667 −13.3474
7 0.4300 −0.5360i 0.7507 −12.0616i −46.6899 −0.8600 −0.8968i −19.5390 79.3132i 1.3187 −20.1408i −95.3254 −444.0795
8 0.3018 0 0.3445 0 −7.5902 −0.1736 0 −4.2120 0 −1.6588 0 141.3088 93.4591
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Table 7: List of the correlation functions in 8 eigenstates of the XXZ representation
calculated by exact diagonalization for d = 3, z = ei2γ, total magnetization sector
of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum quan-
tum number. We list the eigenstates for which the TQ equation can be solved, with
0 ≤ k ≤ 4 to resolve the degeneracy, and if there are still degeneracies, only one
of the degenerate states was listed. We also list the corresponding Bethe roots. We
denote 〈e1e2e3〉

′ ≡ 〈e1e2e3 + e3e2e1〉. The numerical errors of the correlation func-
tions compared to those computed from the factorization formula (69)–(73), using
the current mean values in Table 8, are at most 10−12.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉
′ 


e1e4

�

λ1 λ2 λ3 λ4

1 14.7275 0 1.6655 4.3998 3.6248 2.6996 −0.1177− 0.4815i −0.1177+ 0.4815i −0.0474+ 0.1232i −0.0474− 0.1232i
2 13.2170 4 1.0245 4.1074 3.1863 1.1395 −1.5652− 1.5708i −0.0084+ 0.2508i −0.0084− 0.2508i −0.0070
3 10.4142 3 0.6402− 0.1402i 1.6553 1.1036 2.5303 −0.9135− 0.2344i −0.0550+ 0.5535i 0.0313− 0.0726i 0.0968− 0.2466i
4 10.0000 2 0.7000+ 0.5000i 1.0500 0.3000 2.1000 −0.7742− 0.3414i −0.0764+ 0.5237i −0.0175+ 0.1471i 0.1867− 0.3294i
5 8.9038 0 0.1595 1.8310 2.1352 0.6915 −0.5422+ 1.5708i −0.6884 0.0112 0.2740
6 8.0000 4 0.2727 0.6364 −0.5455 0.6364 −0.7277 −0.0668− 0.5371i −0.0668+ 0.5371i 0.2349
7 7.5858 1 0.1098− 0.3902i 0.5947 0.3964 1.4697 −0.6223− 1.5383i −0.6377+ 0.1239i −0.0117− 0.2804i 0.3247+ 0.1239i
8 5.3687 0 −0.2000 0.1442 −0.2600 0.1089 −0.6759+ 0.4202i −0.6759− 0.4202i 0.2793+ 0.4224i 0.2793− 0.4224i

Table 8: List of the current mean values in the XXZ representation with the param-
eters being the same as Table 7. The numerical errors of the current mean value
formula (60) against the above numerics are at most 10−10.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.8409 0 4.7764 0 146.8741 −6.2902 0 −77.6288 0 114.3119 0 1840.2901 −5749.4570
2 1.6521 0 7.4127 0 76.7147 −2.6713 0 −132.1650 0 74.1274 0 4818.2829 −3336.7489
3 1.3018 −0.2803i 3.8410 −37.3575i 145.4547 −2.6036 −12.0533i −34.1685 42.6595i 60.8878 −225.5422i 3698.3625 −1340.4055
4 1.2500 1.0000i 2.0000 26.0000i −50.0000 −3.6000 −1.2000i −68.4000 147.6000i 28.4000 397.2000i 650.8000 −2559.6000
5 1.1130 0 7.1515 0 417.1100 0.8714 0 −1.6636 0 85.6498 0 4379.9362 −1014.5115
6 1.0000 0 −2.0000 0 14.0000 −3.8182 0 26.7273 0 46.0000 0 2198.0000 1324.9091
7 0.9482 −0.7803i 0.6590 −18.8575i −158.9547 −1.8964 1.4467i −60.3315 566.1595i 3.6122 57.9578i −711.8625 −1976.0945
8 0.6711 0 0.3220 0 −55.7341 −0.5812 0 −22.7075 0 −14.4617 0 545.2737 385.9685
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Table 9: List of the correlation functions in 8 eigenstates of the golden chain repre-
sentation calculated by exact diagonalization for L = 8. E is the eigenenergy and k
is the overall momentum quantum number. We list the eigenstates with 0 ≤ k ≤ 4.
The numerical errors of the correlation functions compared to those computed from
the factorization formula (69)–(73), using the current mean values in Table 10, are
at most 10−13. The eigenstates indexed 1,4 correspond to the eigenstates of the XXZ
chain indexed 1,2 in Table 5 respectively. The errors between the corresponding cor-
relation functions are at most of the order 10−13. The eigenstates other than those
indexed 1,4 also correspond to eigenstates in the XXZ representation with different
parametrization. For example, the eigenstates indexed 2, 3 correspond to the XXZ
representation with the twist z = e4iγ and the magnetization M = 0.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉
′ 


e1e4

�

1 10.0259 0 1.2264 1.7212 2.4912 1.5016
2 9.8473 4 1.1926 1.6279 2.4183 1.4663
3 9.5601 0 1.1441 1.4711 2.3027 1.4244
4 7.9546 4 0.8090 1.0181 1.8625 0.6663
5 7.7141 3 0.8007+ 0.2901i 0.7735 1.3479 0.9368
6 7.5275 1 0.7862− 0.2483i 0.7364 1.2794 0.8243
7 7.3934 0 0.7990 0.6750 1.6799 0.6794
8 6.7599 2 0.6397+ 0.0425i 0.7590 0.5768 0.5047

Table 10: List of the current mean values in the golden chain representation with
the parameters being the same as Table 9. The eigenstates indexed 1, 4 correspond
to the eigenstates of the XXZ chain indexed 1, 2 in Table 6 respectively. The errors
between the corresponding mean values are at most of the order 10−12.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.2532 0 2.7575 0 40.1762 −3.1122 0 −30.4413 0 35.7292 0 699.9198 −1041.1975
2 1.2309 0 2.9948 0 32.2644 −2.8941 0 −34.0877 0 32.8961 0 921.9507 −876.4761
3 1.1950 0 3.3370 0 25.1091 −2.5726 0 −38.1117 0 29.3764 0 1094.4553 −746.0619
4 0.9943 0 4.4673 0 58.7948 −1.0641 0 −35.8730 0 24.2381 0 636.4054 −977.7322
5 0.9643 0.5801i 3.3212 7.8011i 86.8173 −1.5634 −0.6982i −18.2058 −120.7357i 31.1574 −1.7555i 966.7497 −546.4995
6 0.9409 −0.4965i 3.0183 −10.7810i 83.9916 −1.6448 −0.6943i −16.0361 117.2059i 30.5524 −3.5068i 1088.4021 −376.7953
7 0.9242 0 4.6091 0 80.9245 −0.8367 0 −30.1360 0 24.9617 0 537.6382 −981.7392
8 0.8450 0.0850i 0.0164 1.3714i −107.6978 −2.7168 0.0721i −36.1226 23.1560i 3.7302 19.0219i −139.8274 −787.5306
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Table 11: List of the correlation functions in 8 eigenstates of the Potts representation
calculated by exact diagonalization for Q = 3 and L = 8. E is the eigenenergy and
k is the overall momentum quantum number, and zq is the ZQ quantum number. We
list the eigenstates with 0 ≤ k ≤ 2 and zq = 0,1. We note that the physical system
size here is L/2 = 4. The numerical errors of the correlation functions compared to
those computed from the factorization formula (69)–(73), using the current mean
values in Table 12, are at most 10−11. The eigenstates indexed 2,4, 5,6 correspond
to the eigenstates of the XXZ chain indexed 1,2, 3,4 in Table 3 respectively. The er-
rors between the corresponding correlation functions are at most of the order 10−10.
The eigenstates other than those indexed 2,4, 5,6 also correspond to eigenstates in
the XXZ representation with different parametrization. For example, the eigenstates
indexed 1, 3 correspond to the XXZ representation with the twist z = e2iγ and the
magnetization M = 0.

E k zq 〈e1e2〉 〈e1e3〉 〈e1e2e3〉
′ 


e1e4

�

1 10.4050 0 0 1.2666 1.8830 2.5827 1.5995
2 10.0809 0 1 1.2053 1.7059 2.4500 1.5374
3 8.3849 0 0 0.8296 1.2029 1.9706 0.7067
4 7.9421 1 1 0.8162+ 0.2823i 0.8367 1.3574 0.9696
5 7.4797 0 1 0.8192 0.6285 1.6802 0.7205
6 7.0595 2 1 0.6589 0.8285 0.5820 0.5595
7 6.7970 1 0 0.7641+ 0.2602i 0.3195 1.2012 0.6615
8 6.6104 1 0 0.5281+ 0.0281i 0.6812 0.7866 0.8062

Table 12: List of the current mean values in the Potts representation with the param-
eters being the same as Table 11. The eigenstates indexed 2,4, 5,6 correspond to
the eigenstates of the XXZ chain indexed 1, 2,3, 4 in Table 4 respectively. The errors
between the corresponding mean values are at most of the order 10−7.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.3006 0 2.9079 0 45.7228 −3.3411 0 −33.2258 0 39.9918 0 771.4239 −1229.7023
2 1.2601 0 3.3463 0 31.6763 −2.9346 0 −39.9194 0 34.6966 0 1172.5214 −931.3222
3 1.0481 0 4.7128 0 60.2540 −1.1768 0 −41.0506 0 26.7520 0 775.6237 −1112.7968
4 0.9928 0.5646i 3.3830 10.0458i 95.2807 −1.7078 −0.0231i −18.8898 −137.1473i 34.2995 0.1941i 1198.6269 −528.0020
5 0.9350 0 4.9451 0 98.2431 −0.8162 0 −31.1809 0 27.9266 0 614.1580 −1106.1864
6 0.8824 0 0 0 −121.1016 −2.9061 0 −40.3672 0 3.7137 0 −171.0383 −910.7546
7 0.8496 0.5205i 4.1880 11.2664i 98.8764 −0.9287 0.4442i −22.1164 −114.5883i 28.0232 2.6114i 1096.6866 −528.9631
8 0.8263 0.0562i 1.8294 16.1408i 30.2047 −1.6526 5.3119i −17.0107 63.9912i 20.3713 85.8017i 631.6663 −468.8777
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Table 13: List of the correlation functions in 8 eigenstates of the trace representa-
tion calculated by exact diagonalization for d = 3. We restrict the eigensubspace of
the U(1) charges: Na = 0 (a = 1, 2,3) where Na is defined in the Eq. (50) in [55].
E is the eigenenergy and k′ is the overall momentum quantum number concerning
the two-site shift. We list the eigenstates with 0 ≤ k′ ≤ 2. The numerical errors
of the correlation functions compared to those computed from the factorization for-
mula (69)–(73), using the current mean values in Table 14, are at most 10−13. The
eigenstates indexed 1,2, 7 correspond to the eigenstates of the XXZ chain indexed
1, 2,3 in Table 7 respectively. The errors between the corresponding correlation func-
tions are at most of the order 10−13.

E k′ 〈e1e2〉 〈e1e3〉 〈e1e2e3〉
′ 


e1e4

�

1 14.7275 0 1.6655 4.3998 3.6248 2.6996
2 13.2170 0 1.0245 4.1074 3.1863 1.1395
3 13.0858 0 1.4722 2.6731 2.8585 3.0251
4 11.7967 1 1.0923+ 0.5002i 2.0904 1.9444 2.4491
5 10.9631 1 1.0293+ 0.2706i 1.9718 1.7179 1.3104
6 10.5358 0 1.0130 1.5571 2.3080 1.2967
7 10.4142 1 0.6402+ 0.1402i 1.6553 1.1036 2.5303
8 10.3673 2 0.8388+ 0.2242i 2.0426 0.8651 1.0503

Table 14: List of the current mean values in the trace representation with the param-
eters being the same as Table 13. The numerical errors of the current mean value
formula (60) against the above numerics are at most 10−10.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.8409 0 4.7764 0 146.8741 −6.2902 0 −77.6288 0 114.3119 0 1840.2901 −5749.4570
2 1.6521 0 7.4127 0 76.7147 −2.6713 0 −132.1650 0 74.1274 0 4818.2829 −3336.7489
3 1.6357 0 7.5679 0 83.0324 −3.9041 0 −118.2845 0 73.0298 0 4623.7150 −3583.7330
4 1.4746 1.0003i 6.8665 11.5587i 255.2844 −2.7927 −4.9296i −61.9843 −402.8328i 91.8175 −10.2651i 3458.0998 −3489.5801
5 1.3704 0.5411i 4.8218 33.9784i 212.4193 −3.4178 5.5017i −44.7668 −283.1773i 85.5345 73.1007i 4790.6704 −1252.5544
6 1.3170 0 8.7549 0 307.2956 −1.2956 0 −72.0023 0 77.4292 0 2530.5220 −4001.5256
7 1.3018 0.2803i 3.8410 37.3575i 145.4547 −2.6036 12.0533i −34.1685 −42.6595i 60.8878 225.5422i 3698.3625 −1340.4055
8 1.2959 0.4484i 0.3683 11.3196i −267.3614 −4.9239 0.7804i −96.6653 257.4877i 23.2054 210.6901i −237.9226 −3551.3820
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